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Abstract

Mésurer la maintenabilé des sygimes logiciels est une composante
essentielle du@veloppement logiciel moderne. Cette ackiwst tradi-
tionelemment exeder en extrayant des metriques du code source par
des techniques 'fouille de doees’. Pour des sysines peu connus,
mesurer la maintenabikt doitétreétroitement combida la compéhension
du logiciel. Nous proposons pour cetéehe l'analytique visuelle logi-
cielle, une nouvelle combinaison de la visualisatioreiaictive et fouille
de doniees adapite au code source. Nousgzentons une applica-
tion pour la compéhension et estimation de la maintenailitu logi-
ciel orieng objet, avec deux contributions. En premier lieutdhle
lens superpose des @triques calcides sur des methodes en dessus
d’une diagramme de classe UML, en aidant les étations nétrique-
meétrique et netrique-structure. En deuxime lieu, ladende ratrique
permet de construire des analyses impliquant deérifttes ratriques,
gammes de valeurs, et projections visuelles. Uneémphtation &t
congue pour produire plusieurs analyses partant du code C++ &t qu
produisent des visualisations coméas nétrique-diagramme.

Mots-cles: Analytique visuelle, visualisation du logiciel, maintenance
du logiciel

Abstract

Assessing the maintainability of software systems is an essential
component of modern software development. Traditionally, this activ-
ity is performed by extracting source code metrics using data mining
techniques. When the analyzed system is little known, maintainabil-
ity assessment must go hand in hand with software understanding. We
advocate for this taskoftware visual analytics new combination of
interactive visualization and data mining focused at software code. We
present an instance of software visual analytics for the understanding
and maintainability assessment of object-oriented software. Our con-
tributions are twofold. First, the metric lens visualizes method-level



code metrics atop of traditional UML class diagrams, which supports
metric-metric and metric-structure correlations. Second, the metric
legend allows to interactively specify a spectrum of analyses involv-
ing different metrics, value ranges, and visual mappings. The metric
legend is interactively correlated with the metric lens. We present an
implementation in a full-fledged system and describe several analyses
starting with real-world C++ code and ending with combined diagram-
metrics visualizations.

Key-words Visual analytics, software visualization, software
maintenance

1 INTRODUCTION

Software is everywhere. It is continuously developed by stmated 15
million engineers worldwide [4], in a hierarchy of actié$, ranging from
requirement gathering, specification, and design, to implgation, debug-
ging, testing, and maintenance. Software maintenance &éeahie an es-
sential component of the software life-cycle, accountmgover 80% of the
entire efforts of the software life-cycle. Studies over 2€asxs, from [31]
to [8], show that understanding software code accountsyer loalf the de-
velopment effort. Software continuously evolves, as dbedrby the laws
of software evolution [2, 14], which only increases its céenfty, and thus
the understanding and maintenance effort. Overall, utalaisg software
is hard, as it is large, complex, and abstract [16].

Since understanding is such an important part of softwar@tersance,
a large effort has been invested in methods and tools thatt disis task.
From a usage point of view, such methods range from neatiydutomated
data/mining approaches that extract maintainability axtequality metrics
from software repositories [15] up to sophisticated intdva visualization
systems [17].

A difficult, but important, task is understanding a systenpkysons who
have not been involved in its development. Such situati@esie.g. when
companies insource third-party software and have to agisassintainabil-
ity, or when new members join a team working on a large legacjept. In
such cases, the primary (and often only) information is theee code itself.

In this paper, we focus on a specific class of software: olgaented (OO)
code bases written in the C++ language. OO software is higthletured, a
favorable attribute in development, maintenance, and ngteteding in gen-
eral. However, C++ software is well-known as being also lyiglomplex,
posing an increased burden on understanding. Althoughalewethods and
tools exist for understanding such software, there ardistitations in pro-
viding a high integration of data mining and data preseotaivisualization)
capabilities, which limits their applicability.

A well-accepted way of reasoning about an OO system is t@semnt it on
a higher (design or architectural) level of abstractionthis context, UML



diagrams are a conventional, well-accepted choice to septehe system
on a design level. While diagrams show the software elemendsttzeir
relationshipsi.e. the system structure, software attributes, encoded into va
ious software metrics, convey important insights in a sp&eroperties,
e.g.quality, maintainability, and modularity. In the followgnwe shall focus
oncode-level metrigcomputed directly on the source code at method level.

