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Abstract: Understanding the decision boundaries of a machine learning classifier is key to gain insight on how classifiers
work. Recently, a technique called Decision Boundary Map (DBM) was developed to enable the visualization of
such boundaries by leveraging direct and inverse projections. However, DBM have scalability issues for creating
fine-grained maps, and can generate results that are hard to interpret when the classification problem has many
classes. In this paper we propose a new technique called Supervised Decision Boundary Maps (SDBM), which
uses a supervised, GPU-accelerated projection technique that solves the original DBM shortcomings. We show
through several experiments that SDBM generates results that are much easier to interpret when compared to
DBM, is faster and easier to use, while still being generic enough to be used with any type of single-output
classifier.

1 INTRODUCTION

In recent years, Machine Learning (ML) techniques
have become very popular in many fields to support
pattern recognition and predictive modelling. Despite
their popularity, the inner workings of trained ML mod-
els are hard to explain, which can hamper their adop-
tion where transparency and accountability of inference
is required (Ribeiro et al., 2016). For Deep Learning
(DL) models, explainability is an even harder concern,
as such models have millions of parameters that con-
tribute jointly to the generation of many levels of latent
features (Garcia et al., 2018).

For the more specific case of ML classifiers, several
approaches for model explanation have been proposed,
using variable importance (Lundberg and Lee, 2017),
locally interpretable models (Ribeiro et al., 2016), and a
variety of visualization-based techniques (Rauber et al.,
2017b; Rauber et al., 2017a). Garcia et al. (Garcia et al.,
2018) recently presented a survey of visual techniques
oriented towards the explanation of DL models.

A particular visual explanation technique in this set
is the Decision Boundary Map (DBM) (Rodrigues et al.,
2019). DBM extends classical multidimensional projec-
tions (Nonato and Aupetit, 2018) by filling in the gaps
between projected points from a labeled dataset used to
train a classifier with synthesized, classified, data points.
This effectively creates a 2D dense image that shows how
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the classifier partitions its high-dimensional data space
into per-class decision zones. DBM is, to our knowledge,
the first technique that succeeds in visually depicting
such classifier decision zones for any classifier. How-
ever, DBM has several limitations – it is slow, sensitive
to parameter settings, and produces noisy visualizations
from which it is hard to understand which are the shapes,
topologies, and extents of the decision zones.

In this paper, we propose Supervised Decision
Boundary Maps (SDBM), a supervised technique, which
improves DBM in four key directions:

Quality (C1): SDBM produces decision maps that allow
for a clearer, and far less noise-prone, visual separation
of a higher number of decision zones from real-world,
complex, datasets, than DBM;

Scalability (C2): SDBM is GPU accelerated and has
a complexity linear in the number of samples and di-
mensions, allowing the creation of megapixel maps in a
few seconds on commodity hardware, in contrast to the
minutes needed by DBM;

Ease of use (C3): SDBM produces good results with
minimal or no parameter tuning;

Genericity (C4): SDBM can construct decision bound-
aries for any single-value classifier.

We structure this paper as follows: Section 2 dis-
cusses related work on classifier visualization. Section 3
details our SDBM method. Section 4 presents the results
that support our contributions outlined above. Section 5
discusses our method. Finally, Section 6 concludes the
paper.



2 BACKGROUND

We next introduce the notation used in this paper. Let
x = (x1, . . . ,xn), xi ∈ R,1 ≤ i ≤ n be an n-dimensional
(nD) real-valued, labeled, observation, and let D = {x j},
1≤ j ≤ N be a dataset of N such samples, e.g., a table
with N rows (samples) and n columns (dimensions). Let
C = {ck}, 1≤ k ≤ K be the set of K class labels used in
D. Let y = {y j|y j ∈C}, 1 ≤ j ≤ N be the class labels
associated with each sample x j.

A classifier is a function

f : Rn→C, (1)

that maps between data samples and class labels. The
classifier f is typically obtained by using a training al-
gorithm over the dataset D. Common ML algorithms
are Logistic Regression (Cox, 1958), SVM (Cortes and
Vapnik, 1995), Random Forests (Breiman, 2001), and
Neural Networks, to name a few.

