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Abstract: Operations Research is a very important discipline in many industries, and although there were many de-
velopments since its inception, to our knowledge there are no visualization tools focused on helping users
understand the decision variables’ domain space and its constraints for problems with more than two input
dimensions. In this paper, we propose OptMap, a technique that enables the visual exploration of optimization
problems using a two-dimensional dense map, regardless of the number of variables and constraints in the
problem and for any kind of single-valued objective function. We show the technique in action for several
optimization problems of different types, such as linear, nonlinear and integer, constrained and unconstrained
problems.

1 INTRODUCTION

Operations Research (OR), also called Manage-
ment Science, plays a crucial role in many indus-
tries, from logistics to finance. Although its ori-
gins as a discipline date from the 1950s, with the
development of the Simplex algorithm for Linear
Programming (Dantzig, 1990; Kantorovich, 1960),
it is a field in constant development since then.
The OR practitioner has many tools at their dis-
posal which improve their productivity, such as alge-
braic modeling languages like GAMS (Brooke et al.,
1998), AMPL (Fourer et al., 2003) and more recently,
JuMP (Dunning et al., 2017), which enable the use of
notation very close to the mathematical definition of
optimization problems. Yet, to our knowledge, there
are no well-established visualization tools that help
understand multivariate objective functions with re-
spect to the decision variables and constraints (if any)
of the problem. Such tools are important as a com-
plement to more formal tools for getting an overall
understanding of how an objective function behaves
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subject to its many parameters.
We propose a technique called OptMap, which is

an image-based visualization tool that enables the OR
practitioner to literally see the decision variables and
constraint spaces using a two-dimensional dense map,
regardless of the number of variables and constraints
in the problem. We show that OptMap can be used
in several ways, such as a debugging aid to help diag-
nose errors in the definition of constraints; as a tool to
provide insight of the optimizer’s inner workings, by
plotting the path taken from a starting point to a solu-
tion; and as a general tool to visually explore the high-
dimensional space of the decision variables in terms
of objective function value and constraint feasibility.

OptMap aims to cover the following aspects,
which, to our knowledge, are not achieved by existing
visualization techniques in the context of optimiza-
tion:
Quality (C1): We provide high-quality visualiza-
tions, that encode information at every available
screen pixel, by using a combination of dense maps,
direct, and inverse projection techniques;

Genericity (C2): We can handle many kinds of
optimization problems for single-valued objective
functions. The only requirements we impose are that



the user provides implementations of the objective
function, constraints (if any), and the range for each
variable;

Simplicity (C3): Our technique is based on existing
projection techniques which have a straightforward
implementation, allowing easy replication and de-
ployment;

Ease of use (C4): Our technique has few hyperpa-
rameters, all with given presets. In most cases, users
do not have to adjust those to obtain good results;

Scalability (C5): By using a fast projection tech-
nique and caching results when possible, our method
is fast enough to allow its use during the rapid
development-test cycle of optimization models.

We structure our paper as follows. Section 2
presents the notations used and discusses related work
on visualization for multivariate functions and op-
timization problems, Section 3 details our method.
Section 4 presents the results that support our contri-
butions outlined above. Section 5 discusses our pro-
posal. Section 6 concludes the paper.

2 BACKGROUND

Related work concerns optimization tech-
niques (Sec. 2.1 and 2.2), dimensionality reduction
(Sec. 2.3), and visualization (Sec. 2.4).

