
46	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

focus

modeling tools) or tools for visual understanding of
an existing architecture.

Visual understanding tools aim to support sev-
eral tasks, such as comparing desired and actual
architectures, identifying architecture violations,
highlighting architectural patterns or layers ex-
tracted from code bases, assessing architecture
quality, and discovering evolutionary patterns such
as architectural erosion. These tasks require tools
that are tightly integrated with static analyzers and
code checkers to obtain basic program structure
and dependency information for generating the ar-
chitectural views.

Visual design tools, such as IBM’s Rational
Suite, Poseidon, and plug-ins for Visual Studio and
Eclipse, are well established and widely used in in-
dustry. In contrast, tools for architecture under-
standing are much less widespread. This isn’t for
lack of need. Software maintenance costs about 80

percent of a software product’s total life-cycle costs,
and 40 percent of that cost is software understand-
ing.2,3 Nor is it for want of candidates. Researchers
have spent considerable effort and care to develop
hundreds of visualization tools. Yet, most of them
remain confined to academia or to niche projects in
industry.

Why is this so? To clarify how industry can
tap the potential of architecture visualization tools
(AVTs), we survey the state of the art and charac-
terize the added value for specific industry user
groups as well as the development challenges still
remaining. Based on our experience using AVTs for
understanding software in industrial contexts, we
analyze the success and failure factors we noticed
in our work and derive guidelines to help industrial
practitioners achieve a best match between their re-
quirements and the capabilities in state-of-the-art
visualization tools and techniques.

T he IEEE 1471 standard defines a software architecture as “the fundamental
organization of a system embodied in its components, their relationships to
each other, and the principles guiding its design and evolution.” Visual tools
have long been available to support an architecture’s roles to describe both

how a software system should be and how the system actually is.1 We can classify visual
tools correspondingly as either design tools for a new architecture (for example, UML

Framing visual-tool
adoption in a lean
development setting
establishes a model
for choosing the
right tool for a task
based on its value-
added versus waste.

Alexandru C. Telea, University of Groningen

Lucian Voinea, SolidSource BV

Hans Sassenburg, SeCure GmbH

Visual Tools for
Software Architecture
Understanding:
A Stakeholder Perspective

f r aming s t akeho lder s ’ c onc er n s

	 November/December 2010 I E E E S O F T W A R E 	 47

AVT State of the Art
Many vendors have developed commercial AVTs.
Figure 1a shows three well-known tools: Lattix,
Enterprise Architect, and NDepend; Klocwork Ar-
chitect, IBM Rational Architect, and Bauhaus are
among the many others.

The research community has also developed nu-
merous tools. Figure 1b shows three: CodeCrawler,
Rigi, and EvoSpaces. Unlike commercial tools,
which are black-box products, research tools are
typically open source, allowing users to tweak and
customize them.

In general, software visualization tools operate
as a pipeline, as shown in Figure 1c. They mine data

from various sources: code bases, software reposi-
tories, text documents (such as requirements docu-
ments, email, and notes), design documents (such
as UML diagrams based on XML Metadata Inter-
change [XMI]), and test logs. Next, they analyze
the data using techniques such as static analyzers,
text miners, repository access clients, and database
clients. A refined-fact database stores the analysis
results, using an entity-relationship (ER) model: en-
tities model software artifacts, such as files, classes,
functions, requirements, diagrams, and require-
ments; relationships describe entity interactions,
such as calls, uses, inheritance, ownership, and logi-
cal dependencies. Key-value attributes store entity

Source code

Documentation

Design (UML)

Mailing lists, logs

Log/bug databases

Raw input data

Static analyzers

Text mining tools

Repository miners

Database tools

Re�ned fact database

Analysis tools

Graph layouts

Parallel coordinates

Tables, treemaps

Dense pixel charts

Visualizations

Visualization tools

Insight

Quality assessment

Redocumentation

Decision making

Reverse architecting

Stakeholder goals

M

P

N

N M N

T

Lattix LDV (www.lattix.com) Enterprise Architect (www.sparxsystems.com) NDepend (www.ndepend.com)

CodeCrawler
(www.inf.usi.ch/faculty/lanza/codecrawler)

Rigi (www.csc.rigi.uvic.ca) EvoSpaces (www.inf.usi.ch/projects/evospaces)

PTNM Node-link layouts Treemaps Pixel chartsMatrix plots(b)

(a)

(c)

Figure 1. Visual tools for
software architecture
understanding:
(a) commercial
examples, (b) research
examples, and
(c) functional
pipeline. The legend
defines some of the
visualization tools
available to help
different stakeholders
obtain insight to
software architectures.

