
Image-Based Graph Visualization: Advances and
Challenges

Alexandru Telea

Bernoulli Institute, University of Groningen, The Netherlands
a.c.telea@rug.nl

Abstract. Visualizing large, multiply-attributed, and time-dependent
graphs is one of the grand challenges of information visualization. In
recent years, image-based techniques have emerged as a strong competi-
tor in the arena of solutions for this task. While many papers on this
topic have been published, the precise advantages and limitations of such
techniques, and also how they relate to similar techniques in the more
traditional fields of scientific visualization (scivis) and image processing,
have not been sufficiently outlined. In this paper, we aim to provide
such an overview and comparison. We highlight the main advantages
of image-based graph visualization and propose a simple taxonomy for
such techniques. Next, we highlight the differences between graph and
scivis/image datasets that lead to limitations of current image-based
graph visualization techniques. Finally, we consider these limitations to
propose a number of future work directions for extending the effective-
ness and range of image-based graph visualization.

Keywords: Large graph visualization · Image-based information visu-
alization · Multiscale visualization.

1 Introduction

Relational data, also called networks or graphs, is a central and ubiquitous el-
ement of many types of data collections generated by multiple application do-
mains such as traffic analysis and planning, social media, business intelligence,
biology, software engineering, and the internet. Since the first moments when
such data was collected, visualization has been a key tool for its exploration
and analysis, leading to the emergence and development of the research domains
of graph drawing and graph visualization [15, 23]. Last-decade developments in
processing power, data-acquisition tools, and techniques, have led to what is
today globally called big data – collections of tens of millions of samples having
hundreds of measurement values (attributes), all which can evolve over thou-
sands of time steps. A particular case hereof, big-data graphs, pose fundamental
problems for visual exploration.

On the other hand, several solutions, techniques, and tools have been devel-
oped for the scalable visual exploration of other types of big data collections, such



2 A. Telea

as 2D images, 3D scalar or vector field volumes, or more generally multidimen-
sional fields, in the domains of scientific visualization and imaging sciences [52].
Recent developments have tried to approach the two traditionally separately
evolving fields of graph visualization and scientific visualization, thereby aiming
at leveraging the (visual) scalability of the latter methods to address big graph
related challenges from the former. [20]. This has led to interesting parallels and
links between concepts, methods, and applications between the two fields, and
the development of hybrid visualization methods that inherit strenghts from
both graph visualization and scientific visualization. However, large graph visu-
alization still has many unsolved challenges [23].

In this paper (and related talk) we aim to provide an overview of the research
at the crossroads of large graph visualization and scientific visualization. We start
highlighting the main challenges in large graph visualization (Sec. 2). Next, we
outline the high-level directions proposed by current research towards addressing
these (Sec. 3). We focus next on one type of technique that aims to solve these
challenges by adapting methods from scientific visualization and imaging to the
particularities of graph visualization – image-based graph visualization (Sec. 4).
Based on the structure of graph data outlined in Sec. 2, we discuss here various
types of image-based methods for graph visualization and highlight parallels to
simplification methods for multivariate field and image data. In the light of these
methods, we next highlight open challenges for image-based graph visualization
(Sec. 5) and attempt to clarify some of the more subtle points related to this
new emerging visualization field which, we believe, have not been sufficiently
discussed in current literature. Section 6 concludes the paper outlining promising
directions for future research in image-based graph visualization.

2 Problem Definition

2.1 Preliminaries

To better outline the large graph visualization challenges, we first introduce
some notations. Let G = (V,E ⊂ V × V ) be a graph with vertices, or nodes,
V = {vi} and edges E = {ei}. Both nodes and edges typically have one or
multiple attributes (also called features, dimensions, or variables). We denote
by vji , 1 ≤ j ≤ NV , the individual attributes of node vi, and by eji , 1 ≤ j ≤
NE , the individual attributes of edge ei, respectively. As a shorthand, let vj

denote all values of the jth attribute of all nodes V ; let ej denote all values
of the jth attribute of all edges E; let V = (v1, . . . ,vNV ) denote all values
of all node attributes; and let E = (e1, . . . , eNE ) denote all values of all edge
attributes, respectively. Attributes can be of all types, e.g., quantitative (values
in R), integral (values in N), ordinal, categorical, text, hyperlinks, but also more
complex data types such as images or video. In this sense, the ordered collections
V and E are very similar to so-called multidimensional datasets as well known
in information visualization [34, 20, 52]. That is, every node vi or edge ei can
be seen as a sample, or observation, of a respectively NV and NE dimensional



Image-Based Graph Visualization: Advances and Challenges 3

dataset. Finally, as graphs can evolve over time, all their ingredients (sets V , E,
V, and E) can be seen as functions of (continuous or discrete) time [2].

m
ap

p
in

g
 M

fil
te

re
d 

gr
ap

h 
F
(G
)

fi
lt

er
in

g
 F

Abstract graph space Euclidean space Image space

node vi

no
de

 a
ttr

ib
ut

es

vi
1

vi
NV

...

edge ei

ed
ge

 a
ttr

ib
ut

es

ei
1

ei
NE

...

attributed graph G

nodes V edges E

graph layout

M(F(G))

re
n

d
er

in
g

 R

graph visualization

R(M(F(G)))

positions mi 

rendered
shapes ri 

aggregation

filtering

subsampling

layouting

bundling

bundling

glyphs

image-based techniques

Te
ch

n
iq

u
es

Fig. 1. Graph visualization pipeline.

