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Explaining three-dimensional
dimensionality reduction plots

Danilo B Coimbra1, Rafael M Martins1, Tácito TAT Neves1,
Alexandru C Telea2 and Fernando V Paulovich1

Abstract
Understanding three-dimensional projections created by dimensionality reduction from high-variate datasets
is very challenging. In particular, classical three-dimensional scatterplots used to display such projections do
not explicitly show the relations between the projected points, the viewpoint used to visualize the projection,
and the original data variables. To explore and explain such relations, we propose a set of interactive visuali-
zation techniques. First, we adapt and enhance biplots to show the data variables in the projected three-
dimensional space. Next, we use a set of interactive bar chart legends to show variables that are visible from
a given viewpoint and also assist users to select an optimal viewpoint to examine a desired set of variables.
Finally, we propose an interactive viewpoint legend that provides an overview of the information visible in a
given three-dimensional projection from all possible viewpoints. Our techniques are simple to implement and
can be applied to any dimensionality reduction technique. We demonstrate our techniques on the exploration
of several real-world high-dimensional datasets.
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Introduction

Dimensionality reduction (DR) techniques are an

important part of visual analytics solutions. DR tech-

niques map, or project, datasets having tens or even

hundreds of variables into a low-dimensional space

(two-dimensional (2D) or three-dimensional (3D)), so

that distance and/or neighborhood relations between

data points—the so-called data structure—are pre-

served. Projected results can be next visualized by

techniques such as scatterplots1 and parallel coordi-

nates.2 DR methods have been used for the analysis of

text documents,3–7 multimedia,8,9 text mining,10,11

vector fields,12 and biomedical data.13–15

DR techniques have become very robust, precise,

computationally scalable, and easy to apply. While 2D

projections require less effort to explore,16–18 3D pro-

jections preserve better the original high-dimensional

data structure.6,19–21 However, 3D projections output

a 3D point cloud, typically shown as a scatterplot,

whose interpretation is far from simple.1 As users

rotate the scatterplot to find a suitable viewpoint, sev-

eral questions arise, such as how much of the original

data structure has the projection preserved? What is

the meaning of the 3D directions along which scatter-

plot points are spread in terms of original variables’

values and/or correlations? What are good viewpoints

to look at the scatterplot from, given a set of questions

on these variables?

We propose a set of interactive explanatory visuali-

zation techniques to help users answer the above ques-

tions for 3D DR projections. Our techniques work as
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add-ons to any DR technique, that is, do not depend

on technical aspects of the DR algorithm being used.

We keep their visual design simple, so that learning to

use them requires limited effort. We integrate our

techniques with classical 3D scatterplot views, so that

they can be readily used to assist typical projection–

exploration scenarios, or in other words, explain the

projection. Specifically, we show how our techniques

can aid detecting global correlations of variables, by

suitably changing the viewpoint via 3D trackball-like

rotations and by explaining which variables are best

visible from a given viewpoint and which are not, due

to occlusion or screen-space projection. We illustrate

our visualization techniques by applying them to sev-

eral data-exploration scenarios involving real-world

multidimensional datasets and a set of recent DR pro-

jection algorithms.

The structure of this article is as follows. Section

‘‘Related work’’ presents related work on the computa-

tion and interactive exploration of DR projections and

also outlines several goals supported by such explora-

tion. Section ‘‘Explanatory visualizations’’ introduces

our explanatory visualizations via a simple dataset.

Section ‘‘Applications’’ illustrates how our visualiza-

tions can answer several questions on 3D scatterplots

created by several DR techniques from real-world

datasets. Section ‘‘Discussion’’ discusses our tech-

niques. Finally, section ‘‘Conclusion’’ concludes the

article.

Related work

DR

Given a dataset Dn = fpi 2 R
ng14i4N of N n-dimen-

sional points, we model DR as a function

f : R
n3P! R

m ð1Þ

which maps each point pi 2 Dn to a point

qi 2 Dm � R
m. Here, n is typically large (tens up to

hundreds of dimensions, or variables), and m is typi-

cally 2 or 3. P denotes the parameter space of f, that

is, the settings that control the projection algorithm. f

is designed to keep the so-called structure of the data as

similar as possible in R
n and R

m. One way for this is to

let f minimize the normalized stress function

s =

P
14i4N ,14j4N

dn(pi,pj)� dm(qi,qj)
� �2

P
14i4N , 14j4N

dn(pi,pj)
� �2

ð2Þ

where dn : R
n3R

n ! R
+ and dm : R

m3R
m ! R

+

are the distance metrics for Dn and Dm, respectively.

Alternatively, f can optimize for having the k-nearest

neighbors for a point qi 2 Dm be the same as the k-

nearest neighbors of pi 2 Dn, for an application-

dependent k.

Many DR methods are a special case of a wider

class of techniques called multidimensional scaling

(MDS). MDS methods compute f using only pairwise

point distances. This avoids accessing the full dataset

Dn. Yet, computing distances creates additional costs

(O(N2) for N data points). The part-linear multidi-

mensional projection (PLMP) method avoids this by

using distances only for a small set of sample (represen-

tative) points in Dn and using the nD coordinates for

the remaining points.14

DR methods can be classified by the techniques

used to compute f:14 spectral decomposition techniques

project points along the eigenvectors having the largest

eigenvalues of the pointwise distance matrix.22 Local

linear embedding (LLE)23 and isometric feature map-

ping (ISOMAP)24,25 use numerical methods tailored

to solve sparse eigen problems. Landmark MDS26 and

Pivot MDS27 book further speed-ups by using classical

MDS on a small set of sample points and projecting

remaining points by local interpolation. Fastmap

achieves linear complexity in the input point count at

the cost of a less well-minimized stress s.8 Nonlinear

optimization methods iteratively search the parameter

space P to minimize the stress s.28,29 Besides naive

gradient descent, multigrid numerical solvers are used

to speed searching.30 Pekalska et al.31 propose a speed-

up that projects a sample subset (by gradient descent)

and fits remaining points by local interpolation. Force-

based methods are a special class of nonlinear meth-

ods, often used in graph drawing.32 Chalmers33 speeds

these up by using the sample subset idea outlined ear-

lier. Further speed-ups are achieved by multilevel sol-

vers and GPU techniques34,35 and by recursively

selecting samples via a multilevel approach.36 Tejada

et al.37 use a heuristic to embed instances by a force-

based relaxation technique. The least squares projec-

tion (LSP) positions the sample subset by a force-

based scheme and fits remaining points by Laplacian

smoothing.6 The local affine multidimensional projec-

tion (LAMP) uses a sample subset to locally construct

affine projections and allows users to interactively

place such points to optimize the overall projection lay-

out.9 Local projection methods preserve distances bet-

ter for high-dimensional spaces (high n values), but are

more computationally demanding and more complex

to implement.9,38 Global projection methods preserve

distances better for low-dimensional spaces (low n)

values and are also relatively faster and simpler to

implement. For more details on these and other DR

techniques, we refer to recent surveys in Sorzano

et al.39 and Van der Maaten et al.40

2 Information Visualization
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Explaining projections

Interpreting DR scatterplots is not easy. Refining the

questions in section ‘‘Introduction,’’ we identify the fol-

lowing goals which we aim to address:

1. Assign a meaning to the m dimensions of the mD

projection space in relation to the original n

variables.

2. Assign a meaning to the inter-point distances in R
m

in relation to the corresponding distances in R
n.

3. Find a suitable viewpoint (for 3D projections) that

best supports answering specific questions.

4. Compare the quality of projections for dimensions

m 2 f2, 3g from the perspective of several given

tasks.

Goal 1 can be addressed by biplots and their varia-

tions.41,42 Biplots are the multivariate analog of scat-

terplots. Instead of using the scatterplot idea of

plotting observations along two orthogonal (Cartesian)

axes mapping two variables, biplots approximate the

multivariate distribution of a high-dimensional dataset

in a few dimensions, typically 2 or 3, by superimposing

representations of variable values on representations of

the observations themselves. As such, they offer the

possibility to easily see relationships between (1) indi-

vidual observations and (2) observations and their

variable values.43 Graphically, biplots can be seen as a

scatterplot generalization, in the sense that they have

as many axes as there are variables, and these axes can

take any orientation in the display. Biplot axes support

goal (2) above by showing which are the directions of

maximal variation in the original n variables in the m-

dimensional projection space.

