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Abstract

Projections, or dimensionality reduction methods, are techniques of choice for the visual exploration of high-dimensional data.
Many such techniques exist, each one of them having a distinct visual signature — i.e., a recognizable way to arrange points in
the resulting scatterplot. Such signatures are implicit consequences of algorithm design, such as whether the method focuses on
local vs global data pattern preservation; optimization techniques; and hyperparameter settings. We present a novel projection
technique — ShaRP — that provides users explicit control over the visual signature of the created scatterplot, which can cater
better to interactive visualization scenarios. ShaRP scales well with dimensionality and dataset size, generically handles any
quantitative dataset, and provides this extended functionality of controlling projection shapes at a small, user-controllable cost
in terms of quality metrics.

CCS Concepts
• Human-centered computing → Visualization techniques; • Mathematics of computing → Dimensionality reduction;

1. Introduction

Projection, also called Dimensionality Reduction (DR), methods
are popular tools for exploring high-dimensional datasets. They
transform the task of discovering data patterns in high-dimensional
spaces into a perceptually-driven search and inspection task of
visual patterns in 2D or 3D through scatterplots. Prior research
has shown that such scatterplots help uncovering topological as-
pects, such as groupings, outliers, and correlations in the data
[BBK∗18, PKF∗16, WFC∗18].

However, visual patterns in a projection depend not only on the
underlying data, but also on how the DR technique is designed. For
example, for the same dataset, t-SNE tends to create organic, round,
structures; Auto-Encoders create starburst-like clusters; and UMAP
creates very dense, round, clusters, to mention just a few [NA18,
EMK∗21]. We further call such aspects the visual signature of a
projection technique.

We believe that users can benefit from having direct control over
the visual signatures of a projection technique. For instance, when
performing interactive data labeling using rectangular selections or
displaying image thumbnails over data clusters (see Figure 2), a pro-
jection whose clusters resemble rectangles would be more suitable
than one creating various-shaped clusters (if all other aspects of the
two projections, e.g., quality, are similar). However, controlling such
visual signatures is typically hard with current projection methods.

To fill that gap, we present ShaRP (standing for Shape
Regularized Neural Projection), to the best of our knowledge the
first algorithm that provides users with direct control over cluster
shapes in their projection scatterplots. We next describe the tech-
nique, illustrate this new shape regularization ability, show that it

comes at a user-controlled penalty to standard quality metrics, and
point towards avenues for further exploration.

2. Background and Related Work

We first introduce a few notations: A dataset X = {xi}i=1,...,m has
m samples xi = [xi1, . . . ,xin]

T , where xi is a point in Rn with com-
ponents xi j, 1 ≤ j ≤ n and an optional label yi ∈ {1, . . . ,K}. We
use capitals to denote the set of all elements for the corresponding
small letter, e.g., Ȳ = {ȳi}i=1,...,m. We denote the Euclidean norm
by ∥x∥2 =

√
xT x and the expected value of a function of a ran-

dom variable z distributed according to p by Ez∼p[ f (z)]. Further,
we use θ to denote probability distribution parameters, for example
θ = (⃗µ ∈ R2, σ⃗2 ∈ R2) for a 2D Diagonal Gaussian distribution.

Dimensionality reduction: Projection algorithms are formally
functions Pη : Rn → Rq where q ≪ n and η denote (hy-
per)parameters. In this work we focus on 2D scatterplots (q = 2)
and use the term “projections” to refer to both such 2D scatterplots
and the DR algorithms that create them.

Many projection algorithms are available nowadays. These are
described from technical perspectives (how they differ design-
wise) in several surveys [vP09, HG02, Yin07, BBH12, SVPM14,
CG15, LMW∗15]; and from the perspective of local quality met-
rics [NA18, EMK∗21]. Well-known projection methods include
Principal Component Analysis (PCA) — a simple, easy to code,
but qualitatively limited method especially for complex non-planar
data structures embedded in high dimensions [F.R01]; Isomap — a
technique which works well if the data resides on a (single) high-
dimensional manifold [TSL00]; t-SNE, which works well for arbi-
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trary high-dimensional data distributions but has challenges in con-
trolling (and predicting) the shapes of the emerging visual clusters
[vdMH08,vdM14,Uly16]; and UMAP, similar to t-SNE in terms of
ease and of visual cluster control [MH18].

