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Abstract. We present a new method for part-based segmentation of
voxel shapes that uses medial surfaces to define a segmenting cut at
each medial voxel. The cut has several desirable properties – smooth-
ness, tightness, and orientation with respect to the shape’s local symme-
try axis, making it a good segmentation tool. We next analyze the space
of all cuts created for a given shape and detect cuts which are good
segment borders. Our method is robust to noise, pose invariant, inde-
pendent on the shape geometry and genus, and is simple to implement.
We demonstrate our method on a wide selection of 3D shapes.
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1 Introduction

Shape segmentation aims to decompose a 3D shape into a set of parts that
obey certain application-related properties, and is used in many contexts such
as image analysis, registration, and 3D modeling [27]. Patch-based segmentation
detects quasi-flat segments whose borders follow local curvature maxima on the
shape surface, and is most used for faceted shapes [24]. Part-based segmentation
follows a semantics-oriented approach, aiming to find shape parts that one would
intuitively perceive as being logically distinct, and is used for natural shapes [22].

For a shape Ω ⊂ R3, part-based segmentations (PBS) using partitioning cuts
create a set of cuts c ⊂ ∂Ω that divide the shape boundary ∂Ω into disjoint parts.
Desirable PBS properties, e.g. smoothness, orientation, tightness, and position
of cuts that create segments, can be stated in terms of the cut-set B = {c}.
Finding a good segmentation is thus mapped to finding a cut-set B having such
properties, a hard problem due to the high dimensionality of the cut space.

We present a new way to produce PBS of 3D voxel shapes by skeleton cuts.
First, we construct, at any shape point, a cut that is locally and globally smooth,
tightly wraps around the surface, is self-intersection free, and is locally orthog-
onal to the shape’s local symmetry axis. For this, we use the shape’s medial
surface. Next, we construct the cut-space S ⊂ ∂Ω that contains all such cuts for
a given shape. We extract the cut-set B ⊂ S yielding our PBS by analyzing the
global distribution of cut properties over S. We demonstrate our method on a
variety of 3D shapes and compare our results with eight existing PBS methods.
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Section 2 reviews related work. Section 3 presents our method. Section 4
illustrates our method on a wide variety of 3D shapes and also compares it with
related methods. Section 5 discusses our method. Section 6 concludes the paper.

2 Related Work

Two main shape segmentation types exist [1, 4, 28]: Patch-based methods seg-
ment a shape’s surface into quasi-flat patches bounded by sharp surface creases,
and are suitable for synthetic shapes. Part-based segmentation (PBS), our focus,
partitions a shape’s surface into its logical components, useful for shapes consist-
ing of articulated parts, like human bodies, plants, and other natural structures.

Most PBS methods define segments along what a human would see as logi-
cal shape parts, in two steps: (a) find where to cut the shape to isolate a part;
and (b) find how to build a cut, once its location is set. These steps are ad-
dressed in different ways. As the topology of the shape skeleton or medial axis
matches the part-whole shape structure [31], many methods use medial axes to
place cuts. Au et al. use curve skeletons [5], where each skeleton branch maps to
a part. Cuts are created by optimizing for cut concavity and length via mini-
mal cuts [12]. Golovinskiy et al. create a large randomized cut-set and find part
borders as the cuts on which most surface edges lie [10]. Shapira et al. note
that skeletonization and segmentation are complementary, and segment a shape
by computing a scalar shape-diameter function (SDF) on its surface, finding
segments by clustering shape faces with similar SDF values [29]. Tierny et al.
segment shapes hierarchically by topological and geometrical analysis of their
structure using Reeb graphs, which are similar to curve skeletons [33]. Chang et
al. segment shapes by computing their medial surfaces, separating their differ-
ent manifolds, and back projecting each manifold on the shape surface to yield
a segment [6]. Dey and Sun extract curve skeletons as the maxima of the so-
called medial geodesic function (MGF) which encodes the length of the shortest
path between feature points of each point in the shape [8]. They next segment
tubular parts as those which minimize the eccentricity of such paths. Reniers et
al. construct a part for each branch of the shape’s curve skeleton [22]. Part bor-
ders correspond to curve-skeleton junction points, and are created by the same
shortest paths as in [8]. Such paths are piecewise smooth and locally orthogonal
to the curve skeleton, and thus are good PBS borders. Creating a part for each
curve-skeleton branch is however delicate, as curve skeletons can contain many
spurious junctions which change widely when the shape is slightly perturbed.
Reniers et al. alleviate this by heuristics that shift cut-points along the curve
skeleton to optimize for cut stability and planarity [23]. Yet, this method cannot
segment shapes having large geometric, but little topological, variability. For
example, consider a pawn chess piece: Its curve skeleton has no junction points,
so, [23] cannot separate the pawn’s head, body, and base, although these have
different thicknesses.