Biplots and their axes are usually constructed as fol-

lows. Consider the N3n matrix D=(pi)14i4N . If D

has rank r, it can be rewritten by singular value decom-

position (SVD) as

D=UDVT ð3Þ

where U is an N3r matrix, D is a r3r diagonal matrix

of eigenvalues a1 . � � � . ar . 0, and V is an n3r

matrix. Here, UTU=VTV= I, where I is the identity

matrix. Denoting F=UD, we have D=FVT. The

columns of VT define the biplot axes. The rows of

matrix F define the projections of our data points pi

onto these axes. If r43, we can directly visualize the

biplot by drawing projections as a point cloud and

biplot axes as vector glyphs (oriented straight lines),

respectively. If r . 3, we can approximate D by using

in equation (3) only the first m \ r columns of U and

V. Then F gives the m-dimensional projections qi of pi

along the eigenvectors corresponding to the m largest

eigenvalues a1, . . . ,am of D. Using eigenvectors as

biplot axes, however, does not convey much insight, as

eigenvectors usually do not relate one-to-one to the

original variables in Dn. A better solution is to con-

struct n biplot axes by projecting, via equation (3), the

n unit vectors in Rn. These vectors show the direction

of maximal variation in the resulting m-dimensional

projection of our n variables.42,44

A different approach to Goal 1 is given in

Broeksema et al.45 Here, an nD categorical dataset is

projected to m= 2 dimensions by SVD. Instead of

drawing n biplot axes, the contributions to the screen

x- and y-axes of all original n dimensions are shown.

These contributions, also called loadings,42,44 are the

projections of the nD unit vectors (via equation (3))

on the two eigenvectors that determine the projection.

The x- and y-axes are annotated with two n-element

bar charts, where the height of each bar shows the

contribution of a given variable to the respective axis.

A third bar chart shows the contributions of all n vari-

ables to all eigenvectors not used to construct the DR

projection. This shows the amount of data variance

not captured by the 2D projection. A similar visualiza-

tion of loadings is shown in Oeltze et al.13

Goal 2, that is, assigning a meaning to the inter-

point distances in R
m in relation to the corresponding

distances in R
n, is addressed by aggregated quality

metrics such as stress (equation (2)), correlation,46

neighborhood-preservation plots,6 shape-based

metrics,47 and perceptual user studies.48 While show-

ing the overall quality of a projection, aggregate metrics

do not show local projection errors. 2D distance scat-

terplots can show the correlation of Dn with Dm,9 but

do not show projection problems for any point i versus

all points j 6¼ i. To improve this, Schreck et al.49 com-

pute, for each data point pi, the projection precision

score (pps) defined as the normalized distance between

the two k-dimensional vectors containing the

Euclidean distances between pi and its k-nearest

neighbors in R
n, respectively R

2. Showing pps via a col-

ormap helps finding areas where neighborhoods are

not preserved. Aupetit50 proposed several projection-

quality metrics for DR techniques: Point stretching

and compression metrics show, for each pi, the aggre-

gated increase and, respectively, the decrease, of dis-

tances of pi ’s projection qi to other projections

qj 6¼i 2 Dm versus distances of pi to all other points

pj 6¼i 2 D2. Segment stretching and compression show

the variation in distances of close point-pairs (i, j)
between R

n and R
2. For a selected point i, the proxim-

ity metric maps distances in R
n from pi to all other

points pj 6¼i to corresponding points qi 2 R
2, and

thereby shows how (and where) the projection may

have distorted the data structure. An overview of qual-

ity metrics for multivariate data visualization is given

in Bertini et al.51
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Goals 1 and 2 are also addressed jointly by other

tools. The early VIBE system allows users to freely

place in 2D space several so-called points of interest

(POIs), each representing a sample of the nD space

under study.5 Points in this space represent documents

along n dimensions encoding term frequencies. Actual

documents are placed in the same 2D space so as to

reflect their relative similarities with the given POIs.

Conceptually, this can be seen as projecting both doc-

uments and POIs (variable values) from nD to 2D.

However, this approach requires the user to manually

create relevant POIs (samples of the nD space) and

also place them suitably in 2D. ForceSPIRE, a

document-exploration system, uses a force-based lay-

out to construct a 2D projection of a set of documents

represented as nD term vectors.4 By dragging, pinning,

and annotating documents, users can incrementally

assign higher-level semantics to 2D inter-document dis-

tances. The ‘‘dust & magnets’’ technique extends the

exploration power of ForceSPIRE and VIBE by allow-

ing users to interactively drag magnets to discover how

data points (dust) are attracted toward them in an ani-

mated fashion.7 While we also use interaction to

explain a projection, like Endert et al.,4 Olsen et al.,5

and Yi et al.7 our focus is to explain projection-space

distances in terms of the original nD variables, rather

than showing similarities of projected points with a

user-selected set of variable values or extracting

higher-level semantics from variable values. As such,

we will not modify the projection, as we consider it to

be our ‘‘ground truth’’ and also give a key role to the

nD variables in our explanation.

Goal 3, that is, finding a suitable viewpoint (for 3D

projections) that best supports answering specific

questions, can be addressed by multiple views, such as

three 2D views linked with a 3D scatterplot by interac-

tive selection,52 or interaction and animation, for

example, the scatterplot matrix. ‘‘Rolling the dice’’

(RTD) adds interactivity to improve navigation, 3D

animated transitions to explore the visual space, and

swapping the scatterplot-matrix axes to show variable

correlations and disparities.1 This idea was extended

in Sanftmann and Weiskopf53 by linking a 3D scatter-

plot with a 3D scatterplot matrix, improving naviga-

tion by using three axes and using one or two axes

during visual transitions. A similar idea was used by

Hurter et al.54 to link 3D and 2D scatterplots.

Claessen and Van Wijk55 extend axis movement for

scatterplot navigation, to allow users to interactively

draw, place, and link axes on a canvas, thereby creat-

ing a continuous combination space of 2D scatter-

plots, scatterplot matrices, and parallel coordinates.

Goal 4, that is, comparing 2D versus 3D DR pro-

jections, to find which is more suitable for a specific

context (and why), is still an open subject.56 Several

authors argue that 2D DR plots are better for visualiz-

ing text documents,16,18 and that 2D navigation is eas-

ier than its 3D counterpart.18 For the specific task of

cluster separation, Sedlmair et al.17 argue that 2D DR

plots are found to be as good as (interactive) 3D DR

plots. 2D DR plots were also found better for search

tasks57 and for tasks involving distance assessment and

spatial arrangements.58 On the other hand, Jolliffe19

argues that 3D projections are needed to ‘‘encode a

realistic picture of what the data look like’’ when the

intrinsic data dimension is 3 or higher. Dang et al.59

show how 3D glyph stacking can overcome color cod-

ing problems in 2D plots. Additional cues such as illu-

mination and depth are proposed in support of using

3D scatterplots.60 Sanftmann and Weiskopf53 argue

that high-point densities in scatterplots are better

handled by 3D scatterplots. Chan et al.61 argue that

3D projections decrease information loss by allowing

better discrimination between data elements. A discus-

sion of contexts where 3D DR projections are prefer-

able to 2D ones is given in Sanftmann and Weiskopf62

(section 2.3). Poco et al.21 compared 2D and 3D DR

projections using LSP6 both quantitatively (by stress

metrics) and qualitatively (by controlled user studies).

The quantitative comparisons showed a higher accu-

racy of 3D projections; the user studies showed that

when augmented by suitable interaction tools, 3D pro-

jections were superior to 2D projections in terms of

both confidence and satisfaction and argued for the

further development of 3D interactive exploration

tools.

Summarizing the above, with needed brevity, we

argue that (a) 2D DR plots are generally found more

effective for the specific tasks of cluster separation and

searching and require less interaction; while 3D DR

plots preserve distances better, but loose appeal due to

navigation, orientation, and occlusion problems. As

such, we argue that our goal of designing effective

interactive exploration tools for 3D DR projections,

which keep the benefit of higher 3D projection accu-

racy as compared to 2D projections, but decrease 3D

interpretation costs, is worth investigating.

Explanatory visualizations

We next detail our interactive visualizations that sup-

port the explanatory goals in section ‘‘Explaining pro-

jections.’’ As running example, we use a dataset

containing 2814 points, each representing the abstract

of a scientific article (dataset ALL in Paiva et al.63).