A Dimensionality Reduction (DR), or projection,
technique is a function

P : Rn→ Rq, (2)

where q� n, and typically q = 2. The projection P(x)
of a sample x ∈ Rn is a qD point p ∈ Rq. Projecting a
set D yields thus a qD scatterplot, which we denote next
as P(D). The inverse of P, denoted P−1(p), maps a qD
point p to the high-dimensional space Rn.

Decision Boundary Maps: Given a classifier f , a Deci-
sion Boundary Map (DBM) is a 2D image that shows a
representation of how f partitions the Rn data space into
decision zones. A decision zone is a set of 2D points p
for which f (P−1(p)) = ck|ck ∈C} – that is, map high-
dimensional points which are classified by f to the same
class ck. Class labels ck are color-coded in the deci-
sion maps. Decision zones are separated by decision
boundaries, which are pixels p whose labels (colors)
differ from those of at least one 8-neighbor pixel in the
DBM. The DBM shows, among other things, how the
high-dimensional space is effectively partitioned by f
into decision zones, how large these zones are, how they
are adjacent to each other, and how smooth the decision
boundaries between classes are (Rodrigues et al., 2019).
This gives insights on whether the classifier f has over-
fitted the training data, and how well separated the data
is, i.e., how difficult is the task of partitioning the high-
dimensional space to obtain good classification accuracy.
DBMs are a step forward atop of the key observation
in Rauber et al. (Rauber et al., 2017b), which showed
how multidimensional projections aid deciding whether
a high-dimensional dataset is easily classifiable or not.
Simply put, DBMs support the same task but provide
more information by ‘filling in’ the white gaps between
the points of a 2D scatterplot P(D) by extrapolating the
classifier f .

The DBM technique, as introduced by Rodrigues et
al. (Rodrigues et al., 2019), relies heavily on direct and
inverse projections, to create the mappings P and P−1.

The direct mapping is used to create a 2D scatterplot
P(D) from the dataset D. The inverse mapping P−1

creates synthetic nD data points from all pixels p in the
2D bounding box of P(D). These points P−1(p) are
then classified by f , and colored by the assigned class
labels f (P−1(p)). While this approach is conceptually
sound, it has two main issues: (1) The inverse projection
technique P−1 used, iLAMP (Amorim et al., 2012),
scales poorly to the hundreds of thousands of points a
dense pixel map has. This was addressed in (Rodrigues
et al., 2019) by subsampling the 2D projection space
into cells larger than one pixel, sampling a few 2D
pixels from each cell, and next deciding the label (and
thus color) of each cell by majority voting on the
classification of the inverse-projections of these samples.
This subsampling creates artifacts which are visible in
the highly jagged boundaries of the decision zones. (2)
Since the direct projections P used are unsupervised,
outliers in the data D can generate ‘islands’ of pixels
having a different label (and thus color) than their
neighbors. This creates spurious decision zones and
decision boundaries which next make the resulting
DBMs hard to analyze by the user, in particular when
the problem has several classes.

Dimensionality reduction: Both the original DBM
technique and our improved version SDBM rely heavily
on Dimensionality Reduction (DR) techniques. Many
DR techniques have been proposed over the years, as re-
viewed in various surveys (Hoffman and Grinstein, 2002;
Maaten and Postma, 2009; Engel et al., 2012; Sorzano
et al., 2014; Liu et al., 2015; Cunningham and Ghahra-
mani, 2015; Xie et al., 2017; Nonato and Aupetit, 2018;
Espadoto et al., 2019a). Below we describe a few repre-
sentative ones, referring to the aforementioned surveys
for a more thorough discussion.

Principal Component Analysis (Jolliffe, 1986) (PCA)
is one of the most popular DR techniques for many
decades, being easy to use, easy to interpret, and scalable.
However, PCA does not perform well for data of high
intrinsic dimensionality, and is thus not the best option
for data visualization tasks.

The Manifold Learning family of methods con-
tains techniques such as MDS (Torgerson, 1958),
Isomap (Tenenbaum et al., 2000), and LLE (Roweis
and Saul, 2000), which aim to capture nonlinear data
structure by mapping the high-dimensional manifold on
which data is located to 2D. These methods generally
yield better results than PCA for visualization tasks, but
do not scale well computationally, and also yield poor
results when the intrinsic data dimensionality is higher
than two.