Visual signatures: Significant work aimed to develop ways to
control or adapt the visual signatures of projections [CMC∗22,
AEC∗21, MSJG15] and studying whether it is possible to do so for
existing projection methods, as follows. Cutura et al. [CMC∗22]
use space-filling curves to adapt the position of data points in image
thumbnail scatterplots such that they are non-overlapping. This idea
is effective but limited to image datasets, while our proposed tech-
nique is designed to be generic. The perplexity parameter in t-SNE
is responsible for, among other things, the visual appearance of the
projection. Its effect is intricately enmeshed within t-SNE, leading
to cluster shapes, sizes, and distances that do not necessarily con-
vey meaning [WVJ16]. Our technique minimizes the variability of
this visual appearance. Since fully doing away with hyperparam-
eters might be infeasible, techniques such as HyperNP [AEC∗21]
learn to simulate their effects on the resulting projection. Our tech-
nique instead works well for several datasets using a single setting of
hyperparameters, reducing the need for such simulation. Makhzani
et al. [MSJG15] propose an approach similar to ours. They adapt an
auto-encoder into an adversarial setting so as to increase the quality
of the projection (e.g., better cluster separability) that would have
been created by the vanilla auto-encoder. Our method instead aims
mainly at putting cluster shapes under the user’s control.

3. ShaRP: Shape-Regularized Neural Projection

We now introduce ShaRP, our novel DR technique, which is based
on deep neural networks. Such networks are, in general, able to ap-
proximate complex non-linear functions and have several desirable
features that ShaRP inherits:

Scalable: ShaRP scales linearly in the number of samples because it
avoids precomputing pairwise distances or covariance matrices, like
in PCA or t-SNE, and lends itself to hardware-acceleration through
GPUs or TPUs tailored for fast deep learning.

Parametric: ShaRP operates in a “learn once, project as needed”
fashion. It learns to parameterize a projection function instead of
only outputting the projected points, such as t-SNE or UMAP. This
allows ShaRP to project data it was not trained on along with exist-
ing data (out-of-sample ability).

Generic: ShaRP handles any dataset comprised of numeric features
and can be applied to a wide range of datasets using the same or
only slightly adapted hyperparameter settings.

Sound: ShaRP scores comparably to state of the art techniques in
relevant projection quality metrics.

To these, ShaRP adds two flavors of Shape Regularization:

• Intra-projection: ShaRP creates point clusters having shapes
coming from the same family: ellipses, rectangles, triangles.

• Inter-projection: Running ShaRP over different datasets produces
a consistent visual signature where differences in the projections
are driven mainly by data patterns.

ShaRP is implemented in Python using Keras (Tensorflow back-
end) [C∗15], Tensorflow Probability [DLT∗17] for sampling and

calculating log-probabilities under different distributions and is pub-
licly available at https://git.science.uu.nl/vig/sharp.

3.1. Method description

ShaRP belongs to the family of Representation Learning [BCV13]
techniques, i.e., it learns a latent encoding for input data. A latent
encoding is a vector r ∈ Rq, where r = f (x) is a low-dimensional
representation of the input x ∈ Rn that enables a reconstruction of
x with minimal errors. As said earlier, we aim to create 2D projec-
tions, so q = 2.

ShaRP builds atop of the recent DR method SSNP [EHT21].
SSNP extends a vanilla auto-encoder with loss LAE with a classi-
fier head (with an accompanying loss Lclass), yielding the total loss
to be optimized as

LSSNP(X, X̂,Ȳ ,Ŷ ) = LAE(X, X̂)+ρLclass(Ȳ ,Ŷ ). (1)

The projection ri ∈ R2 of each input xi is generated by the bottle-
neck layer of the network. The classification loss Lclass, together
with target labels or pseudolabels generated by a clustering algo-
rithm, enables SSNP to separate data clusters better than plain auto-
encoders (see Figure 1). Yet, as the figure shows, SSNP collapses
some clusters into elongated shapes, which we argue is (a) unnat-
ural, as it suggests some anisotropy in the sample distribution; (b)
space-inefficient, as much white space is not used to depict data;
and (c) suboptimal for visualization as we cannot e.g. easily select a
cluster by rubberband tools or annotate it with a square-like icon.

