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Abstract. In recent years, many new methods have been proposed for extracting curve
skeletons of 3D shapes, using a mesh-contraction principle. However, it is still unclear how
these methods perform with respect to each other, and with respect to earlier voxel-based
skeletonization methods, from the viewpoint of certain quality criteria known from the
literature. In this study, we compare six recent contraction-based curve-skeletonization
methods that use a mesh representation against six accepted quality criteria, on a set of
complex 3D shapes. Our results reveal previously unknown limitations of the compared
methods, and link these limitations to algorithmic aspects of the studied methods.
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1 Introduction

Curve skeletons are among the most well-known, and widest used, descriptors for 3D shapes.
They have been extensively used in applications such as shape matching and recognition, com-
puter animation, virtual navigation, and shape processing [8, 28].

Earlier methods for computing curve skeletons used mainly voxel-based 3D shapes. In recent
years, several methods have been proposed to compute curve skeletons from meshed 3D shapes,
using a contraction principle, where the input mesh is iteratively shrunk towards its local center.
Such methods are highly computationally scalable, and can easily handle mesh shapes with con-
siderable more details than voxel-based methods. However, their algorithmic complexity makes
it harder to reason analytically about the properties of the produced skeletons. In particular, it
is not fully clear how their results relate to desirable skeleton properties. Moreover, since such
methods are typically compared with methods in the same class (mesh-based), it is unclear
whether mesh-based methods are indeed always superior to voxel-based methods.

In this paper, we compare six mesh-contraction-based curve-skeletonization methods, all
which are based on a collapse principle, against six accepted quality criteria: centeredness, ho-
motopy to the input shape, invariance under isometric transformations, detail preservation,
smoothness, and independence from the input shape’s sampling. Our work extends the earlier
survey of Cornea et al. [8] by studying six mesh-based curve-skeletonization algorithms pub-
lished after that survey was done. Our results reveal several limitations of the studied methods
which, to our knowledge, have not been highlighted in the literature, and link these to algorith-
mic aspects of the studied methods.

The structure of this paper is as follows. Section 2 overviews related work in curve skele-
tonization, with a focus on contraction-based methods. Section 3 details the quality criteria
used for the comparison. Section 4 presents the comparison results. Section 5 discusses our
findings. Section 6 concludes the paper with future work directions.

2 Related work

For a shape Ω ⊂ R3 with boundary ∂Ω, we first define its distance transform DT∂Ω : R3 → R+

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖. (1)
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The surface skeleton of Ω is next defined as

S(Ω) = {x ∈ Ω | ∃ f1, f2 ∈ ∂Ω, f1 6= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (2)

where f1 and f2 are the contact points with ∂Ω of the maximally-inscribed ball in Ω centered
at x [12, 25], also called feature transform (FT) points [15]. Surface skeletons consist of several
manifolds with boundaries which meet along a set of Y-intersection curves [9, 17, 7]. They can
be computed by voxel-based or mesh-based methods [22, 5, 29, 14, 3, 14]. A recent comparison
of surface-skeleton extraction methods is given in [15].

In contrast to surface skeletons, curve skeletons are loosely defined as 1D structures “locally
centered” within the input shape Ω. The lack of a unanimously accepted formal definition
has led to many methods which compute curve skeletons following not necessarily identical
definitions. This makes it hard to analytically compare, and reason about, the properties of the
produced curve skeletons.

Tools from mathematical morphology [26] were among the first used to compute curve skele-
tons: The residue of openings, based on Lantuéjoul’s formula [16], usually leads to disconnected
skeleton branches, whereas methods based on homotopic thinning transformations [16, 19, 4,
22] yield connected skeletons. Combining such techniques with distance-driven thinning further
ensures the extraction of centered surface and curve skeletons [1].

Dey and Sun propose one of the first analytic definitions of curve skeletons based on the
medial geodesic function (MGF), where the curve skeleton is defined as the locus of points
having at least two equal-length shortest geodesics on ∂Ω between their feature points [10, 24].
Reniers et al. extend the MGF to regularize curve skeletons by assigning each skeleton point
an importance equal to the area bounded by such geodesics, in a voxel setting [25], inspired by
the so-called 2D collapse metric [21, 33]. A GPU implementation of the above metric for mesh
models is presented in [15].

