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Heuristic

The ultimate goal when constructing a readable graph drawing is
to avoid clutter that prevents viewers from grasping the graph’s
structure. One of the quality metrics that measures the clutter of
a graph drawing is the number of edge crossings. We know that
humans perform better on shortest-path-related tasks in drawings
with fewer crossing [13] and tend to prefer such drawings [12, 6].
Drawings that possess no edge interections, and the graphs that
can be drawn in this way, are called planar. Detecting whether a
graph has a planar drawing [7] and constructing one in
affirmative[14] can be done in linear time. However, in practice,
graphs are rarely planar. They can still be sparse or contain clear
planar substructures – in other words, be nearly planar. For such
graphs it is desirable to achieve nearly planar drawings. Most
works regarding near-planarity lead to hard computational
problems [5, 2, 1, 10]. There are a few spring-based algorithms
that address readability issues relevant to near-planarity [?, ?].
Yet, there is a lot of room for further work to design practical
layout algorithms for nearly planar graphs. We propose a
spring-based heuristic approach to construct nearly planar
drawings of graphs that contain dense planar substructures.

Our initial idea is to identify cluttering edges, weight them with
relatively lower weights than regular edges, and then use a
state-of-the-art spring-based approach, that takes edge-weights
into account. Our hope is that the cluttering edges will influence
the layout less than the remaining edges and therefore the planar
substructure will reveal itself in the drawing. To test whether this
idea is feasible, we perform the following initial experiment. We
consider a grid and construct a graph G = (V, E

⋃

Ep), where Ep is a
set of random edges on the vertex set V with the property that
E
⋂

Ep = ∅. We draw the resulting graph using ForceAtlas2 [8, 3]
(FA2). These layouts (see Figure 1) appear cluttered and folded
inwards, and of poor quality. We then reduce the weights of the
edges in Ep to 0.01 and rerun FA2. The resulting layout (see Figure
2) has unfolded and has become a near perfect depiction of a grid
graph. These initial experiments lead to two questions: Which
edges of a given nearly planar graph G create clutter in the
drawings of G generated by a spring-embedding algorithm? Using
a spring-based approach, how do we weight these edges to create
a drawing where a planar substructure is clearly visible?

Our approach to identify cluttering edges is based on the
following intuition. If the end-vertices of an edge e = {, }
are connected by multiple, relatively short paths in the graph,
then the edge e can also be short. In the opposite case,
where there are only relatively long paths between  and ,
then the edge e could collapse the drawing and therefore
could be a cluttering one. However, finding all paths between
even a single pair of vertices will result in exponential
computations. Hence, we use as a proxy the lengths of the
vertex-disjoint paths between  and . Vertex-disjoint paths
can be found using the max-flow Edmonds-Karp algorithm [4],
as described in [9]. In the following, for an edge e = {,},
we denote by ƒ (e) = [ℓ1, ℓ2, . . . ] the sequence of the lengths
of the vertex-disjoint paths between  and  in G \ e, listed in
non-decreasing order, and call ƒ (e) the footprint of e. We
ensure that the footprints of the edges all have the same
length. The footprints are expanded or contracted, depending
on the user-specified number of dimensions k and function
M. After this standardization process, the Isolation Forest
technique [11], which is designed to find anomalous data
points in a high-dimensional space, is used to find cluttering
edges. Based on multiple experiments, we set the weight of
edge e to M(ƒ (e)). Equation 2 portrays how the footprints are
expanded or contracted, given a footprint ƒ (e) of initial length
 and a desired length k.

ƒ ′(e) =







ƒ (e) ⊕ [M(ƒ (e))]k−  < k

ƒ (e)  = k
ƒ (e)[0 : k − 1] ⊕M(ƒ (e)[k : ])  > k

(1)

Let G = (V, E) be a nearly planar graph. To evaluate our
approach, we apply spring-based algorithms to the weighted
graph GM = (V, E,) and the baseline unweighted graph
G = (V, E). We test the heuristic on augmented grids,
augmented triangulations, deep triangulations and Rome
graphs, and compare the obtained drawings by visually
inspecting them and by computing quality metrics.

