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Abstract

Mésurer la maintenabilit́e des systèmes logiciels est une composante
essentielle du d́eveloppement logiciel moderne. Cette activité est tradi-
tionelemment executée en extrayant des metriques du code source par
des techniques ’fouille de données’. Pour des systèmes peu connus,
mesurer la maintenabilité doitêtreétroitement combińeà la compŕehension
du logiciel. Nous proposons pour cette tâche l’analytique visuelle logi-
cielle, une nouvelle combinaison de la visualisation intéractive et fouille
de donńees adapt́ee au code source. Nous présentons une applica-
tion pour la compŕehension et estimation de la maintenabilité du logi-
ciel orient́e objet, avec deux contributions. En premier lieu, latable
lens superpose des ḿetriques calcuĺees sur des methodes en dessus
d’une diagramme de classe UML, en aidant les corrélations ḿetrique-
métrique et ḿetrique-structure. En deuxime lieu, la légende ḿetrique
permet de construire des analyses impliquant des différentes ḿetriques,
gammes de valeurs, et projections visuelles. Une implémentation áet́e
conçue pour produire plusieurs analyses partant du code C++ et qui
produisent des visualisations combinées ḿetrique-diagramme.

Mots-cĺes: Analytique visuelle, visualisation du logiciel, maintenance
du logiciel

Abstract

Assessing the maintainability of software systems is an essential
component of modern software development. Traditionally, this activ-
ity is performed by extracting source code metrics using data mining
techniques. When the analyzed system is little known, maintainabil-
ity assessment must go hand in hand with software understanding. We
advocate for this tasksoftware visual analytics, a new combination of
interactive visualization and data mining focused at software code. We
present an instance of software visual analytics for the understanding
and maintainability assessment of object-oriented software. Our con-
tributions are twofold. First, the metric lens visualizes method-level



code metrics atop of traditional UML class diagrams, which supports
metric-metric and metric-structure correlations. Second, the metric
legend allows to interactively specify a spectrum of analyses involv-
ing different metrics, value ranges, and visual mappings. The metric
legend is interactively correlated with the metric lens. We present an
implementation in a full-fledged system and describe several analyses
starting with real-world C++ code and ending with combined diagram-
metrics visualizations.

Key-words: Visual analytics, software visualization, software
maintenance

1 INTRODUCTION

Software is everywhere. It is continuously developed by an estimated 15
million engineers worldwide [4], in a hierarchy of activities, ranging from
requirement gathering, specification, and design, to implementation, debug-
ging, testing, and maintenance. Software maintenance had become an es-
sential component of the software life-cycle, accounting for over 80% of the
entire efforts of the software life-cycle. Studies over 20 years, from [31]
to [8], show that understanding software code accounts for over half the de-
velopment effort. Software continuously evolves, as described by the laws
of software evolution [2, 14], which only increases its complexity, and thus
the understanding and maintenance effort. Overall, understanding software
is hard, as it is large, complex, and abstract [16].

Since understanding is such an important part of software maintenance,
a large effort has been invested in methods and tools that assist this task.
From a usage point of view, such methods range from nearly fully automated
data/mining approaches that extract maintainability and code quality metrics
from software repositories [15] up to sophisticated interactive visualization
systems [17].

A difficult, but important, task is understanding a system bypersons who
have not been involved in its development. Such situations occure.g. when
companies insource third-party software and have to assessits maintainabil-
ity, or when new members join a team working on a large legacy project. In
such cases, the primary (and often only) information is the source code itself.

In this paper, we focus on a specific class of software: object-oriented (OO)
code bases written in the C++ language. OO software is highlystructured, a
favorable attribute in development, maintenance, and understanding in gen-
eral. However, C++ software is well-known as being also highly complex,
posing an increased burden on understanding. Although several methods and
tools exist for understanding such software, there are still limitations in pro-
viding a high integration of data mining and data presentation (visualization)
capabilities, which limits their applicability.

A well-accepted way of reasoning about an OO system is to represent it on
a higher (design or architectural) level of abstraction. Inthis context, UML



diagrams are a conventional, well-accepted choice to represent the system
on a design level. While diagrams show the software elements and their
relationships,i.e. the system structure, software attributes, encoded into var-
ious software metrics, convey important insights in a system’s properties,
e.g.quality, maintainability, and modularity. In the following, we shall focus
oncode-level metrics, computed directly on the source code at method level.

