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Abstract. Printability, the capability of a 3D printer to closely repro-
duce a 3D model, is a complex decision involving several geometrical
attributes like local thickness, shape of the thin regions and their sur-
roundings, and topology with respect to thin regions. We present a
method for assessment of 3D shape printability which efficiently and
effectively computes such attributes. Our method uses a simple and ef-
ficient voxel-based representation and associated computations. Using
tools from multi-scale morphology and geodesic analysis, we propose
several new metrics for various printability problems. We illustrate our
method with results taken from a real-life application.

1 Introduction

Recent advances in 3D printing technology have made it possible to create faith-
ful replicas of 3D models with increasingly higher resolutions, wider ranges of
materials, higher printing speeds, and lower costs. High-quality, low-cost 3D
printing is now available for personal users, e.g. through online services [12].

However, these advances have also created new challenges. Printer resolution
limitations introduce several differences between input models and output ob-
jects, e.g., in order of gravity: small layers of the surface being peeled, thin shape
parts being fully removed, and shape break-up in several parts due to narrow
connections. Currently, such defects are detected largely by manual inspection.
This is not scalable for online printing services faced with thousands of mod-
els uploaded per day. What is needed is an automatic printability assessment
method.

In this paper, we present a framework for 3D printability assessment. We
analyze known defects which occur during printing and propose several metrics
to detect and measure their criticality. We next compute these metrics fully
automatically, but also allow users to tune parameters in order to select what is
critical when printing a given model on a given printer. As 3D printing technology
works in a raster fashion, we implement our proposed metrics using a voxel-based



approach relying on multi-scale morphology and geodesic analysis. For maximal
performance, we use a GPU implementation based on NVidia’s CUDA.

The structure of this paper is as follows. In Section 2, we overview 3D printing
basics and related work in shape thickness measurement. Section 3 presents
the several stages of our printability assessment framework and related metrics.
Section 4 presents results obtained on 3D models from a real-life 3D printing
process. Section 5 discusses our method. Section 6 concludes the paper with
future work directions.

2 Related work

3D printing technology constructs a model layer by layer, in a process similar
to voxelization. The main critical element here is the shape’s local thickness t:
Shape details thinner than the so-called printer resolution τ result in empty
voxels, which can lead to the problems named in Sec. 3. Hence, local thickness
detection is a necessary (but as we shall see, not sufficient) part of printability
assessment.

Several methods address thickness measurement. Hildebrand et al. define
local thickness t at a point p in a 3D shape S, given by a set of voxels Ω ⊆ R3,
as the diameter of the largest inscribed ball B centered at x that contains p [3],
i.e.,

t(p) = 2 max({r |p ∈ B(x, r) ⊂ Ω,x ∈ Ω}), (1)

with r the radius of ball B. Dougherty et al. implement the above by evaluating
the distance transform D(S) over the skeleton (or medial axis) of S and marking
all points p ∈ Ω with the maximum of D|Ω [3]. However, this method requires
a robust and exact medial axis transform, which is prohibitively expensive for
large voxel models.

Yezzi et al. compute thickness between surface pairs by minimal-length surface-
to-surface paths using a PDE-based approach [14]. While this method is rela-
tively fast (12 seconds for a 2563 voxel dataset), its extension to higher-genus
models is not evident. An overview of voxel-based thickness estimation in med-
ical applications is given in [11].

Mesh-based methods for thickness computation have been proposed by Lam-
bourne et al. [5]. However, they typically require a clean mesh with no self-
intersections, do not offer a volumetric object representation (which is essential
for subsequent printability assessments), are more complex to implement, and
are only shown to work well on relatively simple shapes. Many engineering tools
measure the so-called wall thickness [4]. However, all such tools we are aware of
work only for models consisting of few relatively large, simple, surfaces separated
by clear edges.

Considerable work exists in the area of topology-accurate 3D shape digitiza-
tion, e.g. [13]. However, our problem is different: given a digitization process not
under our control (the 3D printer), and a specific set of quality criteria (mainly
thickness-related), we must assess whether a given polygonal model fullfils these
criteria under the given digitization.