With these notations, visualizing a graph can be defined in terms of the tradi-
tional data visualization pipeline [52] in terms of filtering, mapping and rendering
operations (see also Fig. 1). Filtering F reads the input graph G and produces
another graph F (G) which is (more) suitable for subsequent visualization, e.g.,
by removing nodes, edges, and/or attributes that are not of interest, or aggre-
gating such elements into fewer and/or semantically richer ones. Mapping M is a
function that takes as input F (G) and outputs a set of shapes M(F (G)) = {mi}
embedded in R2 or, less frequently, R3. Typically, nodes are mapped to individual
points, and edges are mapped to straight lines or, less commonly, curves. Other
layout methods, such as adjacency matrices [1], exist but are less intuitive, less
common, and thus not discussed here. Most often, M takes into account only the
graph topology (V,E), and computes only positions mi for nodes. This is the
case of so-called graph layout techniques [55, 51]. Rendering R takes as input the
layout M(F (G)) and creates actual visible shapes R(M(F (G))) = {ri}, where
each ri is placed at the corresponding layout positions mi. Visual variables [57] of
ri such as size, color, texture, transparency, orientation, texture, and annotation
are used to encode the attributes vi and ei of the respective node or edge. Inter-
active exploration techniques such as zooming, panning, brushing, and lensing
can be subsumed to the rendering operator R as they are essentially customized
ways to perform rendering; hence, we do not discuss them separately.

2.2 Scalability Challenge

With the above notations, we can decompose the challenge of visualizing big-
data graphs into the following three elements:

Layout: A good layout should arguably allow end users to detect structures of
interest present in G by examining the rendering R(M(G)). These include, but



4 A. Telea

are not limited to, finding groups of strongly-connected nodes; finding specific
connection patterns; assessing the overall topology of G; and finding (and fol-
lowing) paths between specific parts of G, at a low level [24]; and identifying,
comparing, and summarizing the information present in G, at a high level [4].
However, even for moderately-sized graphs (|V | or |E| exceeding a few thou-
sands), most existing layout methods cannot usually produce layouts that can
consistently support these tasks [23]. Suboptimal layouts of large graphs, also
called ‘hairballs’, are all to frequent a problem in graph visualization [38, 47]. The
problem is caused by the fact that there does not exist a ‘natural’ mapping be-
tween the abstract space of graphs and the Euclidean 2D or 3D rendering space.
Interestingly, the problem is very similar to that of mapping high-dimensional
scatterplots (sampled datasets in Rn) to 2D or 3D by so-called dimensionality
reduction (DR) methods [50, 29].

Dimensionality: An effective graph visualization should allow users to answer
questions on all elements of interest of the original graph. Apart from the topol-
ogy (V,E) which should be captured by the layout M(G), this includes the
node and edge attributes V and E. The problem is that, when NV and NE

are large, nodes and edges essentially become points in high-dimensional spaces.
Since, as explained, each node and/or edge is typically mapped to a separate
location mi, the challenge is how to depict a high-dimensional data sample, con-
sisting of potentially different attribute types, to the space at or around mi.
A similar problem exists in scientific visualization when using glyphs to depict
high-dimensional fields [44, 3]: The higher-dimensional our data points are, the
more space one needs to show all dimensions, so the fewer such points (in our
case, nodes and/or edges) can one show on a given screen size. At one extreme,
we can display (tens of) thousands of nodes on a typical computer screen if we
only show 2 or 3 attributes per node (encoded e.g. in hue, luminance, and size);
at the other extreme, we can display tens of attributes per node, like in UML
diagrams, but for only a few tens up to hundreds of nodes [5]. The problem is
well known also in multidimensional information visualization.

Clutter and Overdraw: Finally, a scalable graph visualization should accom-
modate (very) large graphs consisting of millions of nodes and/or edges. Even
if we abstract from the aforementioned layout and dimensionality challenges,
a fundamental difficulty here resides in the fact that a node-link visualization
cannot exceed a given density : If nodes and/or edges are drawn too close to each
other, they will form a compact cluttered mass where they cannot be distin-
guished from each other. Additionally, an edge (in the node-link visual model) is
drawn as a line (or curve) so in the limit it needs to use at least a few (tens of)
pixels of screen space to be visible as such (if the edge is too show, we cannot
e.g. see its direction); in Tufte’s terms, there is an upper bound to the data-
ink ratio [57] when drawing a graph edge. Moreover, when attributes must be
rendered atop of the edge, the amount of surrounding whitespace needs to be
increased [17]. This leads in turn to inherent overdraw, i.e. edges that partially
occlude each other, even for moderately-sized graphs of thousands of nodes. A
detailed overview of clutter reduction techniques in information visualization is



Image-Based Graph Visualization: Advances and Challenges 5

given by Ellis and Dix [8]. In large graph visualization, clutter and overdraw are
hard to jointly optimize for: Spatial distortion, e.g. via edge bundling (discussed
next in Sec. 4.2), creates more white space, thus reduces clutter, but increases
overdraw; space-filling techniques are of limited effect since, as noted, edges must
be surrounded by white space to be visible as such; apart from these, reducing
clutter and overdraw is not fully possible in the rendering phase only, as this
phase works within the constraints of the layout fed to it by the M operator.

fi
lt

er
in

g
 F

? ?
?