Combining code metrics and diagram information in a single representa-
tion is an effective way to help several activities, such as spotting (cor)relations
among code attributes, relations, and diagram element types; determining
where, on a system’s architecture, do code attributes reachoutlier values;
and identifying specific code patterns and their correlation with code met-
rics. Ultimately, these activities help users to assess thequality, modularity,
and maintainability of a given software system.

To be most effective, a combination of code metrics and structural (dia-
gram) information should comply with several requirements:

1. show the system structure and code metrics in asinglerepresentation,
to simplify metric-structure correlations;

2. showseveralmetrics in the same time, which may have different value
ranges, to simplify metric-metric correlations;

3. the solution should bescalablefor large diagrams of hundreds of classes
having hundreds of methods, and several metrics;

4. let users specify and control all above operations in an easy, interac-
tive, way.

Summarizing the above, we aim at a technique that should enable corre-
lation and comparison between many metrics, having different ranges and
meanings, on large diagrams, all in an easy, interactive way.

In this paper, we propose such a solution, consisting of two new correlated
techniques: themetric lensand themetric legend. First, we review related
work on software architecture and software metrics visualization (Sec. 2).
Section 3.1 introduces the data model we use in our structure-and-metric vi-
sualization and explains how the data is mined from source code. Section 4
presents our new structure-and-metric visualization: themetric lens, which
adapts and extends the well-known table lens technique for software datasets
(Sec. 4.1); and themetric legend, which lets users both specify analyses inter-
actively and interpret the created visualizations (Sec. 4.2). Section 5 outlines
the implementation of our techniques. Section 6 presents three case studies
of our techniques in understanding a real-world software system. Section 7
presents and discusses our results. Finally, Section 8 concludes the paper.



2 RELATED WORK

Related work in the area of comprehending the structure and quality metrics
of complex object-oriented code bases falls roughly in two classes: presen-
tation of thestructureof oject-oriented code, and presentation of the code
metrics.

2.1 Generic Software Visualizations

Several visualization tools exist that provide varying degrees of customiza-
tion and level-of-detail in presenting structural information extracted from
source code. We call these techniquesgeneric, as they are not constrained
to a particular visual layout of the system structure. Static code structure is
typically visualized as annotated graphs by tools such as Rigi [32], Code-
Crawler [17], Mondrian [21], or SoftVision [33]. Metrics are most often pre-
sented separately using tabular views [42]. Having recognized the need to
display metrics and structure in thesameview, to facilitate metric-structure
correlations, several researchers have taken the way of mapping the met-
ric values to diagram element (icon) visual attributes, such as shape, color,
size, or texture. For example, Wettel and Lanza use a cityscape metaphor:
structure is shown using 2D treemaps, while metrics are shown using the
third dimension (height) and color [39]. Similar techniques are presented by
other authors [20, 7], ranging from 3D desktop graphics up topowerful, so-
phisticated virtual reality solutions [25]. An extensive overview of software
visualization techniques is provided by Diehl [10].

2.2 UML-Based Visualizations

A different class of techniques uses a two-dimensional UML (or UML-like)
diagram layout to visualize structure, instead of the generic graph layout
or treemap techniques mentioned above. Arguably, UML diagrams are less
compact and offer less layout freedom than generic graph layouts, so are less
scalable. However, UML layouts have several advantages. UML diagrams
are widely accepted and well understood in the software industry [29, 5].
Secondly, 2D renderings remove several problems of 3D visualizations, such
as occlusion and orientation difficulties [38]. Last but notleast, software en-
gineers often desire to use a prescribed layout for system structure,e.g. a
carefully hand-designed UML diagram, rather than an automatically gener-
ated layout [6] Recently, several attempts have been presented for extending
basic UML diagrams with additional attributes. Byelas and Telea add met-
rics atop UML diagrams using colored icons and textures [35,6]. Lanzaet
al. visualize metrics by mapping these to the sizes and colors ofclasses in
UML-like diagrams [17].

However, the above methods can be improved in several directions. Map-
ping software metrics to visual attributes of graph nodes (size, color, texture,



lighting etc) works best for class or component-level metrics, but does not
scale to the finer-grained level ofmethodmetrics. Adding metric icons to
UML-based visualizations [35] has the advantage of using anaccepted struc-
tural visualization (UML), but cannot show method-level metrics. Finally, in
all the systems we are aware of, the process of choosing and correlating a
subset of the several available metrics is quite difficult for non-experienced
users.