The SNE (Stochastic Neighborhood Embedding)
family of methods, of which the most popular member
is t-SNE (Maaten and Hinton, 2008), are very good for
visual tasks due to the visual cluster segregation they
produce. Yet, they can be hard to tune (Wattenberg,
2016), and typically have no out-of-sample capabil-
ity. Several refinements of t-SNE improve speed, such



as tree-accelerated t-SNE (Maaten, 2014), hierarchi-
cal SNE (Pezzotti et al., 2016), and approximated t-
SNE (Pezzotti et al., 2017), and various GPU accel-
erations of t-SNE (Pezzotti et al., 2020; Chan et al.,
2018). Uniform Manifold Approximation and Projection
(UMAP) (McInnes and Healy, 2018), while not part of
the SNE family, generates projections with comparable
quality to t-SNE, but much faster, and with out-of-sample
capability.

All above projection techniques work in an unsuper-
vised fashion, by using information on distances between
data points in D to compute the projection P(D). Re-
cently, (Espadoto et al., 2020) proposed Neural Network
Projection (NNP) to learn the projection P(D), computed
by any user-selected technique P, from a small subset
D′ ⊂ D, using a deep learning regressor. While slightly
less accurate than the original P, this technique is com-
putationally linear in the size and dimensionality of D,
has out-of-sample capability, is stable, and it simple to
implement and parameter-free. The same idea was used
by NNInv (Espadoto et al., 2019b) to learn the inverse
mapping P−1. These approaches were next extended by
Self-Supervised Network Projection (SSNP) (Espadoto
et al., 2021), which can be used either in a self-supervised
fashion, by computing pseudo-labels by a generic clus-
tering algorithm on D, or in a supervised fashion (similar
to NNP), using ground-truth labels y coming with D.
SSNP’s supervised mode is key to the creation of our
proposed SDBM for the following reasons:

• SSNP provides good cluster separation by partition-
ing the data space D as a classifier would do, which
is closely related to the original goal of DBM;

• SSNP provides both the direct and inverse mappings
(P and P−1) needed by DBM to generate synthetic
data points;

• SSNP is GPU-accelerated, which makes SDBM one
to two magnitude orders faster than DBM.

3 METHOD

We next describe our proposed SDBM technique and
how it is different from its predecessor, DBM (see also
Fig. 1 for step-by step details of the SDBM pipeline):

LR, RF, etc

2. Create Mappings

2D → nD

1. Train classifier

3. Create grid 4. Create synthetic 
nD points

5. Color pixels

HueEvaluate

SSNP

Figure 1: SDBM pipeline.

1. Train classifier: Train the classifier f to be visual-
ized using the dataset D and its class labels y. This step

is identical to DBM. Any single-class-output classifier
f : Rn → C can be used generically, e.g., Logistic Re-
gression (LR), Random Forests (RF), Support Vector
Machines (SVM), or neural networks.
2. Create mappings: Train SSNP to create the direct
and inverse projections P and P−1 based on D and y.
This step is fundamentally different from DBM which ac-
cepts any user-selected projection P and then constructs
P−1 by deep learning the 2D to nD mapping using deep
learning (Espadoto et al., 2019b) (see also Sec. 2). This
asymmetric design of DBM makes P−1 significantly dif-
fer from the mathematical inverse of P for several points
x, i.e., P−1(P(x)) 6= x, which is visible as jagged deci-
sion boundaries and noise-like small islands scattered all
over the dense maps (see Fig. 5 later on). As we shall
see in Sec. 4, the joint computation of P and P−1 used
by SDBM significantly reduces such artifacts.
3. Create 2D grid: Create an image G ⊂ R2. This is
different from DBM which uses subsampling of the 2D
projection space (see Sec. 2). In detail, SDBM uses the
full resolution of G to compute P(D), but then evaluates
P−1 on a subsampled version thereof. In our case, both
P and P−1 use the full resolution image G. For the
experiments in this paper, we set the resolution of G to
3002 pixels.
4. Create synthetic data points: Use the trained P−1

to map each pixel p ∈ G2 to a high-dimensional data
point x ∈ Rn. This is similar to DBM, except the use
of a dense pixel grid and jointly-trained P and P−1 (see
above).
5. Color pixels: Color all pixels p ∈ G by the values of
f (P−1(p)), i.e., the inferred classes of their correspond-
ing (synthetic) data points, using a categorical color map.
In this paper we use the ‘tab20’ color map (Hunter, 2007).
This is the same as DBM.
6. Encode classifier confidence (optional): For clas-
sifiers f that provide the probability of a sample x be-
longing to a class ck, we encode that probability in the
brightness of the pixel p that back-projects to x. The
lower the confidence of the classifier is, the darker the
pixel appears in the map, thereby informing the user of
the confidence of the decision zone in that area. This is
the same as DBM.