Summarizing, the two elements of a good PBS (where to cut, and how to cut)
are targeted in complement by different methods: Skeleton-based methods con-
struct good partitioning cuts efficiently, e.g. by shortest-paths [8, 23]. Yet, curve
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skeletons do not encode enough of the shape geometry. Global search methods
that analyze a wide set of shape cuts offer good ways to select where to parti-
tion [10, 29]. Yet, they do not offer explicit constraints for the cut shapes, and
exhaustive cut-space search is expensive. Our method combines the advantages
of the two above classes of methods, while minimizing their limitations.

3 Method

Our method has a simple intuition: Say that we want to cut the shape in Fig. 1 a
at, or close to, points A . . . E. Which properties should the ensuing cuts have,
apart from their location (to be discussed separately next), to yield a ‘natural’
PBS? In other words: How would a human draw such cuts? Figure 1 a shows
five undesirable cuts: A is noisy, although it crosses a perfectly smooth surface
zone; B is self-intersecting; C and D are too loose (long); and E is unnaturally
slanted – a human asked to cut the shape at that point would arguably do it so
across the finger’s symmetry axis. Figure 1 b shows five cuts for the same points,
computed with the method in this paper. We argue that these cuts are more
suitable for PBS than those in Fig. 1 a, as they are (1) tight, (2) locally smooth,
(3) self-intersection free, (4) and locally orthogonal to the shape’s symmetry
axis. An additional property that cuts should satisfy is (5) being closed curves,
so that they divide the shape’s surface into different parts. We construct such
cuts as follows: First, we compute a simplified medial surface of the input shape
(Sec. 3.1). For each medial point, we next construct a cut having the above
properties (Sec. 3.2). This answers the question “how to cut”. By analyzing the
resulting cut-space, we next select a small cut-set that gives us the borders of
salient shape-parts (Sec. 3.3). This answers the question “where to cut”.

A

B

C

D

E

a) b)

low

importance

high

importance

c)

Fig. 1. Possible cuts for part-based segmentation. Suboptimal cuts (a). Cuts created
by our method (b). Medial surface colored by its importance metric (c).

3.1 Skeletonization

The Euclidean distance transform DT∂Ω : Ω → R+ of a shape Ω ⊂ Z3 with
boundary ∂Ω is

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖. (1)

The medial surface, or surface skeleton, of ∂Ω is defined as

S∂Ω = {x ∈ Ω|∃{f1, f2} ⊂ ∂Ω, f1 6= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (2)
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where f1 and f2 are the contact points with ∂Ω of the maximally inscribed ball
in Ω centered at x [9, 25], also called feature points [26, 31]. These define the
feature transform FT∂Ω : Ω → P(∂Ω)

FT∂Ω(x ∈ Ω) = argmin
y∈∂Ω

‖x− y‖. (3)

Medial surfaces are sensitive to small-scale noise on the input shape, especially
when using voxel-based models. To alleviate this, medial surfaces can be regu-
larized by a metric ρ : S∂Ω → R+ which marks important medial points by high
values, and medial points capturing shape details by low values respectively.
One such metric is the medial geodesic function (MGF) which sets ρ(x) to the
length of the shortest path on ∂Ω between the two feature points of x [8]. As the
MGF monotonically increases from the medial surface boundary to its center,
upper thresholding it yields connected and noise-free simplified medial surfaces
(though tunnel preservation requires additional work),[25]. Figure 1 c shows a
regularized medial surface using the method in [25].