3 A SOFTWARE ANALYTICS PIPELINE

As outlined in Sec. 1, our aim is to have anintegratedsolution that seam-
lessly combines data mining and visualization for object-oriented software
systems, all starting from the source code. Hence, we must consider several
issues:

• how to extract metrics and structure from source code;

• how to visualize these in a scalable way;

• how to enable users to specify their questions in an easy, interactive
way.

Our proposed solution consists of a pipeline of operations (Fig. 1), divided
in two major components: data extraction and data visualization. Hence,
our proposal combines bothdata mininganddata visualizationin a single
solution. This as an exact instance of the so-calledvisual analyticsprocess:
combining data processing and mining with interactive visual interfaces for
the goal of analytical reasoning about a given system [36, 41]. In this context,
we call our approachsoftware analytics: the combination of structure-and-
metrics data mining and visualization techniques for understanding software
maintainability, which explains the title of this paper.

Our software analytics pipeline is detailed next.

3.1 Data extraction

Our visualization target, in the terminology of [26], is a system model, con-
sisting of a set of UML class diagramsDi. For each class in such a di-
agram, we store its methods and data members, as well as a number of
real-valued software metricsµ1, . . . , µn, each having a given value-range
µi ∈ [mi,Mi] ⊂ R. The UML diagrams and software metrics are extracted
directly from source code, as described next.

Since our input is just the C++ source code of the system understudy, we
must extract our UML model from this code. For this, we use a so-called
tolerant C++ parser able to understand incorrect and incomplete code, e.g.
code with missing headers, to compute a partial abstract syntax tree (AST)
of the input code. By partial, we mean that the computed AST may lack



some code constructs which cannot be parsed correctly due tothe code’s
incompletness or incorrectness. Out of the several C++ parsers in existence
which deliver such information, we could succesfully use anANTLR-based
parser [27, 23] using the C++ grammar described in [40], or SOLIDFX, a
standalone heavyweight C++ analyzer [34]. The ANTLR-basedC++ parser
is up to 5 times faster than SOLIDFX, but produces less detailed information,
e.g.will skip the code in a class or method declaration after a parse error up
to the end of the enclosing scope. SOLIDFX is much more robust, but slower.

After the basic classes and class-relationships are extracted from the source
code, the user specifies a division of the code base into subsystems by assign-
ing source files to each subsystem. Next, one UML diagram for each subsys-
tem is created, containing the classes in that subsystem’s files. This step has
to be manual, as the subsystem information is inherently context-dependent,
so it cannot be always mined automatically from source code.

The second data extraction step computes the software metrics, both at
class and method level. Class metrics include the typical number-of-methods,
number-of-bases, inheritance-depth, and number-of-overriden-methods [18].
Method metrics include the lines-of-code (LOC), lines-of-comment-code (COM),
and McCabes cyclomatic complexity (MVG) metrics, among others. In the
following, we focus mainly on the method-level metrics, since it is for these
that we provide our novel visualizations (Sec. 4.1 and 4.2).An important
design decision was to separate the metrics computation from the architec-
tural data extraction. For the architecture extraction, weuse the ANTLR-
based parser or SOLIDFX, as outlined above in Sec. 3.1. For metrics, we
use the CCCC lightweight extractor [22] or the Understand software analy-
sis tool [30]. Separating the two processes allows us to easily upgrage our
metrics collection by adding new parsers, rather than attempt to achieve ev-
erything within a single tool. This massively reduces development effort.
Overall, we adopt here a pragmatic approach, similar to [3]:we use a combi-
nation of existing tools, whenever available, to extract and combine the com-
plementary information needed for our final analysis. The extracted metrics
are saved in a XML-based database, where each row describes aclass or
method, and each column a particular metric. Depending on the complete-
ness of the extraction, the values of several metrics can miss for specific
methods.

The extracted UML model and metrics is fed to the visualization step of
our software analytics pipeline. This step, and the two novel techniques it
introduces, are described next.

4 VISUALIZATION DESIGN

Our combined structure-and-metrics visualization, the second part of our
software analytics pipeline (Fig. 1, uses two views: themetric lensand the
metric legend. The views are tightly coupled (Fig. 2). The metric lens com-
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Figure 1: Architecture of the metrics-and-structure visualization pipeline

bines a classical UML viewer with a visualization of method-level metrics
using an enhanced version of the well-known table-lens technique [28]. The
metric legend has the double role of allowing users to specify which metrics,
value ranges, and visualization metaphors to use in the creation of the metric
lens view, and of acting as a legend for the metrics displayedin this view.