Voxel-based methods typically require significant resources to store and process the large
voxel volumes required to capture the fine details of complex 3D shapes. To be used on 3D
meshes, such methods require a costly voxelization step. Mesh-based methods address these
cost issues by working directly on a mesh representation of ∂Ω. In recent years, several such
mesh-based methods have been proposed based on a contraction principle, which shrinks the
input mesh until the 1D curve-skeleton structure is reached, as follows. Au et al. shrink the mesh
via Laplacian smoothing until its volume gets close to zero, followed by an edge-collapse (to
extract the 1D curve skeleton) and a re-centering step (to correct shrinking errors) [2]. Cao et al.
extend this idea to extract curve skeletons from incomplete point clouds [6]. The ROSA method
defines, and extracts, curve skeletons using rotational, rather than positional, symmetry: ∂Ω is
cut with planes, and curve-skeleton points are found as the centers of planes which minimize the
variance between the plane’s normal and ∂Ω normals along the cut curve [31]. Sharf et al. reverse
the contraction direction: They find the curve skeleton as the centers of a set of competing fronts
which evolve to approximate the input surface [27]. A similar method is presented by Hassouna
and Farag [13]. Telea and Jalba define, and extract, curve-skeletons by contracting the surface
skeleton S(Ω) (computed as in [18]) inwards, along the gradient of the 2D distance transform
of ∂S(Ω), i.e. define the curve-skeleton as the result of a two-step skeletonization [32].

Mesh-contraction methods are currently deemed to be the state-of-the-art for extracting
detailed curve skeletons from high-resolution shapes [30]. As 3D models become more complex, it
is arguable that such methods will dominate the more costly voxel-based methods. Conceptually,
such methods work very similarly to voxel-based thinning. However, there are few, if any,
comparisons of contraction-based methods based on the accepted skeleton desirable criteria used
for earlier voxel-based methods. Also, the algorithmic complexity of mesh-contraction methods
makes a formal analysis thereof more complex than for voxel-based methods. All in all, it is
not clear if mesh-contraction methods are indeed always superior to voxel-based methods, and
if not, which are their specific weak points with respect to desirable skeleton criteria.
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3 Comparison criteria

The literature knows a well-accepted set of quality criteria that curve skeletons should conform
to. For curve-skeletonization methods, such criteria are significantly more important than for
surface skeletonization methods: While the latter can be rigorously checked against the formal
surface skeleton definition (Eqn. 2), the former do not use a single curve-skeleton definition. As
such, the only comparison available for curve skeletons is a qualitative one, from the perspective
of desirable quality criteria. Following [8, 15, 28], we focus on the following generally-accepted
quality criteria for a curve skeleton:

Homotopy: The curve skeleton is topologically-equivalent with the input shape, i.e. has the
same number of connected components and tunnels.

Invariant: The curve skeleton should be invariant under isometric transformations of the input
shape.

Thin: The curve skeleton should be as thin as the sampling model used allows it. Voxel-based
curve skeletons should be one voxel thick. Mesh-based curve skeletons should contain only lines,
and not polygons or loose points. Point-cloud based curve skeletons should ideally have zero
local thickness in any direction orthogonal to the largest eigenvector of the covariance matrix
of point neighborhoods.

Centered: This is the hardest criterion to quantify, since it is not uniquely defined when a
curve is centered within a 3D shape. However, several weak forms of curve-skeleton centeredness
exist: The curve skeleton should be a subset of the surface skeleton (since the latter is by defi-
nition centered within the shape); and in no case should the curve-skeleton exit the input shape.

Smoothness: As centeredness, smoothness is also hard to formally define. Surface skeleton
manifolds are known to be at least C2 continuous [23, 28]. Curve-skeletons are centered subsets
thereof [30, 32]. Hence, it is arguable that curve skeletons should be also piecewise, i.e. per
branch, C2. In any case, curve skeletons should not exhibit curvature discontinuities induced by
the sampling of either the input surface or curve skeleton representation.

Detail preserving: Curve skeletons should be able to capture fine-scale details, such as bumps,
of the input shape, in a user-controlled manner. In other words, the user should be able to select
the scale of input shape details which the curve skeleton should capture (being significant) and
the scale of details to ignore (being regarded as noise).

Sampling robustness: Given two different samplings of an input shape (e.g. two different
level-of-detail meshes), the difference between the two corresponding curve skeletons should be
proportional with the difference of the two input meshes. In other words, small input-sampling
differences should not cause large differences in the curve skeleton.