48 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

and relationship properties, such as quality metrics,
change and test statistics, and code ownership.

Visualizations, or views, depict user-selected ER
elements from the refined-fact database. Some visu-
alization techniques are well-known, such as node-
link layouts and matrix plots. Less well-known
techniques have also proven their effectiveness in
helping to understand complex data in many fields.
These include 3D views, treemaps, parallel coor-
dinates, bundled diagram layouts, parallel coordi-
nates, and pixel charts (see Figure 1).

Most tools support searches of both the fact
database and the views using simple textual and
value-based queries as well as complex queries
written in SQL-like languages. They also correlate
views so that changes in input data or search hits
in one view are automatically highlighted in other
views.

We recommend two books for good over-
views of software visualization and analysis:
Stephan Diehl’s Software Visualization3 and
Michele Lanza and Radu Marinescu’s Object-
Oriented Metrics in Practice.2 Bredemeyer
Consulting offers an excellent practical over-
view of recent advances in architecture visual-
ization on its website (www.bredemeyer.com/
ArchitectingProcess/ArchitectureVisualization.
htm), and Visualcomplexity.com presents good ex-
amples of the power of data visualizations (www.
visualcomplexity.com). Finally, the proceedings of
the ACM Symposium on Software Visualization
(SoftVis), IEEE Workshop on Visualizing Soft-
ware for Understanding and Analysis (Vissoft),
and IEEE Working Conference on Mining Soft-
ware Repositories (MSR) provide a wealth of im-
plementation details and additional tool examples.

What Makes a Good AVT:
The Theory
The efforts of researchers and practitioners to un-
derstand what makes a good AVT include require-
ment-elicitation studies, tool-usage case studies,
and side-by-side tool comparisons. Table 1 summa-
rizes the general requirements identified from this
work.1,3,4 A good AVT should support numerous
data types and provide interactive ways to com-
pare, correlate, and search both views and data. It
should integrate well with existing toolchains and
be flexibly priced, easy to deploy and customize,
and scalable.

What Makes a Good AVT:
The Practice
Over the past seven years, we’ve used AVTs in
over 25 industry projects comprising tens of thou-

sands to millions of lines of code; teams of 10 to
600 developers; different programming languages,
platforms, and architectures; and development
cultures from agile and extreme programming to
strict workflows.

In nearly all cases, we initially met with mod-
erate to strong skepticism regarding innovative
AVTs. This was true even when the tools con-
formed well with the theoretical requirements
listed in Table 1. The preeminent issue was soon
apparent. To quote several senior project manag-
ers, “What measurable added value does a new vi-
sualization tool bring? And at what cost?” We got
identical signals from consultants specializing in
software product and process assessment, fellow
researchers involved in creating new software-visu-
alization tools, and participants in the tool demon-
stration sessions at the SoftVis, Vissoft, and MSR
conferences (for example, see Stuart Charters and
colleagues5 and Steven P. Reiss6). A major tool ven-
dor recently raised similar questions about adopt-
ing static analysis.7

However, we also observed significantly re-
duced understanding for time and cost and im-
proved results quality when projects that had used
no visualizations adopted AVTs. The same was
true for projects that replaced an existing tool with
a better one. So what makes the difference be-
tween AVT success and failure in industry?

To answer this question, we consider tool adop-
tion from a lean development perspective.8 A use-
ful software visualization tool must be perceived
by domain stakeholders to add value or diminish
waste. This sounds obvious, but matching a stake-
holder’s value and waste concepts to a tool’s pro-
visions and requirements is not easy. Stakeholders
don’t have time to try out every new tool to see if
one (or any) will suit their context, and tool devel-
opers can’t create an ultimate product that satis-
fies all possible needs. Understanding the added
value of new, cutting-edge tools is especially diffi-
cult when the tools are marketed in technical vi-
sualization terms, such as slice-and-dice treemaps,
bundled-edge layouts, icicle plots, and multivariate
charts. These terms often mean little to IT project
professionals.