Combining code metrics and diagram information in a singj@esenta-
tion is an effective way to help several activities, suchpmting (cor)relations
among code attributes, relations, and diagram elemenstygetermining
where, on a system’s architecture, do code attributes reatiter values;
and identifying specific code patterns and their correfatigth code met-
rics. Ultimately, these activities help users to assessjtiadity, modularity,
and maintainability of a given software system.

To be most effective, a combination of code metrics and sirat(dia-
gram) information should comply with several requirements

1. show the system structure and code metricssimglerepresentation,
to simplify metric-structure correlations;

2. showseveralmetrics in the same time, which may have different value
ranges, to simplify metric-metric correlations;

3. the solution should becalablefor large diagrams of hundreds of classes
having hundreds of methods, and several metrics;

4. let users specify and control all above operations in @y, @aerac-
tive, way.

Summarizing the above, we aim at a technique that shouldecalre-
lation and comparison between many metrics, having differanges and
meanings, on large diagrams, all in an easy, interactive way

In this paper, we propose such a solution, consisting of tewe correlated
techniques: thenetric lensand themetric legend First, we review related
work on software architecture and software metrics vigadilbn (Sec. 2).
Section 3.1 introduces the data model we use in our struetudemetric vi-
sualization and explains how the data is mined from sourde.c8ection 4
presents our new structure-and-metric visualization:ntie¢ric lens which
adapts and extends the well-known table lens techniqueftware datasets
(Sec. 4.1); and thmetric legendwhich lets users both specify analyses inter-
actively and interpret the created visualizations (S&). £ection 5 outlines
the implementation of our techniques. Section 6 presen¢g tbase studies
of our techniques in understanding a real-world softwastesy. Section 7
presents and discusses our results. Finally, Section Suatesthe paper.



2 RELATED WORK

Related work in the area of comprehending the structure aatitg metrics

of complex object-oriented code bases falls roughly in tlesses: presen-
tation of thestructureof oject-oriented code, and presentation of the code
metrics

2.1 Generic Software Visualizations

Several visualization tools exist that provide varying réeg of customiza-
tion and level-of-detail in presenting structural infoina extracted from
source code. We call these techniggeseric as they are not constrained
to a particular visual layout of the system structure. Stedide structure is
typically visualized as annotated graphs by tools such gs[B2], Code-
Crawler [17], Mondrian [21], or SoftVision [33]. Metricsamost often pre-
sented separately using tabular views [42]. Having recaghthe need to
display metrics and structure in tkameview, to facilitate metric-structure
correlations, several researchers have taken the way opintathe met-
ric values to diagram element (icon) visual attributeshsag shape, color,
size, or texture. For example, Wettel and Lanza use a cipgsozetaphor:
structure is shown using 2D treemaps, while metrics are shasing the
third dimension (height) and color [39]. Similar technigwee presented by
other authors [20, 7], ranging from 3D desktop graphics upowerful, so-
phisticated virtual reality solutions [25]. An extensiveeoview of software
visualization techniques is provided by Diehl [10].

2.2 UML-Based Visualizations

A different class of techniques uses a two-dimensional UBHLUML-like)
diagram layout to visualize structure, instead of the gengraph layout
or treemap techniques mentioned above. Arguably, UML dixgrare less
compact and offer less layout freedom than generic grapghutayso are less
scalable. However, UML layouts have several advantagesL disigrams
are widely accepted and well understood in the softwaresimgdy29, 5].
Secondly, 2D renderings remove several problems of 3D kzai@ns, such
as occlusion and orientation difficulties [38]. Last but leatst, software en-
gineers often desire to use a prescribed layout for systamtste,e.g. a
carefully hand-designed UML diagram, rather than an autimally gener-
ated layout [6] Recently, several attempts have been prexbéor extending
basic UML diagrams with additional attributes. Byelas ameie@d add met-
rics atop UML diagrams using colored icons and textures §35] anzaet
al. visualize metrics by mapping these to the sizes and coloctagées in
UML-like diagrams [17].

However, the above methods can be improved in several insctMap-
ping software metrics to visual attributes of graph node(€olor, texture,



lighting etc) works best for class or component-level nestrbut does not
scale to the finer-grained level afethodmetrics. Adding metric icons to
UML-based visualizations [35] has the advantage of usinacaepted struc-
tural visualization (UML), but cannot show method-leveltries. Finally, in
all the systems we are aware of, the process of choosing anelating a
subset of the several available metrics is quite difficultrfon-experienced
users.