From the abstracts, a nine-dimensional feature space

was created by removing stop-words and using stem-

ming. Feature coordinates were computed by the

term-frequency-inverse-document-frequency count.64
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From this dataset, a 3D projection was created using

LAMP.9 A 10th attribute, not used in the projection,

indicates the class of each document, established

manually based on the perceived topic of each

document.

Figure 1 shows the 3D projection using a scatter-

plot, with points colored by their class attribute. Apart

from seeing a few separated point clusters, which seem

to capture the class attribute, this image does not tell

us more: we do not know how variable values vary

along the 3D space, or whether they correlate with the

clusters or with each other, or how to choose a good

viewpoint to examine the dataset. We next show how

to answer such questions.

Enhanced biplot axes

Standard biplots project the n variables into biplot axes

in the low-dimensional mD space using SVD (equation

(3)), as described in section ‘‘Explaining projections.’’

This has several problems. First, this assumes that DR

is done using a uniform and linear transformation.

This is not true for nonlinear DR techniques or tech-

niques based on different local projection schemes

(‘‘Related work’’). Second, this assumes that we know

the internals of the DR method, such as the SVD

matrices U, D, and V (section ‘‘Explaining projec-

tions). Finally, such biplots cannot show the direction

and (nonlinear) scaling of the n variables.

We address these issues as follows. For each nD

variable i, we create a set of S = 100 sample points

pi
14j4S, spread uniformly between the minimum and

maximum of variable i in Dn; for the other variables

k 6¼ i, pk
j take values equal to the average of variable k

in Dn. Next, we use the DR projection f (equation (1))

as a black box to project the points pi
j to qi

j 2 R
m and

draw a curve (biplot axis) ci = fqi
jg to connect all

projected points. Figure 2(a) shows this. We see how

and where the nD axes get mapped in the 3D space.

The lengths and bends of the curves ci tell us about the

spread, respectively, nonlinearity, of the projection.

Straight long 3D curves, for example, axes 6 and 8,

show variables that are dominant (in terms of data var-

iation) and well preserved (in terms of linearity) by the

projection. Curved axes, for example, 3 and 1, show

(local) nonlinearities of the projection. Short axes show

dimensions along which data have less variation. The

axes intersect in the projection centroid. Figure 2(b)

shows the same dataset, projected with the FBDR

force-based scheme in Tejada et al.37 The extent and

overall shape of the resulting 3D point cloud are very

similar to the LAMP projection in Figure 2(a). Yet, the

axes are now significantly more curved and entangled.

This tells us directly that FBDR is less good than

LAMP if we want to be able to ‘‘read’’ our nD variables

along clearly separated directions in the projection

space.

Figure 1. Document dataset shown by a 3D scatterplot.
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Figure 2. Adding curved biplot axes to the 3D projection in
Figure 1: (a) LAMP projection and (b) FBDR projection.
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Enhanced axis legends

The users can view 3D projections from any view-

point, using a virtual trackball to rotate, translate, and

zoom the camera. For such a viewpoint, we denote the

screen axes x and y by x1 and x2, and the view direc-

tion by x3. Given such a viewpoint, a key user question

is ‘‘what can I see from here?’’ This question can be

rephrased as follows: the variations in which original

nD variables can we see best along screen axes x1 and

x2? And which variables cannot that viewpoint show,

because they get mapped along the view direction x3?

Consider the analogy with the display of a simple 2D

scatterplot of two variables, something that arguably

most users are familiar with: The meaning of the

screen x- and y-axes is clear—each such axis maps one

of the two input variables. This is not so for our con-

text, since (a) DR projects map many (n� 2) vari-

ables to three axes, so an axis will represent a ‘‘mix’’ of

several variables and (b) we can freely choose any 3D

viewpoint to look at the 3D DR projection. We pro-

pose to jointly address both (a) and (b), as follows.

Construction. To explain the screen axes, we use three

bar charts, or axis legends (Figure 3), one for each of

the axes xj , each having n bars for the n input variables.

The height of the ith bar in the legend of xj tells how

much axis xj shows the variation in the ith variable and

is given by the absolute value of

h
j
i = (qi

S � qi
1) � xj

� �
1�

cik k � qi
S � qi

1

�� ���� ��
cik k

� �
ð4Þ

Here, cik k is the length of the (curved) biplot axis ci,

computed as in section ‘‘Enhanced biplot axes.’’ The

first term in equation (4) is the projected length of ci

on screen axis xj. The high values hereof tell that we

can easily see the spread of variable i along screen axis

xj . The second term in equation (4) encodes the line-

arity of ci . The high values hereof tell that the projec-

tion maps variable i to a straight line in the 3D

projection space. The low values tell that variable i

maps to a curved axis—so reading this variable along

the straight screen axis xj will be difficult. The high val-

ues of h1
i or h2

i , that is, long bars in the x1 or x2 charts,

are desirable, as they tell that the x or y screen axes

can be used to directly read the variation in variable i.

The high values of h3
i are undesirable, as they tell that

variable i spreads mostly along the view direction, thus

it is not observable from the current viewpoint.

Hence, we call the x3 chart the observability legend. We

also orient the bars of the x and y legends upward, and

the bars of the observability legend downward, respec-

tively (see Figure 3). This way, the upward-pointing

direction of bars uniformly represents observability (of

a variable) in all three legends.

The sign of h
j
i tells if variable i is mapped in the

positive or negative direction of screen axis xj. We

show this by a green (hj
i . 0), red (hj

i \ 0), and gray

(h
j
i = 0) box under each bar in the axis legends x1 and

x2. This shows how a variable increases or decreases

along a screen axis. For the view-direction axis x3, we

do not show this sign, since data variations along this

axis are, by definition, not visible from the current

viewpoint. The bars in all three charts are colored to

show the identity of the variables by a categorical

y a
xis

 le
ge

nd

x a
xis

 le
ge

nd

ob
se

rv
ab

ilit
y l

eg
en

d
x a

xis
 le

ge
nd

rotation

0 2 7 8 3 5 4 1 6

1 3 8 4 5 7 2 0 6

6 5 4 3 1 2 8 7 0

shift-click on variable 6

axis 0

ax
is 

63  1 8 5 0 4 2 7 6

6 2 4 8 7 1 5 0 3

y a
xis

 le
ge

nd

7 6 0 5 8 1 2 3 4

(a) (b)

variable 0

variable 6

variable 2
variable 7

axis 2

axis 7

axis 6
axis 0

axis 7

axis 2

click on variable 0

ob
se

rv
ab

ilit
y l

eg
en

d

axis 5

Figure 3. Axis legends. Two clicks in the left view will align variables 0 and 6 with the screen x- and y-axes,
respectively, leading to the right view: (a) before alignment and (b) after alignment.
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colormap created with ColorBrewer65 and labeled by

variable names (more about this next).

Sorting legends. We provide two modes to sort legend

bars left to right. The first mode sorts bars alphabeti-

cally on their variable names, so bars for the same vari-

able i appear at the same position in all three legends.

This allows one to quickly visually scan and correlate

the three legends to see how a given variable of interest

is visible from the current viewpoint, that is, answer

the question ‘‘Along which screen axis (x or y) can I

best see this variable?’’ The second mode sorts bars in

decreasing order of their h
j
i

��� ��� values. This allows one to

quickly see which are the best visible variables along a

given screen axis, or answer the question ‘‘What does

this screen axis show?’’ In this mode (see Figure 3), the

bars for the same variable i may not appear at the same

position in the three legends, but still have the same

color and labels, to help correlation. This mode also

addresses the case when we have a high-dimensional

dataset, that is, n is large (tens or hundreds). Since

legends are sorted, the most visible variables along the

x and y screen axes are always the leftmost (and long-

est) bars of the x and y legends. If n exceeds a fixed

preset nmax = 20, we only draw the first nmax longest

bars. This ensures (a) that the x1 and x2 legends

always show the nmax most visible variables from the

current viewpoint, and (b) that bars are wide enough

for their color and label annotations to be readable.

For the x3 legend, the drawn bars tell us which are the

worst visible variables from the current viewpoint. This

helps answering the question ‘‘Which variables should

I not try to analyze from the current viewpoint?’’