4 RESULTS

We next present the results that support our claims regard-
ing SDBM. First, we show how our method performs
with synthetic data, where a perfect class separation is
possible by most classifiers (Sec. 4.1). This allows us
to verify how the technique performs under a controlled
setting where we know the ‘ground truth’ shapes of the
decision zones. Next, we show how SDBM performs on
more complex real-world datasets and additional classi-
fiers (Sec. 4.2) and also how it compares with DBM. This
supports our claim that our technique can be generically
used and that it improves quality vs DBM. We next show
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Figure 2: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and synthetic datasets (rows).
Lighter pixels represent training samples from the datasets D.

how SDBM compares to the original DBM speed-wise,
thereby supporting our claims of improved scalability
(Sec. 4.3). Finally, we provide full implementation de-
tails for SDBM (Sec. 4.4).

4.1 Quality on Synthetic Datasets

We assess how SDBM performs in a controlled situation
where the ground truth is known, i.e., datasets with clear
class separation and known shapes of the expected de-
cision zones. The datasets contain synthetic Gaussian
blobs with 5000 samples, with varied dimensionality
(100 and 700), and varied number of classes (2 and 10).
We used four different classifiers, namely Logistic Re-
gression, SVM (with a RBF kernel), Random Forests
(200 estimators), and a Neural Network (multi-layer per-
ceptron having 3 layers of 200 units).

Figure 2 shows the maps created using SDBM for
all the different classifier and dataset combinations. De-
cision zones are categorically colored. Projected sam-
ples in P(D) are drawn colored also by their class, but
slightly brighter, so as to distinguish them from the maps.
We see that the decision zones are compact and with
smooth boundaries, as expected for such simple clas-

sification problems. They enclose the Gaussian blobs
with the same respective labels – e.g., the red and blue
zones for the 2-class, 100-dimensional dataset in Fig. 2
(top row) contain two clusters of light red, respectively
light blue, projected points. We also see that the maps
for Logistic Regression show almost perfectly straight
boundaries, which is a known fact for this classifier. In
contrast, the more sophisticated classifiers, such as Ran-
dom Forests and Neural Networks, create boundaries
that are slightly more complex than the others for the
most complex dataset (Fig. 2 (bottom row), at the center
of the maps for those classifiers).

4.2 Quality on Real-World Datasets

We next show how SDBM performs on real-world
datasets. These datasets are selected from publicly
available sources, matching the criteria of being high-
dimensional, reasonably large (thousands of samples),
and having a non-trivial data structure. They are also
frequently used in ML classification evaluations and pro-
jection evaluations.
FashionMNIST (Xiao et al., 2017): 70K samples of
K = 10 types of pieces of clothing, rendered as 28x28-
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Figure 3: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and real-world datasets (rows).
Numbers inside each map indicate test accuracy obtained by each classifier, bold indicating top performers. Lighter pixels represent
training samples from the datasets D.

pixel gray scale images, flattened to 784-element vectors.
We also use a subset of this dataset containing only two
classes, namely Ankle Boot and T-Shirt, to provide an
example of a problem where classes are more easily
separable. This dataset was downsampled to 10K obser-
vations for all uses in this paper.
Human Activity Recognition (HAR) (Anguita et al.,
2012): 10299 samples from 30 subjects performing
K = 6 activities of daily living used for human activity
recognition, described with 561 dimensions that encode
3-axial linear acceleration and 3-axial angular velocity
measured on the subjects.
MNIST (LeCun and Cortes, 2010): 70K samples of K =
10 handwritten digits from 0 to 9, rendered as 28x28-
pixel gray scale images, flattened to 784-element vectors.
This dataset was downsampled to 10K observations for
all uses in this paper.
Reuters Newswire Dataset (Thoma, 2017): 8432 obser-
vations of news report documents, from which 5000 at-
tributes were extracted using TF-IDF (Salton and McGill,
1986), a standard method in text processing. This is a
subset of the full dataset which contains data for the
K = 6 most frequent classes.