3 A SOFTWARE ANALYTICS PIPELINE

As outlined in Sec. 1, our aim is to have aregratedsolution that seam-
lessly combines data mining and visualization for obja@fted software
systems, all starting from the source code. Hence, we musider several
issues:

e how to extract metrics and structure from source code;
e how to visualize these in a scalable way;

e how to enable users to specify their questions in an ea®yaictive
way.

Our proposed solution consists of a pipeline of operati6its (L), divided
in two major components: data extraction and data visu#diza Hence,
our proposal combines bottata mininganddata visualizatiorin a single
solution. This as an exact instance of the so-calisdal analyticgprocess:
combining data processing and mining with interactive aisaterfaces for
the goal of analytical reasoning about a given system [36,|141his context,
we call our approacBoftware analyticsthe combination of structure-and-
metrics data mining and visualization techniques for usid&ding software
maintainability, which explains the title of this paper.

Our software analytics pipeline is detailed next.

3.1 Data extraction

Our visualization target, in the terminology of [26], is astym model, con-
sisting of a set of UML class diagrams;. For each class in such a di-
agram, we store its methods and data members, as well as aenaib
real-valued software metrigs,, ..., u,, €ach having a given value-range
wi € [m;, M;] C R. The UML diagrams and software metrics are extracted
directly from source code, as described next.

Since our input is just the C++ source code of the system ustddyy, we
must extract our UML model from this code. For this, we use &@ated
tolerant C++ parser able to understand incorrect and incomplete, @de
code with missing headers, to compute a partial abstracasyree (AST)
of the input code. By partial, we mean that the computed ASY faek



some code constructs which cannot be parsed correctly dthetoode’s
incompletness or incorrectness. Out of the several C+4epais existence
which deliver such information, we could succesfully useANTLR-based
parser [27, 23] using the C++ grammar described in [40], otIBFX, a
standalone heavyweight C++ analyzer [34]. The ANTLR-baSed parser
is up to 5 times faster thand& 1D F X, but produces less detailed information,
e.g.will skip the code in a class or method declaration after agarror up
to the end of the enclosing scopeniSp FX is much more robust, but slower.

After the basic classes and class-relationships are ¢attérom the source
code, the user specifies a division of the code base into stérag by assign-
ing source files to each subsystem. Next, one UML diagraméoi subsys-
tem is created, containing the classes in that subsystdess Tihis step has
to be manual, as the subsystem information is inherentlyeztilependent,
so it cannot be always mined automatically from source code.

The second data extraction step computes the softwarecsielroth at
class and method level. Class metrics include the typiaabar-of-methods,
number-of-bases, inheritance-depth, and number-ofriolegr-methods [18].
Method metrics include the lines-of-code (LOC), lineseofnment-code (COM),
and McCabes cyclomatic complexity (MVG) metrics, amongeosh In the
following, we focus mainly on the method-level metrics,cgrit is for these
that we provide our novel visualizations (Sec. 4.1 and 44).important
design decision was to separate the metrics computatiom thhe architec-
tural data extraction. For the architecture extraction,use the ANTLR-
based parser or@@ IDFX, as outlined above in Sec. 3.1. For metrics, we
use the CCCC lightweight extractor [22] or the Understarftivaoe analy-
sis tool [30]. Separating the two processes allows us tdyeaggrage our
metrics collection by adding new parsers, rather than gttémachieve ev-
erything within a single tool. This massively reduces depeient effort.
Overall, we adopt here a pragmatic approach, similar tofj@]use a combi-
nation of existing tools, whenever available, to extract eambine the com-
plementary information needed for our final analysis. Theagted metrics
are saved in a XML-based database, where each row descritlassaor
method, and each column a particular metric. Depending ercdmplete-
ness of the extraction, the values of several metrics cas foisspecific
methods.

The extracted UML model and metrics is fed to the visual@mastep of
our software analytics pipeline. This step, and the two htaehniques it
introduces, are described next.

4 VISUALIZATION DESIGN

Our combined structure-and-metrics visualization, theosd part of our
software analytics pipeline (Fig. 1, uses two views: tiretric lensand the
metric legend The views are tightly coupled (Fig. 2). The metric lens com-
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Figure 1: Architecture of the metrics-and-structure vigadion pipeline

bines a classical UML viewer with a visualization of methedel metrics

using an enhanced version of the well-known table-lensiigele [28]. The

metric legend has the double role of allowing users to spedifich metrics,

value ranges, and visualization metaphors to use in théieneaf the metric

lens view, and of acting as a legend for the metrics displayduis view.
As mentioned in Sec. 1, the goals of our two-view solution are

e specify and show several metrics simultaneously
e correlate and compare several metrics

e easily spot outlier metric values

e emphasize metric values in a specific range

We next describe how the metric lens (Sec. 4.1) and the niegiénd (Sec. 4.2)
meet these goals.