Summarizing, even when n . nmax, our three legends

can tell us which are the best and worst visible nmax

variables from any viewpoint. Apart from color coding,

the bars in all three legends are linked, in both sorting

modes, by brushing, similarly to the design proposed

in Broeksema et al.45 Whenever one moves the mouse

pointer in a bar in a legend, this bar and the two other

corresponding bars in the other two legends are high-

lighted. This way, one can quickly see how important a

given variable of interest is along both x- and y-axes,

and also how much of the variation in this variable can-

not be observed from the current viewpoint, since it

occurs along the view direction.

Linked views. We next use interactivity to support sev-

eral exploration tasks. As the user changes the view-

point, for example, by rotating the virtual trackball,

axis legends dynamically change, so that one interac-

tively sees how the viewpoint change affects what is

mapped along the screen axes (see submitted video).

Separately, we set the transparencies of the biplot axes

ci to the values h3
i

�� ��. The axes for variables with low

h3
i

�� �� values get emphasized (opaque), telling that their

variables can be well read from the current view-

point—see, for example, axes 7, 6, and 2 in Figure

3(a). Conversely, the axes for variables with high h3
i

�� ��
values are more transparent, telling that these variables

are hard to read from the current viewpoint—see, for

example, axis 5 in Figure 3(b).

Viewpoint selection. We further assist users to choose

a good viewpoint by interactive-and-iterative axis

alignment, as follows. Clicking any bar i in the x1 or

x2 legends smoothly rotates the viewpoint to a new

one where the biplot axis ci for the clicked variable is

best aligned, that is, has a maximal h
j
i value, with the

clicked screen axis x1 or x2. Shift-clicking a second bar

i0 in the other legend (say, x2, if x1 was the first click)

aligns variable i0 with x2, but constrains viewpoint

rotation around x1. This way, we get a viewpoint

which best encodes the variation in two user-chosen

variables—that is, creates the best possible scatterplot

i versus i0 allowed by the given DR projection—with

only two clicks. Figure 3 illustrates this by showing

how we align variables 0 and 6 with the screen x- and

y-axes (Figure 3(a)). The resulting alignment (Figure

3(b)) also shows that axes 0 and 6 (marked red) are

slightly curved, so that the projection is nonlinear.

The y legend shows that the vertical data spread is

mainly explained by variable 6. The x legend shows

that the x spread is mainly explained by a mix of vari-

ables 0, 2, and 7, since the three longest bars in this

legend have quite similar sizes. Since variable 0 is best

aligned with the x-axis, by the alignment procedure, it

means that variables 2 and 7 must also be well aligned

with x too. It thus follows that variables 0, 2, and 7

project to (near) parallel axes in 3D, that is, they are

strongly correlated. To check this, we brush the

respective bars in the x plot, which highlights their

biplot axes in 3D (apart from highlighting the corre-

sponding bars in the three legends, as explained ear-

lier). As shown in Figure 3(b), these are indeed

correlated (the respective biplot axes are nearly paral-

lel). Note that our x or y alignment tool is crucial for

discovering correlations. Indeed, for the arbitrary

viewpoint in Figure 3(a), the y bars for, for example,

variables 7 and 6 are quite similar in length; yet, after

alignment, we clearly see that variable 6 is orthogonal

to variable 7.

Our approach is related to the legends in

Broeksema et al.,45 which show the variation in the

nD variables along the screen x- and y-axes and the

variation in the view direction (thus, not visible from a

given viewpoint). Yet, important differences exist.

First, the legends in Broeksema et al.45 are static, as

Coimbra et al. 7



their 2D projection is predefined by the SVD’s two larg-

est eigenvectors. Our dynamic legends help reading

the nD variables from an interactively user-chosen view-

point in 3D. For example, the x and y legends in

Figure 3(a) show that viewpoint does not clearly let us

read individual variables along the x and y screen axes,

since many bars are long in these legends. After align-

ment, the legends significantly change (Figure 3(b)),

telling us that x maps mainly a mix of variables 0, 2,

and 7 and y maps mainly variable 6. We also see this

in the observability legend (Figure 3(b), top right): the

bars for variables 6, 0, 2, and 7 are shortest (in this

order), telling that these variables are indeed almost

fully captured by the xy screen space. In contrast, the

bars for variables 1, 3, and 8 are longest; this indicates

that these variables are poorly observable in the xy

screen space for the current viewpoint, since they

spread mainly in the z-direction. Second, while

Broeksema et al.45 orient bars in all three legends

upward, we chose to orient the observability legend

bars downward. This is in line with the fact that long

bars in the observability legend are undesirable (they

indicate variables we cannot see), while long bars in

the x and y legends are desirable (they indicate vari-

ables we can see). Third, the computation of our bar

heights is different. In Broeksema et al.,45 these are

the so-called loadings of the input n variables versus

the two eigenvectors used for 2D projection.

Computing loadings requires explicit knowledge of the

DR method f used (SVD, in Broeksema et al.45). In

contrast, we treat the DR method as a black box when

creating our biplot axes (section ‘‘Enhanced biplot

axes’’) and compute our bar heights separately as a

function of the biplot axes’ positions given by the cur-

rent viewpoint (equation (4)). Hence, our biplot axes

can be straight lines or curves, depending on the

(non)linearity of f. In contrast, Broeksema et al.,45

which uses the biplot setup in Abdi and Valentin,44

assume a linear projection. Third, unlike Broeksema

et al.,45 sorting legends allows us to tell which vari-

ables can be best read along x and y, or worst read

(because being orthogonal to the xy plane); discover

variable correlations; and make legends scalable for

large n values.

Viewpoint legend

Dynamic axis legends help seeing which variables are

visible along the screen axes from a given viewpoint

and also choose a good viewpoint to examine a given

variable pair. Our next question is as follows: given a

3D DR projection, which relations (between all vari-

able pairs) can we see well if we had time to go through

all viewpoints?

We answer this question by a new interactive wid-

get: the viewpoint legend (Figure 4). The widget uses

a sphere S (Figure 4(a)); each point v 2 S maps the

viewpoint for the view direction c� v, where c is the

center of S. Thus, S captures all possible viewpoints

we can examine our 3D DR projection from. The cen-

tral cross shows the current viewpoint. We uniformly

sample S, in polar coordinates, by 4003400 view-

points, and define the quality of each sample viewpoint

v in terms of showing the variable pair (i, j 6¼ i) as

q(v, i, j)= (h1
i , h

2
i )3(h1

j , h
2
j )

T
��� ��� ð5Þ

Intuitively, q tells how well we can see from v the var-

iation in variable i versus j, modulo all possible rota-

tions of x1 and x2 in the view plane around the screen-

normal axis x3 = c� v. This depends on how well the

DR from R
n to R

3, and the 3D-to-2D (screen) projec-

tion given by v, captures this variation. Large q(v, i, j)
values tell that the two biplot axes i and j are large and

form a large angle (maximally, 908) on the view plane.

Such viewpoints are interesting to explore, as they

show existing independent variable pairs which also

have large spreads.

For each sample viewpoint v, we compute the maxi-

mal value of q for all variable pairs (i, j)

Q(v)= max
14i4n,14j 6¼i4n

q(v, i, j) ð6Þ

For all v, we also compute the normalized maximal

quality �Q(v) 2 ½0, 1�=Q(v)=maxu2S Q(u) and the

variable pair p(v)= (i, j) which maximizes q at v. Here,

(i, j) are the variables that define the 2D scatterplot-

like view we can best see from viewpoint v. Next, we

select the set P of C = 8 distinct variable pairs that

have the largest values of q over all viewpoints v 2 S. P

gives the C variable pairs we can best visualize from all

red region: all viewpoints from which 
the scatterplot of variables 0 and 6
is best visible

current viewpoint

highlighted cell (0,6)

Q~

0 1

1

0.5

S,V
(a) (b)

(c)

transfer function for V
transfer function for S

screen axis x

sc
re

en
 ax

is 
y

Figure 4. Legend for viewpoint shown in Figure 3 right.
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possible viewpoints. We assign to each pair p 2 P, thus

to all C best-visible variable pairs, a distinct color c(p),
using a categorical colormap, and color the sphere

points v as follows: If p(v) 2 P , we use for v the color

c(p), else we use the color gray. Next, we modulate the

saturation S and brightness V of the assigned color at v

by the quality �Q(v) using the transfer functions shown

in Figure 4(c). This effectively maps �Q(v) to the shad-

ing of the sphere: low values are dark, mid-range val-

ues are saturated, and high values are white. Finally,

we render this sphere using standard bilinear color

interpolation over a quad mesh defined by our sample

points v.