As mentioned in Sec. 1, the goals of our two-view solution are:

• specify and show several metrics simultaneously

• correlate and compare several metrics

• easily spot outlier metric values

• emphasize metric values in a specific range

We next describe how the metric lens (Sec. 4.1) and the metriclegend (Sec. 4.2)
meet these goals.

4.1 Metric Lens

The basis of the metric lens technique is a traditional UML class diagram,
which displays all textual methods1 within each class frame (Fig. 3). Atop
of this image, we display metrics using atable model, where the rows are
methodsmeti and columns are metricsMj

2). Each table cell shows one
metric value using different icons. Missing metric values (Sec. 3.1) have
no icon. All metric tables of all displayed classes can be sorted on various
criteria,e.g. the method names or metric values, enabling different analyses,
as discussed next in Sec. 6). The metric icon table can be placed within the
class frames (Fig. 3 a,b), which yields a compact layout but does not let users
read the method names; or on the right side of the class frames(Fig. 3 c),
which does not occlude the method names but yields a less compact layout.

Each metric value in a table cell is shown using a metricicon. We first
used here the same design as in [35],i.e. a number of general-purpose icons

1Data members, or data fields, are treated identically
2We strongly recommend viewing this paper in color



Figure 2: Structure-and-metrics visualization design: metric legend (left)
and metric lend (right)

such as 2D and 3D bars, pie charts, and cylinders, scaled by metric values.
However, this design does not scale well, since a UML diagramcan easily
have hundreds of methods, several tens per class, and each method can have
several metrics.

To address this problem, we use a modified version of the table-lens tech-
nique [28]. We start by rendering each table cell as a horizontal bar, scaled
and/or colored by its metric value. The actual value-to-color or value-to-size
mapping is controlled by the metric lens widget (see Sec. 4.2next). Sec-
ondly, we provide two independent zoom mechanisms:

• diagram-level: this zooms the entire diagram,i.e. the UML layout,
metrics, and method names;

• class-level:this zooms the contents of each class (metrics and method
names) but keeps the UML layout fixed.

The two zoom modes serve different purposes. Diagram zooming allows
users to focus on a specific subsystem. Class-level zooming,in combination
with class contents sorting, allows navigating between seeing the entire con-
tents of each class, as a set of colored bar graphs (when zoomed out), and
seeing the individual method signatures (when zoomed in). When the class
frame size cannot accomodate all methods and metric icons, we display a
scrollbar at the right of each class to allow scrolling through its contents
(Fig. 2 right). We also implemented two enhancements as compared to the
original table-lens [28]: First, we modulate the methods’ text opacity by
the class zoom level, so that class-zooming effectively interpolates between



a classical text-based diagram view and a set of bar graphs. Second, we
render each metric bar using a vertical gradient-shaded (dark to bright) tex-
ture (Fig. 2 right). This creates a subtle contrast that visually separates each
method when the class contents are zoomed out and the text is not visible.

a) full width b) right aligned c) outside class

Figure 3: Metric layout options

4.2 Metric Legend
When visualizing several metrics over large diagrams, inferring the exact
metric values from the metric bar sizes and/or colors can be very hard. More-
over, how to visually compare metrics which are defined over totally different
value ranges; and how to specify which metrics to compare in agiven sce-
nario? We address these goals using a new visualization: themetric legend
widget. This widget has two roles. First, it lets users interactively control
which metrics from the data model are mapped to the metric lens, and how
(Sec. 4.1). Second, it acts like a legend for interpreting the metric lens.

4.2.1 Basic design

The metric legend has a compact tabular structure (see Fig. 2left for a
schematic view and Fig. 4 from an actual snapshot). Each metric µi of
the data model is a row in the widget. For each metric, a checkbox shows
whether it isvisible, i.e. shown with colored bars in the metric lens; the met-
ric’s name, e.g. M1 . . .M7 in Figs 2 left and 4; and the metric’s actual and
visible ranges. To explain the latter two, consider a metric having values in
the range[mi,Mi] ⊂ R. The right part of the metric legend in Fig. 4 displays
the ranges[mi,Mi] of all metricsµi as colored bars, scaled and translated
so that we can compare them visually. For example, we see thatthe maximal
values ofM3 andM4 are the largest among all available metrics, and that
the range ofM5 is contained in that ofM6.