3.2 Cut model

The first step of our PBS is to compute a rich set of cuts, or cut space S, which
could all be segment borders, i.e. satisfy properties (1-5) listed at the beginning
of Sec. 3. To build a cut c ∈ S, consider a point x ∈ S∂Ω . By definition, x has at
least two feature points f1 and f2 on ∂Ω (Eqn. 2). Consider, for now, that there
are precisely two such points. We first trace the shortest path γ1 ⊂ ∂Ω between
f1 and f2 (Fig. 2 a). The length of γ1 is precisely the MGF value for x (Sec. 3.1).
Secondly, we find the midpoint m of γ1, i.e. the voxel of γ1 located furthest in
arc-length distance from both f1 and f2. We then trace a ray passing through x
and oriented in the direction x−m, and find the point o where this ray ‘exits’
Ω (Fig. 2 b). Intuitively, o is a point on the ‘other side’ of S∂Ω as opposed to m.
Finally, we construct the two shortest paths on ∂Ω connecting (f1,o) and (f2,o)
respectively (Fig. 2 c,d). Our final cut c for point x is given by γ1 ∪ γ2 ∪ γ3.

While c is piecewise geodesic (so locally smooth), it can be non-smooth at the
three endpoints f1, f2 and o of γi. Also, our construction does not make c as tight
as possible globally. To fix both issues, we perform 5 iterations of a constrained
Laplacian smoothing pass over c, with a kernel size of 10 voxels. We prevent c
leaving the surface, by reprojecting its voxels to their closest points on ∂Ω after
each iteration. This smooths out possible ‘kinks’ at f1, f2 and o, thus making c
globally smooth and tight. If such kinks are very small or inexistent, smoothing
has no effect, as c is globally geodesic. In that case, Laplacian smoothing shifts c’s
points along the surface normal, since c’s acceleration c′′ is normal to the surface,
so reprojection moves the smoothed points back to their original location.

Cut properties: Our cuts meet the desired properties we require for PBS:

1. tight: Cut parts γi are piecewise-geodesic, thus shortest curves on ∂Ω. Also,
the constrained Laplacian smoothing shortens potential kinks present at the
geodesic endpoints, thus making the entire c wrap tightly around the shape;
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a) construction of γ1
b) ray tracing

c) construction of γ2 d) construction of γ3

e) cut subsets Si
f) subset borders Bi g) final segmentation
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Fig. 2. Cut construction (a-d) and cut-space analysis (e-g) for part-based segmentation.

2. smooth: Guaranteed by the same properties as for tightness – piecewise
geodesicness and constrained Laplacian smoothing;

3. self-intersection free: c is a geodesic triangle (three geodesics linking three
different points on ∂Ω) whose edges do not intersect except at endpoints;

4. locally orthogonal to the symmetry axis: The cut c(x) surrounds the medial
surface S∂Ω around point x, by construction. Hence, it also surrounds the so-
called curve skeleton of ∂Ω, which is a 1D structure locally centered within
S∂Ω with respect to its boundary ∂S∂Ω . While we do not have a formal proof
of local orthogonality, we observed in practice that our construction always
creates cuts that are visually orthogonal to the curve skeleton;

5. closed: The cut c is a closed (Jordan) curve by construction.

Implementation: To build γ1, we need two feature points f1 and f2. Two
issues exist here: (1) Computing the feature transform FT (x) on digital shapes
cannot be done via Eqn. 3, given the finite voxel grid resolution [21, 25]. To fix
this, we compute the so-called extended feature transform EFT (x) which finds
all closest-points on ∂Ω to all 26 neighbors of x, and which is a superset of
FT (x) [25]. From this superset, we select exactly two feature points that best
represent the symmetric embedding of S∂Ω in Ω. For this, we select the two

feature points {f1, f2} ⊂ EFT (x) that maximize the angle f̂1xf2. We trace the
ray used to find o by Bresenham’s 3D line-tracing algorithm on the voxel shape.
We compute geodesics by Dijkstra’s shortest-path algorithm on the connectivity
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graph of voxels of ∂Ω, using A∗ heuristics to speed the search, and using edge
weights that approximate neighbor-voxel distances by Eppstein’s scheme [13] for
better path-length accuracy. Finally, we reproject Laplacian-smoothed points on
the shape surface by using the fast ANN library for finding nearest-neighbors [19].

f1

o new point o v

a) wrong (non-wrapping) cut b) refinement of point o c) refined (wrapping) cut

f2 f1 f2

Fig. 3. Refinement of cut construction.