4 Comparison

Given our core question on how curve-skeletonization methods perform, we compared six such
methods (further denoted in the paper by the abbreviations listed below):

Au et al. (AU) [2]: We included this method as it is arguably the best-known mesh-based
skeletonization technique in existence [13, 30, 15].
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Tagliasacchi et al. (ROSA) [31]: We chose this method given its advocated noise-resistance
and since it works on point clouds, which is a different type of input than the other methods.

Cao et al. (CAO) [6]: We chose this method since it uses a contraction similar to [2], but
works on point clouds, like [31].

Telea and Jalba (TJ) [32]: In contrast to all other curve-skeletonization methods, this tech-
nique contracts the surface skeleton, rather than the input mesh, to compute the curve skeleton.
It produces a point cloud rather than a polyline curve-skeleton. For comparison fairness, we
postprocessed the produced point cloud using the polyline reconstruction proposed in [2].

We also developed and tested two extensions of [2], as follows.

Au et al. improved (AUI): A well-known limitation of Au et al. is its skeleton re-centering
step [30]. As the input mesh is contracted, it can go off-center due to numerical and discretization
inaccuracies of the Laplacian smoothing. To address this issue, we proceed as follows. During
the Laplacian contraction and edge-collapse steps of the method, we maintain a backwards,
skeleton-node-to-mesh-vertex mapping Π : S → ∂Ω, which can be used to identify those mesh
vertices v ∈ ∂Ω that ’collapsed’ into a given skeleton node s ∈ S(Ω). The re-centering step uses
Π to compute the final position of each node s as a weighted average of the vertices in Π(s),
with weights given by the areas of the input-mesh triangles with vertices in Π(s).

Au et al. using surface skeletons (AUS): The improved re-centering outlined above cannot
fully correct errors accumulated during the iterative contraction. To further reduce these, we
start the Laplacian contraction from the surface skeleton, which is closer to the final target
(curve skeleton) than the input mesh, along the idea proposed in [32].

Global considerations: In our method choice, we focused on recent contraction-based tech-
niques, not studied in the survey of Cornea et al. [8], proven by their authors on complex
shapes, and which use different curve-skeleton detection principles. All studied methods satisfy
the invariance criterion by construction, since they work in 3D vector space. All methods also
directly satisfy the thinness criterion, since they model the curve-skeleton as a polyline. We
used the original implementations provided by their authors, all running on a Windows PC
with 4 GB RAM. Since not all studied methods claim computational efficiency, we excluded
timings from the comparison.

Comparison material: For comparison, we used a set of 21 3D shapes which are frequently
encountered in the curve-skeleton literature (for details, see [35]). Figures 1, 2, 3 and 4 and
show relevant samples from this set, within space limitations. The models have between 20K
and 300K vertices. We used MeshLab [34] to clean mesh models for normal orientation consis-
tency, T-vertices, and duplicate vertices. To factor our parameter settings, we ran each method
for uniformly-sampled values of all its documented parameters, and retained in our final com-
parisons the best results with respect to the quality criteria mentioned in Sec. 3.

4.1 Overview

Figure 1 shows an overview of several curve skeletons extracted by the compared methods. Even
at this level, we quickly notice that not all skeletons are equally well centered, equally smooth,
and have the same number of terminal (detail) branches. We next zoom-in on each criterion
and discuss our findings with respect to the studied methods.

4.2 Homotopy

For relatively simple shapes of genus 0 or higher, all studied methods behaved equally well, i.e.
produced curve skeletons homotopic with the input shape (Fig. 1). This is due to the fact that
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Au et al.

Cao et al.

Tagliasacchi 

et al.

Telea and Jalba

Au et al.

(improved)

Au et al.

(surf. skeleton)

bird: 46K points,

93K faces

fertility: 25K points,

50K faces

horse: 193K points,

387K faces

neptune: 28K points,

56K faces

Fig. 1. Overview comparison of skeletonization methods.

all these methods start by contracting the input shape and change only the geometry, but not
the topology, of this shape during the iterative contraction process. Still, detail differences exist
between these methods. Skeleton junctions are not always identical, so the produced skeleton
graph is different, see e.g. the marked limbs-to-body junctions of the bird model in Fig. 2 (left)
and the horse model in Fig. 3 (right). Differences get larger for small-scale details, where curve
skeleton terminal branches enter saliencies of the input shape, see e.g. Fig. 3 (neptune, frog).
An extreme case happens when the input mesh has self-intersections, e.g. Fig. 2 (frog). Here,
CAO and ROSA create curve skeletons whose topology is far from the input shape (fake loops
and branches).
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4.3 Centeredness