Scivis data simplification Graphvis data simplification

a) 3D mesh (80K points) b) simplified mesh (20K points)

c) mesh detail (70 polygons) d) simplified mesh detail

(69 polygons)

fi
lt

er
in

g
 F

fi
lt

er
in

g
 F

fi
lt

er
in

g
 F

e) graph (80K edges) f) simplified graph (20K edges)

g) graph detail (50 edges) h) graph detail (49 edges)

Fig. 2. Data-space simplification of scivis data (a) vs graph data (b).

3 Simplification: Ways Towards a Solution

For a given screen resolution for the target image R, how can we approach large
graph visualization? Given the scalability challenges outlined in Sec. 2.2, two
types of approaches exist, as follows.

Data-space Simplification: First, we can simplify the graph G in the filtering
stage F in the visualization pipeline (Fig. 1). This reduces the number of nodes
(|V |), edges (|E|), and/or attributes (NV , NE) to be next passed to the mapping
operator M . Following the clutter reduction taxonomy of Ellis and Dix [8], this
includes subsampling, filtering, and clustering (aggregation) [45], all applicable to
V , E, and (V,E) respectively. While effective in tackling clutter, overdraw, and
dimensionality issues, such approaches have two limitations. First, they require
a priori knowledge on which data items (samples or dimensions) can be filtered
or clustered together. Secondly, performing such operations on graphs can easily
affect the semantics of the underlying data.

At this point, it is instructive to compare graph visualization (graphvis) with
image and field visualization as done in classical scientific visualization (scivis).
Consider a multidimensional dataset D : Rm → Rn; for each point of the Eu-
clidean m-dimensional domain, n quantitative values are measured. Scivis pro-
vides many methods for visualizing such datasets, e.g. for 2D and 3D vector fields



6 A. Telea

(m ∈ {2, 3}, n ∈ {2, 3}) or 2D and 3D scalar fields (m ∈ {2, 3}, n = 1) [52]. Many
techniques exist in scivis (and, by extension, in imaging and signal processing)
for simplifying large fields – we mention here just a few, e.g., perceptually-based
image downscaling [39], feature extraction from vector fields [43], multiscale rep-
resentations of scalar and vector fields [14, 12], mesh simplification [28], and im-
age segmentation [40]. Many such techniques have a multiscale nature: Given a
dataset D and a simplification level τ ∈ R+, they produce a filtered (simpli-
fied) version F (D) of D which is (roughly) τ times smaller than D. This allows
users to continuously vary the level-of-detail parameter τ until obtaining a visu-
alization that matches their goals, as well as fits the available screen space with
limited clutter. Figure 2(left) illustrates this: From a 3D surface-mesh dataset
(a), we can easily extract a four times smaller dataset (b) using e.g. mesh deci-
mation [46], which captures very well the overall structure of the depicted bone
shape. Consider now a graph of similar size, whose nodes are functions in a soft-
ware system [54] and edges function calls respectively (e). What should be the
equivalent simplification of this graph to a size four times smaller? (f) This is far
from evident. The scivis-graphvis difference manifests itself even on the tiniest
scale: Take a detail (zoom-in) of the mesh dataset (c) from which we decimate
a single polygon (data point). The result (d) is visually identical. Consider now
the analogous zoom-in on a small portion of our call graph (g) from which we
remove a single edge. The result (h) may be visually similar to the input (g),
but can have a completely different semantics – just imagine that the removed
function call edge is vital to the understanding of the operation of the underlying
software.

All in all, most scivis data-space simplification methods succeed in keep-
ing the overall semantics of their data. In contrast, even tiny changes to graph
data can massively affect the underlying semantics. More formally put, scivis
data-space simplification methods appear (in general) to be Cauchy or Lipschitz
continuous (small data changes imply small semantic changes). This clearly does
not hold in general for graph data. We believe the difference is due to two factors:

1. Scivis data is defined over Euclidean domains (Rm). This allows simplifica-
tion operators to readily use continuous Euclidean distances to e.g. aggregate
and cluster data. An entire machinery is available for this, including basis
functions and interpolation methods [14, 12].

2. All data samples have (roughly) the same importance, and the phenomenon
(signal) sampled by the scivis dataset D is of bounded frequency. Hence,
discarding a few samples does not affect data semantics.

In contrast:

1. Graph data is defined over an abstract graph space, whose dimensions, and
even dimensionality, are not known or even properly defined. It is not always
evident how to define ‘proximity’ between graph nodes and/or edges. There
is no comparable (continuous) interpolation theory for graph data. Graph-
theoretic distances are not continuous. Simply put: There is nothing (no
information) between two nodes connected by an edge;



Image-Based Graph Visualization: Advances and Challenges 7

2. Nodes and edges can have widely different importances. There is, as we know,
no similar notion of ‘maximal frequency’ of a graph dataset as in scivis.
Hence, discarding a few samples can massively affect graph data semantics.