4.1 Metric Lens

The basis of the metric lens technique is a traditional UMdssldiagram,
which displays all textual methotisvithin each class frame (Fig. 3). Atop
of this image, we display metrics usingable model where the rows are
methodsmet; and columns are metrick/; ?). Each table cell shows one
metric value using different icons. Missing metric valu&e¢. 3.1) have
no icon. All metric tables of all displayed classes can béesbon various
criteria,e.g.the method names or metric values, enabling different aealy
as discussed next in Sec. 6). The metric icon table can beglaithin the
class frames (Fig. 3 a,b), which yields a compact layout basaot let users
read the method names; or on the right side of the class frérigs3 c),
which does not occlude the method names but yields a lessamirgyout.
Each metric value in a table cell is shown using a matimn. We first
used here the same design as in [88],a number of general-purpose icons

1Data members, or data fields, are treated identically
2We strongly recommend viewing this paper in color
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such as 2D and 3D bars, pie charts, and cylinders, scaled tricrmalues.
However, this design does not scale well, since a UML diagtameasily
have hundreds of methods, several tens per class, and edubdean have
several metrics.

To address this problem, we use a modified version of the-tahketech-
nigue [28]. We start by rendering each table cell as a hotédrar, scaled
and/or colored by its metric value. The actual value-t@mcol value-to-size
mapping is controlled by the metric lens widget (see Secnéx). Sec-
ondly, we provide two independent zoom mechanisms:

e diagram-level: this zooms the entire diagrarne. the UML layout,
metrics, and method names;

e class-levelthis zooms the contents of each class (metrics and method
names) but keeps the UML layout fixed.

The two zoom modes serve different purposes. Diagram zapuiiows
users to focus on a specific subsystem. Class-level zooimiegmbination
with class contents sorting, allows navigating betweeingaée entire con-
tents of each class, as a set of colored bar graphs (when zoontg and
seeing the individual method signatures (when zoomed in)eWithe class
frame size cannot accomodate all methods and metric icoas]isplay a
scrollbar at the right of each class to allow scrolling thgblits contents
(Fig. 2 right). We also implemented two enhancements as aosapto the
original table-lens [28]: First, we modulate the methodstttopacity by
the class zoom level, so that class-zooming effectivelgrptlates between



a classical text-based diagram view and a set of bar grapbsonfl, we
render each metric bar using a vertical gradient-shade#t {daright) tex-
ture (Fig. 2 right). This creates a subtle contrast thatallgiseparates each
method when the class contents are zoomed out and the tettigsible.

ExampleClass ExampleClass ExampleClass

N D | [bvel @ D] [auwbuer m )
" 0o
[ ]

m [}
m [ ]

a) full width b) right aligned  c¢) outside class

Figure 3: Metric layout options

4.2 Metric Legend

When visualizing several metrics over large diagrams, iitfgrthe exact
metric values from the metric bar sizes and/or colors carebghard. More-
over, how to visually compare metrics which are defined ol different
value ranges; and how to specify which metrics to comparegiven sce-
nario? We address these goals using a new visualizatiormétec legend
widget. This widget has two roles. First, it lets users iatéively control
which metrics from the data model are mapped to the metri land how
(Sec. 4.1). Second, it acts like a legend for interpretimgnietric lens.

4.2.1 Basicdesign

The metric legend has a compact tabular structure (see Higft 2or a
schematic view and Fig. 4 from an actual snapshot). Eachienefrof
the data model is a row in the widget. For each metric, a cleckbows
whether it isvisible, i.e. shown with colored bars in the metric lens; the met-
ric’s name e.g. M1 ...M7 in Figs 2 left and 4; and the metric’s actual and
visible ranges To explain the latter two, consider a metric having valures i
the rangém,, M;] C R. The right part of the metric legend in Fig. 4 displays
the rangegm;, M;] of all metricsy; as colored bars, scaled and translated
so that we can compare them visually. For example, we sethataximal
values of M3 and M4 are the largest among all available metrics, and that
the range of\/5 is contained in that o}/6.