We observed that effective adoption of new
AVTs strongly correlates with three different stake-
holder types and their perceptions of value and
waste. Technical users—developers, designers,
testers, and architects—focus on creating a soft-
ware product. Managers focus on integral project
execution over long periods—often years. Finally,
consultants work over short periods to assist in
strategic decision-making.

What
measurable
added value
does a new

visualization
tool bring?
And at what

cost?

	 November/December 2010 I E E E S O F T W A R E 	 49

Lean Visualization-Tool Adoption
The information we collected on AVT adoption
and use came from several industrial projects. We
structure our insights from the perspective of the
stakeholder types. Our aggregated findings focus
on perceived value drivers, tool requirements, and
potential adoption pitfalls.

Technical Users in Product Development
Technical users require visualization to navigate
and search software structure, dependencies, and
attributes such as quality metrics. In one of our
studies at the University of Groningen,9 23 pro-
fessional developers used four visualization tools
(CodeProAnalytix, Ispace, SonarJ, and SolidSX) as
an understanding aid to debug and refactor a Java

Mobile application of 10,000 LOC. We selected
these tools because all four met the adoption crite-
ria we’ve described for scalability, tight IDE integra-
tion, ease of use and deployment, robustness, search
and navigation, and automatic data extraction from
code. The tools use different layouts: classical node-
link diagrams (CodePro and Ispace), grid layouts
with curved edges (SonarJ), and radial layouts with
edges bundled by system hierarchy (SolidSX). Fig-
ure 2 shows the same dataset displayed for the four
tools. The study collected quantitative and qualita-
tive feedback on what the developers valued (and
missed) most in using each tool.

All developers found correlated views of code,
metrics, structure, and dependencies to be in-
dispensible. All (save one) said that strong IDE

Table 1
General requirements of software architecture visualization tools

Requirement Description

Data representation: Types of data the visualization tool should support

Static Generic ER models supporting multiple relation types (containment, association, and dependency)

Multiple key-value attributes per entity and/or relationship (numerical, text, and ordinal value types)

Dynamic Time-series attribute values per entity and/or relationship

Evolution Multiple versions of ER models, annotated with change information (authors and commit logs)

Operations: Types of operations the visualization tool should support

General Interactive navigation and annotation in multiple correlated views

Comparison Find and display differences between two or more views

Searching Entity, relationship, and pattern searches according to custom, user-specified rules

Integration: How the visualization tool should integrate with data mining

Data mining Static analysis of different programming languages and dialects (C, C++, Java, C#/.NET, and Cobol)

Reconstruction of UML diagrams from source code

Fact extraction from software repositories (Subversion, ClearCase, CVS [Concurrent Versions Systems],
CM Synergy, and Visual Studio Team System)

Robustness of data mining with respect to incomplete or incorrect data sources

Toolchain embedding Interoperability with existing tools (IDEs, build systems, batch systems, software configuration management tools,
testing and documentation tools, and bug reporting tools); data interchange with widely accepted formats (UML/
XMI, Datrix, GXL [Graphics Exchange Language], SQL)

Effectiveness: Nonfunctional requirements of a useful and usable visualization tool

Cost Flexible pricing, open source model

Short learning curve, quick deployment, and high automation of routine tasks

Benefits Effective support of custom viewpoints (data types, analyses, queries, and views)

Scalability Efficient support of datasets of thousands of diagrams, millions of lines of code, thousands of revisions
for all operations (data mining, analysis, searching, and visualization)

50 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

integration is the most important tool-effectiveness
factor. All required the ability to easily define cus-
tom viewpoints for specific questions. Search, se-
lection, and sorting operations support viewpoint
definition to some extent, but generating readable
node-link layouts required considerable manual
tweaking. The developers saw this as a waste. They
wanted to focus on their task, not fine-tune visu-
alizations. In general, we know of no tool, com-
mercial or research, that can automatically gener-
ate readable node-link layouts for more than about
1,000 entities and relationships. This lack is a key
adoption blocker for this user group.

