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Abstract

Skeletons are well-known representations that accommo-
date shape abstraction and qualitative shape matching. How-
ever, skeletons are sometimes unstable to compute and sensi-
tive to shape detail, thus making shape abstraction and match-
ing difficult. To address these problems, we propose a princi-
pled framework that generates a simplified, abstracted skeleton
hierarchy by analyzing the quasi-stable points of a Bayesian-
inspired energy function. The resulting model is parameterized
by both boundary and internal structure variations correspond-
ing to object scale and abstraction dimensions, and trades-off
reconstruction accuracy and representation parsimony. Our
experimental results show that the method can produce useful
multi-scale skeleton representations at a variety of abstraction
levels.
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1. Introduction

Recent work on the indexing and matching of shock graphs
[12, 10, 5] has shown that similar shapes can lead to structurally
dissimilar shock graphs. In a traditional graph matching frame-
work that assumes a one-to-one node correspondence, the in-
duced large distance between the two graphs does not reflect
the similarity of their underlying shapes. A possible solution to
this problem is to try and compute a more stable set of shock
points from which the graph is constructed [4, 11], or to iden-
tify unstable shock structure and exclude it from the graph [1].
Still, these approaches commit to a single skeleton represen-
tation, derived from a single boundary representation, which
can be sensitive to minor boundary perturbations. Such pertur-
bations may be caused by a number of factors, such as small
viewpoint changes, in case of view-based 3-D recognition. A
small, salient branch in one view of an object may be absent
in a very similar view (or object). Depending on the type and
location of the corresponding node of that branch in the shock
graph, the shock graphs of the two views may still be quite dif-
ferent. This further causes non-trivial problems when matching

the two shock graphs.

Another solution to graph matching is to edit one graph
so that it is isomorphic to the other. If large structural dif-
ferences between two graphs representing similar shapes can
be assigned a small edit cost, the similarity between the two
shapes can be maintained. This approach has been proposed
by Sebastian et al. [9], and provides effective matching in the
presence of such instabilities. However, this approach is very
costly, and assumes that a query and target have been identi-
fied. Although a hierarchical database partitioning framework
has been proposed [8], it still requires a linear search of the
prototypes.

A final class of solutions is to construct a multi-scale skele-
ton representation, such that, among the set of shock graphs,
one per scale, one such graph is sufficiently close in structure to
its database target to facilitate effective indexing [10]. The con-
cept of multi-scale skeletons is not a new one. Ogniewicz [6]
proposed multi-scale skeletons for 2D polygonal shapes. The
saliency of a skeleton branch is given by the "collapsed chord
length’, or boundary length between the two Voronoi sites gen-
erating that branch. The multiple scales are given by upper
thresholding the above saliency measure. Similar multi-scale
approaches have been proposed for raster objects by Costa et
al [3] and Telea&Van Wijk [13].

Siddiqi et al [11] computed the skeleton by simulating the
grassfire flow as a Hamilton-Jacobi equation. Skeleton points
are found by upper thresholding the divergence of the object’s
distance transform gradient. The skeleton points are labeled
with the time of shock formation, i.e. the local object width,
yielding a multi-scale notion. However, this multi-scale is re-
ported to be computationally expensive, and doesn’t preserve
the object topology [7].

Finally, Borgefors et al [2] have computed a hierarchical
skeleton by extracting skeletons of successively lower resolu-
tions of a given image. The implied multi-scale is based on the
object width, similarly to [11]. Explicit correspondences be-
tween skeletons on successive scales are computed to preserve
object topology (skeleton connectedness) across scales. For a
detailed comparison of the above, see [7].

In this paper, we propose a skeleton simplification method
that produces a hierarchy parameterized by both boundary and
internal structure parameters corresponding to object scale and
abstraction dimensions. In contrast to other approaches, we
compute the stable points of our augmented hierarchy using



an algorithm that performs optimal parameter inference. For a
given skeleton, the optima are computed under a cost function
that trades-off reconstruction accuracy and skeleton simplicity,
as suggested by a parsimony principle such as the minimum
description length (MDL).

2. Inference for Optimal Skeleton Abstraction

We formulate the hierarchical skeleton abstraction as infer-
ence over a two parameter family (b, s) representing bound-
ary b and internal structure s. Given an initial skeleton M9,
the simplified skeleton under the generative transformation set
M(b, s) is an optimal simplification if it is both close to the
original M¢ but also has a simple structure in a MDL sense,
e.g. having as few number of branching points as possible. This
trade-off is implemented as a sum of data and MDL energy
terms

E(b,s|M?) = EY(M®|M(b, 5)) + E™(M(D, 5))
The low energy points of E can be located by exhaustive search
over the resulting 2d parameter space. We detail next the model
structure including the transformation set, the data likelihood,
and the MDL prior.

2.1 Skeleton Transformation Set (M)

The simplified skeleton generative transformation set
M(b, s) consists of both boundary b and internal structure s
simplifications of the original skeleton M ¢, While the former
performs more classical boundary detail removal, the latter is
intended towards shape abstraction.

Boundary Simplification: We compute the skeleton and
its boundary simplification using the AFMM method [13]. In
brief, the AFMM propagates an arc-length boundary param-
eterization U, in normal boundary direction, with constant
speed, by solving the Eikonal equation V' = 1, withT'= 0 on
the boundary. The simplified skeleton containing the branches
corresponding to boundary details longer than s pixels is then
given by upper thresholding max(0U/0z,0U/dy) with s.
We use the AFMM, as it is robust for any value s > 2 pixels,
delivers connected skeletons, and works in near real time.