Image-level Simplification: A second way to handle large graph visualiza-
tions is to simplify them in the image domain. That is, given the limitations of
data-space graph simplification listed earlier, rather than designing simplifica-
tion operators F that act on the graph datasets, we embed the simplification
into the graph rendering operator R. The key advantage here is that R acts, by
definition, upon an Euclidean space (the 2D target image), where all samples
(pixels) are equally important. Hence, the main proposal of image-based graph
visualization is to delay simplification to the moment where we can reuse/adapt
known scivis techniques for data simplification. Rather than first simplifying the
graph data (F ) and then mapping (M) and rendering (R) it, image-level tech-
niques first map the data, and then simplify it during rendering1. We detail the
advantages and challenges of image-based graph visualization next.

4 Image-Based Graph Visualization

Image-based graph visualization is a subfield of the larger field of image-based
information visualization [20]. The name of this field can be traced back to 2002,
when image-based flow visualization (IBFV) was proposed to depict large, com-
plex, and time-dependent 2D vector fields using animated textures [60]. Key to
IBFV (and its sequels) was the manipulation of the image-space pixels to pro-
duce the final visualization. Several advantages followed from this approach:

– Dense visualizations: Every target image pixel encodes a certain amount of
information, thus maximizing the data-ink ratio [57];

– Clutter is avoided by construction: Rather than scattering dataset samples
over the image space (which can lead to clutter when several such samples
inadvertently overlap), samples are gathered and explicitly aggregated for
each pixel. The aggregation function is fully controlled by the algorithm;

– Implicit multiscale visualizations: By simply changing the resolution of the
target image (zooming in or out), users can continuously control the amount
of information displayed per screen area unit;

– Exploitation of existing knowledge about image perception when synthesizing
and/or simplifying a graph visualization;

– Accelerated implementations: Image-based techniques parallelize naturally
over the target image pixels (much as raycasting does), so they optimally fit
to modern GPU architectures [62, 25];

– Simpler implementations vs data-space graph simplification techniques.

1 The underlying assumption here is that mapping and simplification are conceptually
commutative. As discussed next, this is not always the case.



8 A. Telea

A more subtle (but present) advantage of image-based graph visualizations
is their ability to reuse principles and techniques grounded in the theory and
practice of image and signal processing, thereby allowing a more principled rea-
soning about, and control of, the resulting visualization. We next outline the
main advances of this field, along with the challenges that we still see open.
Given the structure of a graph in terms of nodes, edges, and attributes thereof
(Sec. 2.1), we structure our discussion along the same concepts.

g
ra

p
h

 s
p

la
tt

in
g

a) b)

Fig. 3. (a) Node-link graph drawing (dataset from Fig. 2e) and (b) its graph splatting.

4.1 Node-Centric Techniques

The first image-based graph visualization, to our knowledge, is graph splatting,
proposed in 2003 by De Leeuw and Van Liere [27]. Its intuition is simple: Given
a graph drawing (layout) M(G), its visualization R(M(G)) is the convolution
of M(G) with an isotropic 2D Gaussian kernel in image space. This is simply
a low-pass filter that emphasizes high-density node and/or edge areas in the
layout. The visualization’s level-of-detail, or multiscale nature, is controlled by
the filter’s radius. The samples’ (nodes or edges) weights can be set to reflect
their importance. Figure 3(b) shows the splatting of the graph in Fig. 3(a), for
the same call graph as in Fig. 2e, where the nodes’ weights are set to their number
of outgoing edges (fan-out factor). The resulting density map, visualized with
a rainbow colormap, thus emphasizes nodes (functions) that call many other
functions as red spots. This allows easily detecting such suitably-called ‘hot
spots’ in the software system’s architecture.

Graph splatting is extremely simple to implement, fast to execute (linear in
the number of splatted nodes and/or edges), and easy to control by users via
its kernel-radius parameter. It also forms the basis of more advanced techniques
such as graph bundling (Sec. 4.2). Formally, it is a variant of the more general
kernel density estimation (KDE) set of techniques used in multidimensional data
analysis [49]. Its key limitation is that it assumes a good layout M(G): Density
hot spots appear when nodes and/or edges show up closely in a graph layout.
So, when layout methods M place unrelated nodes close to each other, ‘false
positive’ hot spots appear (and analogously for false negatives).



Image-Based Graph Visualization: Advances and Challenges 9

E
ar

ly
 p

h
as

e
F

ir
st

 c
o

m
p

u
te

r 
m

et
h

o
d

s
E

st
ab

lis
h

m
en

t 
p

h
as

e
C

o
n

so
lid

at
io

n
 p

h
as

e
S

ta
te

 o
f 

th
e 

ar
t

a) hand-drawn flow maps (1864) b) Sankey diagrams (1898)

c) edge concentration (1989) d) confluent drawings (2003)

e) flow map layouts (2005) f) circular layouts (2005) g) hierarchical edge bundling (2006)

h) general graph bundling (2008) i) image-based bundling (2010) j) dynamic graph bundling (2012)

k) CUDA universal bundling (2016) l) Fast Fourier transform bundling (2017)

Fig. 4. Key moments in edge bundling history.