(a) AE (0.54) (b) SSNP (0.87) (c) ShaRP (0.97)

Figure 1: Comparison of projections of the MNIST dataset learned
using (a) Auto-encoders, (b) SSNP [EHT21], and (c) ShaRP. SSNP
and ShaRP were trained using the ground truth labels as class in-
formation — encoded, here and next, by colors. Values in brackets
are Distance Consistency scores (DSC [SNLH09]), a quality metric
that measures separability of clusters, with 1 being a perfect score.

ShaRP overcomes these shortcomings of SSNP by an explicit
user-controlled shape regularization mechanism, described next (see
also Section 3.2 for examples). ShaRP replaces SSNP’s Auto-
Encoder (AE) with a Variational AE (VAE) [KW14]. The key AE-
VAE difference is the latter’s use of a sampling process in the
network’s bottleneck layer. This, coupled with a necessary KL-
Divergence regularization term

Lreg(θ) = DKL(qθ||p)=̇Ez∼qθ
[log(qθ(z)/p(z))]. (2)

has as an immediate effect on the regularization of the learned la-
tent space: Using Lreg pushes the learned probability distributions
qθ toward a standard form p defined a priori (e.g., a standard Gaus-
sian distribution) which prevents learning degenerate distributions.
Also, crucially for our goals, this loss can be exploited to model dif-
ferent shape regularization constraints (see next Section 3.2). The
complete loss function for ShaRP then reads as
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LShaRP(X, X̂,Ȳ ,Ŷ ,Θ) =Lrecon(X, X̂)+ρLclass(Ȳ ,Ŷ )+βLreg(Θ)
(3)

=LSSNP(X, X̂,Ȳ ,Ŷ )+βLreg(Θ),

where we make the connection to the SSNP loss explicit.

By using a suitable sampling process, the clusters emerging in the
projection will be shape-regularized. For instance, using a 2D Gaus-
sian sampling distribution yields elliptical shapes (see Figure 1c)
because the equidensity contours of a 2D Gaussian are ellipses.
This is dependent on Lreg preventing the degenerate learning of low
(respectively, high) variances, which would give rise to point-like
(resp., line-like) shapes in the projection.

3.2. Controlling cluster shapes

We use as regularization targets the following shapes.

Ellipses. Consider a diagonal Multivariate Normal distribution, i.e.,
zi ∼ N (⃗µ,diag(⃗σ2)). The natural prior to use here is the standard
Multivariate Normal distribution N (⃗0,I) which simplifies sampling,
propagating gradients, and calculating the KL-Divergence loss —
see [KW14] for more details. By using this prior, we encourage
learned probability distributions to be as close as possible to a stan-
dard Gaussian. Hence, the learned projection will output data clus-
ters that resemble circles or ellipses (see Figure 4).

Using a Gaussian sampling distribution is standard for VAEs.
For our projection goals, tweaking the sampling distribution and us-
ing suitable priors allows favoring different cluster shapes. We can
use any distribution, as long as we have (i) access to log-probabil-
ities of samples under the learned distribution and the prior; (ii) a
way to propagate gradients through the sampling procedure (using
a reparametrization trick or otherwise).

Access to the log-probabilities of samples under learned distribu-
tions and the prior removes the (constraining) need to analytically
calculate the KL-Divergence since we can re-express it as a sample-
based computation as

DKL(qθ||p)≈
1
m

m

∑
i=1

(logqθ(zi)− log p(zi)) , (4)

where the approximation holds if zi ∼ qθ(·). Our next examples of
regularization shape targets use Equation 4 of computing the (ap-
proximate) KL-Divergence.

Rectangles. To create rectangular clusters, we use a generalized
Normal (GN ) probability distribution. It introduces an additional
shape parameter to the Gaussian (here denoted ω) and has a density
function of the form

p(x|µ,α,ω)∝ exp
(
−(|x−µ|/α)ω

)
.

Tuning ω makes the tails of the distribution heavier or lighter.
This is similar to the Minkowski p-norm where higher p values
(analogous to ω) make sets of equidistant points approach axis-
aligned squares as p → ∞ instead of circles (p = 2). Using this
distribution for sampling, with a high ω value, yields cluster shapes
that resemble squares/rectangles instead of ellipses (see Figure 2).

Convex polygons. If V ∈ R2×v is a matrix of a base convex poly-
gon’s v vertices in R2 and w ∈ [0,1]v is a vector such that wi ≥

Figure 2: Shaping clusters as rectangles can be convenient for data
labeling tasks, as illustrated by the right image where class im-
age representatives are overlaid atop their respective clusters. We
achieve this using a Generalized Normal distribution for sampling,
here shown on the MNIST dataset for ω = 10 (left).