The bar colors indicate how each metric is shown in the tabie:l Gray
denotes metrics not shown in the table leng, M3 andM 7. A flat, uniform,
color indicates that the bar-icons of that metric in the mééns are simply
drawn in that color. This is useful when we want to encode img#lues in
the bar sizes, and metric identities in the bar colerg, M1, M2, M5 and



M6 in Fig. 4. A blue-to-red (rainbow) colormap indicates tha tespective
metric is hue-mapped in the metric lens using colors frone l§indicating
the minimumm;) to red (indicating the maximumy/;), e.g. M 4. Clicking

on the legend widget allows changing the color mapping frairtdl rainbow.

4 M1
M2

Figure 4: Metric legend (actual tool snapshot)

4.2.2 Selecting visible metric ranges

In most cases, software metric values are not uniformlyapower their ac-
tual rangegm,;, M;]. Values may be concentrated in, say, the lower range
half, with only a few spurious values in the upper half. Intsaccase, we
do not actually want to visualize the entire actual rapgg M/;] of that met-
ric, but only the lower half, where the most values are. Thé&imégend
supports this by specifying a so-calleidible rangefor each metricj.e. an
interval [v;, V;] C [m;, M;]. Users can specify the visible range by dragging
two sliders (show as small black triangles in Fig. 4) over rdmege bar of
the desired metric. Values outside the visible rapgeV;] are clamped to

v; (if lower) and respectively;, if higher. This effectively lets users fo-
cus the metric visualization over a desired subrange ofeglwith direct
applications, as shown later in Sec. 6.

color-mapped metric

"

luminance texture - final iextu re

transparency texture

Figure 5: Texture design for the metric legend

Besides the range sliders, we show visible ranges by blgnaihalf-
translucent shaded texture, dark at the margins and brigheicenter, atop
of the colored range bar, between the two sliders. This esipbsithat part



of the actual range which is visualized, without obscurihg tolor map
drawn in the bar. For example, in Fig. 4 we see that the visialge
[vs, V;]for metric M6 is approximately the lower half of its actual range
[m;, M;]. We construct this shaded texture as follows (see also Firist,
we build a parabolic luminance texture dark at the bordedshaight in the
center (similar to the so-called shaded cushions used By, @4d multiply
the actual color-mapped metric with it. This effectivelykiens the metric’s
color at the borders and keeps it unchanged in the centet, Wedblend the
result with a white rectangle, textured with a Gaussiarpstdransparency
texture opaque in the center and transparent at the bortlkesfinal result
shows a metric bar with specular-like highlight in the cere@d dark at the
borders. Using textures to mark subranges atop of an exisiualization
is more effective, and visually less disturbing, than udimgexample line
markers, as shown in [24], among other applications. Natalli, that the
visible ranges can be both smaller, but also larger, thamat¢hgal ranges -
M1 andM?2 in Fig. 4 are an example of the latter.

4.2.3 Grouping metrics

In practice, different software metrics may have compjeteirelated mean-
ings and ranges. For example, it does not make sense to ceapies-
of-code metric with a safety metric. Conversely, there @ses when we
do want to compare two logically related metriesg. lines-of-code and
lines-of-comments. We support both scenarios allowingteel metrics to
be groupedin the metric legend. Grouped metrics are marked by being sur
rounded by a black frame and a superimposed translucentgsiyon, both
in the metric legend and the metric lens, see for examplieand M2 in
Fig. 2 left and right, respectively.

All'in all, the metric legend compactly specifies and exmdine metric
lens values in the diagram view. First, we can select whictrio®eto visual-
ize from a potentially large precomputed set, by enablirr ttheckboxes.
Second, we can compare actual metric ranges and metricsvayueompar-
ing their bar lengths and colors, respectively. Tooltipbdth the metric lens
and legend indicate the actual metric values under the mdtmed, we can
see what value the color of a given icon in the metric lensadlgtuneans
by looking it up in the metric legend. Finally, we can speaifigich metrics
make sense to compare visually by grouping them.

5 IMPLEMENTATION DETAILS

We implemented the software analytics pipeline descritwethisin a fully

integrated reverse-engineering tool aimed at C++ codesba&s outlined
in Sec. 3.1, the metrics-and-structure data mining is daireguthird-party
C++ parsers. The metric lens and metric legend visualizattescribed in



Sec. 4.1 and 4.2 are implemented using OpenGL atop of anrexisML di-
agram visualizer [35]. Specifically, the metric lens tecjusi is used to draw
the visible metrics atop of each class icon, scaled and edlas indicated
by the metric legend.