However, there are solutions. The treemap tech-
nique (used by NDepend) and the hierarchically
bundled edges technique (used by SolidSX) produce
readable, clutter-free layouts of thousands of enti-
ties and relationships with zero user intervention.
The bundled edges technique can also show struc-
ture, dependencies, and metrics in a single view.
These visualizations look very different from clas-
sical UML-like node-link diagrams, but no user in
our study found them unintuitive. Quality open
source implementations are available for these tech-
niques (for example, see www.cs.umd.edu/hcil/
treemap-history).

Project Managers
in Large-Scale Maintenance
Project managers require tools to monitor the evolu-
tion of large-scale projects over years. As opposed
to technical users, the focus is time, not code.

Managers must anticipate trends, such as archi-
tectural erosion, rule violation, and quality decay.
Accordingly, their visualization needs differ from
those of technical users. Data volumes extracted
from repositories maintained by source control
management (SCM) systems such as CVS and Sub-
version are huge. A project like KDE Office and
Mozilla Firefox contains thousands of versions,
each containing more than 1 million LOC. Modi-
fication authors, bug reports (stored in systems like

Trac or Bugzilla), and change requests yield two
orders of magnitude more data than technical users
work with.

Instead of showing individual code lines or call
relations, AVTs for project management use coarser
detail levels: file, class, and user (author). Sorting
and ranking is essential. Project managers find the
famous 20 percent of items that cause 80 percent
of the problems by looking at distributions, not
individual artifacts. Visual techniques as paral-
lel coordinates, pixel charts, and timelines are the
tools of the trade here (see www.bredemeyer.com/
ArchitectingProcess/ArchitectingVisualization.htm
for examples).

Consider the case of a major embedded software
producer with a system of 17.5 million lines of em-
bedded C, developed by 600 programmers world-
wide over a decade. A system build took over nine
hours. Because code was modified round the clock,
there was no downtime to execute a build, so testing
was hardly possible. Even small code changes could
cause massive recompilation delays. The main ques-
tions were to understand what causes the build de-
lay, how to prevent or postpone code changes that
cause bottlenecks, and, ultimately, how to refactor
the system to decrease such delays in the future.

For manager-level AVTs, we propose three key
ingredients: repository data mining, static analysis,
and presentation. We summarize them here briefly;
a more detailed description is available elsewhere.10

Automating repository mining sounds trivial,
but it’s not. Implementations exist for some sys-
tems, such as CVSscan11 for CVS and Moose
(www.moosetechnology.org) for Subversion. De-
velopers can customize these implementations with
limited effort. However, other SCM systems—CM
Synergy, in the embedded software case—can take
months to implement.

Manager-level tools must include static analy-
sis to query program concepts—for example, to
find coincident function or class-level changes,
interface splits or merges, or architectural viola-

CodePro Analytix
(www.instantiations.com)

Ispace
(ispace.stribor.de)

SonarJ
(www.hello2morrow.com)

SolidSX
(www.solidsourceit.com)

Figure 2.Visualization
tools for structure,
dependencies, and
metrics. All four tools
are displaying the
same dataset for a Java
mobile application of
10,000 LOC.

	 November/December 2010 I E E E S O F T W A R E 	 51

tions. Automating static analysis is even harder
than automating repository mining because SCM
systems were designed to check code in and out,
not to query or analyze it. Some easy-to-use solu-
tions are available: Reflector (www.red-gate.com/
products/reflector) for .NET/C# and (Recoder,
http://recoder.sourceforge.net) for Java. However,
no solution works for C and C++ without signifi-
cant manual effort.

Finally, in presenting data for this user group,
we found that visualizations capable of displaying
several attributes simultaneously, such as treemaps
and dense pixel charts, work best and are seen as
extremely valuable. Implementations for these visu-
alizations are readily available (for example, see the
treemap resource website (www.cs.umd.edu/hcil/
treemap-history) and Prefuse (http://prefuse.org).

Consultants in Product
and Process Assessment
Consultants reason about the broadest, most het-
erogeneous artifacts: technical, product, process,
risk, cost, and business strategy. Given the high
fees consultants charge, they need tools that ad-
dress data mining, analysis, and presentation re-
quirements over time intervals of days or even
hours. Consultants often deal with nontechnical
stakeholders, especially upper management, so
they need highly simplified visualizations. More-
over, they seldom know up front which visualiza-
tion is best because they don’t know the context
up front. This makes fast customizability crucial.
Overall, consultants impose the highest demands
on AVTs to work out of the box, quickly and flex-
ibly, and to produce simple images.