To help interpreting the shaded sphere, we add a

separate matrix-plot view (Figure 4(b)). Each variable

pair (i, j) maps to a cell in this plot. The cells are

colored using a two-color scheme, as follows. The first

color is c(p) for cells of pairs p 2 P and is gray for other

cells. The second colormaps the value maxv2S q(v, i, j)
to a gray value between black and white. The cells are

colored by linearly interpolating between the first

color, assigned to the cell-border, and the second

color, assigned to the cell center. The matrix plot thus

shows both the C best-visible variable pairs, encoded

by their respective colors, and the relative quality of

different variable pairs, encoded by the brightness of

their respective cell centers.

Figure 5 and the submitted video shows the added

value of our viewpoint legend and matrix plot for our

documents’ dataset. We explore the viewpoint space

interactively, as follows. Rotating the sphere changes

the current viewpoint, which in turn dynamically

updates the axis bar charts (section ‘‘Enhanced axis

legends’’). Conversely, rotating the 3D scatterplot

(either manually or by axis-alignment animation, see

section ‘‘Enhanced axis legends’’) turns the sphere in

sync to show the newly selected viewpoint. The cell for

the current viewpoint is highlighted on the matrix plot,

so we can directly see which variable pair is best visible

from that viewpoint, for example, (2, 6) in Figure 5.

Clicking any cell (i, j) in the matrix plot smoothly

rotates the viewpoint to one where the variable pair

(i, j) is best visible, that is, goes to the viewpoint v

where q(v, i, j) is maximal. This allows quickly navigat-

ing to such a viewpoint for any given variable pair—

that is, constructs the best scatterplot (i, j), 8i 6¼ j by

one click.

The viewpoint legend helps answering several ques-

tions, all related to choosing informative viewpoints for

3D DR projections, as follows:

Where from should I examine pair (i, j)?. Large same-

hue sphere zones, for example, the green one in

Figure 5, show view-space areas from which the vari-

able pair (i, j) is best visible. Looking up green in the

matrix plot shows that this zone maps the variable pair

(2, 6).

Is there any good viewpoint for (i, j)?. Small color

zones show that some variable pairs are hard to see,

since only few viewpoints allow that. This tells users

not to expect to ‘‘create’’ such scatterplots from this

DR projection, as this is very hard or even not possi-

ble. In other words, if understanding the correlation of

such variable pairs is important, one should first

change the DR projection.

How easy is to examine (i, j)?. Large bright highlights

in sphere zones show that the respective variable pair is

easy to examine from many close viewpoints. Given

our quality definition (equation (5)), this means that

the spread of the values for these variables is large

compared to other variables, and that the biplot axes’

angles for these variables are large. This tells that creat-

ing scatterplots for the respective two variables is very

easy—just move anywhere in the respective highlight

and you will get the desired scatterplot. Moreover, the

matrix-plot cell brightnesses tell us how easy is it to

examine their respective variable pairs from all possible

viewpoints: Bright cells tell that there is at least one

viewpoint from where the respective pairs can be

examined well (selectable by clicking that cell); dark

cells tell that no such viewpoints exist.

What can I see from a given viewpoint?. Highlights

show viewpoints from where the variable pair given by

the color around the highlight is best visible. Dark

zones like the ones outside and close to the border of

the green zone in Figure 5 tell that, from those view-

points, there is no easy-to-see variable pair, since the

best visible such pair has a low quality. Hence, such

green area: viewpoints from which 
the scatterplot of variables 2 and 6 
is best visible

variable 6

variable 2

axis 6

axis 2

highlighted cell (2,6)

va
ria

ble
 2

2 0 6 4 5 1 8 3 7

7 3 8 1 4 0 5 2 6

va
ria

ble
 6

6 5 1 2 3 4 8 7 0

Figure 5. Selected viewpoint best showing scatterplot of
variables 2 and 6.
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zones tell that their respective viewpoints are arguably

not useful for any visualization task.

How to relate more than two variables?. Color-zone

borders show viewpoints where the best visible variable

pair changes for small viewpoint rotations. These are

typically bad viewpoints to examine a single variable

pair. However, as we shall see in section ‘‘Multifield

dataset: explaining projection shapes,’’ these are good

viewpoints to examine groups of three or more

variables.

Applications

We next use our explanatory visualization techniques

(enhanced biplot axes, axis legends, viewpoint legend)

to explore 3D DR projections and aid in coarse corre-

lations. They were constructed by three different DR

methods, for four different datasets. By showing more

datasets, we can easily explain how we address differ-

ent kinds of questions with our tools, since each one

has different data and, consequently, different ques-

tions related to it.

Wine dataset: finding good DR projections

This n =12 D dataset has 6497 points, each being a

different sample of vinho verde wine.66 The variables

include chemical properties, for example, acidity,

sugar and sulfur contents, chlorides, density, pH, and

alcohol percentage. The last attribute is a user-

assigned quality level. The tasks for this dataset

involve finding correlations of the first 11 variables on

one hand, and the quality on the other hand, over spe-

cific subsets of points; if found, such correlations

could be next used to design automatic quality predic-

tors.66 To use DR for such tasks, we first must decide

which DR method is best suited. One way for this is to

select the DR method that minimizes aggregated pro-

jection errors, also called aggregated stress.20 Yet,

many state-of-the-art DR techniques will yield quite

similar error values, so such aggregate errors are not

discriminatory enough.

We consider here three DR methods: FBDR,37

ISOMAP,25 and LAMP9 to project our dataset to 3D

(other DR methods can be equally easily used).

Figure 6 shows the obtained projections. For this data-

set, these three projections yield very similar values for

the normalized stress metric (equation (2)): 0.75

(ISOMAP), 0.81 (FBDR), and 0.83 (LAMP). Hence,

how to say which DR method is best for discovering

variable correlations? Showing our biplot axes helps us

here (Figure 6). We see that FBDR and ISOMAP cre-

ate, overall, quite twisted axes, unlike LAMP. Reading

data values and/or finding if such axes are highly corre-

lated (nearly parallel) or independent (nearly orthogo-

nal) is clearly much easier if our axes are straight lines

rather than curves. Our first finding is, thus, that

LAMP is better for variable exploration in general.

However, the above does not imply that LAMP

would be the best projection for more specific tasks,

like exploring correlations of just two specific vari-

ables. Consider, for example, alcohol and acidity. We

see that the alcohol axis is comparably straight for

FBDR and LAMP—hence, we cannot yet rule out

FBDR as a useful projection for this task. To study

correlations against alcohol, we first click on the alcohol

bar in the y legend to align it with the screen y-axis, in

all three plots. Next, we use the same procedure to

align acidity with the screen x-axis (one click on the

acidity bar, x legend). For extra insight, we also color

points by acidity values, using a blue–yellow–red diver-

gent colormap. We now get several extra insights:

First, we see that the x legend for FBDR has many

bars of nearly equal size to acidity. Hence, either

FBDR does not succeed in separating these variables

(a) (b) (c)

10: alcohol 10: alcohol 10: alcohol
variable 10 variable 10 variable 10

1: acidity 1: acidity1: acidity

variable 1
variable 1 variable 1

acidity acidity acidity

Figure 6. Selecting the best projection among three DR techniques using biplot axes and axis legends: (a) FBDR, (b)
ISOMAP, and (c) LAMP. See section ‘‘Wine dataset: finding good DR projections.’’
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during projection (which is bad) or we just discovered

that these variables are highly correlated (which is a

good finding). Yet, LAMP shows a clear exponential

drop-off of the same bar lengths. Since LAMP’s pro-

jection error is roughly equal to FBDR’s, it means that

the respective variables are not correlated; hence, the

lack of separation in FBDR is a limitation of FBDR.

Separately, we see that ISOMAP creates a twisted

acidity axis and also shows a similar artificial correla-

tion of variable projections along the x screen axis.

Hence, we decide that LAMP is better than ISOMAP.

Summarizing all above, we conclude that LAMP is the

best of the three projections (LAMP, ISOMAP, and

FBDR): it has a similar normalized stress metric, but

succeeds best in creating straight, and well-separated,

variable axes in 3D projection space.