3 Printability Assessment

Printability assessment supplements thickness estimation with additional con-
straints. A 3D shape is printable when the removal of its thin regions (which do
not print) do not create critical topological or geometrical changes, as follows
(see also Fig. 1):

– disappearance of salient detail, or spikes, e.g. the mouse’s tail or whiskers;
– disconnection of large shape fragments by removal of so-called bridges, e.g.,

the mouse’s thin arms;
– creation of large holes, also called tunnels, e.g., center of sandal’s sole.

spikes

bridge

hole

Fig. 1. Printability critical events: spikes, bridges, and holes (see also Fig. 5)

Filling of small object regions such as holes of interstices due to printer
discretization is not seen as a problem in 3D printing practice, as such details
are few in typical 3D shapes on the printing market. Also, filling does not cause
parts of the object to break off or disappear, which is seen as the largest problem.

Following discussions with a market-leading 3D printing service provider [12],
we learned that an effective printability assessment method should be able to
detect and measure all above-mentioned events related to spikes, bridges, and
holes for a shape of arbitrary topological and geometric complexity and given
printer resolution. Secondly, the criticality of events should be quantifiable. Intu-
itively, this should match the visual salience of these events. Finally, the method
should be automatic and efficient, i.e., handle thousands of models a day on
a PC computer. According to their experience, no such ready-to-use method
exists.

We next present a method that efficiently and effectively implements the
above requirements. Fig.2 shows our computational pipeline.

3.1 Voxelization

First, we transform the polygonal 3D input shape S into a binary voxel model.
We use the method of Nooruddin and Turk [9], based on an optimized imple-
mentation of binvox [7], which delivers high performance and can handle any



voxelization
thin region

detection

voxel

classi!cation

component

analysis

3D mesh

model

3D voxel

model

thin

regions

connected

components

printability

metrics

Fig. 2. Thickness assessment pipeline

closed mesh, including self-intersecting ones (see Sec. 4). The output is a binary
volume consisting of the shape Ω (foreground) and its complement, the back-
ground, Ω = R3 \ Ω. The voxelization resolution used in practice exceeds that
of the 3D printer, so small potential errors caused by the voxelization methods
should have no effect on our assessment.

3.2 Thin region detection

Given a user-defined thickness τ (equal to the printer resolution), we next detect
the locally thin areas Θ of Ω. This can be formulated as a top-hat transform in
the context of multi-scale morphology [1, 6], as follows.

Given the set Ω ⊆ R3, its distance transform with respect to the ||·||2 (Eu-
clidean) norm is defined as

D(Ω)(x) ≡
∧
y∈Ω

||x− y||2 . (2)

Note that the distance transform of a shape can be computed both inside, re-
spectively outside, of a particular shape, by inverting the roles of Ω and Omega
in Eq. 2, as inferred from the context of use.

The 3D unit ball B associated to the norm is

B ≡ {x ∈ R3 | ||x||2 ≤ 1}.

The multi-scale set dilation and erosion of Ω by B at scale s are given, respec-
tively, by

δB(Ω, s) ≡ Ω ⊕ sB
εB(Ω, s) ≡ Ω 	 sB.

We detect locally thin areas Θ of the shape Ω using a multi-scale (set) top-hat
transform at scale s = τ , i.e.,

Θ(Ω, τ) = Ω \ δB(εB(Ω, τ), τ). (3)

The erosion in Eqn. (3) removes border elements, narrow spikes and bridges
connecting the main object structures. Dilating the resulting set reconstructs the
borders of the object, but not the other removed structures. Finally, taking the
set difference between Ω and the smoothed (opened) object, the thin structures
are effectively extracted. By setting τ to the printer resolution, we thus detect
the unprintable parts, e.g. the blue areas in Fig. 3.



Since thresholding the distance transform D(Ω) at levels s > 0 yields multi-
scale dilations of Ω by balls sB of radius s, i.e.,

δB(Ω, s) = {x ∈ R3 |D(Ω)(x) ≤ s} (4)

and similarly,

εB(Ω, s) = {x ∈ R3 |D(Ω)(x) ≥ s}, (5)

one can express Θ from (3) using (4),(5) as

Θ(Ω, τ) = Ω \ Tl(D(Th(D(Ω), τ)), τ) (6)

where Th and Tl are the sets obtained by thresholding at level τ its (function)
argument and by keeping only values higher and lower than τ , respectively.

The dilation replaces corners and edges from the eroded shape with spherical
caps, respectively edge-swept cylindrical surfaces of radius τ , a well-known result
from mathematical morphology. Practical observation shows that this rounding
closely follows the actual behavior of 3D printers due to small deviations of the
printer head of the order of the machine resolution.