Current AVTs aren’t sufficient for such us-
ers. All the consultants we talked to used either
hand-crafted PowerPoint presentations (created
with significant manual effort) or tools such as
NDepend or Lattix, which are easy to use but lim-
ited in data acquisition, scalability, evolution sup-
port, and customizability.

However, pairing consultants with visualiza-
tion experts can solve the problem. Consultants
provide the customer interface, while visualiza-
tion experts generate the required images from
available data on demand. For example, in a
post-mortem assessment, we were able to gener-
ate key insight in a 1.5 million LOC product de-
veloped over six years in a matter of days by using
eight different visualizations and three different
static analysis tools. The consultants involved in
assessing the product found this approach highly
cost-effective.12

Prefuse and Tableau (www.tableausoftware.

com) are visual tools for quickly generating attrac-
tive business graphics from complex multivariate
data. However, quickly extracting relevant facts
from large, unknown software repositories is still
an open challenge and serious adoption blocker
for consultants.

Lessons Learned
We see strong possibilities, but also challenges, for
AVTs. The main key to success is correctly iden-
tifying the stakeholder type. Table 2 summarizes
our adoption criteria for each type.

Current tools come closest to satisfying tech-
nical users’ needs. We foresee significant short-
term advances in this field, such as integration of
treemaps, pixel charts, and bundled-edge layouts
in mainstream IDEs such as Visual Studio and
Eclipse. Tools for project managers exist but lack
automated data mining from large repositories,
which is the largest blocker to widespread adop-
tion. For C/C++ code bases and several repository
types, this problem could take several years to au-
tomate. Current tools fall shortest in meeting con-
sultants’ presentation needs, but mixed consultant-
visualization expert teams offer a way to deliver
high-quality results in short time frames.

Major technical limitations to architecture
analysis include the lack of reliable, easily reusable
solutions for automated architecture extraction,
architecture comparison (visual or not), and archi-
tecture pattern detection, despite sustained ongo-
ing research. For instance, we still have no effective
way to run a diff function between two (or more)
architectural views or viewpoints. Experts foresee
this remaining a fundamental problem for several
years.1,3

Tool Strengths and Weaknesses
The strongest and weakest aspects of state-of-the-
art AVTs fall along five dimensions.

Techniques. Tools that implement techniques such
as treemaps, pixel charts, and bundled-edge layouts
are clearly more scalable and simpler to use than
traditional node-link layouts. They should be pre-
ferred whenever available.

Customizability. Research software is usually open
source and thus fully customizable. For project
managers and consultants, this one-time investment
can provide large benefits compared to the typical
costs of commercial closed-source visualization
tools—from hundreds to thousands of euros or dol-
lars per year. Yet, a research tool is never free. Over-
all, we observed a constant 80/20 percentage split

The main
key to AVT
success is
correctly

identifying the
stakeholder

type.

52 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

between tool customization and data acquisition
efforts and tool utilization. The actual stakehold-
ers must determine whether this is appropriate for
a specific context. A cost-benefit analysis using the
constraints defined in Tables 1 and 2 can quickly
decide in this determination.

Integration. Out-of-the-box toolchain integration
is rare. Data interchange formats like XMI, GXL,
Datrix, and Famix exist, but most visualization tools
rarely support them all. Yet, all the visualization
tools we know use the simple ER dataset model we
described earlier. This model is easy to support with
minimal programming (days, rather than weeks).

Tool focus. In all our experience, we found that ge-
neric visualization tools are best for project manag-
ers and consultants and dedicated ones are best for
developers. Customizability is essential for the first
group, and rapid results are essential for the latter.
We never found benefit in the effort needed to make
a generic visualization tool valuable for a technical
user or a dedicated tool valuable for a project man-
ager or consultant. This can serve as a preliminary
selection criterion for visualization tools based on
user type.

Value of insight. Visualization is indispensable
when there is no cheaper alternative to gaining in-
sight into a software architecture. When you don’t
know up front which specific questions to ask or
metrics to compute to solve a high-level problem, vi-
sualization tools can add value. When the data size
makes manually checking all possibilities too costly
or lengthy, visualizations can be cost-effective. It’s a
value versus waste proposition that must be evalu-
ated separately in every single context.