Structural Simplification:  The structural simplification
M(s), parameterized by s, applies only to internal skele-
ton branches. In the following, denote the neighbors of a
point x of the skeleton M by n(x,M) = n(x). Denote
by c(x®, M*, M) = ¢(x*) the corresponding point, in the
original skeleton M ¢, of a point x* in the simplified skeleton
M*. Finally, denote by e(M) the set of all endpoints of M and
by b;(M) the two endpoints of the it* branch b; of M. M(s)
removes all internal branches shorter than s from M. When
removing each branch, the two sub-skeletons are reconnected
by translating one of them to join the other one. At this
point, the structural simplification is, strictly speaking, done.

However, this strategy causes large changes in the comparison
measure we use for the silhouettes (see §2.2), since all points
in the displaced sub-skeleton change their position. In order to
preserve the consistency of the skeleton and to minimize the
impact of the structural change, we relax (optimize) the points
in M ¢ according to the following cost function
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The first constraint enforces a boundary condition on the
skeleton, i.e. keeps its endpoints fixed. The second constraint
ensures that the elimination of the internal branches is persis-
tent, i.e., these branches don’t reappear after the relaxation.
Without this constraint, the relaxation tends to stretch back the
simplified (removed) branches. To minimize the energy with
the above constraints, we use a spring embedder approach. Ev-
ery neighboring relation n(x) corresponds to an elastic spring.
We displace all points x towards their local energy minimum
with respect to their neighbors n(x), by sweeping all skele-
ton points in breadth first order, starting from the simplification
places. This distributes the displacements in gradually decreas-
ing magnitude from the simplified branches to the endpoints.
The process converges after a few hundred sweeps.
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2.2 Likelihood Term (E9)

We first define the distance between two silhouettes .S; and
S as
D(S1,8:) = > Tm,S) @
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where T'(p, S) = minses || p — s || is the solution of the
Eikonal equation computed by the AFMM, i.e., the distance
transform of S (Sec. 2.1). The denominator in (1) normalizes
D between zero and one. Next, we define the likelihood term
as a symmetric distance sum between the silhouette induced
by the simplified skeleton S* = S(M(b, s)) and the original
silhouette S¢ = S(M?)

EYMYM(b,s)) =D(S%,8%) +D(S%, 5%  (2)

2.3 MDL Prior (E™d)

The MDL prior we chose encourages shapes that have a sim-
ple skeleton. The simplest shape is the circle, whose skeleton is
a point. We thus use a prior term that measures the eccentricity
of a proposed simplification (other discrete measures based, for
example, on the number of branches, may be possible)

B M(b, 5)) = ‘\/Area (S%)

Per(S*)
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where Area(S) is the area of a silhouette .S and Per(S) is its
perimeter. The term ﬁ in (3) is the eccentricity of a circle, so

E™dl s zero for circular shapes. In practice, we also normalize
E™dl petween zero and one by dividing it by the eccentricity
of the initial shape S<.

3. Experiments

We have tested the proposed algorithm on a variety of sil-
houette images. In fig. 2, we show results from a larger set of
experiments involving biological shapes, here a bird, a horse
and a human hand. The first three rows show, from left to
right, the original and simplified silhouettes, as well as the cor-
responding skeletons and the distance transform of the simpli-
fied skeleton for an arbitrary choice of (b,s) parameter val-
ues. Notice how the structural skeleton changes in column IV
lead to representations that better reflect our perceptual abstrac-
tion, e.g. for the horse by removing the branch that connects the
back two legs to the spine, similarly the three leftmost bottom
branches of the bird and the upper branches corresponding to
the fingers of the palm. Notice that the structural changes do
not affect the overall aspect ratio of the figure (skeleton end-
points remain unchanged, see §2.1 for details). See also fig. 1
for a more quantitative evolution of the energy function and its
individual components, and note the trade-off between recon-
struction and structural parsimony terms. Interesting regions
of the plot are the ones before sample 150, where the energy
approaches a flat plateau and then starts increasing gently.
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Figure 1. Different components of the energy
function for the horse in fig.2, sampled at
300 points in parameter space over the range
b=(15,800) with 30 samples and s=(0,90) with 10
samples, unfolded on the x axis.

The last two rows of fig. 2 show an in-depth evolution of
the skeleton under the change of the (s, b) parameter pair. We
found that the configurations given by (s, b)=(0,20), (0, 50),
(50,50) and (50,170) (not shown) are quasi-stable energy
points. Notice also that these stable points correspond to

intuitive abstractions, e.g., when all the four finger skeleton
branches have a common root. These will in turn lead to shock-
graph based representations with fewer spurious nodes, there-
fore significantly simpler to match.

4. Conclusions

In this paper, we have presented a framework for multi-
scale skeleton simplification and abstraction. In order to ad-
dresses the instability of 2d skeletons to 3d viewpoint and mi-
nor shape deformation, we propose a framework that produces
a simplified, abstracted skeleton hierarchy by searching the
quasi-stable points of a Bayesian-inspired energy function, pa-
rameterized by boundary and internal structure variations and
trading-off reconstruction accuracy and representation parsi-
mony using an MDL principle. We give experimental results
that show the method can extract useful multi-scale skeleton
representations at various abstraction levels. Future and ongo-
ing work is exploring extensions to abstraction based on multi-
ple input skeletons, alternative MDL priors and skeleton clus-
tering methods, as well as multi-scale skeleton matching.
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Figure 2. Skeleton simplifications for different objects. First three rows, left to right: initial silhouette, sim-
plified silhouette, skeleton after boundary simplification, skeleton after internal structure simplification,
and distance transform of the simplified silhouette. Last two rows: initial silhouette (gray) and skeleton
and simplified silhouette and skeleton (black) for different s and b values.