The methods AU, AUI, and AUS produce similar, well centered, results. Among these, AUS
is the best: Since contraction starts from the surface skeleton, nodes go less off-center, as the
surface skeleton is already centered by definition and closer to the curve skeleton than the input
mesh. For mesh-based methods, TJ produced the best centering. This is due to the fact that
TJ contracts the surface skeleton along the gradient field of its 2D distance transform, which
is by definition tangent to the surface skeleton itself, so the curve skeleton stays inside the
surface skeleton by construction. In contrast, AU, AUI, and AUS contract in the direction of
the shrunken surface’s normals. These are delicate to estimate as the shape shrinks and develops
singularities (creases). The different re-centering steps performed by these methods alleviate,
but cannot fully correct, these problems.

ROSA’s results are quite poorly centered in several areas. As mentioned in [31], orientation
information is unreliable around junctions, where the input shape has many points with diverse
orientations. To overcome this, ROSA treats junctions specially. This works well for junctions
whose branches correspond to tubular shape parts of similar size. However, we discovered that
junctions where shape parts of very different sizes and shapes meet create problems, see e.g.
Fig. 2 for the bird model (wings joining rump) and neptune (arm-torso junction).

Input models

Au et al.

Cao et al.

Tagliasacchi 

et al.

Telea and Jalba

Au et al.

(improved)

Au et al.

(surf. skeleton)

bird: 46K points, 93K faces frog: 37K points, 74K faces neptune: 28K points, 56K faces

Fig. 2. Centeredness comparison. Details show areas marked by red insets.
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The frog model (Fig. 2) reveals two other challenges. First, the model has several very sharp
bends around the leg joint. Secondly, in the same area, the mesh has several self-intersections.
Meshless methods (CAO, ROSA) generate seriously erroneous skeletons here, and even skeleton
disconnections. In these areas, TJ still creates a smooth skeleton, but cannot handle centeredness
perfectly. This is due to the fact that the surface skeleton it starts from has errors in self-
intersecting areas, since the technique used to compute it [15] cannot handle self-intersecting
surfaces. In contrast, AU, AUI, and AUS generate very similar, relatively well-centered, skeletons
in these challenging areas.

The neptune model (Fig. 2) highlights the situation where a relatively thin object part (arm)
joins a thick one (torso). In such areas, curve (and surface) skeletons exhibit so-called ligature
branches which connect the skeleton branches of the two parts [23]. If the two parts form an
angle different from 90◦, like in our case, the ligature branch has to rapidly turn [28]. This turn
is best captured by AU. In contrast, all other methods emphasize smoothness too much, which
results in clearly off-centered skeletons close to the armpit.

4.4 Detail preservation

Detail preservation refers to the generation of separate curve-skeleton terminal branches for
all input shape bumps, or salient convexities, at a user-specified scale. Detail preservation is
important for applications such as shape matching, retrieval, and reconstruction [8, 25]. Large
details, such as the limbs of shapes in Fig. 1, are well captured by skeleton branches by all
studied methods. For smaller-scale details, the situation is different, see Fig. 3 left. The problem
is that all studied methods include explicit actions to smooth the computed skeletons. Although
desirable (see next Sec. 4.5), such smoothing will remove some small-scale branches.

AU and AUI preserve small-scale, detail, branches best. In contrast, AUS and TJ find detail
branches of long protrusions (e.g. Fig. 3, neptune and frog fingers) quite well, but fail to find
branches for shallower bumps, such as gargoyle’s wing-tips. Upon closer analysis, we found that
this is caused by the fact that the surface skeletons that both AUS and TJ start from, fail to
capture such details. Hence, these details cannot appear further in the curve skeleton.

CAO and ROSA perform the worst for this criterium. These methods fail finding most
detail skeleton branches found by the other studied methods. Moreover, when found, small-
scale terminal skeleton branches seem to be arbitrary, as Fig. 3 shows for all three models on
the left.

Small-scale noise is ignored equally well by all methods. For all the studies mesh-based
methods, this is an effect to their built-in smoothing, which appears to work well at small scale.