0 ∀i, ∑
v
i=1 wi = 1, then p = Vw is a point inside the base polygon

with barycentric coordinates wi. To sample points inside this poly-
gon, we use the Dirichlet probability distribution

w ∼ Dir(α1,α2, . . . ,αv)⇒ w ∈ [0,1]v,
v

∑
i=1

wi = 1 (αi > 0, ∀i)

which generates vectors with the same properties as w above.

This sampling scheme alone is not enough to learn a useful em-
bedding since all data points will draw samples from the same re-
gion in space. Hence, we augment this scheme with rotation, scal-
ing, and translation. Figure 3 shows this scheme for triangles, i.e.
v = 3, using as prior the “uniform” distribution on the triangle,
which corresponds to Dir(1,1,1).

Table 1 summarizes our proposed mechanisms for controlling
cluster shapes by sampling distributions. For more technical details,
see the supplemental material.

(a) MNIST (0.905) (b) HAR (0.965) (c) Reuters (0.959)

Figure 3: The results of our Triangular shaping sampling scheme
over 3 different datasets. DSC values (in brackets) are close to the
best value possible, indicating that we do not harm class separability.

Table 1: Correspondences between sampling schemes and shapes.

Sampling Prior Shape
z ∼N (µ,diag(σ2)) N (0, I) ⃝
z ∼ GN (µ,α,ω) GN (0,1,ω) □
z ∼ Dir(α1,α2,α3)

Dir(1,1,1) △z 7→
[

cosφ − sinφ

sinφ cosφ

][
sx 0
0 sy

]
Vz+

[
tx
ty

]

4. Evaluation

We next discuss how ShaRP gives direct control over cluster shapes
while learning to project data (Section 4.1), the quality of ShaRP
projections (Section 4.2), and how tuning a single hyperparameter
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Figure 4: Our ShaRP method produces cluster shapes regularized towards a user-chosen target — here, ellipses — and can handle diverse
data distributions. We demonstrate this here for the cases where we use ground truth labels (GT) or K-Means-generated pseudolabels (KM).
We compare our results to SSNP (GT, KM) and to t-SNE and UMAP. More comparisons are present in the supplemental material.

controls the shape regularization strength (Section 4.3). Finally, we
discuss ShaRP’s computational scalability (Section 4.4).

Datasets. We use 5 datasets for evaluation (Table 2) which have
different levels of classification difficulty, dimensionality, data type
(images, motion data, text), and are often used in DR evaluations
[EMK∗21].

Table 2: Datasets used in our evaluation.

Dataset Dimensionality (n) # classes (K)
USPS [Hul94] 256 10
HAR [AGO∗12] 561 6
MNIST [LBBH98] 784 10
FashionMNIST [XRV17] 784 10
Reuters [Tho17] 5000 6

Techniques. We compare ShaRP with t-SNE, UMAP, and Isomap,
due to their wide adoption in the DR arena. We also compare with
Auto-Encoders since they are a key building block of our technique;
with SSNP since we are extending it; and with NNP [EHT20],
a technique that learns to imitate projections, here trained to imi-
tate t-SNE. For both ShaRP and SSNP, we use three different label
sources: (1) from the ground truth of the dataset (GT); and pseudola-
bels created by the K-Means (2, KM) [Llo82] and Agglomerative
(3, AG) [KR90] clustering techniques.

Hyperparameter settings. We train ShaRP with the Adam opti-
mizer using default parameter settings. We add L2 regularization to
the bottleneck layer of the network with a coefficient of 0.5. We use
ρ = 1 and β = 0.1 and train using mini-batches of 256 data points.

4.1. Generating shape-regularized projections

Figure 4 shows examples of how ShaRP can regularize learned
projections. Instead of producing scatterplots where cluster shapes,
sizes, and intercluster spacing are widely different (as with t-SNE
and UMAP), ShaRP generates a more similar representation of the
high-dimensional data in each 2D projection (intra-projection regu-
larization). Also, the visual signature obtained is consistent through-
out datasets (inter-projection regularization). The learned projec-
tions do well with respect to quality metrics (see Table 3 and its dis-
cussion in Section 4.2). All images were generated using the same
hyperparameter values, which shows the robustness of ShaRP to dif-
ferent datasets.