Unlike other approaches (see Sec. 2), our thin-area estimator(Eq. (3)) can
be very efficiently computed due to the result in Eq. (6), using a fast and exact
method for computing the Euclidean distance transform (see Sec. 5). As an
example, Fig. 5 e shows the volume-rendered distance transform of the rabbit
model - blue indicates small distances, while red indicates large distances from
the model’s surface.

3.3 Voxel classification

As already outlined, not all thin regions are equally critical for printability. Equa-
tion 3 does not distinguish between topological or geometric shape properties
besides local thickness. For example, sharp edges would be classified as thin,
while their removal amounts to limited rounding (Sec. 3.2), which is acceptable.
Area or volume-based aggregated metrics are not sufficient for discrimination,
i.e., a shape with significant small-scale noise would yield thin regions with cu-
mulative large area and/or volume, the removal of which would not significantly
alter the shape. What is needed, is the detection and analysis of salient spikes,
holes, and bridges.

To detect and analyze such events, we next classify the voxels into four cate-
gories (Fig. 3): thin (T ), rump (R), interface (I) and boundary (B), as follows3:

R = Ω \Θ
I = {x ∈ Θ | ∃y ∈ n6(x),y ∈ Ω,y /∈ Θ}
B = {x ∈ Θ | ∃y ∈ n6(x),y ∈ Ω}
T = Θ \ (B ∪ I),

3 We recommend viewing the figures in this paper in full color



where n6(x) denotes the 6-connected voxel neighbors of x. In a post-processing
step, we next mark all I voxels with no B or T neighbors as R. This removes one-
voxel-thick ’interface shells’, i.e. thin surface-like voxel sets, which are tangent
to rump, but not to thin regions, and thus have no further use in the printability
assessment. Finally, we compute the thin (T ) 26-connected components. For
each component Ci, we store its I, T , and B voxels, boundary area ABi , and
volume Vi. Also, for each Ci, we compute and store the 26-connected interface
components Iij as well as their areas AIij . For robust area estimation on voxel
surfaces, we use the fast estimator proposed by Mullikin and Verbeek [8].
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Fig. 3. Voxel classification into thin (T=blue), rump (R=red), interface (I=cyan), and
boundary(B=green). Bottom: slices from actual voxel model in Fig. 1 left)

For example, the shape in Fig. 3 (top) has two thin regions, a spike and
a bridge; the spike has one interface, while the bridge has two. Thin region
classification is done by topological analysis: Bridges have several interfaces,
|{Iij}j | > 1; spikes have an interface of genus zero; and holes have an interface of
genus larger than zero. This information is important in assessing the printability
metrics presented next.

3.4 Printability metrics

We now describe two metrics which are computed on the thin components re-
sulting from the voxel classification (Sec. 3.3) to assess a shape’s printability.

Area-based metric Spikes, bridges, and holes share one common property:
they are thin, elongated, structures, which connect to the rump by small-size



interfaces. The visual salience of such a structure Ci can be encoded as the
ratio of their (total) boundary area ABi =

∑
j A

B
ij and interface areas AIi =∑

j A
I
ij , i.e., µA(Ci) = ABi /A

I
i . This metric has several desirable properties.

First, it marks large removed structures with small interfaces (connections to
rump), e.g. the ears of the mouse in Fig. 1, as more critical. This matches
practical 3D printing insight: large structures are visually more salient, and the
smaller their interfaces are, the higher the chance is that a 3D printer will not
manage to render such connections, or that such connections will be mechanically
fragile – an important property for the lifetime of printed shapes. Secondly, it
treats spikes, holes, and bridges uniformly, without the need of a full-shape
connectivity analysis. Computing µA from the classification results (Sec. 3.3) is
straightforward.
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Fig. 4. Printability metrics: edge (a); 2D view of spike on edge (b); thin hole (c); Thin
areas are gray and rump areas are yellow respectively.

The adimensional area-based metric µA is intuitive to interpret. For spikes,
since interfaces are locally spherical (Sec. 3.2), µA is lower bounded by 1, when
round shape parts are considered asymptotically thin for τ → 0. For right-angle
edges, µA = 4/π, i.e. the ratio of the area of two rectangles sharing the edge and
having one side of length τ and the area of a quarter-cylinder (Fig. 4 a). Sharper
spikes, which we want to detect, yield larger µA values. Near-constant cross-
section spikes of length l, e.g., the mouse’s tail or whiskers in Fig. 1 have µA of
the order of l/τ , since AI is of the order of τ2. This allows one to easily threshold
µA to get all thin, elongated features longer than a given l. For bridges, consider
a bridge component Ci having n branches j = 1 . . . n of boundary and interface
areas ABij and AIij , respectively, so µA =

∑
j wj(A

B
ij/A

I
ij), where wj = AIij/A

I
i .