Since we extract UML diagrams directly from source code, westalso
provide a layout engine for them. As a basic layout engineysesGraphViz's
dotengine[1], which works well on connected directed acydapips (DAGS),
such as delivered by classes and their inheritance redtips. dot works
best for moderate graph sizesg.under a hundred nodes. This matches well
the size of a typical UML diagram. Before runnidgt, we first compute the
class frame heights based on the number of their methods;lassl frame
widths, based on the method signature lengtiBlass member signatures
are available from the architecture extraction phase. Negtlay out the
diagrams usinglot, considering only the inheritance relations. Finally, we
draw the resulting graphs, adding the association relation. This delivers
a quick, but robust, layout method, with predictable ressuftdesired, more
sophisticated layouts can be substituged, as provided by the GDT [13, 9],
SuGIBIB [11, 12], Tom Sawyer Software [37], or VCG [19] tools, at the e
pense of a more complex implementation.

Additionally, we visualize other architectural aspectmgghe areas-of-
interest(AOI) visualization technique [6]. Sets of classes in a diagwhich
constitute an asped,g.all classes in a design pattern, are drawn surrounded
by a fuzzy, smooth contour, constructed as explained insigd«€.g. Fig. 6).

e = EZ Eﬁsa
Visualization  f] B Fe

Data Model

UML Data
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“ocoM |
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OINPUTS) L
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Visualization Core

@ most complex and largest classes L0C MVG
moderately complex and large classes

Figure 6: Complexity assessment of a UML diagram with thrdesgstems.

3Data members can also be taken into account along with methatisiied



6 CASE STUDY

To assess the effectiveness of our combined lens-anddegetrics visu-
alization, we conducted a case study. The study’s goal wasdess the
modularity and maintainability of a given C++ code base awrihg about
15000 lines of code. The system, a UML editor, has been deedlby four
individuals over a period of four years, whose expertisaged from under-
graduate student to professional C++ game developer. Thentaeveloper,
involved in the last development year, has mentioned tretenxte of several
maintenance and evolution problems, related to the useffefelt coding
styles, badly documented parts, and undocumented depziaden

Our study’s main question was: Would a fourth person (thestigator),
who isnotinvolved in the system’s development but is experienced+im C
development and reverse-engineering in general, be ahlegmur visual
software analytics tool for a short period of time, and deiivwsight regard-
ing the maintenance problems of the system under scrutimghavould be
confirmed by the current system developer?

To answer this question, a UML model, several software metrand
areas-of-interest denoting smaller subsystems, weresfitsdcted from the
code base by the current developer. We did not involve thesiiyator in
this task, so that additional insight derived during theigedf the extraction
phase should not bias the actual visualization evaluafibe.entire data ex-
traction step (Sec. 3.1 took around 2 hours, including tléstset-up and
configuration. Next, the investigator performed three sypEanalyses: a
complexity assessment (Sec. 6.1, a change propagatioysanébec. 6.2,
and a code-level documentation review (Sec. 6.3. All amalytsok under
three hours, and involved chiefly the usage of our visuatinatool. The
actual C++ source code was investigated only for about 16iithites, to
check some hypotheses which were not evident from the visui@in alone.
Finally, the investigator (one of the authors) reported amss-checked his
findings in a discussion with the current developer.

6.1 Complexity Assesment

In the first analysis, we aim to understand how complexitypread over the
system’s structure, in search for so-called complexitydpaits,i.e. parts of
the system which may prove hard to understand or maintain.

Figure 6 shows one of the extracted UML diagrams displayingg areas-
of-interest for three subsystems: UML Data Model, Visuatiiazn Data Model
and Visualization Core (implementation). As relevant maestfor the com-
plexity analysis, the lines-of-codé.QC) and McCabe’'s cyclomatic com-
plexity (MVG) of each method were chosen, using the metric legend widget
(shown lower-right in the same figure). Th®C metric is visualized using
rainbow-colormapped constant-size bars (the left bgptgia the classes in
Fig. 6). TheMVG metric is visualized with purple bars scaled to the metric



value (the right bar-graph in the classes in Fig. 6). Nextsared the metric
lens display decreasingly &af©OC (from top to bottom of the class icons), and
also set the visible ranges bOC andMVG to 50 and 10, respectively. We
can now quickly discover methods larger than 50 LOC and/¢in @icom-
plexity above 10, which are values that we consider to irtdied'complex”
method, by looking for red, respectively long purple, barEig. 6).