2.1 Optimization: Preliminaries

Optimization problems come in many forms with re-
spect to the kind of function to be optimized, the
type of decision variables, and the existence of con-
straints. Functions are typically grouped into linear,
convex and non-convex. Linear functions are of the
form f (x) = ax+b, which defines a hyperplane; con-
vex functions can have many forms, but can be de-
fined as those where the set of points above their
graph forms a convex set; non-convex functions are
neither linear nor convex (linear functions are also
convex). Decision variables can be continuous or dis-
crete: Problems with only discrete variables are called
Integer Programs (IP) (Guenin et al., 2014), whereas
problems with a combination of discrete and con-
tinuous variables are called Mixed Integer Programs
(MIP). Lastly, problems can be constrained or un-
constrained. Constraints can be characterized just as
functions (linear, convex, non-convex). Additionally,
we have box constraints, which are simple restrictions

on the variables’ domains. Problems with continuous
variables, linear objective functions, and linear con-
straints are called Linear Programs (LP). Other prob-
lems are solved by Nonlinear Programming (NLP)
techniques.

In any case, real-world optimization problems
typically have many variables and constraints. With-
out visual aids, the user typically has to rely on nu-
merical analysis to understand if the problem is mod-
eled correctly and if the results make sense. In our
opinion, having a visualization tool greatly expands
the possibilities of model analysis and debugging,
giving the user a quick way to check, for example,
if constraints are correctly defined, i.e., not under- or
over-constraining by mistake, or, in the case of NLP
problems, to check how stable are the optima found,
i.e., how close they are to peaks or troughs in the data.

2.2 Optimization: Technicalities

We next define a few notations for optimization prob-
lems. Let f : Rn → R be some function to be min-
imized. Let x = (x1, . . . ,xn), xi,1 ≤ i ≤ n, be an n-
dimensional vector of n decision variables xi. Deci-
sion variables can be any combination of discrete (Z)
and continuous (R). Let O be the optimization prob-
lem described as

minimize f (x)
subject to x ∈ S

(1)

where S is the feasible set of all points that can be con-
sidered as valid for the optimization problem. For un-
constrained problems, S is Rn. For constrained prob-
lems there is a set of K constraint functions ck(x) ∈
{0,1},k ∈ 1, ...,K, where 0 means that the point x is
infeasible with respect to the constraint ck. That is,
for constrained problems, the feasible set is defined
as S = {x : ∏ck(x) = 1,k ∈ 1, ...,K}.

Solvers are algorithms that find one of several (ap-
proximate) solutions to a problem O. To do this effi-
ciently, solvers use the characteristics of the problem,
such as the type of decision variables, objective func-
tion and constraints, and employ adequate heuristics
to avoid exploring all possible x ∈ S, which would be
impractical in most cases. Probably the most popular
solver algorithm is the Simplex (Dantzig, 1990; Kan-
torovich, 1960), used for linear problems and imple-
mented by software such as Clp (Forrest et al., 2020a),
Cbc (Forrest et al., 2020b) and GLPK (Makhorin,
2008). For non-linear optimization problems there are
other algorithms such as Gradient Descent, Nelder-
Mead (Nelder and Mead, 1965) and L-BFGS (Liu
and Nocedal, 1989), to name a few. Many solvers
work iteratively, i.e., start from a given point x0 and



evolve this point until sufficiently close to the solution
of O.

A solution is an n-dimensional point found by
the solver which meets the criteria of being feasible
(x ∈ S) and optimal. The definition of optimality de-
pends on the type of problem and solver used: For
linear functions with linear constraints, solvers are
guaranteed to find a global optimum solution, which
means that no other n-dimensional point provides a
lower value for the objective function f , given those
constraints. For non-linear functions, solvers may re-
turn different local optima, depending on the starting
point x0 used and the shape of the objective function.

Lastly, a solver may provide the user with a
trace, or path to solution, which is the set of all n-
dimensional points where it evaluated the objective
function, starting from x0 and ending with the solu-
tion, if one was found, else ending with the last point
evaluated by the solver.

2.3 Dimensionality Reduction

Dimensionality reduction (DR) is an area of research
concerned with representation of high-dimensional
data by a low number of dimensions, enabling dif-
ferent tasks to be performed on the data, such as vi-
sual exploration (Espadoto et al., 2019a). Probably
the best known DR method is Principal Component
Analysis (Jolliffe, 1986) (PCA), which has been used
in several areas for many decades. It is a very simple
algorithm with theoretical grounding in linear alge-
bra. PCA is commonly used as preprocessing step for
automatic DR on high-dimensional datasets prior to
selecting a more specific DR method for visual ex-
ploration (Nonato and Aupetit, 2018).