Stakeholder Concerns
AVTs vary in the degree to which they address the
concerns of the various architectural viewpoints
outlined in IEEE 1471.

Multivariate and structure-dependency-metric
visualizations are the most used (and best sup-
ported) tools for structural, behavioral, informa-
tion, engineering, and computational viewpoints.
System decomposition and requirements allocation
viewpoints are much harder to support because
these processes require active user participation. Al-
though combining visual interaction with scalable
structure-dependency-metric visualizations could
meet this requirement, we’re not aware of a tool
that does this. The enterprise and technology view-

Table 2
Tool and task adoption criteria for specific user groups

Tool and task
adoption criteria

User (stakeholder) types

Technical users (developers) Project managers/lead architects Consultants

Project duration Several months Months to years Days to 2 weeks (maximum)

Project aims Develop a software product
(small-medium scale)

Develop and maintain a software prod-
uct (large scale)

Develop and maintain a software
product (large scale)

Team size 5–15 developers + 1 leader 50–200 developers + 5–10 leaders 30–300 developers

Typical toolchain Compiler, debugger, IDE, and
software visualization tool

Quality metric extractors; static analyz-
ers; configuration management, proj-
ect planning, bug-tracking tools

Integrated visualization + analysis
tools and results-reporting tools
(PowerPoint-like)

Types of views Correlated structure, depen-
dency, metrics

Multivariate plots of processes and
product

Simple business graphics (bar
charts, timelines, matrix plots, pie
charts)

Key values
for software
visualization tool

Generate desired custom views
with as few views/operations
as possible

Discover software evolution problems;
monitor project execution (team, quali-
ty, staying on course) with no tweaking

Easy to set up and run within hours;
does not have to produce detailed,
exact results

Key waste
for software
visualization tool

Tedious manual tuning of visual
layouts; reading cluttered lay-
outs takes too much effort

Insufficient insight in all key attributes;
lengthy manual setup of data extraction

Lengthy set-up procedures, includ-
ing visualization customization,
requiring high technical expertise

Software
visualization tool
requirements

IDE integration; automatic/
easy viewpoint generation; high
visual scalability

Automatic fact extraction from reposi-
tories; automatic visualization genera-
tion; high scalability in number of data
points

Highly automated: produces images
out of the box; highly customizable:
runs on widely different customer
code bases

	 November/December 2010 I E E E S O F T W A R E 	 53

points don’t pose specific visualization problems,
but they do require data mining tools to extract
concept such as purpose, scope, and policies. Such
concept are highly abstract, context-dependent, and
typically not saved in standardized formats, so au-
tomatic mining isn’t yet possible.

Current visualization tools are sufficient for ad-
dressing performance, scalability, and reliability
project concerns. Modern visualizations such as
Prefuse and Tableau can navigate and visualize huge
ER datasets. The software architecture community
hasn’t yet made widespread use of these techniques.
However, it has acknowledged the limitations of
node-link layouts, and newer diagram-layout tech-
niques have already found their way into main-
stream tools, such as Lattix and NDepend. From
another perspective, if the data is readily available
for a given architecture, current visualization tools
have no problems in displaying it because it’s just
another variant of a multivariate relational dataset.

Finally, business concerns such as cost, schedule,
and quality of service map well to multivariate vi-
sualizations, such as pixel charts and timelines, as
the examples we’ve described here and elsewhere
show.10–12 The main challenge is obtaining the
data, not presenting it.

M any visualization tools provide sig-
nificant value in understanding large
software architectures and supporting

architectural maintenance and evolution, qual-
ity assessment, communication with stakeholders,
and strategic product planning. However, deciding
whether to use a tool (and which one) is still chal-
lenging and doesn’t come free. We see visualization
as an instrument that generates value and mini-
mizes waste, and we’ve given several pointers to
available, mature, open source resources for appro-
priate visualizations. Framing stakeholders’ con-
cerns is absolutely essential to selecting a good tool.

We see visualization techniques becoming in-
creasingly integrated with standard development and
maintenance pipelines, benefiting all types of users
involved in software architecture. Until then, cus-
tom solutions can be valuable, but each case requires
a careful analysis of costs versus benefits or value-
added versus waste.