The bar colors indicate how each metric is shown in the table lens: Gray
denotes metrics not shown in the table lens,e.gM3 andM7. A flat, uniform,
color indicates that the bar-icons of that metric in the metric lens are simply
drawn in that color. This is useful when we want to encode metric values in
the bar sizes, and metric identities in the bar colors,e.g. M1,M2,M5 and



M6 in Fig. 4. A blue-to-red (rainbow) colormap indicates that the respective
metric is hue-mapped in the metric lens using colors from blue (indicating
the minimummi) to red (indicating the maximumMi), e.g. M4. Clicking
on the legend widget allows changing the color mapping from flat to rainbow.

Figure 4: Metric legend (actual tool snapshot)

4.2.2 Selecting visible metric ranges

In most cases, software metric values are not uniformly spread over their ac-
tual ranges[mi,Mi]. Values may be concentrated in, say, the lower range
half, with only a few spurious values in the upper half. In such a case, we
do not actually want to visualize the entire actual range[mi,Mi] of that met-
ric, but only the lower half, where the most values are. The metric legend
supports this by specifying a so-calledvisible rangefor each metric,i.e. an
interval [vi, Vi] ⊂ [mi,Mi]. Users can specify the visible range by dragging
two sliders (show as small black triangles in Fig. 4) over therange bar of
the desired metric. Values outside the visible range[vi, Vi] are clamped to
vi (if lower) and respectivelyVi, if higher. This effectively lets users fo-
cus the metric visualization over a desired subrange of values, with direct
applications, as shown later in Sec. 6.

Figure 5: Texture design for the metric legend

Besides the range sliders, we show visible ranges by blending a half-
translucent shaded texture, dark at the margins and bright in the center, atop
of the colored range bar, between the two sliders. This emphasizes that part



of the actual range which is visualized, without obscuring the color map
drawn in the bar. For example, in Fig. 4 we see that the visiblerange
[vi, Vi]for metric M6 is approximately the lower half of its actual range
[mi,Mi]. We construct this shaded texture as follows (see also Fig. 5). First,
we build a parabolic luminance texture dark at the borders and bright in the
center (similar to the so-called shaded cushions used by [24]), and multiply
the actual color-mapped metric with it. This effectively darkens the metric’s
color at the borders and keeps it unchanged in the center. Next, we blend the
result with a white rectangle, textured with a Gaussian-shaped transparency
texture opaque in the center and transparent at the borders.The final result
shows a metric bar with specular-like highlight in the center, and dark at tbe
borders. Using textures to mark subranges atop of an existing visualization
is more effective, and visually less disturbing, than usingfor example line
markers, as shown in [24], among other applications. Note, finally, that the
visible ranges can be both smaller, but also larger, than theactual ranges -
M1 andM2 in Fig. 4 are an example of the latter.

4.2.3 Grouping metrics

In practice, different software metrics may have completely unrelated mean-
ings and ranges. For example, it does not make sense to compare a lines-
of-code metric with a safety metric. Conversely, there are cases when we
do want to compare two logically related metrics,e.g. lines-of-code and
lines-of-comments. We support both scenarios allowing related metrics to
begroupedin the metric legend. Grouped metrics are marked by being sur-
rounded by a black frame and a superimposed translucent graycushion, both
in the metric legend and the metric lens, see for exampleM1 andM2 in
Fig. 2 left and right, respectively.

All in all, the metric legend compactly specifies and explains the metric
lens values in the diagram view. First, we can select which metrics to visual-
ize from a potentially large precomputed set, by enabling their checkboxes.
Second, we can compare actual metric ranges and metric values by compar-
ing their bar lengths and colors, respectively. Tooltips inboth the metric lens
and legend indicate the actual metric values under the mouse. Third, we can
see what value the color of a given icon in the metric lens actually means,
by looking it up in the metric legend. Finally, we can specifywhich metrics
make sense to compare visually by grouping them.

5 IMPLEMENTATION DETAILS

We implemented the software analytics pipeline described so far in a fully
integrated reverse-engineering tool aimed at C++ code bases. As outlined
in Sec. 3.1, the metrics-and-structure data mining is done using third-party
C++ parsers. The metric lens and metric legend visualizations described in



Sec. 4.1 and 4.2 are implemented using OpenGL atop of an existing UML di-
agram visualizer [35]. Specifically, the metric lens technique is used to draw
the visible metrics atop of each class icon, scaled and colored as indicated
by the metric legend.