There are many families of DR methods,
such as Manifold Learners, Spring Embedders and
Stochastic Neighborhood Embedding (SNE) tech-
niques, among others. Manifold Learners such as
MDS (Torgerson, 1958), Isomap (Tenenbaum et al.,
2000), LLE (Roweis and Saul, 2000) and more re-
cently UMAP (McInnes and Healy, 2018) try to re-
produce in 2D the high-dimensional manifold on
which data is embedded, to capture nonlinear struc-
ture in the data. Spring Embedders, also called force-
directed techniques, such as LAMP (Joia et al., 2011)
and LSP (Paulovich et al., 2008), are popular in the
visualization literature and have a long history, with
uses other than dimensionality reduction, such as
graph drawing. The SNE family of methods appeared
in the 2000’s, and has t-SNE (Maaten and Hinton,
2008) as its most popular member. SNE-class meth-
ods produce visualizations with good cluster sepa-
ration. For extensive reviews of DR methods, and

their quality features we refer to (Nonato and Aupetit,
2018; Espadoto et al., 2019a).

We next describe the notation for DR used in the
paper. Let D = {xi}, 1 ≤ i ≤ N be a dataset of N
points x with n dimensions each. A dimensionality
reduction, or projection, technique is a function

P : Rn→ Rq

where q� n, and typically q= 2. The projection P(x)
of a sample x ∈ D is a point p ∈ Rq. Projecting a set
D yields thus a qD scatter plot, denoted next as P(D).
The inverse of P, denoted P−1(p), maps a point in
Rq to a high-dimensional point x ∈Rn, aiming to sat-
isfy that P−1(P(x)) = x. Methods computing inverse
projections include iLAMP (Amorim et al., 2012) and
NNInv (Espadoto et al., 2019b).

2.4 Visualization

Visualization of high-dimensional data is an active
topic for several decades, with many types of meth-
ods being proposed (Buja et al., 1996; Liu et al., 2015)
and analyzed via several quality metrics (Bertini et al.,
2011). Our scope is narrower – we are interested in vi-
sualizing multidimensional functions, and more par-
ticularly, optimization processes for such functions.

The visualization of 2D functions f : R2 → R
is usually done by means of 3D height plots, con-
tour plots, or color (heatmap) plots. For functions
f : Rn → R with more than two variables (n > 2),
there are far fewer options, with Hyperslice (van Wijk
and van Liere, 1993) being a notable one. Hyperslice
presents a multidimensional function as a matrix of
orthogonal two-dimensional slices, each showing the
restriction of f to one of the 2D subspaces in Rn, us-
ing the 2D function plotting outlined earlier (contour
plots, color plots, 3D height plots).

Visualizing constrained optimization problems is
similar to the above, since not only the function
has to be visualized but constraint feasibility as
well. Most techniques used for this are based on
overlaying contour plots with constraint information,
with one case where image-based techniques are
used (Wicklin, 2018). Still, such techniques cannot
work with more than two dimensions (n > 2).

The authors of iLAMP (Amorim et al., 2012) used
direct and inverse projection techniques applied to
non-linear optimization problems, to help users inter-
actively identify good starting points for optimization
problems. However, iLAMP is computationally ex-
pensive, and has quite a number of free parameters the
user needs to set. The NNInv method (Espadoto et al.,
2019b) accelerates inverse projections by over two or-
ders of magnitude as compared to iLAMP by deep



learning the inverse projection function P−1. The
same deep learning idea was also used to accelerate
the direct projection P by Neural Network Projections
(NNP) (Espadoto et al., 2020). Recently, NNInv was
used by an image-based (dense map) technique to vi-
sualize the decision boundaries for Machine Learning
classifiers (Rodrigues et al., 2019), for problems with
arbitrary dimension. Their method can be conceptu-
ally seen as the visualization of a function f :Rn→C,
where f is a classifier for nD data and C is a class
(label) set. We share the idea of using a dense pixel
map to visualize high-dimensional functions with this
work. However, we treat real-valued functions f
rather than classifiers; and our aim is understanding
optimization problems rather than understanding the
output of a classifier, so we treat a different problem
and use-case.