Hence, a bridge’s metric is the sum of its branches’ area metrics weighted by
their interface sizes. For holes, µA is lower bounded by 2/π, i.e. the ratio of
a surface component of constant thickness 2τ and perimeter L and a cylinder
surface of radius τ and length L (Fig. 4 c).

Geodesic length metric However effective, the area-based metric will fail
detecting certain complex unprintable structures. Imagine a thin cylindrical fil-
ament of radius τ and length l touching the edge of a cube of size L (Fig. 4 b).



The thin region T (gray in Fig. 4 b) contains the filament and all edges of the
cube, hence,

µA =
2πτl + 12(2τL)

12(2πτ/4)L
=

1

3

l

L
+

4

π
. (7)

If L is much larger than l, µA → 4/π, the right-angle edge metric, so we miss the
unprintable filament. Note that this only occurs if the filament and cube edges
form a single component, otherwise the filament retains its separate, large, µA
value.

To solve this problem, we introduce a different metric, µG, based on geodesic
lengths. For a given component,

µG =
maxx∈B,y∈I ||(x y)||2
maxx∈∂I,y∈I ||(x y)||2

, (8)

where (x y) ⊂ ∂Ω is a geodesic path on the shape surface ∂Ω = B∪I between
points x and y.

The adimensional metric µG measures the eccentricity of a component. For
right-angle shapes, µG = µA = 4/π. Long spikes have high µA values. For the
filament-and-cube shape, µG = (4/π)(l/τ), i.e., the value of µA for a right-angle-
shape times the filament’s eccentricity l/τ . For bridges, µG reflects half of the
length of the longest interface-to-interface geodesic path, which is useful, as such
branches are the likeliest to break after printing. For holes, µG equals the hole’s
surface diameter divided by the hole’s wall thickness, which intuitively marks
large-area, thin, regions as most critical.

We efficiently compute µG using the distance transformsD(∂I)|B andD(∂I)|I
restricted to the voxels of B and I, respectively. These are nothing that the ap-
plication of distance transforms in 3D voxel space on the voxel sets of B and
I from the sites-set ∂I respectively. Note that, implementation-wise, ∂I is also
included in B.

The maximum values of D|B and D|I give the maximal geodesic lengths
from ∂I to all points in B and I, respectively. Since these distance transforms are
computed on 3D surfaces rather than volumes, we cannot use volumetric distance
transforms (see Sec. 5). Instead, we use the exact Euclidean TFT method [10],
as it is simple to implement and can handle curved voxel surfaces. Any other
fast, exact distance transform on curved voxel surfaces can be equally used.
The Euclidean TFT is O(N logN) for a surface of N voxels. For typical B
and I surfaces in a 5123 voxel volume, a CPU-based Euclidean TFT takes a
few seconds. As an example, Fig. 5 c shows the geodesic distances for the thin
fragments of the mouse model. The tail’s tip (red) sticks out as being the furthest
point from the body.

4 Results

Figure 5 shows several results computed on a MacBook Pro laptop with 4 GB
RAM and a GeForce 8600M GT card with 512 MB RAM. The models range



from a few thousand to over hundred thousand polygons, and clearly contain
non-trivial geometry and topology. All models are voxelized at 2563 resolution.

The classification (using the same colormap as in Fig. 3) and and metric
values (using a blue-to-red colormap) are rendered composited with the origi-
nal polygonal surface (in gray). We see that the classification accurately detects
thin regions, even in complex cases. For example, the mouse’s torso is largely
green, since the model is here actually not full, but consists of a thin shell – see
Fig. 3 bottom. The area metric marks the ears as the most critical thin compo-
nents. Indeed, these have a very large area but very small interfaces. However,
compared to the ears, the tail is much less important, as it has a relatively small
area compared to its interface. The geodesic metric also finds the ears as critical,
but also finds the tail, which is thin and very elongated. A similar phenomenon
occurs for the ’bars’ model (Fig. 5 f-h). Here, the long vertical spike (marked
with a stippled line) is clearly detected by the geodesic metric. For the rotor
model (Fig. 5 i-k), the area metric identifies fragments of the rotor’s outer edge
(red in Fig. 5 j) as most critical. Note that these are bridges, and their removal
would change the rotor’s blade topology, i.e. disconnect its blades. The geodesic
metric finds the four inner attachment parts (red Fig. 5 k) as most critical, as
they are the most elongated thin regions to get removed. For the ’logo’ model
(Fig. 5 l), the two metrics identify critical fragments similarly. Finally, the sandal
model shows how genus 0 and genus 1 thin regions (the sandal tip and heel, re-
spectively) are captured, and that both the area and geodesic metric have values
which do not depend on the thin region’s genus, which desirable for user setting
of the critical metric value.

