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Abstract

Dimensionality reduction is a compelling alternative for high-dimensional data visualization. This method provides
insight into high-dimensional feature spaces by mapping relationships between observations (high-dimensional vectors)
to low (two or three) dimensional spaces. These low-dimensional representations support tasks such as outlier and
group detection based on direct visualization. Supervised learning, a subfield of machine learning, is also concerned
with observations. A key task in supervised learning consists in assigning class labels to observations based on
generalization from previous experience. Effective development of such classification systems depends on many
choices, including features descriptors, learning algorithms, and hyperparameters. These choices are not trivial, and
there is no simple recipe to improve classification systems that perform poorly. In this context, we first propose the use of
visual representations based on dimensionality reduction (projections) for predictive feedback on classification efficacy.
Secondly, we propose a projection-based visual analytics methodology, and supportive tooling, that can be used to
improve classification systems through feature selection. We evaluate our proposal through experiments involving four
datasets and three representative learning algorithms.
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Introduction recently became able to bypass feature design by dealing

directly with raw images>. Yet, such networks require
In supervised learning, a subfield of machine learning, very large amounts of labeled (training) data, which are not
the important task of pattern classification consists on always available, and pose additional design challenges of

assigning a class label to a high-dimensional vector based  ¢heir own?. Hence, feature selection for classification system
on generalization from previous examples'. In broad terms, design still is a very important open problem.

this task is typically solved by finding parameters for a
classification model that maximize a measure of efficacy. In
this context, efficacy refers to desirable characteristics that
a classification system should possess to be efficient and
effective. These characteristics include quantitative metrics
capturing the classification accuracy (which captures the
effectiveness aspect), but also the use of a limited set of so-
called features to describe the input space (which captures
the efficiency aspect).

Learning algorithms have to be selected, fine-tuned, and
tested once a representation is available. A huge number
of such algorithms exists, based on a wide variety of
principles, and no single algorithm is the best for every
situation®. Practitioners usually compare algorithms and
hyperparameter choices using cross-validation'. However,
this approach is bounded by the limited feedback that
numerical (classification) accuracy measures can provide.
As a consequence, when suboptimal results are obtained,

Pattern classification isachallenging task, partly due to its designers are often left unaware of which aspects limit
extremely large design space. For our purposes, this task can  classification system accuracy, and what can be done to
be divided into representation and learning, as follows. improve such systems. This and other issues have been

Representation is concerned with how objects of interest ~referred to as the “black art” of machine learning ?, and

are modeled as high-dimensional vectors. Elements of these motivate our interest in using interactive techniques to assist

vectors usually correspond to measurable characteristics the design of classification systems.

(features) of the objects. Many different features can be

considered, and it is generally unclear which of them

are valuable for generalization. For example, in image

classification, a wide variety of color, texture, shape, 1yniversity of Groningen, Groningen, The Netherlands.

and local features can be extracted from images®. Using 2University of Campinas, Campinas, Brazil.

too few features can lead to poor generalization, thereby .

reducing classification effectiveness; and using too many Corresponding author: . . .
. o . Paulo E. Rauber, Department of Mathematics and Computing Science,

features can be prohibitively expensive to obtain or compute, University of Groningen, Nijenborgh 9, Groningen 9747 AG, The

thereby reducing efficiency, or even introduce confounding Netherlands.

information into the training data®*. Deep neural networks  Email: p.e.rauber@rug.nl
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Dimensionality reduction (DR) techniques are a highly
scalable alternative for high-dimensional data visualization
and exploration'’. Given a dataset composed of high-
dimensional vectors (also called observations or data points),
DR techniques find corresponding low-dimensional vectors
that attempt to preserve the so-called data structure. This
structure is characterized by distances between observations,
presence of clusters, and overall spatial data distribution ''2.
In this text, we refer to the representation obtained by
DR by the term projection. For visualization purposes, DR
techniques typically reduce the number of dimensions to
two or three. The resulting projections are typically depicted
by scatterplots, and enable insight into the structure of the
original data 3.

Visual exploration of high-dimensional datasets via
projections has been widely applied to many data types,
such as text documents'#, multimedia collections'>, gene
expressions '°, and networks'’. However, projections are
rarely used for the task of classification system design.
Considering the aforementioned difficulties in designing
such systems, we propose a visual analytics approach
based on dimensionality reduction that supports two (highly
interrelated) tasks:

T1: predicting classification system efficacy, and
T2: improving classification systems.