3 METHOD

We next describe the OptMap technique. Figure 1
shows a high-level diagram of OptMap, with each
step described in detail next.

Grid-like Sample

2. Create uniform sample 

DR with PCA

Phase 1: Create Mappings between Spaces

2D → nD

Phase 2: Create Visualization

1. Define variable’s domains

1. Start with 
blank image

2. Sample points in 2D 
 and inverse project

3. Train projectors

3. Color points based 
on nD projected points

Lightness

Hue

4. Draw path to solution

Evaluate

Project path

Figure 1: OptMap Pipeline.

1. Define variable ranges: the user specifies the do-
main of each variable xi for f (x1, . . . ,xn). When the
range is the entire real axis R, we suggest selecting a
reasonable finite range to avoid having a too coarse
sampling for that variable;

2. Sample data: We uniformly sample the ranges
defined above for each variable, yielding a regular
sample grid Gn ⊂ Rn. We constrain the maximum
number of sample points Nmax to avoid combinatorial
explosion. In this paper, we used Nmax = 5M for
all experiments. We evaluate f on Gn and call the
resulting dataset D.

3. Create mappings: we use PCA (Jolliffe, 1986)
trained on D to create the mappings P and P−1 from
Rn to Rq, and from Rq to Rn respectively.

4. Create a 2D grid: We create an uniform grid
G2 ⊂ R2 similar to Gn. Simply put, G2 is a pixel
image of some fixed resolution (set to 8002 for the
experiments in this paper). Next, we use the trained
P−1 to map each grid point (pixel) p ∈ G2 to a
high-dimensional point x ∈ Rn. Finally, we evaluate
the objective function f (x) and optional constraints.

5. Color pixels: We color all pixels p ∈ G2 by the
values of f (P−1(p)), using a continuous color map,
set in this paper to the Viridis color map (Hunter,
2007). Additionally, we set the luminance of p to
reflect f (P−1(p))’s membership of the constraint-set
S, thereby indicating constraint feasibility. Note that,
strictly speaking, this colormap also has a luminance
component. Hence, luminance is actually encoding
both f and the constraints. If desired, one can easily
select to use other – more (perceptually) isoluminant
colormaps. We leave the question of what the optimal
colormap is open as part of future work.

6. Draw path to solution: if the solver provides the
trace to a solution, as defined in Section 2.1, we can
draw it in the 2D grid by projecting them using P.

4 RESULTS

We next present several experiments that show
how our OptMap technique performs in different sce-
narios. First, we use OptMap to visualize high-
dimensional functions that have a known shape
(Sec. 4.1). Since we know the ground truth, we
can check how OptMap performs. Next, we test our
method on several unconstrained and constrained op-
timization problems (Secs. 4.2 and 4.3 respectively)
and show the added value OptMap provides in these
actual use cases.