4.5 Smoothness

As outlined earlier, curve-skeleton branches should be at least C2 continuous curves (Sec. 3).
Hence, skeletonization methods should follow this property as well as possible. Voxel methods
are inherently constrained here by the sampling resolution. In contrast, mesh-based methods
which model the curve skeleton as a polyline should distribute the computed skeletal points,
or sample the skeleton, to optimally approximate the desired smooth curve. Hence, for these
methods, the issue of skeleton smoothness is implicitly connected to the skeletal curve sampling.

Contraction-based methods, as the ones we studied, have an additional challenge here. As
the input mesh is contracted, the local point density naturally increases in convex areas and
decreases in concave ones. This potentially leaves too few nodes to approximate well the curve
skeleton in concave areas. Ligature branches are an extreme case hereof. An example are the
ligature branches that connect the horse’s leg-skeletons to its rump-skeleton (Fig. 3 right). Here,
CAO, ROSA, and up to some extent AU, clearly show a lower point density – see branches
meeting at the marked junctions. This in turn creates spurious kinks in the rump’s curve
skeleton. In contrast, AUS, AUI, and TJ create smoother skeletons. The skeletons of TJ and
AUS follow the rump’s curvature best. This is explained by the fact that their contraction is
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Fig. 3. Comparison for detail preservation comparison (left) and skeleton smoothness (right).

constrained to stay on the surface skeleton, whose shape already captures the input shape’s
curvature. AU and AUI both fail capturing the rump’s curvature, since they have no such
constraint. The same non-uniform skeletal point distribution is also observed for the fertility
model (Fig. 3 right). Here, again, AUS and AUI yield the most uniform point distribution, and
ROSA and AU the least uniform one (which leads to unnatural kinks).

4.6 Sampling robustness

Sampling robustness refers to the relation between the resolution of the input shape and changes
in its curve skeleton. Ideally, we would like that when the former changes slightly, the curve
skeleton also changes only slightly. This property is closely related to the concept of regulariza-
tion, which states that small changes in the input shape Ω should only yield small changes in
its skeleton [33, 25, 15].

To study this, we produced three versions of the dragon model (see Fig. 4), using the
Yams mesh resampling tool [11]. Next, we ran the studied skeletonization methods on these
datasets, and analyzed the results. In the comparison, we had to exclude CAO and ROSA,
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as the provided implementations of these methods were too slow to complete, even in several
hours, for the largest-resolution meshes.

Au et al.

Telea and Jalba

Au et al. (improved)

Au et al. (surf. skeleton)

small: 14K points, 25K faces medium: 58K points, 115K faces large: 231K points, 463K faces

Fig. 4. Sampling robustness comparison.

The method AU is quite sensitive to the mesh sampling. Looking at Fig. 4, we see that, in
the dragon head area, the small and large resolution models produce relatively similar skeletons,
but the medium-resolution model yields a very different skeleton topology. Given that higher
resolution can only potentially add extra details, but not remove existing ones, we expect to get
an increasingly rich curve skeleton (in terms of terminal branches), but the core structure of
this skeleton should not change significantly. This is not the case, which hints to an important
instability of the method with respect to mesh resolution.

In contrast, AUS and AUI show a much stabler curve skeleton with respect to mesh res-
olution. Although these methods do not produce identical skeletons for the same resolution,
the changes of their respective skeletons as the resolution changes, are quite small. Both meth-
ods find more terminal skeleton branches as the resolution increases, which is expected since
higher-resolution models capture more surface details.

The TJ method is the most sensitive to sampling. For the low-resolution model, the method
simply fails to extract many significant branches. Although more branches are found for the
high resolution model, many significant surface details, like the upper spikes on the back and
tail, fail to generate branches. This can be directly traced to the quality of the surface skeleton:
The underlying method used to compute it [18] produces as many skeleton points as surface
points. To accurately capture the surface skeletal structure, very densely-sampled models are re-
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quired [15]. Less densely sampled surface skeletons will in turn create a noisy distance-transform
gradient, which will contract the skeleton mesh in the wrong directions.