With respect to task T1, we show how the presence of visual
outliers, overall visual separation between observations in
distinct classes, and visual distribution of observations of
a given class are reflected in classification results. More
specifically, we show that the structure of a projection is
often a good predictor of the accuracy that a classifier can
deliver on the original data, both in the case of using a
predefined feature set, and in the case of performing feature
selection; that confusion zones, containing misclassification
results, can be often spotted using projections; and that
projections can help the guided pruning of a complex dataset
to increase classification accuracy.

Concerning task T2, we propose a combination between
the aforementioned projections and visualizations called
feature projections, which present correlations between
features and information derived from traditional feature
scoring techniques to help designers select important
features for classification systems. Overall, our contributions
show that projections are valuable tools for various aspects
of classification system design, especially in cases where
traditional aggregate accuracy metrics do not provide
sufficient insights.

We illustrate our approach through use cases involving
both real and synthetic challenging datasets and representa-
tive learning algorithms.

This paper is organized as follows. Section Preliminaries
presents our notation and definitions. Section Related work
places our effort in the contexts of information visual-
ization and machine learning. Section Proposed approach
summarizes our approach and compares it to related work.
Section T1: Predicting system efficacy details our first con-
tribution — showing how projections can be used as insight-
ful predictors of classification system efficacy. Section
T2: Improving system efficacy details our second contribu-
tion — showing how the visual feedback given by projections
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can be integrated into an interactive and iterative workflow
for improving system efficacy through qualitative and quan-
titative data exploration. This workflow is summarized in
Section Proposed workflow. Section Discussion provides a
critical analysis of the experiments, limitations, and weak-
nesses of our proposals. Importantly, it outlines cases where
projections are known to fail as predictors of classification
system efficacy, and why such cases do not contradict our
proposal. Finally, Section Conclusion summarizes the paper
and presents directions for future work.

Preliminaries

The following is a summary of the definitions and notation
employed in this text.

A (supervised) dataset D is a sequence D =
(x1,¥1)s---,(Xn,yn). EBvery pair (x;,y;) €D is
composed of an observation x; € RP, and a class label
yi € {1,...,C}, where C is the number of classes. As
an example, observations may correspond to images of
animals, and the classes to the C distinct species present in
the images. The j-th element of x; corresponds to feature
7, and is typically measured from an object of interest.
Considering the previous example, a feature may represent
the redness of an image.

We denote the set of all features under consideration by
F=A{1,...,D}. Forany 7' C F, having D’ < D features,
we denote by Dx/ the dataset corresponding to D with
features restricted to F”.

A learning algorithm finds a function, called classifier,
that maps observations to classes based on generalization
from a training (data)set D. Generalization is usually
evaluated by cross-validation, which consists on partitioning
the available data into a set for model learning and a set for
model evaluation. Feature selection aims at finding a small
feature subset F' C F such that the restricted training set
Dy is sufficient for generalization.

Dimensionality reduction (DR) finds a projection P =
Pi,...,PN, Where p; € R% that attempts to preserve
the structure of an original (unsupervised) dataset D =
Xi,...,Xy, considering that each observation x; corre-
sponds to point p;. For the purposes of visualization, d is
usually 2 or 3. DR is related to the feature selection task,
discussed in the next section. However, there are important
differences, especially in our context: firstly, feature selec-
tion can be seen as a specific type of DR, where the d
dimensions of the resulting projection are chosen from the
D dimensions (features) of the input data; in contrast, DR
methods used in data visualization typically synthesize d
new dimensions from the original D, as to better preserve
the data structure. All state-of-the-art DR methods, such as
the ones used in our work, are of this type. Secondly, DR
(used for visualization) has a 2D or 3D target space, whereas
feature selection typically yields higher-dimensional spaces
(d > 3). Thirdly, and most importantly, feature selection, as
used in our context, aims to reduce the dimensionality of
an input space for increasing the efficacy of a classification
system; in contrast, DR (again, as used in our context) aims
to create visualizations that help designers understand this
input space.
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Related work

High-dimensional data visualization is a challenging and
important task in many scientific and business applications.
For an extensive overview of the field, we refer to the
recent survey by Liu et al.'®. There are many alternatives
for visual exploration of high-dimensional data, such as
parallel coordinate plots'?, radial plots’, star plots?', star
coordinates??, table lenses®®, and scatterplot matrices’*.
A common challenge for these methods is scalability to
datasets with relatively modest numbers of observations
and dimensions. Dimensionality reduction (DR) techniques
effectively address these scalability issues by finding a low-
dimensional representation of the data that retains structure,
which is defined by relationships between points, presence
of clusters, or overall spatial data distribution ''='3!8_ The
resulting projections can be represented as scatterplots,
which allow reasoning about clusters, outliers, and trends by
direct visual exploration. These and other tasks addressed by
DR-based visualizations are detailed by Brehmer et al. '°.