4.2. Measuring the projection quality

We evaluate ShaRP by a set of established projection quality metrics
(trustworthiness, continuity, Shepard correlation, normalized stress,
neighborhood hit, and distance consistency) following Espadoto et
al. [EMK∗21, EHT21]. Precise metric definitions are listed in the
supplemental material. We compute metrics over all datasets using
a Gaussian sampling layer which produces ellipse-like clusters. Ta-
ble 3 shows these mean and standard deviations of the metrics over
all datasets for ShaRP and the other six evaluated techniques. We
see that ShaRP avoids very high Stress values (present in t-SNE, all
studied datasets; UMAP and AEs, some datasets). We do, however,
have higher Stress than SSNP, since we force clusters into desired
shapes, which can require projected (2D) distances to be quite dif-
ferent from data-space distances. Given that our Stress is still lower
than t-SNE, UMAP, and AE, we believe this is a reasonable trade-
off. For the other metrics, ShaRP performs comparably to t-SNE and
UMAP. Overall, we claim that ShaRP offers its capability of shape
regularization without negatively impacting quality. It is worth not-
ing that, for their AG and KM versions, both SSNP and ShaRP can
be held back by the clustering algorithm’s ability to properly group
the dataset into classes.

To test how ShaRP’s support of different regularization shapes
affects projection quality, we asked ShaRP to produce clusters in
five shapes – ellipses (using Gaussian sampling); rectangles (ω = 5
and ω = 15, see Section 3.2); and triangles (translated in projected
space and respectively forced to tx = ty = 0), for all 5 tested datasets.
Table 4 shows the mean and standard deviation of quality metrics
per dataset. We see little variation in these metrics. This points to the
robustness of ShaRP and further supports our claim that controlling
the visual signatures of projections can be done without (strongly)
influencing quality metric values.

4.3. Control of shape regularization intensity

We adjust the amount of shape regularization through the β multi-
plier in the loss function (Equation 3). Figure 5 shows this: Larger β

values force clusters to conform to the shape generated in the sam-
pling layer — ellipses, in this case. Exaggerated shape regulariza-
tion (high β), however, makes ShaRP favor ‘shape over data’ too
much and creates projections which cannot properly depict data —
sampling from a distribution similar to the prior overshadows pro-
ducing a sensible embedding. In our tests, we have found a value of
β = 0.1 to give consistently good results.
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Table 3: Means and (standard deviations) of metrics computed for ShaRP and six other projection methods over 5 datasets. See Section 4.2.
For non-aggregated results, see supplemental material.

Method Trustworthiness Continuity Shepard Corr. Stress Neigh. Hit Dist. Consistency
Isomap 0.817 (0.126) 0.927 (0.096) 0.540 (0.410) 4.355 (4.359) 0.737 (0.091) 0.587 (0.095)
t-SNE 0.940 (0.110) 0.968 (0.032) 0.436 (0.250) 25.951 (18.373) 0.914 (0.064) 0.754 (0.141)
UMAP 0.910 (0.139) 0.960 (0.055) 0.424 (0.336) 1.389 (1.451) 0.874 (0.088) 0.741 (0.166)
NNP[t-SNE] 0.903 (0.122) 0.967 (0.033) 0.441 (0.254) 0.872 (0.044) 0.859 (0.075) 0.742 (0.141)
AE 0.878 (0.136) 0.917 (0.091) 0.342 (0.331) 1.236 (1.075) 0.793 (0.043) 0.622 (0.082)
SSNP (AG) 0.849 (0.139) 0.922 (0.080) 0.461 (0.180) 0.301 (0.067) 0.812 (0.058) 0.674 (0.090)
SSNP (KM) 0.862 (0.142) 0.928 (0.065) 0.451 (0.221) 0.334 (0.134) 0.777 (0.046) 0.620 (0.104)
SSNP (GT) 0.797 (0.126) 0.902 (0.078) 0.454 (0.117) 0.500 (0.061) 0.977 (0.025) 0.930 (0.043)
ShaRP (AG) 0.816 (0.136) 0.886 (0.108) 0.382 (0.311) 0.770 (0.089) 0.771 (0.047) 0.661 (0.073)
ShaRP (KM) 0.832 (0.143) 0.897 (0.082) 0.426 (0.268) 0.782 (0.079) 0.747 (0.045) 0.658 (0.051)
ShaRP (GT) 0.755 (0.118) 0.864 (0.098) 0.343 (0.221) 0.783 (0.085) 0.939 (0.056) 0.890 (0.074)

Table 4: Means and (standard deviations) of metrics for ShaRP computed for 5 datasets and 5 different settings for shape regularization. See
Section 4.2. For non-aggregated results, see supplemental material.