Since we extract UML diagrams directly from source code, we must also
provide a layout engine for them. As a basic layout engine, weuse GraphViz’s
dotengine[1], which works well on connected directed acyclic graphs (DAGs),
such as delivered by classes and their inheritance relationships. dot works
best for moderate graph sizes,e.g.under a hundred nodes. This matches well
the size of a typical UML diagram. Before runningdot, we first compute the
class frame heights based on the number of their methods, andclass frame
widths, based on the method signature lengths3. Class member signatures
are available from the architecture extraction phase. Next, we lay out the
diagrams usingdot, considering only the inheritance relations. Finally, we
draw the resulting graphs, adding the association relations too. This delivers
a quick, but robust, layout method, with predictable results. If desired, more
sophisticated layouts can be substituted,e.g.as provided by the GDT [13, 9],
SUGIBIB [11, 12], Tom Sawyer Software [37], or VCG [19] tools, at the ex-
pense of a more complex implementation.

Additionally, we visualize other architectural aspects using theareas-of-
interest(AOI) visualization technique [6]. Sets of classes in a diagram which
constitute an aspect,e.g.all classes in a design pattern, are drawn surrounded
by a fuzzy, smooth contour, constructed as explained in [6] (seee.g.Fig. 6).

UML Data 

Model

Visualization

Data Model

Visualization Core

most complex and largest classes

A

A

A

B

B

B

B

A

moderately complex and large classes

LOC MVG

Figure 6: Complexity assessment of a UML diagram with three subsystems.

3Data members can also be taken into account along with methods, if desired



6 CASE STUDY

To assess the effectiveness of our combined lens-and-legend metrics visu-
alization, we conducted a case study. The study’s goal was toassess the
modularity and maintainability of a given C++ code base containing about
15000 lines of code. The system, a UML editor, has been developed by four
individuals over a period of four years, whose expertises ranged from under-
graduate student to professional C++ game developer. The current developer,
involved in the last development year, has mentioned the existence of several
maintenance and evolution problems, related to the use of different coding
styles, badly documented parts, and undocumented dependencies.

Our study’s main question was: Would a fourth person (the investigator),
who isnot involved in the system’s development but is experienced in C++
development and reverse-engineering in general, be able touse our visual
software analytics tool for a short period of time, and derive insight regard-
ing the maintenance problems of the system under scrutiny, which would be
confirmed by the current system developer?

To answer this question, a UML model, several software metrics, and
areas-of-interest denoting smaller subsystems, were firstextracted from the
code base by the current developer. We did not involve the investigator in
this task, so that additional insight derived during the setup of the extraction
phase should not bias the actual visualization evaluation.The entire data ex-
traction step (Sec. 3.1 took around 2 hours, including the tool’s set-up and
configuration. Next, the investigator performed three types of analyses: a
complexity assessment (Sec. 6.1, a change propagation analysis (Sec. 6.2,
and a code-level documentation review (Sec. 6.3. All analyses took under
three hours, and involved chiefly the usage of our visualization tool. The
actual C++ source code was investigated only for about 10-15minutes, to
check some hypotheses which were not evident from the visualization alone.
Finally, the investigator (one of the authors) reported andcross-checked his
findings in a discussion with the current developer.

6.1 Complexity Assesment

In the first analysis, we aim to understand how complexity is spread over the
system’s structure, in search for so-called complexity hot-spots,i.e. parts of
the system which may prove hard to understand or maintain.

Figure 6 shows one of the extracted UML diagrams displaying three areas-
of-interest for three subsystems: UML Data Model, Visualization Data Model
and Visualization Core (implementation). As relevant metrics for the com-
plexity analysis, the lines-of-code (LOC) and McCabe’s cyclomatic com-
plexity (MVG) of each method were chosen, using the metric legend widget
(shown lower-right in the same figure). TheLOC metric is visualized using
rainbow-colormapped constant-size bars (the left bar-graph in the classes in
Fig. 6). TheMVG metric is visualized with purple bars scaled to the metric



value (the right bar-graph in the classes in Fig. 6). Next, wesorted the metric
lens display decreasingly onLOC (from top to bottom of the class icons), and
also set the visible ranges ofLOC andMVG to 50 and 10, respectively. We
can now quickly discover methods larger than 50 LOC and/or with a com-
plexity above 10, which are values that we consider to indicate a “complex”
method, by looking for red, respectively long purple, bars in Fig. 6).