References
 1 K. Gallagher, A. Hatch, and M. Munro, “Software

Architecture Visualization: An Evaluation Framework
and Its Application,” IEEE Trans. Visualization and
Computer Graphics, vol. 34, no. 2, 2008, pp. 260–270.

 2 M. Lanza and R. Marinescu, Object-Oriented Metrics
in Practice—Using Software Metrics to Characterize,

Evaluate, and Improve the Design of Object-Oriented
Systems, Springer, 2008.

 3 S. Diehl, Software Visualization—Visualizing the
Structure, Behaviour, and Evolution of Software,
Springer, 2007.

 4 K.D. Babu, P. Govindarajulu, and A.A. Kumari, “De-
velopment of a Conceptual Tool for Complete Software
Architecture Visualization: DArch,” Int’l J. Computer
Science and Network Security, vol. 9, no. 4, 2009, pp.
277–286.

 5. S. Charters, N. Thomas, and M. Munro, “The End of
the Line for Software Visualization?” Proc. 2nd IEEE
Int’l Workshop Visualizing Software for Understand-
ing and Analysis (Vissoft 03), IEEE CS Press, 2003, pp.
27–35.

 6 S.P. Reiss, “The Paradox of Software Visualization,”
Proc. 3rd IEEE Int’l Workshop Visualizing Software
for Understanding and Analysis (Vissoft 05), IEEE CS
Press, 2005, pp. 59–63.

 7 A. Bessey et al., “A Few Billion of Lines of Code Later:
Using Static Analysis to Find Bugs in the Real World,
Comm. ACM, vol. 53, no. 2, 2010, pp. 66–75.

 8 M. Poppendieck and T. Poppendieck, Lean Software
Development: An Agile Toolkit for Software Develop-
ment Managers, Addison-Wesley, 2006.

 9 M. Sensalire, P. Ogao, and A. Telea, Model-Based
Analysis of Adoption Factors for Software Visualiza-
tion Tools in Corrective Maintenance, tech. report
SVCG-RUG-10-2010, Univ. of Groningen, the Nether-
lands, 2010; www.cs.rug.nl/~alext/PAPERS/Sen10.pdf.

 10 A. Telea and L. Voinea, “A Tool for Optimizing the
Build Performance of Large Software Code Bases,”
Proc. IEEE Conf. Software Maintenance and Reengi-
neering (CSMR 10), IEEE CS Press, 2010, pp. 323–325.

 11 L. Voinea and A. Telea, “Visual Querying and Analysis
of Large Software Repositories,” Empirical Software
Eng., vol. 14, no. 3, 2009, pp. 316–340.

 12 A. Telea and L. Voinea, “Case Study: Visual Analytics
in Software Product Assessments,” Proc. 5th IEEE Int’l
Workshop Visualizing Software for Understanding and
Analysis (Vissoft 09), IEEE CS Press, 2009, pp. 65–72.

About the Authors
Alexandru C. Telea is a professor in software visualization at the University
of Groningen, the Netherlands. His interests cover data, information, and software
visualization, static source code analysis, and C/C++ reverse engineering. Telea received
a PhD in data visualization and software architectures at the University of Eindhoven, the
Netherlands. He’s a member of the ACM and served as general chair of ACM SoftVis 2010.
Contact him at a.c.telea@rug.nl.

Lucian Voinea is a cofounder of SolidSource BV (www.solidsource.nl), a company
specializing in tools and services for software product and process assessment. He also
cofounded the Software Benchmarking Organization (www.sw-benchmarking.org). Voinea
received a PhD in software evolution analysis and visualization from the University of
Eindhoven, the Netherlands. Contact him at lucian.voinea@solidsource.nl.

Hans Sassenburg is a visiting scientist at the Carnegie Mellon’s Software Engineer-
ing Institute and head of SeCure AG (www.se-cure.ch), which specializes in software product
and process quality improvement. He also cofounded the Dutch Spider Organization for Soft-
ware Process Improvement (www.st-spider.nl) and the Software Benchmarking Organization
(www.sw-benchmarking.org). Sassenburg received a PhD in economics from the University
of Groningen, the Netherlands, in the area of software release strategies. Contact him at
hsassenburg@se-cure.ch.