4.1 Ground-Truth Functions

We use the six functions f listed in Table 1 to test
OptMap. The corresponding dense maps, computed
as explained in Sec. 3, are shown in Fig. 2. In all
cases, the domain used for all variables was xi ∈
[−5,5]. All these functions have a predictable shape
and also generalize to many dimensions. We created
dense maps using increasing numbers of dimensions
n ∈ {2,3,5,7,10,20}. The dense map for n = 2 was
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Figure 2: Dense maps for functions with known shape as defined in Table 1, with increasing dimensionality n > 2. Compare
these with the ground-truth maps for n = 2.

created for reference only, without using OptMap. In-
deed, for n = 2, we can directly visualize f , e.g.,
by color coding, similar to (van Wijk and van Liere,
1993). Showing these maps for n = 2 is however very
useful. Indeed, (1) for n = 2, we can show f directly,
without any approximation implied by OptMap; and
(2) given the functions’ expressions (Tab. 1), we know
that they behave similarly regardless of n. Hence,
if for n > 2 OptMap produces images similar to the
ground truth ones for n = 2, we know that OptMap
works well. And indeed, Fig. 2 shows us exactly this
– the OptMap images for n > 2 are very similar to
the ground-truth ones for n = 2. The differences im-
ply some distortion and rotations, which, we argue,
are expected and reasonably small, given the inherent
information loss when mapping a nD phenomenon to
2D.

4.2 Unconstrained Problems

We next use OptMap to show how different solvers
perform when solving different unconstrained prob-
lems (that is, variants of Equation 1). For this, we
select a subset of the functions defined in Table 1,
namely Styblinski-Tang, Rastrigin and Sphere func-
tions, with varying dimensionality n. We use the
solvers listed in Table 2, grouped by solver type,
namely whether it is gradient-free or if it requires a
gradient or a Hessian. In Figure 3 we use OptMap to
show the trace provided by each solver, i.e., all the
points evaluated by the solver to get to the solution.
We see that for a simple function with a global opti-
mum (Sphere) most solvers find an optimal solution,
except for the gradient-free methods, which seem to
struggle with the high-dimensionality of the problem
(n = 20 dimensions). For the Styblinski-Tang func-
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Figure 3: Dense maps created with OptMap for unconstrained problems using the solvers defined in Table 2 and some of the
functions defined in Table 1. White circles indicate starting points (random vectors in 5, 10 and 20 dimensions respectively).
Red circles indicate optimal points found by the solver. The magenta lines and points show each point evaluated by the solver
to get to the solution. The numbers below each image indicate the value of the objective function at the solution; red values
indicate that the solver failed to find an optimal solution (converge). In those cases, we list the value the solver stopped at
before aborting.

     Diet                                    Schedule                          Knapsack                               Sphere                          Styblinski-Tang

   LP, Min, 4 vars, GLPK         LP, Max, 6 vars, Clp             IP, Max, 7 vars, Cbc        NLP, Min, 10 vars, Ipopt     NLP, Min, 10 vars, Ipopt

Figure 4: Dense maps created with OptMap for the constrained problems defined in Table 3. White circles indicate starting
points (zero vector). Red circles indicate optimal points found by the solver. Magenta lines show the path from the starting
point to the solution, and darker areas indicate unfeasible regions. The texts below each image indicate type of problem,
direction (minimization or maximization), number of variables, and solver used.

tion, we see different but close optima were found
by most solvers. We also see that both gradient-free
methods evaluated many more points than the other
methods, but that Nelder-Mead kept moving in the
right direction. For the same problem, Simulated An-
nealing had problems converging to an optimal solu-
tion and eventually gave up. For the Rastrigin func-
tion, which has many optima, we see that only Gra-
dient Descent and L-BFGS managed to find the solu-
tion in a straightforward way, while the other methods
converged to the wrong solution or did not converge.

4.3 Constrained Problems

We next show how our OptMap performs when deal-
ing with constrained optimization problems – that is,
finding the minimum of some n-dimensional func-
tion f whose variables are constrained as described in
Sec. 2.1. Table 3 shows the definition of constrained
problems (objective functions and constraints) we
used. The first three problems used are very common
in the optimization literature (Guenin et al., 2014).
The last two problems use the same Sphere and



Table 1: Definition of n-dimensional selected functions for
ground-truth testing.