Multifield dataset: explaining projection
shapes

This n =10 D dataset, from the IEEE Vis 2008 contest,

encodes a time step of a multifield simulation dataset

describing the formation of the early Universe.67 The

variables encode matter density, temperature, and con-

centrations of eight chemical species at 200,000 sam-

ple points. By freely rotating the 3D DR projection of

this dataset (Figure 7), done using LAMP, we notice

that the projection appears to be locally a 2D saddle-

like manifold (point-cloud surface). We next want to

better understand the shape of this surface and find

the variables that determine it.

To do this, we turn on our biplot axes. We immedi-

ately notice that axis 7 is by far the longest—so vari-

able 7 is important for explaining the projection’s

shape. Aligning variable 7 with the y screen axis shows

that the projection appears to have a ‘‘saddle’’ shape

(Figure 7(a)). We also see that axis 7 is nearly orthogo-

nal to all other nine biplot axes. Hence, the y spread of

the projection is mainly due to variable 7.

The viewpoint legend in Figure 7(a) shows next that

variable 5 has a large variation which is largely inde-

pendent on variable 7 (bright green zone on sphere;

bright green cell in the matrix plot). To better explore

the shape variation due to variables 5 and 7, we next

7: H- mass abundance

5: He+ mass abundance

cell (5,7)

6: He++ mass
abundance

7: H- mass abundance

cell (6,7)

variable 7 variable 7

variable 6

color: variable 5 color: variable 6

spike

7: H- mass abundance

6: He++ mass
abundance

(c)

5: He+ mass
abundance

(d)

6: He++ mass abundance

2: H mass abundance

cell (2,6)

color: variable 2

variable 6
variable 5

variable 5

cell (6,7)

variable 2
variable 3

spike

6: He++ mass abundance

variable 7

variable 6

spike

(a) (b)

Figure 7. Explaining, in terms of variables, the shape of the 3D LAMP projection of 10-variate multifield simulation
dataset (see section ‘‘Multifield dataset: explaining projection shapes’’): (a) variables 5 and 7 aligned with screen axes x
and y, (b) variable 6 aligned with screen axis x, (c) variables 6 and 7 aligned with screen axes x and y, and (d) variables 2
and 6 aligned with screen axes x and y.
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color points by variable 5, via the same colormap as in

Figure 6. The result (Figure 7(a)) shows that the x

stretch of our saddle shape is well explained by variable

5, which is high to the left and low to the right, as

shown by both the colormap and the red cell under the

variable 5 bar in the x legend. In this figure, we also

notice an interesting ‘‘spike’’ line-like outlier in the top-

left area. We can explain how this spike, as a specific

internal substructure, aligns with specific axes by look-

ing at them and see that the spike aligns best with axes

5 and 6. Iteratively aligning the x-axis (click on variable

5 bar in x legend, then click on variable 6 bar) shows

that the spike best aligns with axis 6, as the x bar for

variable 6 is largest. Figure 7(b) shows this viewpoint,

with points colored by variable 6. We can now easily

explain the spike as the locus of points having large

variable 6 values (yellow . red). Indeed, all other

points (on the saddle shape, not on the spike) have low

variable 6 values (blue).

The viewpoint legend in Figure 7(b) shows that

there are many viewpoints from which variables 6 and

7 project as independent axes (large brown area with

bright highlight on sphere; bright highlight in the

selected matrix-plot cell). Hence, variable 6 is indeed

independent on variable 7, which was found the most

important for explaining the saddle shape. Aligning

variables 6 and 7 with the x- and y-axes, respectively

(two clicks in the x and y legends), shows both the

spike outlier and the saddle shape in a single view

(Figure 7(c)). This view also shows that axes 5 and 6

are almost parallel, so variables 5 and 6 are highly cor-

related. We see this also in the viewpoint legend: the

current viewpoint, which best shows variables 6 and 7,

is very close to the brown–green zone border on the

sphere. Also, both brown and green zones have very

large bright highlights, and the brown–green border is

also bright. Hence, most viewpoints that best show

variables 6 and 7 also best show variables 5 and 7. We

thus refine our earlier explanation of the saddle: this

shape is best explained by variable 7 (in one direction)

and variable 5 or 6 (in an orthogonal direction).

To explore variable 6 further, we look at its row in

the matrix plot, and click the purple cell, to show its

variation against variable 2. This aligns variables 2 and

6 with the x- and y-axes respectively, yielding the view

in Figure 7(d). The x- and y-axis legends show now

clearly that variables 5 and 6, respectively, 2 and 3, are

highly correlated, since they have nearly equal and

almost maximal bars.

As a final point, let us consider the effort required

to explain the spike and saddle shapes present in the

3D scatterplot when using only classical projection–

exploration tools such as the virtual trackball for

rotation and the ability to color all projection points by

the values of a chosen variable. Rotating the scatterplot

so that we best see the spike outlier, that is, with the

spike nicely aligned with the y-axis, takes about 2–3

min when using the virtual trackball. In contrast, this

takes just two clicks on the x and y legends, as

explained earlier. Finding that the spike is best

explained by variable 6, while the saddle’s spread in

orthogonal direction to the spike is best explained by

variable 2, requires, with standard tools, iteratively

selecting each of the 10 variables to colormap the pro-

jection, detecting visually which is the strongest color

gradient aligned with the spike, respectively, saddle,

and memorizing this value. Using our tools, the color

cycling is not required; we can directly see which vari-

ables align with specific scatterplot structures in terms

of both biplot axes and axis legends.

Segmentation dataset: comparing 2D and 3D
projections

Our third dataset has 2300 points with n= 19 vari-

ables. Each point describes a randomly chosen 333

pixel-block from seven manually segmented outdoor

images, using 19 statistical image attributes, such as

color mean, standard deviation, and horizontal/vertical

contrast.68 An extra manually set label attribute, not

used in the DR projection, encodes the image type for

each point.9,14 The tasks for this dataset relate to

designing automated image classifiers (using the 19

attributes) to match the manual classification (label

attribute).69

Figure 8 shows this dataset using a 3D DR projec-

tion created by LAMP. By freely rotating this projec-

tion, with points colored by label values, we see that

the longest biplot axis maps variable 0 (region-centroid-

col). Aligning this axis with the y screen axis (click on

region-centroid-col bar in the y legend) brings the view-

point into a large red area on the viewpoint legend

sphere. In the matrix plot, we see that red maps the

variable pair (0, 3). We next click this cell to go to the

best viewpoint from which we can examine variables 0

and 3 (Figure 8(a)). The axis legends tell now that y

explains almost only variable 0, while x explains mainly

variable 3 (short-line-density). This viewpoint gives us

two other interesting insights. First, we see that vari-

able 0 has almost no correlation with the label-ID, that

is, variable 0 takes virtually all values in its range for

any single label-ID value. Next, by slightly rotating the

viewpoint around the y-axis (variable 0), we see that

axes 1–18 are located roughly in a plane orthogonal to

axis 0. Together, the above tells us that variable 0 is

not useful for classification, even though it is the most
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important in terms of variation and that the emerging

clusters can be explained by variables 1–18.

To better understand the correlation of variables 1–

18 with the label-ID, and thus get more insight into

developing a classifier, we could next (a) remove vari-

able 0 from the input dataset and redo the 3D DR

projection (since we decided that this variable is not

interesting), (b) view the current 3D projection from a

suitable angle (to ignore the spread along axis 0), or

(c) use a 2D DR projection rather than a 3D one

(since Figure 8(a) suggests us that all interesting data

variation occurs in a plane).

We examine next option (b). In the matrix plot in

Figure 8(a), we see that all brightly colored cells are in

columns 0 and 3, that is, the best viewpoints showing

independent variable pairs always involve variables 0

and 3. The best such viewpoint (brightest red cell)

maps variable pair (0, 3) we just studied. We thus now

choose to align biplot axis 3 with the y screen axis and

biplot axis 0 (which we are not interested in) with the

viewing direction z (Figure 8(b)). We now see a much

clearer segregation of points by label-IDs into separate

same-color clusters. This shows that there exist,

indeed, correlations of the label-ID with attributes 1–

18—thus, attributes 1–18 hold enough information to

design a classifier. The biplot axes in Figure 8(b) help

refining this insight. For instance, we see several

strongly correlated variables: the group of axes point-

ing downward (short-line-density-2, hedge-sd, hedge-

mean, and vedge-mean) all describe image edge

features. The group of axes pointing to the left (raw-

red-mean, raw-green-mean, value-mean, and intensity-

mean) all capture means of the image colors.