Dataset Trustworthiness Continuity Shepard Correlation Stress Neigh. Hit Dist. Consistency
MNIST 0.735 (0.007) 0.878 (0.035) 0.167 (0.071) 0.809 (0.073) 0.965 (0.024) 0.909 (0.068)
FashionMNIST 0.823 (0.014) 0.888 (0.035) 0.468 (0.079) 0.837 (0.065) 0.830 (0.018) 0.761 (0.043)
HAR 0.826 (0.001) 0.841 (0.039) 0.546 (0.053) 0.690 (0.087) 0.959 (0.021) 0.925 (0.025)
Reuters 0.555 (0.002) 0.691 (0.011) 0.302 (0.050) 0.631 (0.083) 0.969 (0.007) 0.903 (0.035)
USPS 0.805 (0.006) 0.899 (0.036) 0.275 (0.105) 0.700 (0.104) 0.965 (0.012) 0.904 (0.053)

Figure 5: The β coefficient (Equation 3) controls the shape regu-
larization strength, shown here on the USPS dataset. β = 0 approxi-
mately reproduces SSNP (a). Increasing it (b, c) progressively forces
the learned clusters into circular shapes, up to the point where they
are no longer separable and the projection is of low quality (d).

β = 0.0 0.05 0.1 0.25 0.5 1.0
Trustworthiness 0.87 0.81 0.79 0.77 0.66 0.54
Continuity 0.95 0.93 0.85 0.74 0.70 0.56
Shepard Corr. 0.39 0.30 0.27 0.26 0.21 0.09
Stress 0.93 0.84 0.78 0.66 0.57 0.54
Neighborhood Hit 0.99 0.99 0.97 0.91 0.60 0.45

(a) Quality Metrics for varying values of β.

4.4. Computational performance

Figure 6 shows how ShaRP fares compared to other projection tech-
niques vs. computational time. Tests were run on a PC with an AMD
Ryzen 9 5900HX 3.3GHz 8-core processor and an NVIDIA RTX
3080 GPU. ShaRP is much faster than t-SNE (50-80% speedup)
and Isomap (50-60%). It is also faster than AE, UMAP, and only
slightly slower than SSNP, its predecessor. The used batch size (256
data points) is largely responsible for ShaRP’s speed. Also, since
ShaRP has out-of-sample ability, we can train it on a representative
data subsample to next project an entire dataset with high quality.

5. Discussion and Future Work

ShaRP introduces a novel level of pattern steerability for a projec-
tion algorithm, all while performing comparably to state-of-the-art
methods in relevant (visual) quality metrics. However, ShaRP also
has some limitations which frame our future work directions. Cur-
rently, we only support numerical features as these work directly
with Auto-Encoders. One-hot encoding or Categorical Variational

Figure 6: Run times for five projection techniques and ShaRP, (up-
sampled) MNIST dataset. Runs were stopped after 5 minutes. We
see improvements ranging from 50-80% with respect to t-SNE,
UMAP, and Isomap, and similar performance to AE and SSNP, as
expected. More results are available in the supplemental material.

Auto-Encoders [MST∗21] can overcome this limitation with only
slight adaptions to our network architecture. Also, the sampling
schemes we devised support shaping clusters into ellipses and con-
vex polygons — with two different possibilities for shaping clusters
into rectangles. A wider variety of shapes can be obtained by de-
vising new sampling schemes. However, obtaining log-probabilities
for samples of complex sampling schemes can be computationally
intensive. We next aim to study more sampling schemes that natu-
rally encourage further visual aspects of interest of projections, e.g.,
cluster separability.

Shape-regularized projections also can help interaction and visu-
alization tasks. For example, rectangular shaped clusters can help as
a clutter-reduction mechanism whenever (annotation) overlays with
text and images should be added to projection (cf Fig. 2). We aim
to further study this aspect, including the ease of interactive hier-
archical navigation of thumbnail-annotated squarified projections to
support various analysis tasks of high-dimensional data.
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