In a very few cases, point o found as above does not lie on the opposite side
of the medial surface with respect to point m, so the resulting cut will not wrap
around the medial surface (Fig. 3 a). When this happens, we trace a ray in the
direction f1 − f2 from the midpoint v of the current ray, and set o to the voxel
where this new ray exits Ω (Fig. 3 b). If the new point o still does not yield
the desired wrapping cut, we repeat the above refinement (Fig. 3 c). We verified
that this refinement produces cuts wrapping around the medial surface for all
our test shapes within 3 up to 4 refinement steps.

3.3 Cut space analysis

We can create a cut c(x) for any voxel x of a shape’s medial surface S∂Ω , which
has good properties for PBS. Intuitively, c(x) is a good way to cut the shape at
point x, if we want a cut there. We now must decide where we want to cut to get
a PBS with desired global properties. Let S = {c(x)|x ∈ S∂Ω} be the space of
all cuts created from S∂Ω . Given our cut properties, cuts on the same shape-part
share similar properties e.g. orientation and length. Cuts for different parts have
different properties. Consider our hand model: Finger cuts are short; wrist cuts
have average length; and palm cuts are longest. For a shape consisting of a rump
and protruding parts, cuts for parts are shorter than cuts for the rump.

We use these insights to partition S in several subsets Si so that ∪iSi = S
and Si ∪ Sj 6=i = ∅. For this, we compute the histogram of cut lengths over S.
Histogram peaks show large similar-length cuts. If we partition the histogram
by placing thresholds in the valleys between peaks, we get our desired subsets
Si. To find such thresholds robustly, we filter the histogram by the mean shift
method [7]. This ‘sharpens’ the cut-distribution and separates peaks from valleys
more clearly. We define a peak as a histogram value exceeding λ times the cut
count ‖S‖, and a valley as a value less than µ = λ/3. Setting λ = 0.01 gave good
results for all shapes in this paper. Figure 4 shows the cut-length histogram for
the hand model. Its three main peaks describe cuts on the fingers, wrist, and
palm; the two valleys give the two thresholds needed to separate fingers from
the palm and the palm from the wrist.

Subsets Si do not (yet) coincide with our desired segments. Indeed, an Si
can contain logically disjoint cuts of similar lengths – e.g. all cuts on the fingers
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Fig. 4. Cut-length histogram for hand model (Sec. 3.3).

(blue in Fig. 2 e) are in the same subset. Also, S does not fully cover ∂Ω, since
we compute it from the simplified medial surface. This is shown by the gaps
between cuts in Fig. 2 d. To fix this, we first define a cut c(x) as being a border
Bi of subset Si if c(x) belongs to a different subset than any of the cuts c(y),
where y are the 26-neighbors of x on S∂Ω . Using this definition, we find the
set of cuts {Bi} that represent the borders of our final segments (Fig. 2 f). Note
that, if a cut is marked as border, at least one of its neighbor cuts will be
in a different cut subset, by definition. Hence, that neighbor cut will also be a
border, so more than one border will be produced from a 32 voxel neighborhood.
To remove such duplicates, we keep, for each such neighborhood, the shortest
border. We compute our final segments by finding the connected components of
∂Ω separated by borders, via a simple flood-fill algorithm on ∂Ω (Fig. 2 g).

4 Results and Comparison

We have tested our method on several shapes provided as 3D polygon meshes,
voxelized by binvox [20] at resolutions up to 4003 voxels. Figure 5 compares our
results with [23], the best medial-descriptor voxel PBS method we know. We get
very similar results, but find more fine-grained segments than [23] – see finger and
ear details of the animal models, pig tail, dragon spikes, and microscope lens.
Segment borders are smooth and locally orthogonal to the shape’s symmetry
axis, i.e., similar to how a human would cut the shape at the respective places.
Our method finds segments of various sizes, ranging from details (dragon’s tail,
hound’s ears), to large parts (limbs of various models). Figure 6 a-k compares
our method with eight PBS methods on two shapes [3, 14–17, 22, 23, 33]. Here,
Reniers et al. (1) denotes [22], and Reniers et al. (2) denotes [23]. These methods
span from voxel-based to mesh-based, and use various segmentation heuristics
(skeleton, curvature, salience, and topology-based). We argue that our method
creates equally or, in some cases, more plausible PBSs. Since both our method
and [23] use medial descriptors, computed by the same underlying method [25],
a relevant question is how the two methods differ. We use (a) medial surfaces,
while [23] uses curve skeletons; and (b) we find segment borders by analyzing all
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Our method

Reniers et al.