We presented a heuristic to detect edges that create clutter in layouts of near planar graphs. By suitably weighting such
edges, we use spring-embedders to draw these graphs with the goal to better convey their planar substructures. The
experiments indicate that our heuristic produces better results for augmented grids and triangulations. For deep
triangulations we noticed visual improvements and clutter decrease in the outer face, though further improvements are
possible. Moreover, our heuristic produces drawings with fewer number of crossings than conventional methods for all but
the Rome graphs. This result is, however, expected since the Rome graphs do not contain dense planar substructures.
Future work can yield more insight into deep triangulations, which we expect to be very challenging to lay out in a way that
reveal their planar structure. Moreover, additional comparisons can be made between our heuristic and tsNET?. In addition
to more experiments, future work can attempt to improve the heuristic’s limiting time complexity, by altering or
substituting the vertex-disjoint path and outlier detection computations. Finally, we plan to test whether Graph Neural
Networks can be more successful in identifying
textitcluttering edges.

The ultimate goal when constructing a readable drawing of a
graph (i.e. node-link diagram) is to avoid clutter that
prevents viewers from grasping the graph’s structure. One
of the quality metrics that measures the clutter of a graph
drawing is the number of edge crossings. It is long known
that humans perform better on shortest-path-related tasks
in drawings with fewer crossing [13] and tend to prefer such
drawings [12, 6]. It is then natural to request that a drawing
of a graph possesses no edge intersections at all whenever
possible. Such drawings, and the graphs that can be drawn
in this way, are called planar. Detecting whether a graph has
a planar drawing [7] and constructing one in affirmative[14]
can be done in linear time. However, in practice, graphs are
rarely planar. They can still be sparse or contain clear planar
substructures – in other words, be nearly planar. For such
graphs it is desirable to achieve nearly planar drawings.
There are various attempts to formalize the notion of
near-planarity and to construct nearly planar drawings.
Unfortunately, all of these attempts lead to hard
computational problems [5, 2, 1, 10]. There are a few
spring-based algorithms that address readability issues
relevant to near-planarity [?, ?]. Yet, there is a lot of room
for further work to design practical layout algorithms for
nearly planar graphs.
In this paper we propose a spring-based heuristic approach
to construct nearly planar drawings of graphs that contain
dense planar substructures. This work is motivated by the
lack of comparable approaches and the aforementioned
hardness of formal definitions of near-planarity. We conduct
an experimental evaluation comparing our approach to
state-of-the-art spring-based algorithms. The paper is
structured as follows.
We denote by G = (V, E,) a graph, with V and E being the
sets of nodes and edges, respectively; and  : E→ R an
edge-weighting function. Here n = |V| and m = |E|. For
nodes  and , we denote by e = {,} and e = (,), an
undirected edge and a directed edge.
Since a planar drawing does not contain any crossing, the
most straight-forward idea to define near-planarity is to
request a drawing with as few crossings as possible [2]. This
problem is NP-hard [5] even for a planar graph plus a single
additional edge [2]. There are a few algorithms that insert
edges into planar graphs and their drawings in a
crossing-optimal way [?, ?, ?, ?, ?] which have been
compared experimentally [?].
While we know that humans perform tasks well on planar
layouts [13], it has been also shown experimentally that the
negative effects of the crossings on task performance
decrease as the edge crossing angles increase [?]. This led
to the definition of RAC [?] and α-AC drawings [?]. Deciding
whether such drawings exist is NP-hard as well [1]. If the
graph is sparse, it is also natural to try to limit how many
crossings an edge has, as fewer crossings would impair less
the perception of that edge. This idea led to definition of
k-planar and quasi-planar drawings. However, again,
recognizing whether a graph has these kind of drawings is
NP-complete [10].
A plethora of spring-based algorithms produce high-quality
layouts without specifically targeting nearly planar
graphs [?]. Out of these approaches, we next consider
ForceAtlas2 (FA2) [8, 3] and Stress Majorization (SM) [?].
These are powerful layout techniques that we use for our
experiments since novel techniques are often compared to
them [?, ?]. SM solely bases the spring forces between all
pairs of nodes on the length of their shortest paths. FA2
considers attractive and repulsive forces to compute node
spring forces. Additionally, the work on SM [?] suggests to
weight node pairs by taking into account the number of
common neighbors. Here, the weight of a node-pair , is
set as (,) = |N ∪N | − |N ∩N |, where N denotes the
neighborhood of node . This idea improves the
performance of SM when edge lengths need to vary
significantly. As will become clear in the following, this
approach is relevant to ours and is therefore included as the
neighborhood weighting function in our experiments.
Finally, relevant to near-planarity, Argyriou et al. [?] present
an approach that maximizes the total resolution, which is
the minimum of the angular and crossing resolution. In
contrast, ImPrEd [?] preserves the topology of the given
layout and therefore its planarity. Similarly, tsNET? [?] tends
to preserve a layout’s original structure by favoring
occasional long edges and thus unfolding the layout.