Function Name Definition

Linear f (x) =
n
∑

i=1
xi

Sphere f (x) =
n
∑

i=1
x2

i

Rosenbrock
f (x) =

n−1
∑

i=1

[
100

(
xi+1− x2

i

)2
+(1− xi)

2
]

(Rosenbrock, 1960)

Step f (x)=



0
n
∑

i=1
xi < 0

2
n
∑

i=1
xi < 2

4
n
∑

i=1
xi < 4

5 otherwise

Rastrigin f (x) = An+
n
∑

i=1

[
x2

i −Acos(2πxi)
]

(Rastrigin, 1974) where: A = 10

Styblinski-Tang
f (x) =

n
∑

i=1
x4
i −16x2

i +5xi

2(Styblinski and Tang, 1990)

Table 2: Solvers used for unconstrained problems.

Solver Type Solver

Gradient-free
Nelder-Mead (Nelder and Mead, 1965)

Simulated Annealing

Gradient required
Gradient Descent

Conjugated Gradient (Hager and Zhang, 2006)
L-BFGS (Liu and Nocedal, 1989)

Hessian required Newton

Styblinski-Tang functions defined earlier, but with
nonlinear constraints added to them. Figure 4 shows
how OptMap visualizes the problem space and solu-
tion for each problem. Unfortunately, the solvers used
in this experiment, namely Clp (Forrest et al., 2020a),
Cbc (Forrest et al., 2020b), GLPK (Makhorin, 2008)
and Ipopt (Wächter and Biegler, 2006) do not provide
trace information to be drawn through the algebraic
modeling language we used, JuMP (Dunning et al.,
2017), so we only draw the straight-line path from the
(randomly chosen) starting point to solution.

In Figure 4, we can see for all problems the rela-
tionship between the objective function and the con-
straints of the problem, which provides insight on
how close to boundary conditions the solutions are.
For example, in the problems Schedule, Sphere and
Styblinski-Tang, we see that the solution found is at
the boundary of one or more constraints. This is not
the case for the Diet and Knapsack problem, which in-
dicates that some tuning to the solver’s settings may
be required to obtain better results, or even some ad-
justments to the problem definition may be done, such
as the relaxation of some constraints.