The area metric captures critical fragments of large surface area, while the
geodesic metric captures fragments of large elongation. The two are different,
but equally critical, printability problems. In practice, we found that marking
those fragments as printing problems, which are found critical by either metric,
to be a robust and good solution to our overall assessment goal.

We validated the relevance of these results, i.e. the fact that the regions
detected as critically thin for 3D printing by our algorithm would indeed create
problems in actual 3D printing production in practice. Although the validation
only involved domain experts looking at our results and not physical printing, the
outcome was positive: our method identifies regions which a domain specialist
would also mark as critical.

5 Discussion

Printability assessment Our method is able to capture all top-level print-
ability requirements (Sec. 3) by means of two simple, adimensional metrics. The
metrics work uniformly for all types of events (spike and bridge removal and
hole creation) on all geometric and topological configurations we could test on
around 100 models used in 3D printing production. The entire method has only
two parameters: the printer resolution τ and the desired, critical-event detection
threshold for the used metrics. For now, the method can be used in a semi-



automatic manner: the algorithm processes a set of shapes, identifies those with
printability problems, and displays them (with highlighted problems as in Fig. 5)
for further human inspection. Although not fully automatic, this is a major step
forward as compared to the current procedure where users can only see the
original 3D shapes.

Scalability The most expensive step of our method, the thin region detection
(Sec. 3.2), is implemented by adapting the recent CUDA-based distance trans-
form (DT) of Cao et al. [2]. On our platform (Sec. 4), this step takes under 2
seconds for 2563 voxels. Since Eqn. 6 uses only distance transforms and thresh-
olding operations, we can safely extrapolate the timings from [2] for a Tesla
C1060 card to our case, i.e. 0.7 seconds (5123 voxels) and 5.8 seconds (10243

voxels). Since we work in voxel space, polygon count for the input model does
not affect these values. Apart from thin region detection, all other steps are of
negligible costs (seconds) and thus implemented on the CPU in C++.

Our current CUDA implementation requires 8 bytes GPU memory per voxel,
i.e. 128 MB for 2563 voxels, 1 GB for 5123 voxels, and 8 GB for 10243 voxels.
Current 1 GB cards thus allow measuring printability of objects of 10 cm size
at the resolution of 100/512 ' 0.2 mm, which is in line with the practical re-
quirements for 3D printability assessment. It is, however, possible to improve on
this by using the slice-based DT computation refinement sketched in [2], which
allows volumes up to 81922 voxels per slice to be handled with only 512 MB
with a small performance loss.

Precision All distances we compute (CUDA DT for the thin regions and Eu-
clidean TFT for the geodesic length metric) are exact. This is essential as small
errors may assess a printable object as unprintable or conversely, which is unac-
ceptable by the users.

Limitations Voxelization resolution is currently the main limitation. Critical
events smaller than one voxel will be missed. For example, the mouse’s whiskers
are not captured by the 2563 voxel grid used in Fig. 5. However, as outlined
above, this problem is directly solved by using graphics cards which can hold
larger voxel volumes.

6 Conclusions

We have presented a solution for the task of automated assessment of 3D print-
ability. For this, we combine a fast and robust method for thin region detection
based on distance fields with two new application-specific metrics that uniformly
treat all critical printability defects (spike and bridge removal and hole creation)
and effectively capture critical events such as large surfaces having thin con-
nections and elongated fragments. The entire pipeline requires only two user
parameters: the printer resolution and maximal criticality of admitted defects,



the latter which is an adimensional threshold value with intuitive border val-
ues. Our current implementation was tested in actual production runs at a 3D
printing company and is currently forming the basis of an actual production tool
for large-scale 3D printability assessment. In the future, we plan to extend our
method in directly assessing 3D printability on mesh models, for optimal per-
formance and accuracy, and also to design new metrics to capture more refined
printability problems, such as specific topological and geometrical configurations
in combination with specific material properties. Next, we plan to use our method
in other application areas where shape thickness measurements are needed, such
as 3D metrology for CAD/CAM and engineering.
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Fig. 5. Printability assessment results on complex models in the 3D printing industry