10 A. Telea

4.2 Edge-Centric Techniques

Graph bundling is the foremost image-based technique focusing on graph edges.
Bundling has a long history (see Fig. 4 for an overview of its most important
moments). We distinguish five phases, as follows (for a comprehensive recent
survey, we refer to [26, 61]):

Early Phase: Minard hand-drew a so-called ‘flow map’ (a single-root directed
acyclic graph) showing the French wine exports in 1864 [33]. While not properly
a bundled graph, as no edges are grouped together, the visual style featuring
curved edges whose thickness maps edge weights, suggests later bundling tech-
niques. The design was refined in 1898 to create the so-called Sankey diagrams,
which can display more complex (multiple source, cyclic) graphs;

First Computer Methods: One of the first computer-computed bundling-like
visualizations was proposed by Newbery in 1989 [35]. The key novelty vs earlier
methods is grouping edges sharing the same end nodes (so, this technique can
be seen as a particular case of graph simplification by aggregation). Dickerson
et al. coined the term ‘edge bundling’ in 2003 for their method that optimizes
node placement and groups same-endpoints edges (via splines) to simplify graph
drawings. All these techniques could handle only small graphs of tens up to
hundreds of nodes and edges.

Establishment Phase: Subsequent methods focused on larger-size graphs (thou-
sands of nodes and edges). Flow map layouts [42] generalized in 2005 the com-
putation of Sankey-like diagrams, also first featuring the ‘organic’ branch-like
structure to be encountered in many later techniques [9, 53, 7]. At roughly the
same time (2006), two key bundling techniques emerged: Gansner et al. presented
improved circular layouts [11], which grouped edges based on their spatial prox-
imity in M(G); Holten proposed hierarchical edge bundling [16] which grouped
edges based on the graph-theoretic distance of their start and end nodes in a
hierarchy of the graph’s nodes. Holten also pioneered several advanced blending
techniques to cope with edge overdraw (see also Sec. 4.3).

Consolidation Phase: The next phase focused on treating general graphs [18],
time-dependent graphs [36], and, most importantly for our context, image-based
methods. The latter include image-based edge bundles (IBEB [53], following the
name-giving of IBFV [60]) which introduced clustering and grouped rendering
of spatially close edges in the form of shaded cushions [58] to both simplify
the rendered graph and emphasize distinct/crossing, bundles. IBEB reused sev-
eral image-processing operators such as KDE [49], distance transforms [10], and
medial axes [48] for computational speed. Next, skeleton-based edge bundles
(SBEB) [9] used medial axes to actually perform graph bundlings, by follow-
ing the simple but effective intuition that bundling a set of (close) curves means
moving them towards the centerline of their hull.

State of the Art: Most recent methods focus mainly on scalability, using
image-based techniques. Kernel density edge bundling (KDEEB) [21] showed
that bundling a graph drawing is identical to applying mean shift, well known



Image-Based Graph Visualization: Advances and Challenges 11

in data clustering [6], on the KDE edge-density field. CUDA Universal Bundling
(CUBu) [62] next accelerated KDEEB to bundle 1 million-edge graphs in sub-
second time by parallelizing KDE on the GPU. Fast Fourier Transform Edge
Bundling (FFTEB) [25] further accelerated CUBu by computing the KDE con-
volution in frequency space, thus bundling graphs of tens of millions of edges at
interactive rates. As such, scalability seems to have been addressed successfully.

Graphs

Shape skeletons

Mean shift clustering

skeletons bundle graphs...

can we use shape 

methods to study 

relational data?

ca
n 

w
e 

us
e 

sk
el

et
on

s 

to
 c

lu
st

er
 a

rb
itr

ar
y 

da
ta

?

ca
n 

w
e 

us
e 

m
ea

n 
sh

ift

to
 c

om
pu

te
 s

ha
pe

 s
ke

le
to

ns
?

mean shift bundles graphs...

can we see graph data

as multidimensional data?

Fig. 5. Puzzling connections between graph visualization, shape analysis, and multi-
dimensional data analysis.

Several points can be made about edge bundling. First, bundling is an image-
space simplification technique of the graph drawing R(M(G)) that reduces clut-
ter by creating whitespace between bundles, but increases overdraw (of same-
bundle edges); a recent bundling formal definition as an image-processing op-
erator is given in [26]. Image-based bundling is a multiscale technique, where
the KDE kernel radius controls the extent over which close edges get bundled,
thereby allowing users to easily and continuously specify how much they want to
simplify (bundle) their graphs. Image-based methods are clearly the fastest, most
scalable, bundling methods, due to the high GPU parallelization of their under-
lying image processing operations. Edge similarity, the bundling driving factor,
can be easily defined in terms of a mix of spatial (Euclidean) and attribute-based
distances [41]. More interestingly from a theoretical point, bundling exposes some
puzzling connections between domains as different as data clustering [6], shape
simplification [48], and graph visualization itself (Fig. 5). Briefly put:

– If skeletons can be used to bundle graphs [9], how can we further use the
wealth of shape analysis methods to analyze/visualize graphs?

– If skeletons and mean shift bundle graphs [9, 21], can we use skeletons to
cluster multidimensional data, or mean shift to compute shape skeletons?