Correlating next these variables with the label variable

(point colors) is a first step into explaining the

clusters—for instance, we can now easily explain the

isolated orange cluster as containing image blocks hav-

ing highly saturated colors.

We next examine option (c). For this, we compute

a 2D projection using again LAMP. Figure 8(c) shows

the result, with points colored again by label-ID. The

overall placement of clusters is quite similar, but not

identical, to those in the 3D projection in Figure 8(b).

To see which of these two images is a more faithful

projection, we compute, for each point i, the aggregate

normalized projection error em
i 2 ½0, 1�

em
i =

X
j 6¼i

dm(qi ,qj)

maxi, j dm(qi,qj)
�

dn(pi,pj)

maxi, j dn(pi,pj)

����
���� ð7Þ

Here, dn, dm, p, and q have the same meaning as in

equation (2). The error em
i , m 2 f2, 3g, tells how well

the mD projection of a point i approximates its place-

ment in R
n from the perspective of its distances to all

(c) color: label (2D projection) (d) color: aggregate error (3D)

0: region-centroid-col 3: short-line-densityvariable 0 3: short-line-density

cell (11,3)

variable 3

variable 11
variable 16

(b)

(e)

color: label

color: aggregate error (2D)

cell (3,0)

variable 3

color: label (a)

raw-red-mean,
raw-green-mean,
value-mean,
intensity-mean

short-line-density-2,
hedge-sd,
hedge-mean,
vedge-mean

Figure 8. Visualization of 19-variate image segmentation dataset using (a, b, and d) 3D projections and (c and e) 2D
projections. See section ‘‘Segmentation dataset: comparing 2D and 3D projections.’’
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other points j 6¼ i. More details on this metric are given

in Martins et al.20

Figure 8(d) and (e) shows the errors e3
i and e2

i for

the 3D and 2D projections in Figure 8(b) and (c),

respectively, colormapped as in Figure 7. While both

projections ‘‘spread’’ errors quite uniformly over all

points, and do not create any extreme errors, we see

that e3
i is overall lower than e2

i . So, the 3D LAMP pro-

jection preserves the original nD distances better than

2D LAMP. Hence, for this dataset, using a 3D DR

projection, with a suitably chosen viewpoint provided

by our exploratory tools (Figure 8(b)), is better than

using a 2D DR projection generated by the same DR

technique. This is not entirely surprising, once we

understand Figure 8(a): the 2D projection has to

accommodate the large variation in variable 0 in the

same (limited) 2D space used to project all other 18

variables. In contrast, the 3D projection can freely

spread all this variation along a separate spatial dimen-

sion. Thus, examining the 3D projection from the sin-

gle viewpoint shown in Figure 8(b)—which is roughly

equivalent to a 2D projection of variables 1–18—is

better, error-wise, than using a 2D projection of the

entire dataset.

Note that the use of our explanatory tools is very

different in this use-case than in the one discussed in

section ‘‘‘‘Multifield dataset: explaining projection

shapes.’’ Indeed, in section ‘‘‘‘Multifield dataset:

explaining projection shapes,’’ we used our tools to

select a variety of viewpoints, which next helped us

explain the projection’s shape in terms of variables. In

the example here, we used our tools to decide that we

can best explore the projection from a single viewpoint,

and next to choose this viewpoint.

Software dataset: finding meaningful clusters

Our fourth and final example uses a set of 6733 open-

source software projects written in C. The source code

of each project was downloaded to compute 11 code

quality metrics as averages over the project’s code files.

A 12th metric gives the number of downloads of each

project.70 This yields a n = 12D dataset with 6733

points. While Meirelles et al.70 explored the statistical

correlation of project quality with download count, we

want to get finer-grained insights of the types of proj-

ects involved in the studied code-base collection.

For this, we use a 3D LAMP projection of our 12D

dataset (Figure 9(a)–(c)). We first find the best visible

variable pair from any 3D viewpoint, by clicking the

bright green cell in the matrix plot in Figure 9(a). This

gives us variables 2 (ln-cof, or average coupling-factor,

that is, the number of function calls between files71)

and 7 (ln-sum-tloc, or total number of lines-of-code).

(c) color: aggregated error (3D) (d)

cluster B’ (small systems)

color: aggregated error (2D)

2: ln-cof

(b) color: ln-sum-tloc

2: ln-cof

2: ln-cof
7: ln-sum-tloc

(a) color: ln-cof

cell (2,7)

cluster A
(low-coupling)

cluster B
(medium-coupling)

cluster A’
(large libraries and applications)

2: ln-cof

7: ln-sum-tloc

cell (2,7)

7: ln-sum-tloc

cluster C
(high-coupling)

7: ln-sum-tloc

cluster A
(large libraries)

cluster B
(large applications)

cluster C
(small systems)

cluster C
(small systems)

clusters A+B
(large systems)

Figure 9. Visualization of 12-variate software metrics dataset using (a–c) 3D DR projections and (d) corresponding 2D
DR projection. See section ‘‘Software dataset: finding meaningful clusters.’’
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Next, we align axis 2, the longest of these two biplot

axes, with screen x-axis (Figure 9(a)). We notice two

well-separated point clusters (A and B), which spread

orthogonally to biplot axis 2 (ln-cof). To understand

what these mean, we color points by variable 2. This

shows that clusters A and B contain points having two

different ranges of ln-cof values: A contains low-

coupling systems (such as libraries), while B contains

medium-coupling systems (such as full applications).

We also see here a third cluster (C) formed by very

high ln-cof points. These points are also orthogonal to

axis 7 (ln-sum-tloc). Hence, to check whether variable

7 explains cluster C, we next color points by variable 7

(Figure 9(c)): we now indeed see that nearly all points

in C have low values of variable 7, and all points in A

and B have high values for variable 7. Thus, cluster C

contains highly coupled, small-scale software systems

(small applications). Summarizing, we found that our

3D DR projection groups our 6733 software projects

in three classes: large software projects (high values for

ln-sum-tloc), further split by project type into libraries

(A), and full applications (B), and C, containing small

applications (low values for ln-sum-tloc). The entire

3D analysis requires just three clicks: one to align the

screen x- and y-axes with the best separated variables

ln-cof and ln-sum-loc and two further clicks to color

points by values of these variables, respectively.

As for the segmentation dataset (section

‘‘Segmentation dataset: comparing 2D and 3D projec-

tions’’), we want next to see whether a 2D DR projec-

tion could give us the same insight given by our 3D

DR projection, that is, that our 6733 software projects

can be grouped into three distinct classes. For this, we

first color our 3D projection points by their aggregated

projection error e3
i (equation (7)). Figure 9(c) shows

this. Next, we do an nD-to-2D projection (also by

LAMP) and color it by its projection error e2
i (Figure

9(d)). Comparing Figure 9(c) and (d), we see that,

like for our segmentation dataset, both e3
i and e2

i are

uniformly spread over their respective projections,

with e3
i \ e2

i on average. However, in contrast to the

segmentation dataset, we see that the 3D DR projec-

tion creates three clusters (explained by variables ln-cof

and ln-sum-tloc, as discussed); the 2D projection cre-

ates only two clusters A0 and B0 (Figure 9(d)). By

manual brushing of the displayed data points, we

found that A0 contains a mix of points in A and B

(large libraries and applications), while B0 roughly cor-

responds to C (small systems). This is also visible in

Figure 9(a) and (b): rotating the viewpoint along the

view sphere, and looking at the variation in the axes

legends (or alternatively, at the biplot axes), we find

no viewpoint in which n� 1 axes reside in, or close to,

a plane. Thus, three projection dimensions are truly

needed to show the data variation that encodes the

three clusters—that is, we need a 3D DR projection to

obtain a view that segregates our software systems into

three clusters corresponding to large libraries, large

applications, and small systems. A 2D DR projection

can only segregate software projects into large and

small systems, but not segregate based on the coupling

type (applications vs libraries).

Discussion

Several points are relevant to discuss, as follows.

Scope

The effectiveness of our techniques depends, of

course, on the quality of the DR projection and nature

of the underlying nD dataset. If the projection cap-

tures distinct, well-separated, patterns in mD, our

techniques will help explain the relationships of these

patterns with the original n dimensions, and next

choose good viewpoints to examine them. If the DR

projection is suboptimally done, or if the input dataset

does not exhibit any clearly segregated patterns, our

techniques provide little additional insight in the data.