Our method

Reniers et al.

Our method

Reniers et al.

Fig. 5. Part-based segmentations of our method vs Reniers et al. [23] (Sec. 4).

possible cuts, while [23] places such borders around the curve-skeleton branch
junctions. Fig. 6 l-p shows five examples where the public implementation of [23]
fails to segment at all. We find two causes for this: The shape parts in Fig. 6 l
cannot be well described by curve-skeleton branches, as they are nearly rota-
tionally symmetric. As few (if any) such junctions exist, [23] fails. The shape in
Fig. 6 n is described by a mix of medial surfaces (base plate) and curve skele-
tons (tubular parts). As [23] only uses curve skeletons, data on the base plate is
incomplete or missing. For the shapes in Fig. 6 m-p, the many heuristics in [23]
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to select cuts centered on the curve-skeleton fail, as they imply that such cuts
should be nearly planar. This does not happen for the above shapes.

We can also produce a multiscale PBS: For this, we simply change the values
of λ and µ used to partition the cut space via its length histogram (Sec. 3.3).
High λ values and low µ values yield fewer and more differentiated segments
(in terms of local thickness); closer values of lambda and µ yield a finer-grained
segmentation. Figure 6 r shows three such scales for the armadillo shape.

Our method is pose invariant, as illustrated in Fig. 6 s. Indeed, our cut space
histogram captures local shape thickness, which does not depend on pose.

We coded our method in C++ and ran it on an 8-core 3.5 GHz 32 GB RAM
Linux PC. Table 1 shows the time for computing cuts (tcuts), medial surface
(tskel), cut-space analysis (tspace), total time for our method (ttotal), and total
time for [23] (tReniers). Empty cells in tReniers show shapes where [23] failed.
As cuts are computed independently, we parallelized our implementation using
pthreads. Compared to a serial implementation, this is roughly 7 times faster,
close to the optimal value of 8 implied by our hardware. Compared to [23], on
the same hardware, we are slightly faster in most cases. More importantly, we
could successfully segment all tested shapes, unlike [23].

a) Liu and Zhang b) Lien et al. c) Attene et al. d) Tierny et al. e) Reniers et al. (2) f) Our method

g) Li et al. h) Lee et al. i) Reniers et al. (1) j) Reniers et al. (2) k) Our method 

l) screwdriver m) heptoroid n) engine part o) neptune p) lion

r) multiscale segmentation, three different scales, armadillo model s) pose-invariant segmentation

Fig. 6. Comparison of our method with eight PBS methods (a-k). Our results for shapes
where Reniers et al. fails (l-p). Multiscale (r) and pose-invariant (s) segmentations.
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Shapes cuts ‖S‖ voxels ‖Ω‖ voxel volume tcuts tskel tpart ttotal tReniers

Dragon 2789 283238 400*400*400 50.8 1.90 0.03 52.73 40.26
Hound 1530 245759 300*300*300 23.24 1.51 0.01 24.76 25.1
Hyptoroid 4873 651478 400*400*400 400.5 3.36 0.04 403.90 -
Fertility 1354 199581 300*300*300 20.85 2.02 0.01 22.88 22.89
Gargoyle 488 129420 300*300*300 12.62 3.26 0.005 15.885 69.89
Microscope 1397 307863 300*300*300 44.14 1.58 0.01 45.73 198.02

Lucy 6201 1.04× 106 300*300*300 68.01 0.63 0.09 68.73 12.7
Engine part 1501 135416 300*300*300 15.55 0.27 0.01 15.83 -