Figure 3 shows the maps created by SDBM for
these datasets, with the same types of classifiers used in
Sec. 4.1. Even though the current real-world datasets are
considerably more complex and harder to separate into
classes, the classifiers’ decision boundaries are clearly
visible. Simpler classifiers (Logistic Regression and
SVM) show decision zones that are more contiguous
and have smoother, simpler, boundaries. More complex
classifiers (Random Forests and Neural Networks) show
more complex shapes and topologies of the decision
zones. In particular, the maps created for the Random
Forest classifiers show very jagged boundaries. This can
be a result of having an ensemble of classifiers working
together.

Encoding classifier confidence: Figure 4 shows maps
created by SDBM with classifier confidence encoded
as brightness, as described in Sec. 3. This allows us
to see how different classifiers model probability very
differently, and thus produce different results. The added
value of encoding confidence can be seen if we compare
the first-vs-second, respectively third-vs-fourth, rows in
Fig. 4. The confidence-encoding maps show a smooth
brightness gradient, dark close to the decision boundaries
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Figure 4: Decision Boundary Maps created with SDBM for several classifiers, HAR and Reuters datasets. Columns show different
classifiers. Rows show different datasets, with and without confidence encoded into brightness.

(where colors change in the images) and bright deep in
the decision zones. The effect is slightly reminiscent
of shaded cushion maps (van Wijk and van de Wetering,
1999), i.e., it enhances the visual separation of the color-
coded decision zones. More importantly, the shading
gradient effectively shows how confidence increases as
we go deeper into the decision zones for different clas-
sifiers: For example, for the HAR dataset, these shaded
bands are quite thin for Logistic Regression and SVM,
thicker and less informative for Random Forests, and
extremely and uniformly thin for Neural Networks. This
tells us that Neural Networks have an overall very high
confidence everywhere (except very close to the decision
boundaries); Logistic Regression and SVM are less con-
fident close to the boundaries; and Random Forests have
a higher variation of confidence over the data space. For
Random Forests, we see that the darkest region falls in
the area of the central blue decision zone and the top-
right of the left yellow zone. This are precisely the areas
where the map of this classifier significantly differs from
those of all the other three classifiers. Hence, we can
infer that the isolated blue decision zone that Random
Forests created is likely wrong, as it is low confidence
and different from what all the other three classifiers

created in that area. For the Reuters dataset (Fig. 4 bot-
tom row), we see that all classifiers produced a beige
region at the top left corner. The confidence information
(brightness) shows us that all classifiers but one (SVM)
treat this region as a low confidence one. This can be
explained by the total absence of training samples in that
region. More importantly, this tells us that the behavior
of SVM in this region is likely wrong.

Confidence visualization also serves in quickly and
globally assessing the overall quality of a trained clas-
sifier. Consider e.g. the Reuters dataset (Fig. 4 bottom
row). Compared to all other three rows in Fig. 4, the
decision maps for this dataset are darker. This shows that
this dataset is harder to extrapolate from during inference.
Note that this is not the same as the usual testing-after-
training in ML. Indeed, for testing, one needs to ‘reserve’
a set of samples unseen during training to evaluate the
trained classifier on. In contrast, SDBM’s decision maps
do not need to do this as they synthesize ‘testing’ samples
on the fly via the inverse projection P−1. Moreover, clas-
sical ML testing only gives a global or per-class accuracy.
In contrast, SDBM gives a per-region-of-the-data-space
confidence, encoded by brightness.

Comparison with the Original DBM: Figure 5 shows



maps created by SDBM side-by-side with maps cre-
ated by the original DBM technique, using Logistic
Regression, Random Forest and k-NN classifiers, for
three real-world datasets. In this experiment, we used
UMAP (McInnes and Healy, 2018) as the direct projec-
tion for DBM, and iLAMP (Amorim et al., 2012) for
the inverse projection, respectively Several important
observations can be made, as follows.