Our overarching goal is to produce a drawing of a nearly
planar graph G which clearly depicts its planar substructure.
This statement itself hints us to distinguish among the graph
edges that contribute to its planar substructure and those
that destroy it. If we were able to detect the latter edges, we
could remove them, construct a planar drawing of the
remaining graph (using e.g. [?, ?]), and draw the removed
edges atop of it. There are two challenges that prevent us
from taking this approach. The first one is that detecting a
dense planar substructure is a hard optimization problem
known as Maximum planar subgraph [?]. The second is that
such an approach would inevitably be based on algorithms
to construct planar drawings of planar graphs, e.g. [?, ?],
which are relatively hard to implement and, also, are not
part of most graph drawing libraries and applications.
Therefore, we choose to attack our problem using a
relatively simple heuristic based on a spring-based
approach.
Our initial idea is to identify such planarity-destroying edges.
Once identified, we can weight them with relatively lower
weights than regular edges. We can then use a
state-of-the-art spring-based approach, that takes
edge-weights into account. Our hope is that the
planarity-destroying edges will influence the layout less than
the remaining edges and therefore the planar substructure
will reveal itself in the drawing.
To test whether this idea is feasible, we perform the
following initial experiment. We consider a grid D = (V, E)
and construct a graph G = (V, E

⋃

Ep), where Ep is a set of
random edges on the vertex set V with the property that
E
⋂

Ep = ∅. We call this graph an augmented grid. Starting
with a random initial coordinate assignment, we draw an
augmented grid using FA2. These layouts (see Figure)
appear cluttered and folded inwards, and of poor quality. We
then reduce the weights of the edges in Ep to 0.01 and
rerun FA2. The resulting layout (Figure) has unfolded and
has become a near perfect depiction of a grid graph. This
experiment hints that knowing the planarity-destroying
edges can be useful in depicting planar substructures in
nearly planar graphs by using a spring-based approach and
appropriate edge weighting scheme.
In our experiments with other augmented planar graph
classes, we observe that not only the planarity-destroying
edges create clutter in the drawing, but so do the edges that
are close to the outer face. These observations lead to the
following two questions: Which edges of a given nearly
planar graph G create clutter in the drawings of G generated
by a spring-embedding algorithm? Using a spring-based
approach, how do we weight these edges to create a
drawing where a planar substructure is clearly visible? We
call such edges cluttering and address the stated questions
in the following section.

Our approach to identify cluttering edges is based on the following intuition. If the end-vertices of an edge e = {,} are
connected by multiple, relatively short paths in the graph, then the edge e can also be short. In the opposite case, where
there are only relatively long paths between  and , then the edge e could collapse the drawing and therefore could be a
cluttering one. However, finding all paths between even a single pair of vertices will result in exponential computations.
Hence, we use as a proxy the lengths of the vertex-disjoint paths between  and .
Vertex-disjoint paths can be found using the max-flow Edmonds-Karp algorithm [4], as described in [9]. In the following, for
an edge e = {,}, we denote by ƒ (e) = [ℓ1, ℓ2, . . . ] the sequence of the lengths of the vertex-disjoint paths between  and
 in G \ e, listed in non-decreasing order, and call ƒ (e) the footprint of e. Given that the complexity of Edmond-Karp’s
algorithm is O(VE2), computation of footprints for all edges of G takes O(VE3) time.
By analyzing the footprints of augmenting and original edges in augmented grids, we observe differences in the footprints
that brings us the idea of using an outlier detection algorithm to detect cluttering edges . We experiment with the Isolation
Forest technique [11] which is designed to find anomalous data points in a high-dimensional space.
However, before applying the Isolation Forest method to footprints of the edges, we have to ensure that they all have the
same length. For this, we expand or contract the footprints, depending on the user-specified number of dimensions k and
function M, which can be either the minimum, maximum, or mean function. Equation 2 portrays how the footprints are
expanded or contracted, given a footprint ƒ (e) of initial length  and a desired length k.