Frog 41450 1.20× 107 300*300*300 808.2 2.48 2.16 812.8 36.93
Screwdriver 1372 306480 300*300*300 13.14 0.60 0.01 13.75 -
Noisydino 1375 194117 300*300*300 14.79 1.19 0.015 16.00 20.2
Cow 1009 143938 256*256*256 8.15 0.96 0.01 9.12 14.34
Neptune 1908 211723 420*185*251 34.7 1.22 0.02 35.94 -
Airplane 741 76700 300*300*300 6.00 0.28 0.08 6.37 -
Bird 476 45638 300*300*300 2.28 0.18 0.003 2.47 7.98
Hand 584 58071 200*84*140 2.15 0.22 0.004 2.37 -
Lion 2181 381968 300*300*300 23.16 1.08 0.02 24.27 -
Horse 884 109555 142*300*251 9.58 1.24 0.008 10.83 -
Pig 959 145215 300*300*300 10.97 1.51 0.01 12.50 22.26
Dog 1241 184805 300*300*300 15.65 1.29 0.02 16.97 18.87
Hippo 838 166932 300*300*300 12.13 2.41 0.01 14.55 25.18
Rhino 1746 403399 300*300*300 25.20 2.15 0.03 27.39 -
Armadillo 2242 436933 300*229*252 47.55 2.67 0.03 50.26 -

Table 1. Shape sizes and segmentation times by our method and Reniers et al. [23].

5 Discussion

We next discuss several aspects of our proposed part-based segmentation method.
Global search: We create a PBS by finding all part-inducing cuts from the me-
dial surface, and selecting a cut-subset by globally optimizing for part-similarity
as captured by cut lengths. In contrast to purely topological PBS methods [22,
23], we search a much wider space of possible partitionings; yet, our search space
is much smaller than that of other methods which look for cuts of any possible
orientation [10], thereby achieving a good flexibility-performance balance.

Simplicity: We compute the medial surface, generate all cuts from its voxels,
and cluster these based on their length-histogram. Any medial surface skele-
tonization method can be used here, e.g. [2, 26, 30], as long as it outputs regu-
larized skeletons. This makes our method immediately applicable to mesh-based
shape representations (and their medial surfaces) [11].

Regularization: We use regularized medial surfaces (Sec. 3.1), having voxels
with large MGF importance values, which have far-apart feature points f1 and
f2. This ensures that the ray casting used to compute our cuts can robustly find
cuts that wrap around the medial surface (Sec. 3.2).

Multiscale: Multiscale PBS occurs at two levels: (1) Simplified medial surfaces
yield cuts only for important shape parts; (2) The cut histogram analysis param-
eters λ and µ select the level-of-detail where we search for cut-length differences.

Pose invariance: Our method is pose-invariant [23, 32], as shown by the model
in Fig. 6 s (which is also used in [32] to show pose invariance).

Robustness: We robustly segment noisy or detail-rich surfaces, e.g. dragon
and dino (Fig. 5) or lion (Fig. 6). Segment borders are smooth by construction
(Sec. 3.2). Since our segmentation uses a subset of these cuts, and only consid-
ers integral cut properties (length) rather than differential ones (e.g. curvature),
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noise and/or small-scale details are robustly handled.

Limitations: Our method’s cost is O(‖S∂Ω‖‖∂Ω‖log‖∂Ω‖). As our method
parallelizes easily (Sec. 4), its practical cost is similar to other skeleton-based
PBS method [22, 23] or cut-based methods [10]. For space constraints, we com-
pare with only eight related methods. More PBS methods exist, and quantitative
metrics can be further used to measure segmentation quality [18]. Yet, even with-
out such extra insights, we argue that our goal of showing that surface skeletons
have added value for PBS as opposed to curve skeletons is well defended.

6 Conclusions

We have presented a new method for part-based segmentation of 3D voxel shapes
by analyzing the entire space of potential partitioning cuts constructed by using
the shape’s medial surface. To our knowledge, our approach is the first which
uses medial surfaces for part-based segmentation, and thereby shows the added-
value of medial surfaces for segmentation, as opposed to the well-known use of
curve skeletons for the same task. We demonstrate our method on a wide variety
of 3D shapes, and compare it with eight related segmentation methods.

Our approach opens many directions. Different ways to partition the cut
space can be easily tried, e.g. bottom-up hierarchical clustering of cut similarities
based on e.g. curvature, eccentricity, and orientation. This would lead to an entire
family of PBS methods having a single simple implementation. Our cut-length
histogram could deliver an effective shape descriptor for retrieval and matching.
Finally, implementing our segmentation method for mesh-based shapes and/or
on the GPU should lead to massive scalability increases.
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