5 Discussion

Contrary to our initial belief, based on the studied contraction-based skeletonization literature,
all contraction methods studied here appeared to be much more sensitive in terms of all studied
quality criteria (except homotopy) than implied by the examples in the literature. The CAO
and ROSA methods performed significantly under expectations. The AU method performed
relatively well for smooth shapes, but showed limitations for centeredness and smoothness for
more complex shapes. This is the main reason for us having designed the two improved variants
AUI and AUS. The trade-off between these variants is as follows: While AUS yields smoother
skeletons, AUI delivers a better centeredness. The TJ method dominates all others in terms
of smoothness, but has clear centeredness problems in ligature areas, and requires a very high
input mesh sampling to generate even moderately-detail skeleton branches, due to its usage of
the surface skeleton.

A key question is whether voxel-based skeletonization methods can overcome the above
limitations. Although answering this deserves a separate study, we outline below several obser-
vations in this respect:

Homotopy: Voxel-based skeletonization methods are not, by definition, homotopy preserving.
For example, Reniers et al. can occasionally create small disconnected components [25]. How-
ever, thinning methods can enforce homotopy relatively easily [22, 1].

Invariance: Like for homotopy, voxel methods are not invariant under isometric transforma-
tions by construction, as mesh-based methods are. Using truly Euclidean distance transforms
helps invariance [14], but does not guarantee it [28].

Thinness: For voxel methods, this criterion translates to creating one-voxel-thin skeletal man-
ifolds and curve skeletons. Thinning methods are best suited to enforce thinness [22, 1], whereas
general-field methods cannot guarantee it [14, 25]. Applying a thinning postprocessing step (in
line with the former methods) to general-field methods appears to be the optimal combination.

Centeredness: Just as thinness, centeredness for voxel methods is limited by sampling reso-
lution. Using an Euclidean distance transform to drive thinning [1] or, alternatively, to find the
skeleton by directly applying Eqn. 2[10, 25], guarantees thinness under this sampling limitation.
In contrast, all contraction methods studied here do not use a volumetric distance transform.
Hence, their centeredness is subject to accumulated errors during the iterative contraction pro-
cess, which arguably makes them less accurate than voxel methods.

Detail preservation: This requirement is not fundamentally linked to the type of object
discretization (mesh or voxel-based). Using a global importance metric can guarantee detail
preservation for both mesh [15], voxel [25], or hybrid [10] representations.

Smoothness: Voxel models can be preferable to mesh contraction models here. Indeed, while
the former typically treat each skeleton voxel separately, the latter enforce local constraints on
the surface and curve skeletons. This forces mesh-based skeletons to be either smooth (but not
well centered), or well centered (but not smooth).

An additional desirable property of skeletons is reconstructability, i.e., the ability to re-
construct the input shape from its skeleton. Surface skeletons should obey this property, by
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definition, as the medial axis transform (MAT) is a dual of the input shape [28]. Curve skele-
tons can obey this property only partially. Although reconstructability is sometimes studied as
a separate property [8, 1], it can be traced directly to a combination of centeredness and detail
preservation.

The main challenge we find for voxel methods is, however, scalability: Voxelizing complex
meshes to resolutions over 10003 voxels, and further processing such volumes to extract curve
or surface skeletons, is much slower, and more memory demanding, than using mesh-based
methods. For instance, a highly optimized parallel implementation of [25] processes the 7003

dragon model (Fig. 4) in around 15 minutes; the equivalent mesh model (463K faces) is processed
in under a minute by all studied mesh-based methods. Moreover, the memory consumption of
voxel methods is at least an order of magnitude larger than for mesh-based methods. If efficient
data representation and GPU parallelization schemes were designed to reduce this overhead,
voxel-based methods may in the end be a very strong competitor to mesh-based methods.

6 Conclusions

In this paper, we have presented a qualitative comparison of six contraction-based curve-
skeletonization methods that use a mesh representation of the input shape to be skeletonized.
The methods were compared from the perspective of several accepted quality criteria: homo-
topy, thinness, centeredness, detail preservation, smoothness, and robustness to sampling. In
contrast to recent insights from the mesh skeletonization literature, the studied mesh-based
methods appeared to perform less optimal than expected.

Although our comparison is far from exhaustive, it raises a number of important points
about the current state of mesh-based curve skeletonization techniques. First and foremost,
the question is raised whether such methods can outclass earlier voxel-based skeletonization
methods (if we ignore computational resources). A more critical more critical quantitative and
qualitative evaluation of such algorithms against each other and also against voxel-based skele-
tonization methods is needed to answer this question. Finally, we believe that our comparison
will generate increased attention towards the development of efficient algorithms that exploit
the desirable properties of voxel-based skeletonization techniques.
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