Looking at Fig. 6, we quickly see that the most complex and large classes
(by both number-of-methods and methods LOC) belong to the visualization
subsystem. Although there is no strict correlation betweencomplexity and
size, we still see that the Data Model classes are quite smalland of low com-
plexity. Brushing the method names with the mouse, we see indeed that
most of them areget() andset() data-accessors, which are indeed simple
and short. We conclude that the Data Model subsystem is relatively simple
and easy to maintain. In contrast, the Visualization Core subsystem con-
tains quite large classes, having quite large methods (warmcolors in left bar
braph), and also the largestandmost complex classes (markedA in Fig. 6).
This subsystem concentrates likely the highest complexity. Finally, the Vi-
sualization Data Model subsystem contains quite small and low-to-medium
complexity classes (e.g. the two markedB in Fig. 6).

6.2 Change Propagation Resilience

In the second analysis, we would like to assess if our system is resilient to
changes. In other words: would a change in the code of a class trigger lots
of changes in other classes, due to data-dependencies? Spotting such situa-
tions is essential to assess the maintainability of a system, as many cascading
changes indicate a hard-to-maintain system.

We use the same diagram as for the complexity assessment, butnow we
consider the number of variables readINPUTS, respectively writtenOUT-
PUTS, by each method. Metrics are sorted on decreasingINPUTSvalue,
and visualized with scaled bars, blue forINPUTSand purple forOUTPUTS.
Both ranges ofINPUTSandOUTPUTSare set to the same value, since the
metrics have the same dimensionality. The result is shown inFig 7.

We quickly see that there is no correlation betweenINPUTSand OUT-
PUTSvalues, but also discover some interesting outliers. The class marked
A reads and writes a lot. This class is responsible for the rendering of UML
model elements. Following the UML diagram, we discover it inherits from
a Visitor interface. Looking at its method signatures, we understandthat it
accepts objects of UML Data Model types through itsVisitor interface. A
quick code browse of this class shows that the high read and write metrics
are actually due to theVisitor pattern implementation. Since this is a clean
design pattern, we assess that the strong dependency ofUMLModelVisual-
izer from the Data Model subsystem is a safe, acceptable one.

Another outlier classB reads a lot of data (highINPUTSmetrics on most
of its methods). Looking at its association relations (arrows on the UML
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diagram), we discover that this class has asinglerelation, which is actually
an arrow (read) pointing to thestd::pair class, which belongs to the STL
C++ library. Since STL can be considered as a very stable component, we
conclude that our classB is also resilient to change.

Now, we add to theLOC metric to our analysis, to discover whether read
or write-intensive methods are also large ones. Figure 8 shows a zoom-in on
the same UML diagram as in Figures 6 and 7, this time showing the INPUT
andOUTPUTmetrics grouped (since we want to visually compare them on
the same scale), drawn with scaled blue and purple bars respectively, and
the LOC metric drawn with scaled, rainbow-colored bars. If we now look
at the same Visitor implementation classA, we see that it writes more data
than reads. Additionally, we see that methods writing the most are also its
largest methods. Given the purpose of this class, we believethat these are
the methods where the core of the UML rendering activity is concentrated.

6.3 Code-Level Documentation Review

In our third study, we would like to assess which parts of the code are well
commented (or not), and in particular how this happens for the largest meth-
ods. Having a few uncommented system components is not critical for main-
tenance, but having a system where the most complex components are poorly
commented is a typical sign of unmaintainable code.

For variation, we consider here another diagram which represents the Graph-
ical User Interface (GUI) of the system. We display theLOC and comment-
lines (COM) metrics, sorted in decreasing order ofCOM, using red, respec-
tively blue scaled bars (Fig. 9). This will emphasize the best commented
parts. Using the metric legend, we set the visible maximal values ofCOM
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andLOC to be in a ratio of 1 to 7. This means that equal-length metric bars in
the visualization will indicate methods having one comment-line (or more)
per 7 code-lines, which we considered to be a good comment-to-code ratio.
Looking at Figure 9, we see that in most cases there are no bluebars of equal
length to the red bars, indicating that most methods are not well commented.
However, for the largest methods, such as those at the top of the classes
marked withA, this situation is better: here the blue and red bars are roughly
equal, indicating a good comment-to-code ratio. We also discover a class
(markedB) which has quite many methods, and contains one of the largest
methods (red bar at top) with very little comments. Overall,this seems to be
one of the weakest classes from a documentation perspective: it has many
methods, some of which are large, and those are badly commented.