12 A. Telea

– If mean shift simplifies graphs [21], could we see graphs as yet another form
of multidimensional data?

These questions open, we think, a wealth of new vistas on data visualization.

d) e)

c)low weight high weight

direction

Fig. 6. Attribute encoding in bundled graph visualizations.

4.3 Attribute-Centric Techniques

Graph visualization scalability also means handing high-dimensional node and/or
edge attributes (Sec. 2.2). Visualizing these is hard, since the method of choice for
handling geometric scalability – bundling – massively increases edge overdraw.
Several image-based techniques address attribute visualization, as follows.

One can directly visualize the edge-density (KDE) map e.g. by alpha blend-
ing [16], which is a simple form of graph splatting using a one-pixel-wide kernel.
Additionally, hue mapping can encode edge attributes, such as density [18, 62]
(Fig. 6a), length [16, 62] (Fig. 6b), quantitative weights [56] (Fig. 6c), categorical
edge types [53] (Fig. 6d), and edge directions [41] (Fig. 6e). Two main challenges
exist here. First, at edge overlap locations, attribute values eji of multiple edges
ej have to be aggregated together prior to color coding. While this is straightfor-
ward to do for e.g. edge density, it becomes problematic for other attributes such
as edge categorical types or edge directions. This issue parallels known challenges
in scivis (interpolation of vector fields) and infovis (aggregation of categorical
data). Secondly, there is currently no scalable method that can render at the
same time more than roughly two attributes per edge in high-density graph vi-
sualizations. Visualizing graphs having tens of attributes per edge (NE > 2) is
an open problem. Separately, animation has been used to encode edge directions
by using particle-based techniques [19]. Interestingly, this approach resembles a
form of IBFV [60] applied to the vector field defined by the edges’ tangent vec-
tors. However, in a typical vector field, the number of singularities (where IBFV
would have problems rendering a smooth, informative, animation) is quite lim-
ited; in a dense graph, this number is very high, equalling the amount of edge



Image-Based Graph Visualization: Advances and Challenges 13

crossings or, in the bundled case, overlaps of different-direction edges [9]. Hence,
IBFV cannot be directly used to visualize large/complex graphs.

5 Open Challenges

Image-based techniques have shown high potential for the efficient and effective
visualization of large graphs. Yet, we also see a number of key challenges that
they would need to tackle to become (more) effective in practice, as follows.

Layouts: Current image-based techniques address the rendering (R) phase, but
assume a suitable node layout to be given as input. As explained, computing such
a layout (for large graphs) is challenging. A promising direction is to further ex-
plore analogies between dimensionality reduction (DR, used to efficiently and
effectively visualize high-dimensional sample sets embedded in Rn) and graph
drawing [22]. An additional advantage of doing this is that DR can easily ac-
commodate a wide range of similarity functions, e.g., accounting for both graph
structure and attributes [32]. This could open new ways to visualizing graphs
having many node and/or edge attributes. Separately, it would be interesting to
consider image-based bundling approaches for the layout of a graph’s nodes.

Aggregation: Graph splatting and bundling are the techniques of choice for
generating images of large graphs. However, the way in which the multiple node
and/or edge attribute values that cover a given pixels are to be aggregated is cur-
rently limited to simple operations (sum, average, minimum, or maximum) [16,
62]. Such operations cannot aggregate attributes such as categorical types or
edge directions. For edge directions, it is interesting to consider analogies with
scivis techniques for dense tensor field interpolation [59] which address related
problems. Separately, image processing has proposed a wealth of operators for
detecting and emphasizing specific features present in images such as edges,
lines, textures, or even more complex shapes [13]. Such operators could be read-
ily adapted to highlight patterns of interest in image-based graph visualizations.

Quality: Measuring the quality of an (image-based) graph visualization is an
open topic [37], much due to the fact that there is typically no ground truth to
compare against. Still, image processing techniques can be helpful in this area,
e.g. by providing quantitative measures for the amount of edge intersections,
bends, preservation of graph-theoretic distances, or edge-angle spatial distri-
butions, in the final image. Such image-based metrics have been successful in
assessing the quality of DR scatterplot projections [31], bringing added value
beyond simple aggregate metrics. Exploring their extension to graph visualiza-
tions is potentially effective. Also, such metrics could be easily used to locally
constrain the mapping and/or rendering phases, e.g. to limit the amount of
undesired deformations that bundling produces.

Applications: An interesting and potentially rich field for graph visualization is
the exploration of deep neural networks (DNNs), currently the favored technique
in machine learning. DNNs are large (millions of nodes and/or edges), attributed
by several values (e.g. activations and weights), and time-dependent (e.g. during



14 A. Telea

the network training). Understanding how DNNs work, and why/where they do
not work, is a major challenge in deep learning [30]. Visualizing DNNs is also very
difficult, as their tightly-connected structure yields significant edge crossings and
overdraw, and it is not evident how e.g. bundling would help for these topologies.
Exploring image-based techniques for this use-case is promising.