Looking at Fig. 6, we quickly see that the most complex angdanasses
(by both number-of-methods and methods LOC) belong to thealization
subsystem. Although there is no strict correlation betwammplexity and
size, we still see that the Data Model classes are quite smdlbf low com-
plexity. Brushing the method names with the mouse, we seeethdhat
most of them argyet() and set() data-accessors, which are indeed simple
and short. We conclude that the Data Model subsystem isvaliasimple
and easy to maintain. In contrast, the Visualization Cotesgstem con-
tains quite large classes, having quite large methods (watans in left bar
braph), and also the largemtd most complex classes (markédin Fig. 6).
This subsystem concentrates likely the highest complexityally, the Vi-
sualization Data Model subsystem contains quite small awetb-medium
complexity classes(g.the two markedB in Fig. 6).

6.2 Change Propagation Resilience

In the second analysis, we would like to assess if our sysserasilient to
changes. In other words: would a change in the code of a cigget lots
of changes in other classes, due to data-dependenciestin§soich situa-
tions is essential to assess the maintainability of a sysiemmany cascading
changes indicate a hard-to-maintain system.

We use the same diagram as for the complexity assessmemobut/e
consider the number of variables refdPUTS respectively writterOUT-
PUTS by each method. Metrics are sorted on decreabBitRJUTSvalue,
and visualized with scaled bars, blue f5iPUTSand purple foOUTPUTS
Both ranges ofNPUTSandOUTPUTSare set to the same value, since the
metrics have the same dimensionality. The result is shoviAgIT.

We quickly see that there is no correlation betwddRUTSand OUT-
PUTSvalues, but also discover some interesting outliers. Tasscnarked
A reads and writes a lot. This class is responsible for theem@mgl of UML
model elements. Following the UML diagram, we discover fitdrits from
a Visitor interface. Looking at its method signatures, we understhatit
accepts objects of UML Data Model types through\tsitor interface. A
quick code browse of this class shows that the high read aitd metrics
are actually due to th¥isitor pattern implementation. Since this is a clean
design pattern, we assess that the strong dependendiWbModelVisual-
izer from the Data Model subsystem is a safe, acceptable one.

Another outlier clas$3 reads a lot of data (highNPUTSmetrics on most
of its methods). Looking at its association relations (@s@n the UML
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Figure 7: Change propagation analysis

diagram), we discover that this class hasirgglerelation, which is actually
an arrow (read) pointing to thstd::pair class, which belongs to the STL
C++ library. Since STL can be considered as a very stable oopgt, we
conclude that our clasB is also resilient to change.

Now, we add to th&. OC metric to our analysis, to discover whether read
or write-intensive methods are also large ones. Figure @slaaczoom-in on
the same UML diagram as in Figures 6 and 7, this time showia¢NRUT
andOUTPUT metrics grouped (since we want to visually compare them on
the same scale), drawn with scaled blue and purple barsatasgg and
the LOC metric drawn with scaled, rainbow-colored bars. If we nowaklo
at the same Visitor implementation clagdswe see that it writes more data
than reads. Additionally, we see that methods writing thetnaoe also its
largest methods. Given the purpose of this class, we belf@atethese are
the methods where the core of the UML rendering activity iscemtrated.

6.3 Code-Level Documentation Review

In our third study, we would like to assess which parts of théecare well
commented (or not), and in particular how this happens fetalgest meth-
ods. Having a few uncommented system components is natatfitir main-
tenance, but having a system where the most complex comisoarerpoorly
commented is a typical sign of unmaintainable code.

For variation, we consider here another diagram which ssmes the Graph-
ical User Interface (GUI) of the system. We display t@C and comment-
lines (COM) metrics, sorted in decreasing order@®M, using red, respec-
tively blue scaled bars (Fig. 9). This will emphasize thetm@snmented
parts. Using the metric legend, we set the visible maximhlesaof COM
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andLOCto bein aratio of 1 to 7. This means that equal-length metis n
the visualization will indicate methods having one comrderd (or more)
per 7 code-lines, which we considered to be a good commetttee ratio.
Looking at Figure 9, we see that in most cases there are ndhlsef equal
length to the red bars, indicating that most methods are sito@mmented.
However, for the largest methods, such as those at the topeo€lasses
marked withA, this situation is better: here the blue and red bars arehtgug
equal, indicating a good comment-to-code ratio. We alsoadisr a class
(markedB) which has quite many methods, and contains one of the larges
methods (red bar at top) with very little comments. Ovethlk seems to be
one of the weakest classes from a documentation perspeittivas many
methods, some of which are large, and those are badly corathent