Table 3: Definition of constrained optimization problems.
Name Definition

Diet

minimize 0.14x1 +0.4x2 +0.3x3 +0.75x4

subject to 23x1 +171x2 +65x3 + x4 ≥ 2000.0,

0.1x1 +0.2x2 +9.3x4 ≥ 30.0,

0.6x1 +3.7x2 +2.2x3 +7x4 ≥ 200.0,

6x1 +30x2 +13x3 +5x4 ≥ 250.0,

x1 ,x2 ,x3 ,x4 ≥ 0.0

Schedule

maximize 300x1 +260x2 +220x3 +180x4−8y1−6y2

subject to 11x1 +7x2 +6x3 +5x4 ≤ 700.0,

4x1 +6x2 +5x3 +4x4 ≤ 500.0,

8x1 +5x2 +5x3 +6x4− y1 ≤ 0.0,

7x1 +8x2 +7x3 +4x4− y2 ≤ 0.0,

y1 ≤ 600.0,

y2 ≤ 650.0,

x1 ,x2 ,x3 ,x4 ,y1 ,y2 ≥ 0.0

Knapsack

maximize 60x1 +70x2 +40x3 +70x4 +20x5 +90x6

subject to x1 + x2−4y≥ 0.0,

x5 + x6 +4y≥ 4.0,

30x1 +20x2 +30x3 +90x4 +30x5 +70x6 ≤ 2000.0,

x3−10x4 ≤ 0.0,

x1 ,x2 ,x3,x4 ,x5 ,x6,y≥ 0.0,

x1 ,x2 ,x3,x4 ,x5 ,x6 ≤ 10.0,

y≤ 1.0,

x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,y ∈ Z

Sphere

minimize
10

∑
i=1

x2
i

subject to
10

∑
i=1

x2
i ≥ 5.0

Styblinski-Tang
minimize

10
∑

i=1
x4

i −16x2
i +5xi

2

subject to
10

∑
i=1

x2
i ≥ 5.0

4.4 Performance

OptMap’s computation time can be divided in two
phases (Fig. 1): In phase 1, most of the time is spent
while running PCA for the sampled points in the grid
Gn to define the mapping between the nD and 2D
spaces. This is a task that has to be done only once
for a given function f and can be reused afterwards
when one changes the solver. In phase 2, most of the
time is spent evaluating the objective function f and
its constraints. To gauge OptMap’s performance, we
ran the experiments discussed in the previous sections
on a 4-core Intel Xeon E3-1240 v6 at 3.7 GHz with 64
GB RAM. Since the evaluation of functions is usually
very fast and the pixel grid G2 is of limited size (8002

in our experiments), phase 2 takes only a few seconds
to run on our platform. Table 4 shows the time it takes
to run PCA in phase 1 for Nmax = 5M points, where
we see that time increases very quickly with dimen-



sionality. However, since phase 1 is required to be run
only once, and since it takes at most a few minutes
to run even with a high number of dimensions n (see
Tab. 4), we argue that this is not a crucial limitation of
OptMap.

Table 4: Time to project Nmax = 5M points with different
dimensionalities n using PCA.

Dimensions n Time (sec)
3 1.19
5 0.85
7 1.45
10 2.38
20 6.62
50 32.74

100 108.71

4.5 Implementation details

We implemented OptMap in Julia (Bezanson et al.,
2017). Table 5 lists all open-source software libraries
used to build OptMap. The optimization examples
in Sec. 4 were implemented using Optim (Mogensen
and Riseth, 2018) for the unconstrained problems,
and JuMP (Dunning et al., 2017) for the constrained
problems, using the solvers Clp (Forrest et al., 2020a),
Cbc (Forrest et al., 2020b), GLPK (Makhorin, 2008),
and Ipopt (Wächter and Biegler, 2006). Our imple-
mentation, plus all code used in this experiment, are
publicly available at github.com/mespadoto/optmap.

Table 5: Software used for the evaluation.

Library Software publicly available at
Images github.com/JuliaImages/Images.jl

ColorTypes github.com/JuliaGraphics/ColorTypes.jl
ColorSchemes github.com/JuliaGraphics/ColorSchemes.jl

Luxor github.com/JuliaGraphics/Luxor.jl
CSV github.com/JuliaData/CSV.jl

DataFrames github.com/JuliaData/DataFrames.jl
MultivariateStats github.com/JuliaStats/MultivariateStats.jl

Optim github.com/JuliaNLSolvers/Optim.jl
Clp github.com/jump-dev/Clp.jl
Cbc github.com/jump-dev/Cbc.jl

GLPK github.com/jump-dev/GLPK.jl
Ipopt github.com/jump-dev/Ipopt.jl

5 DISCUSSION

We discuss next how OptMap performs with
respect to the criteria laid out in Section 1.

Quality (C1): Figures 2, 3 and 4 show examples
of the quality of the visualizations and the kind of
insight they can provide for optimization problems.

Our dense maps are pixel-accurate, in the sense that
they show actual information inferred from the nD
function f under investigation at each pixel, without
interpolation. This is in contrast with many other
dimensionality reduction methods which either show
a sparse sampling of the nD space (by means of a 2D
scatterplot), leaving the user to guess what happens
between scatterplot points; or use interpolation in
the 2D image space to ‘fill’ such gaps (Martins et al.,
2014; Silva et al., 2015; van Driel et al., 2020),
which creates smooth images that may communicate
wrong insights, since we do not know the underlying
projection is continuous.