6 Conclusion

In this paper, we surveyed current developments of image-based techniques for
the visualization of large, high-dimensional, and time-dependent graphs. These
techniques have major advantages – the ability of creating dense visualizations
with high data-ink ratios, treatment of clutter by construction, an implicit mul-
tiscale nature able to handle large and dense graphs, and scalable implementa-
tions. We highlighted analogies and differences between image-based techniques
and related techniques for the visualization of densely-sampled fields in scientific
visualization. While graph data has several important differences as compared
to field data, the existing similarities make us believe that existing scivis and
image-processing techniques can be further adapted to further assist graph visu-
alization. From a practical perspective, this would lead to the creation of novel
efficient and effective tools for graph visual exploration. Equally important, from
a theoretical perspective, this could lead to further unification of the currently
still separated disciplines of scientific and information visualization.

References

1. Abello, J., van Ham, F.: Matrix zoom: A visual interface to semi-external graphs.
In: Ward, M., Munzner, T. (eds.) Proc. IEEE InfoVis. pp. 127–135 (2005)

2. Archambault, D., Abello, J., Kennedy, J., Kobourov, S., Ma, K.L., Miksch, S.,
Muelder, C., Telea, A.: Temporal multivariate networks. In: Kerren, A., Purchase,
H., Ward, M. (eds.) Multivariate Network Visualization (Proc. Dagstuhl Seminar
13201). pp. 151–173. Springer (2014)

3. Borgo, R., Kehrer, J., Chung, D.H.S., Maguire, E., Laramee, R.S., Hauser, H.,
Ward, M., Chen, M.: Glyph-based Visualization: Foundations, Design Guidelines,
Techniques and Applications. In: Sbert, M., Szirmay-Kalos, L. (eds.) Eurographics
– State of the Art Reports. The Eurographics Association (2013)

4. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks.
IEEE TVCG 19(12), 2376–2385 (2013)

5. Byelas, H., Telea, A.: Visualizing multivariate attributes on software diagrams. In:
Proc. IEEE CSMR. pp. 335–338 (2009)

6. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE TPAMI 24(5), 603–619 (2002)

7. Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering
for graph visualization. IEEE TVCG 14(6), 1277–1284 (2008)

8. Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation.
IEEE TVCG 13(6), 1216–1223 (2007)

9. Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based edge
bundles for graph visualization. IEEE TVCG 17(2), 2364–2373 (2011)



Image-Based Graph Visualization: Advances and Challenges 15

10. Fabbri, R., da F. Costa, L., Torelli, J., Bruno, O.: 2D Euclidean distance transform
algorithms: A comparative survey. ACM Computing Surveys 40(1), 1–44 (2008)

11. Gansner, E., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D.
(eds.) Proc. Graph Drawing. pp. 386–398. Springer (2006)

12. Garcke, H., Preusser, T., Rumpf, M., Telea, A., Weikard, U., van Wijk, J.J.: A
continuous clustering method for vector fields. In: Moorhead, R. (ed.) Proc. IEEE
Visualization. pp. 351–358 (2000)

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson (2011)

14. Griebel, M., Preusser, T., Rumpf, M., Schweitzer, M.A., Telea, A.: Flow field clus-
tering via algebraic multigrid. In: Proc. IEEE Visualization. pp. 35–42 (2004)

15. Herman, I., Melan con, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: A survey. IEEE TVCG 6(1), 24–43 (2000)

16. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE TVCG 12(5), 741–748 (2006)

17. Holten, D., Isenberg, P., Van Wijk, J.J., Fekete, J.D.: An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations
in node-link graphs. In: Battista, G.D., Fekete, J.D., Qu, H. (eds.) Proc. IEEE
PacificVis. pp. 195–202 (2011)

18. Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Computer Graphics Forum 28(3), 983–990 (2009)

19. Hurter, C., Ersoy, O., Fabrikant, S.I., Klein, T.R., Telea, A.C.: Bundled visualiza-
tion of dynamic graph and trail data. IEEE TVCG 20(8), 1141–1157 (2014)

20. Hurter, C.: Image-Based Visualization: Interactive Multidimensional Data Explo-
ration. Morgan & Claypool Publishers (2015)

21. Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Computer Graphics Forum 31(3), 865–874 (2012)

22. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-SNE. Computer Graphics Forum 36(3), 283–294 (2017)

23. Landesberger, T.V., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.,
Fekete, J.D., Fellner, D.: Visual analysis of large graphs: State-of-the-art and future
research challenges. Computer Graphics Forum 30(6), 1719–1749 (2011)

24. Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph
visualization. In: Bertini, E., Plaisant, C., Santucci, G. (eds.) Proc. AVI BELIV.
pp. 1–5. ACM (2006)

25. Lhuillier, A., Hurter, C., Telea, A.: FFTEB: Edge bundling of huge graphs by the
Fast Fourier Transform. In: Seo, J., Lee, B. (eds.) Proc. IEEE PacificVis (2017)

26. Lhuillier, A., Hurter, C., Telea, A.: State of the art in edge and trail bundling
techniques. Computer Graphics Forum 36(3), 619–645 (2017)

27. van Liere, R., de Leeuw, W.: GraphSplatting: Visualizing graphs as continuous
fields. IEEE TVCG 9(2), 206–212 (2003)

28. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE
CG&A 21(3), 24–35 (2001)