So, our scope is to help users explain patterns, through

in course correlations, the projected data in terms of

the original variables, if such patterns exist in mD. If

patterns are absent, one should use complementary

techniques, outside the scope of our work, to improve

the DR projection being used, for example, Martins

et al.20 Separately, if the nD data are clearly segregated

into clusters and if one only wants to find such clus-

ters, rather than the more fine-grained task of explain-

ing spreads in the data or correlations of specific

variables, then state-of-the-art clustering methods are

the optimal tool.

Our key added value is for 3D DR projections,

where viewpoint and navigation choices critically affect

the obtained insights.6,17 Let us explain this. Our final

2D view can be seen as being created by ‘‘concatenat-

ing’’ an nD-to-3D DR projection (Pn3) with a 3D-to-

2D screen projection (P32). As discussed, Pn3 typically

has a lower error than a direct nD-to-2D DR projec-

tion (Pn2). Our tools allow understanding and control-

ling the error given by P32; in contrast, a Pn2 does not

allow any kind of similar error control. For instance,

we can interactively change P32 to select which vari-

ables, or dataset parts, are finally best visible. If, in any

view, one axis is small, it means that this variable is not

visible in that view, so we cannot reason about it.

However, we can rotate the view by aligning this axis

to the 2D screen and next interpret the resulting view,

thereby obtaining the best view that shows the spread

of that variable. In particular, a P32 using the two long-

est axes is as precise as a direct Pn2, in terms of stress
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error. Note that this cannot be done with a direct Pn2:

if an axis is small in such a projection, we cannot do

anything about that, and no interpretation of data var-

iations along that axis is possible. Regarding occlusion,

our solution is as good as, or better than, using a direct

Pn2: in our 2D views, occlusion means that 3D points

overlap along view lines; yet, we can choose other 3D

viewpoints where such overlaps are decreased; in con-

trast, such overlaps occur in any Pn2 too, and we can-

not do anything to decrease them in that case.

Generality

Our techniques work directly with any (non)linear DR

technique that projects n variables to m= 3 dimen-

sions, without needing to modify, or access the inter-

nals of, the DR technique. This is unlike Oeltze

et al.,13 Greenacre,42 Abdi and Valentin,44 and

Broeksema et al.45 which need to know that the DR

being used is principal component analysis (PCA) or

SVD to compute loading values. Our examples shown

here use LAMP, ISOMAP, and FBDR as DR tech-

niques. We have equally easily used LSP6 and

PLMP.14 Other DR projection techniques can be

equally easily used, with no changes to our proposal.

Scalability

Our methods are simple to implement and computa-

tionally scalable: we only need to apply the chosen DR

projection to a small set of sample points distributed

along the input variables (section ‘‘Enhanced biplot

axes’’). For a dataset of D variables, N data points,

and a number of nmax variables shown in the proposed

legends, the complexities are O(D) for the biplot cal-

culation, O(nmax) for the axis legends, and O(n2
max) for

the viewpoint legend, respectively. The memory com-

plexity of the entire set of techniques is O(N �D), that

is, equal to the size of the dataset to be stored.

Visually, our axes legends, biplot axes, and viewpoint

legend scale well up to roughly nmax = 20 variables, in

line with other multivariate visualization tech-

niques.1,13,45,61 When the input dataset has more vari-

ables, axis legends automatically show the nmax most

visible variables for the current viewpoint, which is the

best we can do in such situations (section ‘‘Enhanced

axis legends’’).

Comparison

Our axis alignment and viewpoint legends have some

similarities (and differences) with RTD.1 Our axis

alignment (section ‘‘Enhanced biplot axes’’) and best

viewpoint tools (section ‘‘Viewpoint legend’’) resemble

the scatterplot-matrix cells in the sense of selecting

‘‘interesting’’ variable pairs. Yet, while RTD defines

these configurations as variable pairs mapped to

Cartesian scatterplots, we define these as viewpoints

in a 3D space given by the DR projection that can best

highlight variable combinations of interest. Since we

cannot control the DR projection, our viewpoints can

show orthogonal biplot axes, and also slanted and/or

curved axes of different lengths. Also, our viewpoints

show, by construction, all projected axes, rather than a

fixed subset of two. Finding a good data-exploration

sequence is equivalent, in our case, to find a naviga-

tion path between highlights on the viewpoint legend

sphere. The main added value of the viewpoint legend

is that it shows all possible viewpoints in-between

these highlights.

Technical details

Our categorical, continuous colormaps, and transfer

function choices (section ‘‘Viewpoint legend’’) are, of

course, open. For instance, one can customize the

categorical colormap used in the axis legends (section

‘‘Enhanced axis legends’’) to mark specific variables of

interest, which one needs to pay particular attention

during the analysis, with salient colors or colors having

an application-specific semantics. Alternatively, one

could select an axis legend, colormap its bars using a

sequential or ordinal colormap, and next compare this

legend color-wise with the other two axis legends to

reason about variable correlation or orthogonality. Yet

other alternatives may exist for specific user groups

and work domains. We used simple and well-known

presets for these designs precisely to make it easier to

separate our contributions from such specific design

elements.

Evaluation

We evaluated the proposed techniques on nine datasets

(300–200,000 points, and 6–25 variables). Learning to

interpret the axes biplots, axes legends, and viewpoint

legend was perceived to be pleasant and easy, mainly

due to the fact that all these visualizations are interac-

tive and dynamically change as the user rotates the

viewpoint. Besides the selection of the variable used to

color points, our techniques do not require any explicit

parameter user setting. Compared to classical 2D scat-

terplots, our techniques need additional time to learn

them (around 20 min, as observed by explaining them

to nine users not involved in this work)—which is in

line with learning times reported in Elmqvist et al.1

and Broeksema et al.45 for similar tasks and user

counts. Users found the biplot axes easiest to under-

stand and use, arguably due to the fact that similar

axes appear in many types of plots. The interactive axis
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alignment described in section ‘‘Enhanced axis

legends’’ was also found simple to understand and use,

as it requires basically two clicks in the desired bars of

the x- and y-axis legends. Using the viewpoint legend

was perceived as the most complicated, as this widget

requires memorizing the appearance of several large

same-color areas on the surface of the sphere while

interactively rotating the viewpoint. We acknowledge

that these findings need more refinement and valida-

tion, for example, in terms of a controlled user study.

Limitations

Large 3D DR scatterplots inherently generate occlu-

sion which, even with transparency and interaction,

can be hard to disambiguate. Biplot axes for a few

highly nonlinear projections (e.g. force-based meth-

ods31,37) are highly curved. Yet, such methods are not

preferred, precisely because of their error rates and the

difficulty of finding globally good viewpoints, and thus

affect our overall proposal only marginally. Our tools

do not aim to fully remove interactive trial-and-error

exploration, such as brushing and viewpoint selection.

Their added value is to make interaction more targeted

toward a given goal—for example, when (slightly)

changing a viewpoint, one immediately sees the effect

on the axis biplots, axis legends, and viewpoint legend,

and thus can better estimate what to expect to see

when turning the viewpoint this or that way; when one

wants to examine one or two specific variables in con-

text, we allow doing this by just two clicks on the axis-

legend bars for those variables. Separately, we note

that our examples in section ‘‘Applications’’ do not

imply that 3D projections are always bet for addres-

sing all related tasks: rather, we show how 3D DR pro-

jections, if chosen for the sake of minimizing distance

errors, can be made more effective as compared to raw

3D scatterplots.

Conclusion

We have presented a set of interactive visualizations

that help users explore and explain 3D DR projections

of high-dimensional data. Our methods, realized as

linked views, explain the meaning of projected dimen-

sions in terms of original variables; show projection

nonlinearities and correlations (or lack thereof) for

these variables; help finding good viewpoints from

which given variable pairs can be best explored; and

quickly show which variable pairs can be explored

from any possible viewpoint. Globally, our techniques

aim to help users interpret raw 3D projections in typi-

cal xy scatterplot terms. Our techniques are easy to

implement, scale well computationally and visually,

and can be added in a non-intrusive way to any DR

technique as extra aids to classical brushing and color-

mapping explanatory tools.

Future work targets enhancing the insight given by

our explanatory visualizations, by studying how the

local nonlinearity of projections, and local projection

errors, can be better and more intuitively conveyed for

large 3D projections. Validating the value of our visua-

lizations via user studies is a second important future

work topic.
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