7 DISCUSSION

During validation, the developer confirmed the investigatobservations
and conclusions. Moreover, he also exposed the reasonshfoh the vari-
ous outliers detected by the visualizatioeg. large classes with high com-
plexity; large and well-documented classes; and clasgbsiyticoupled in
various design patterns, occured in the design. An exangpthe difference
in coding experience of the involved people - the programnier wrote the
clean UML Data Model and Visitor interface was consideratblgre expe-
rienced than the one who wrote the Visualization Core. Alsis, program-
mer confirmed that the largest and most complex classes amnty in an
unstable state, containing mostly highly experimentalectiiit was not re-
viewed. Overall, the considered system can be quite clepliinto a stable,
clean, maintainable 'legacy’ part, and a lower-qualityngdex part contain-
ing code still under development. Of course, these reasouls mot have
been deduced by using our visualization. However, our stuggeeded in
the sense that a programmer with no knowledge of the stugisgdr could
locate quite reliably a number of design patterns and miaamtee-related
bottlenecks in the system structure, using chiefly the pegwisualization.

Setting up analysis scenarios with our techniques is quitpls: select
a number of metrics of interest; tune the visible ranges fieceratios or
maxima that one wants to check (or one expects) in the code ad sort on
the different metrics to see metric distributions and detteeir correlations
over all methods. Overall, constructing visualizatioks he ones presented
here can be truly done with just a few clicks in the metric fejeThis assists
users to actively explore large systems with many diagramdswetrics, by
massively diminishing the amount of time needed to checkreeladion or
distribution of some metrics over some subsystem.

Combining the metric icons with the subsystem partitiomegdered as
areas-of-interest (AOIs) effectively helped us undemitagthe relations be-
tween metrics and structure at a finer level than diagrams tylical analy-
sis scenario was: load several UML diagrams, toggle throlgin visualiza-
tions, then focus on a particular metric or metric-struetpattern, possibly
in conjunction with a given AOI, and finally zoom in at clags| (Sec. 4.1)
to read the methods’ names.

Our focus here was on visualizing the combined structurenagttic data,
and not on extracting it. Our metrics-and-structure vigasibn can be
quite easily integrated with other reverse-engineeripglpies using differ-
ent code analyzers for C++ and/or other OO languaggsJava or C#.

Finally, a word on visual scalability. By controlling theagjram creation,
we limit the number of elements per diagram and allow for sshdiagrams,
hence making the layout of a single diagram scalable. Th@ai®f several
tens (or more) of methods per class is highly scalable, gieriens tech-
nigue (Sec. 4.1). The strongest scalability limitationarety the number of
metrics that can be shown in the same time on a class. In oeriexgnts, we



saw that displaying more than three different metrics pehogkon large di-
agrams (100 classes or more) makes the result overcrowddthath to read.
Increasing the class icon widths alleviates this problemchn produce too
wide diagrams which are unnatural.

8 CONCLUSIONS

We have presented an integrated approach for softwarel\asiadysis of
object-oriented systems for the combined tasks of asgpssntainability
and system understanding. As novel elements, we have peessvo visu-
alization techniques that enable software engineers forpemetric-metric
and metric-structure visual correlations at method levebbject-oriented
software architecture diagrams: the metric legend and tsteieriens. The
metric legend enables the creation and interpretation afle range of visu-
alizations, by intuitively controlling how metrics are te lisually mapped.
The metric lens extends and adapts the known table lenslizistian tech-
nigue to compactly display several method-level metricddfL-like di-
agrams. Our solution integrates structure and metric etkbra from C++
source code with interactive visualizations thereof, b&n example of vi-
sual analytics applied to the domain of software engingerin

Several extensions are possible. We next plan to investigat to display
more metrics on the limited space offered by a class in a soéwiagram,
and also how to make the visual correlation of diagram m@tatand metrics
more effective, and how to correlate metrics across the deims of single
diagrams. Also, we plan to investigate how to visualizetiets between
diagrams, and how to visualize metrics defined on relationshe same
scalable way we can now visualize class and method-levelaaet
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