7 DISCUSSION

During validation, the developer confirmed the investigators observations
and conclusions. Moreover, he also exposed the reasons for which the vari-
ous outliers detected by the visualizations,e.g. large classes with high com-
plexity; large and well-documented classes; and classes tightly coupled in
various design patterns, occured in the design. An examplesis the difference
in coding experience of the involved people - the programmerwho wrote the
clean UML Data Model and Visitor interface was considerablymore expe-
rienced than the one who wrote the Visualization Core. Also,this program-
mer confirmed that the largest and most complex classes are currently in an
unstable state, containing mostly highly experimental code that was not re-
viewed. Overall, the considered system can be quite clearlysplit into a stable,
clean, maintainable ’legacy’ part, and a lower-quality, complex part contain-
ing code still under development. Of course, these reasons could not have
been deduced by using our visualization. However, our studysucceeded in
the sense that a programmer with no knowledge of the studied system could
locate quite reliably a number of design patterns and maintenance-related
bottlenecks in the system structure, using chiefly the proposed visualization.

Setting up analysis scenarios with our techniques is quite simple: select
a number of metrics of interest; tune the visible ranges to reflect ratios or
maxima that one wants to check (or one expects) in the code base; and sort on
the different metrics to see metric distributions and detect their correlations
over all methods. Overall, constructing visualizations like the ones presented
here can be truly done with just a few clicks in the metric legend. This assists
users to actively explore large systems with many diagrams and metrics, by
massively diminishing the amount of time needed to check a correlation or
distribution of some metrics over some subsystem.

Combining the metric icons with the subsystem partitioningrendered as
areas-of-interest (AOIs) effectively helped us understanding the relations be-
tween metrics and structure at a finer level than diagrams. The typical analy-
sis scenario was: load several UML diagrams, toggle throughtheir visualiza-
tions, then focus on a particular metric or metric-structure pattern, possibly
in conjunction with a given AOI, and finally zoom in at class-level (Sec. 4.1)
to read the methods’ names.

Our focus here was on visualizing the combined structure andmetric data,
and not on extracting it. Our metrics-and-structure visualization can be
quite easily integrated with other reverse-engineering pipelines using differ-
ent code analyzers for C++ and/or other OO languages,e.g.Java or C#.

Finally, a word on visual scalability. By controlling the diagram creation,
we limit the number of elements per diagram and allow for several diagrams,
hence making the layout of a single diagram scalable. The display of several
tens (or more) of methods per class is highly scalable, giventhe lens tech-
nique (Sec. 4.1). The strongest scalability limitation regards the number of
metrics that can be shown in the same time on a class. In our experiments, we



saw that displaying more than three different metrics per method on large di-
agrams (100 classes or more) makes the result overcrowded and hard to read.
Increasing the class icon widths alleviates this problem, but can produce too
wide diagrams which are unnatural.

8 CONCLUSIONS

We have presented an integrated approach for software visual analysis of
object-oriented systems for the combined tasks of assessing maintainability
and system understanding. As novel elements, we have presented two visu-
alization techniques that enable software engineers to perform metric-metric
and metric-structure visual correlations at method level on object-oriented
software architecture diagrams: the metric legend and the metric lens. The
metric legend enables the creation and interpretation of a wide range of visu-
alizations, by intuitively controlling how metrics are to be visually mapped.
The metric lens extends and adapts the known table lens visualization tech-
nique to compactly display several method-level metrics onUML-like di-
agrams. Our solution integrates structure and metric extraction from C++
source code with interactive visualizations thereof, being an example of vi-
sual analytics applied to the domain of software engineering.

Several extensions are possible. We next plan to investigate how to display
more metrics on the limited space offered by a class in a software diagram,
and also how to make the visual correlation of diagram relations and metrics
more effective, and how to correlate metrics across the boundaries of single
diagrams. Also, we plan to investigate how to visualize relations between
diagrams, and how to visualize metrics defined on relations,in the same
scalable way we can now visualize class and method-level metrics.
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