First, we see that the projections P(D) of the same
datasets are not the same with DBM and SDBM – com-
pare the bright-colored dots in the corresponding figures.
This is expected, since, as explained in Sec. 3, DBM
employs a user-chosen projection technique P, whereas
SDBM learns P from the label-based clustering of the
data, following the SSNP method (see Sec. 3). Since
the projections P(D) of the same datasets differ for the
two methods, it is expected that the overall shapes of
the ensuing decision boundaries will also differ – see e.g.
the difference between the nearly horizontal decision
boundary between the blue and red zones for Random
Forests with DBM for FashionMNIST (2-class) and the
angled boundary between the same zones for the same
classifier, same dataset, with SDBM (Fig. 5, middle row,
two leftmost images). For the relatively simple classifi-
cation problem that FashionMNIST (2-class) is, this is
not a problem. Both DBM and SDBM produce useful
and usable renditions of the two resulting decision zones,
showing that this classification problem succeeded with
no issues.

When considering more difficult datasets (Fashion-
MNIST 10-class or HAR), the situation is dramatically
different: DBM shows highly noisy pictures, where it
is even hard to say where and which are the actual deci-
sion zones. These images suggest that none of the three
tested classifiers could correctly handle these datasets,
in the sense that they would change decisions extremely
rapidly and randomly as points only slightly change over
the data space. This is known not to be the case for these
datasets and classifiers. Logistic Regression has built-in
limitations of how quickly its decision boundaries can
change (Rodrigues et al., 2019). k-NN is also known to
construct essentially a Voronoi diagram around the same-
class samples in the nD space, partitioning that space
into cells whose boundaries are smooth manifolds. DBM
does not show any such behavior (Fig. 5, third and fifth
columns). In contrast, SDBM shows a far lower noise
level and far smoother, contiguous, decision zones and
boundaries. Even though we do not have formal ground
truth on how the zones and boundaries of these dataset-
classifier combinations actually look, SDBM matches
better the knowledge we have on these problems than
DBM.

4.3 Computational Scalability

We next study the scalability of SDBM and compare it
to the original DBM method. For this, we created maps
using synthetic Gaussian blobs datasets with 5 clusters,
varying the dimensionality from 10 to 500, and varying

the map size from 252 to 3002 pixels. We did not use
larger maps since the speed-trends were already clear
from these sizes, with DBM getting considerably slower
than SDBM. Figure 6 shows the running times of both
methods as a function of both the grid size (horizontal
axis) and dataset dimensionality (different-color lines).
We see that DBM’s runtime increases quickly with di-
mensionality, taking about 5 minutes to create a 3002

map for the 500-dimensional dataset.
In contrast, SDBM is over an order of magni-

tude faster, taking roughly 7 seconds to run for the
same dataset. Also, we see that SDBM’s speed only
marginally depends on the dimensionality, whereas this
is a major slowdown factor for DBM. With respect to
the number of samples, we see that both methods exhibit
similar trends, with SDBM being closer to a linear trend
than DBM. However, the slope of the SDBM graphs
is smaller than for DBM for the same dimensionality.
All in all, this shows that SDBM is significantly more
scalable than DBM. This can be explained by the fact
that SSNP, which underlies SDBM, jointly trains both
the direct and inverse projections by deep learning. As
this is GPU-accelerated, linear in the sample and dimen-
sion counts both for training and inference, and does
not need to use different resolutions and sampling tricks
for accelerating the 2D to nD mapping (see Sec. 3). In
contrast, DBM uses UMAP and iLAMP for the direct,
respectively, inverse projections (as mentioned earlier).
None of these techniques is GPU-accelerated.

4.4 Implementation details

All experiments presented above were run on a dual 8-
core Intel Xeon Silver 4110 with 256 GB RAM and an
NVidia GeForce RTX 2070 GPU with 8 GB VRAM.
Table 1 lists all open-source software libraries used to
build SDBM and the other tested techniques. Our im-
plementation, plus all code used in this experiment, are
publicly available at (The Authors, 2021).

Table 1: Software packages used in the evaluation.