ƒ ′(e) =







ƒ (e) ⊕ [M(ƒ (e))]k−  < k

ƒ (e)  = k
ƒ (e)[0 : k − 1] ⊕M(ƒ (e)[k : ])  > k

(2)

In our experiments we evaluate the results for all aforementioned choices of function M, i.e. minimum, maximum, and
mean. Based on multiple experiments, we set the weight of edge e to M(ƒ (e)).
Let G = (V, E) be a nearly planar graph. To evaluate our approach, we apply spring-based algorithms to the weighted graph
GM = (V, E,), (e) =M(ƒ (e)) and the baseline unweighted graph G = (V, E). We compare the obtained drawings both
qualitatively, by exploring them visually, and quantitatively, by using several quality metrics. We next discuss the datasets
of our experiment, the way the layouts are computed, and the measured quality metrics.
We used four types of graphs, as follows (see Table).
We create layouts using the spring-based methods FA2 and SM. For each grid or triangulation G and each spring-method S,
we compute seven layouts:

• orig ≡ S(G) – spring-embedding of a graphs G,

• on_top – drawing S(G) with edges of G \G appended on top of the drawing, where G is the augmented version of
graphs G,

• redraw ≡ S(G) – spring-embedding of G,

• Hmin ≡ S(Gmin), Hmax ≡ S(Gmax), Hmean ≡ S(Gmean) – spring-embeddings of G where outlier edges are weighted
according to the functions min, max and mean, respectively (see Eqn. 2), jointly referred to as heuristic layouts,

• Hnb ≡ S(Gnb) – spring-embeddings of G where node-pairs are weighted using the neighborhood weighting function.

For the deep triangulations and Rome graphs, which are challenging by themselves, we do not consider augmented
versions, thus on_top and redraw are not computed for them. We run FA2 and SM five times for each graph, and choose
the best layout, w.r.t. to the number of crossings. Both SM and FA2 are run for a maximum of 2000 iterations with default
settings.
We quantitatively evaluate the results by computing three quality metrics: the crossing number, nc ∈ [0,∞] – the total
number of crossings in a layout; the angular resolution, ang_res ∈ [0,1] – the minimum angle between any two incident
edges normalized by 2π/mx∈V deg(); and the crossing resolution, cros_res ∈ [0,1] – the minimum angle of any two
crossing edges normalized by π/2. Additionally, in order to measure how the augmenting edges distort the layouts, we
compute the Procrustes Statistic [?], ps ∈ [0,1]. Here, a value of ps = 0 indicates that two layouts are exactly similar in the
positions of vertices, after rotation, translation, and scaling.

The ultimate goal when constructing a
readable graph drawing is to avoid
clutter that prevents viewers from
grasping the structure of the graph

We know humans perform better
on user tasks in drawings with
fewer crossings [13] and tend to
prefer such drawings [12, 6]

Testing whether a graph can be
drawn without edge
crossings [7], i.e. in a planar
way, as well as constructing its
planar drawing [14], can be
done in linear time

In practice, however, graphs are rarely planar,
but can still have a planar substructure and thus
be nearly planar. Can we draw graphs in a
near-planar manner? Formal definitions of
near-planarity lead to hard computational
problems [5, 2, 1, 10]

Which edges of a given nearly planar graph create
clutter in the drawings generated by a
spring-embedding algorithm?
How do we weight these edges to create a drawing
where a planar substructure is clearly visible?

Find the lengths of the vertex-disjoint paths
between end-vertices of an edge e = {,}
using the max-flow Edmonds-Karp algorithm
[4] as described in [9].

1b
Construct a footprint ƒ (e) = [ℓ1, ℓ2, . . . ] for
each edge e. Here ℓ – the number of
vertex-disjoint paths of length d between
the end-point of e

1c
Standardize the footprints ƒ (e) to a
user-specified number of dimensions k and
some function M, where M can be
mean/minimum/maximum.

2
Using footprints, find cluttering edges
using the Isolation Forest technique [11],
which is designed to find anomalous data
points in a high-dimensional space.

3Set the weight of each edge e classified
as cluttering to M(ƒ (e))
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Original layouts

Layouts produced by the heuristic
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here? Text here? Text here? Text here? Text
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here? Text here?

avoid
clutter

avoid
crossings

planarity
is easy

near-
planarity
is hard

Drawn with ForceAtlas2 [8, 3]
(FA2) – layout appears cluttered
and folded inwards.
Can we do better if we know the
“cluttering edges”? YES -
reduce the weights of the
cluttering edges to 0.01 and
rerun FA2.

what if
we knew

bad
edges?

research
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