Genericity (C2): We show how our technique per-
forms for optimization problems with varying nature,
complexity, and dimensionality. We also show that
our method can be used simply for visualizing high-
dimensional, continuous, functions by a single 2D
image, in contrast to multiple images that have to be
navigated and correlated by interaction (van Wijk and
van Liere, 1993). We also show that our technique
is independent of the optimization solvers being used;

Simplicity (C3): We use PCA for direct and inverse
projections, which is a very well known, simple,
fast, and deterministic projection method. OptMap’s
complete implementation has about 250 lines of Julia
code. Note that we also experimented with other
methods for the direct projection – namely, t-SNE as
learned by NNP (Espadoto et al., 2020) – and inverse
projection – namely, NNInv (Espadoto et al., 2019b),
obtaining good results. However, for the optimization
problems presented in this paper, PCA yielded better
results (based on ground truth comparison). Since
PCA is also simpler and faster than NNP and NNInv,
we preferred it in our work.

Ease of use (C4): Apart from the timing experiment
in Section 4.4, we executed all experiments using the
same maximum number of sample points Nmax with
good results, which shows that the technique requires
little to no tuning to work properly;

Scalability (C5): Section 4.4 shows that our method
is highly scalable with the number of sample points
and dimensions, which enables its interactive usage
during the development cycle of optimization models.
On the other hand, scalability is inherently limited
by the resolution used to create the dense grid Gn. If
the number of dimensions n and the sampling rate of
each dimension become too high, the total number
of samples N becomes prohibitive. This is inherent
to the fact that we aim to capture the dense space



spanned by the variables xi, rather than the sparse
point cloud that typical DR methods take as input.
To alleviate this, one could (a) consider different
sampling rates for xi, based on prior knowledge on
how f depends on each of them; (b) use OptMap
interactively by ‘zooming in and out’ of different
variable ranges to explore the high-dimensional
space; or (c) use multiresolution techniques, akin to
those already present in various optimizers.

Limitations: The projected points, such as the start-
ing, trace, and solution points, are placed in the 2D
image space at approximate positions, due to the in-
herent discrete nature of the pixel grid G2. This can
cause situations such as the one in Fig. 4 (Sphere
problem), where the optimal point found by the solver
– which is obviously feasible – is placed slightly in-
side the unfeasible region, which can be misleading.
Secondly, we noticed that due to the inherently im-
perfect mapping between nD and 2D spaces, equality
constraints that compare against constants might not
be satisfied during the evaluation, which will make
the drawing of feasible regions fail.

A separate aspect relates to the fact that P can
map multiple different points x ∈ D to the same pixel
p ∈ G2. Hence, the color assigned to p should ide-
ally reflect the combination of values f (x) of all these
points x. For categorical-valued functions f , this
can be done by using voting schemes that compute
the confidence of the final coloring (Rodrigues et al.,
2019). A low-hanging fruit for future work is to (effi-
ciently) extend such schemes to our real-valued func-
tions f by using aggregation strategies such as aver-
age, min, or max.

6 CONCLUSION

In this paper we presented OptMap, an image-
based visualization technique that allows the visual-
ization of multidimensional functions and optimiza-
tion problems. OptMap exploits the idea of construct-
ing dense maps of high-dimensional spaces, by using
direct and inverse projections to map these spaces to
a 2D image space. Suitable choices for the sampling
of these spaces, as well as using efficient and well-
understood direct and inverse projection implemen-
tations, make OptMap scalable to real-world prob-
lems. We show that OptMap performs well in differ-
ent scenarios, such as unconstrained and constrained
optimization, with many examples that demonstrate
its genericity and speed. Additionally, we show that
OptMap can be used for the visualization of stan-
dalone high-dimensional functions, even when these

are not part of an optimization problem.
Several future work directions exist. First and

foremost, it is interesting to consider using more ac-
curate direct and inverse projections for construct-
ing OptMap. Secondly, we consider using OptMap
in concrete applications, and gauging its added-value
in helping engineers designing better optimization
strategies, as opposed to existing tools-of-the-trade
for the same task.
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