29. van der Maaten, L., Postma, E.: Dimensionality reduction: A comparative
review (2009), tech. report TiCC TR 2009-005, Tilburg Univ., Netherlands.
http://www.uvt.nl/ticc

30. Marcus, G.: Deep learning: A critical appraisal (2018), arXiv:1801.00631 [cs.AI]

31. Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality
reduction quality for parameterized projections. Computers & Graphics 41, 26–42
(2014)



16 A. Telea

32. Martins, R.M., Kruiger, J.F., Minghim, R., Telea, A.C., Kerren, A.: MVN-Reduce:
Dimensionality reduction for the visual analysis of multivariate networks. In: Ko-
zlikova, B., Schreck, T., Wischgoll, T. (eds.) Proc. Eurographics – short papers
(2017)

33. Minard, C.J.: Carte figurative et approximative des quantités de vin français ex-
portés par mer en 1864 (1865)

34. Munzner, T.: Visualization Analysis and Design. CRC Press (2014)
35. Newbery, F.: Edge concentration: A method for clustering directed graphs. ACM

SIGSOFT Software Engineering Notes 14(7), 76–85 (1989)
36. Nguyen, Q., Eades, P., , Hong, S.H.: StreamEB: stream edge bundling. In: Didimo,

W., Patrignani, M. (eds.) Proc. Graph Drawing. pp. 324–332. Springer (2012)
37. Nguyen, Q., Eades, P., Hong, S.H.: On the faithfulness of graph visualizations. In:

Carpendale, S., Chen, W., Hong, S. (eds.) Proc. IEEE PacificVis (2013)
38. Nocaj, A., Ortmann, M., Brandes, U.: Untangling hairballs. In: Proc. Graph Draw-

ing. pp. 101–112. Springer (2014)
39. Oztireli, A.C., Gross, M.: Perceptually based downscaling of images. ACM TOG

34(4) (2015)
40. Pal, N., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition

26(9), 1277–1294 (1993)
41. Peysakhovich, V., Hurter, C., Telea, A.: Attribute-driven edge bundling for general

graphs with applications in trail analysis. In: Liu, S., Scheuermann, G., Takahashi,
S. (eds.) Proc. IEEE PacificVis. pp. 39–46 (2015)

42. Phan, D., Xiao, L., Yeh, R., Hanrahan, P., Winograd, T.: Flow map layout. In:
Stasko, J., Ward, M. (eds.) Proc. InfoVis. pp. 219–224 (2005)

43. Post, F.H., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the art
in flow visualisation: Feature extraction and tracking. Computer Graphics Forum
22(4), 775–792 (2003)

44. Ropinski, T., Oeltze, S., Preim, B.: Survey of glyph-based visualization techniques
for spatial multivariate medical data. Computers & Graphics 35(2), 392–401 (2011)

45. Schaeffer, S.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
46. Schroeder, W., Zarge, J., Lorensen, W.: Decimation of triangle meshes. In: Thomas,

J.J. (ed.) Proc. ACM SIGGRAPH. pp. 65–70 (1992)
47. Schulz, H.J., Hurter, C.: Grooming the hairball-how to tidy up network visualiza-

tions? In: Proc. IEEE InfoVis (tutorials) (2013)
48. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Ap-

plications. Springer (2009)
49. Silverman, B.: Density estimation for statistics and data analysis. Monographs on

Statistics and Applied Probability 26 (1992)
50. Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction

techniques (2014), arxiv.org/pdf/1403.2877
51. Tamassia, R.: Handbook of graph drawing and visualization. CRC Press (2013)
52. Telea, A.: Data Visualization: Principles and Practice. CRC Press (2015), 2nd

edition
53. Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large

graphs. Computer Graphics Forum 29(3), 543–551 (2010)
54. Telea, A., Maccari, A., Riva, C.: An open toolkit for prototyping reverse engineering

visualizations. In: Ebert, D., Brunet, P., Navazzo, I. (eds.) Proc. Data Visualization
(IEEE VisSym). pp. 67–75 (2002)

55. Tollis, I., Battista, G.D., Eades, P., Tamassia, R.: Graph drawing: Algorithms for
the visualization of graphs. Prentice Hall (1999)



Image-Based Graph Visualization: Advances and Challenges 17

56. Trümper, J., Döllner, J., Telea, A.: Multiscale visual comparison of execution
traces. In: Kagdi, H., Poshyvanyk, D., Penta, M.D. (eds.) Proc. IEEE ICPC (2013)

57. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press (1992)
58. Van Wijk, J.J., van de Wetering, H.: Cushion treemaps: Visualization of hierar-

chical information. In: Wills, G., Keim, D. (eds.) Proc. IEEE InfoVis. pp. 73–82
(1999)

59. Weickert, J., Hagen, H.: Visualization and Processing of Tensor Fields. Springer
(2007)

60. van Wijk, J.J.: Image based flow visualization. Proc. ACM TOG (SIGGRAPH)
21(3), 745–754 (2002)

61. Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization.
Tsinghua Science and Technology 18(2), 145–156 (2013)

62. van der Zwan, M., Codreanu, V., Telea, A.: CUBu: Universal real-time bundling
for large graphs. IEEE TVCG 22(12), 2550–2563 (2016)