Technique Software used publicly available at
SSNP keras.io (TensorFlow backend) (Chollet and others, 2015)
UMAP github.com/lmcinnes/umap (McInnes and Healy, 2018)

5 DISCUSSION

We discuss how our technique performs with respect to
the criteria laid out in Section 1.
Quality (C1): SDBM is able to create maps that show
classifier decision boundaries very clearly, and, most im-
portantly, much clearer than the maps created with the
original DBM. For the same dataset-classifier combina-
tions, SDBM’s maps show significantly less noise, more
compact decision zones, and smoother decision bound-
aries, than DBM. These results are in line with what we
expect for dataset-classifier combinations for which we
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Figure 5: Comparison between SDBM and DBM using three different datasets and three classifiers.

Figure 6: Plot showing the order of growth of time used to create maps of increasing size using DBM and SDBM, using synthetic
datasets of varying dimensionality. Vertical axis is in logarithmic scale.

have ground-truth knowledge about their decision zones
and boundaries (see Fig. 5 and related text). As such, we
conclude that SDBM captures the actual decision zones
better than DBM can do.

Scalability (C2): SDBM is an order of magnitude faster
than DBM. Since SDBM scales linearly in the number of
observations during inference/drawing, and it is end-to-
end GPU-accelerated, it is able to generate maps having
hundreds of thousands of pixels in a few seconds, which
makes it practical for handling large datasets and render-
ing highly detailed decision maps.

Ease of use (C3): SDBM produces good results with
minimal tuning. The single performance-sensitive set-
ting is the size of the map image. All maps in this pa-

per have 3002 pixels. As the figures show, this resolu-
tion is already sufficient for rendering detailed decision
maps for all the tested dataset-classifier combination.
Compared to DBM, SDBM tuning is far simpler, as
it does not require tuning of cell and sample sizes re-
quired by the former (for details of DBM tuning, we
refer to (Rodrigues et al., 2019)).

Genericity (C4): As for the original DBM method,
SDBM is agnostic to the nature and dimensionality of
the input data, and to the classifier being visualized. We
show that SDBM achieves high quality on datasets of
different natures and coming from a wide range of ap-
plication domains, and with classifiers based on quite
different algorithms. As such, SDBM does not trade



any flexibility that DBM already offered, but increases
quality, scalability, and ease of use, as explained above.

Limitations: SDBM shares a few limitations with DBM.
First and foremost, it is hard to formally assess the qual-
ity of the decision maps it produces for dataset-classifier
combinations for which we do not have clear ground-
truth on the shape and position of their decision zones
and boundaries. Current testing shown in this paper has
outlined that SDBM produces results fully in line with
known ground truth for such simple situations. However,
this does not formally guarantee that the same is true for
more complex datasets and any classifiers. Finding ways
to assess this is an open problem to be studied in future
work. Secondly, the interpretation of the SDBM maps
can be enhanced. Examples shown in this paper outlined
how such maps can help finding out whether a trained
classifier can generalize well, and how far, from its train-
ing set, and how different classifier-dataset combinations
can be compared by such maps. Yet, such evidence is
qualitative. A more formal study showing how users
actually interpret such maps to extract quantitative in-
formation on the visualized classification problems is
needed.

6 CONCLUSION

We have presented SDBM, a new method for producing
classifier Decision Boundary Maps. Compared to the
only similar technique we are aware of – DBM – our
method presents several desirable characteristics. First
and foremost, it is able to create decision maps which are
far smoother and less noisy than those created by DBM
and also match the known ground-truth of the visualized
classification problems far better than DBM, therefore
allowing users to interpret the studied classifiers with
less confusion. Secondly, SDBM is about an order of
magnitude faster than DBM due to its joint computation
of direct and inverse projections on a fixed-resolution
image. Finally, SDBM has virtually no parameters to
tune (apart from the resolution of the desired final image)
which makes it easier to use than DBM.

Future work can target several directions. We believe
a very relevant one to be the generation of maps for
multi-output classifiers, i.e., classifiers that can output
more than a single class for a sample. Secondly, we
consider organizing more quantitative studies to actually
gauge which are the interpretation errors that SDBM
maps generate when users consider them to assess and/or
compare the behavior of different classifiers, which is
the core use-case that decision maps have been proposed
for. Thirdly, we consider adapting SDBM to help the
understanding of semantic segmentation models. Last
but not least, the packaging of SDBM into a reusable
library that can be integrated into typical ML pipelines
can help it gain widespread usage.
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