DR techniques are typically divided into linear (e.g.,
PCA, LDA, MDS) and non-linear (e.g., Isomap, LLE, t-
SNE) %13 Although many traditional DR techniques are
computationally expensive, highly scalable techniques have
also been proposed (e.g., LSP'*, LAMP?, LoCH?®). These
techniques are currently capable of dealing with hundreds of
thousands of observations (or more) — although visual clutter
eventually becomes a problem. Guidelines for choosing
suitable DR methods for a particular task are outlined by
Sedlmair et al.?’.

More related to our work, several visualization techniques
have been proposed to help the interactive exploration of
projections. Most notably, Tatu et al.”® propose a process
for finding interesting subsets of features, and displaying
the results of dimensionality reduction restricted to these
features, with the goal of aiding qualitative exploration.
Yuan et al.? present an interactive tool to visualize
projections of observations restricted to selected subsets
of features. Additionally, in their tool, features are placed
in a scatterplot based on pairwise similarities. This is
analogous to the representation we propose in Section
T2: Improving system efficacy. However, differences exist —
Yuan et al. > aim at subspace cluster exploration, while our
goal is to provide support for classification system design.
This difference is manifested by our additional mechanisms,
which include feedback from automatic feature scoring
techniques and classification results. The work of Turkay et
al.*" also combines scatterplots of observations and features
for high-dimensional data exploration, and is also concerned
with tasks that are unrelated to classification system design.

Pattern classification is one of the most widely studied
problems in machine learning. Learning algorithms such as
k-nearest neighbors, naive Bayes, support vector machines
(SVMs), decision trees, artificial neural networks, and their
ensembles, have been applied in a wide variety of practical
problems'. Since the objective of pattern classifiers is to
generalize from previous experience, hyperparameter search
and efficacy estimation are usually performed using cross-
validation®'. Diagnosing the cause of poor generalization
in classification systems is a hard problem. Options include
using cross-validation to compute efficacy indicators (e.g.,
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accuracy, precision and recall, area under the ROC curve),
and learning curves, which show generalization performance
for an increasing training set. In multi-class problems,
confusion matrices can also be used to diagnose mistakes
between classes??.

In the context of visualization, Talbot et al.>*® propose

the visual comparison of confusion matrices to help users
understand the relative merits of various classifiers, with
the goal of combining them into better ensemble classifiers.
In contrast to their work, we offer finer-grained insight
into a single classification system by using projections as
a visualization technique. Other visualization systems also
aim at integrating human knowledge into the classification
system design process. Decision trees are particularly
suitable for this goal, as they are one of the few easily
interpretable classification models**. Schulz et al. > propose
a framework that can be used to visualize (in a projection)
the decision boundary of a support vector machine, a model
which is usually hard to interpret. Projections have also
been used specifically for visualizing internal activations of
artificial neural networks 3°. More related to our work, other
works also propose visualizations that consider classification
systems as black-boxes. They usually study the behavior
of such systems under different combinations of data and
parameterizations. In this context, Paiva et al.’’ present
a visualization methodology that supports tasks related
to classification based on similarity trees. Similarly to
projections, similarity trees are a high-dimensional data
visualization technique that maps observations to points in a
2D space, but connects them by edges to represent similarity
relationships. In contrast to our methodology for system
improvement, their methodology focuses on visualization of
classification results and observation labeling. At a higher-
level of abstraction, the use of visualization techniques to
“open the black box” of general algorithm design, including
(but not limited to) classification systems, is also advocated
by Miihlbacher et al. **.

Active learning refers to a process where the learning
algorithm iteratively suggests informative observations for
labeling. The objective of this process is to minimize the
effort in labeling a dataset. Because this is an iterative
and interactive process, visualization systems have been
proposed to aid in the task, and sometimes include
a representation of the data based on projections”.
However, in these examples, projections do not have a role
in improving classification system efficacy.

Feature selection is another widely researched problem
in machine learning, because the success of supervised
learning is highly dependent on the predictive power of
features *. Feature selection techniques are usually divided
into wrappers, which base their selection on learning
algorithms, and filters, which rely on simpler metrics derived
from the relationships between features and class labels®.
The work of Krause ef al.*' is an example of visualization
system that aids feature selection tasks by displaying
aggregated feature relevance information, which is computed
based on feature selection algorithms and classifiers. Their
glyph-based visualizations are completely different from
the projection-based integrated visualizations that implement
our methodology, which are outlined in the next section.
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Proposed approach

Our visualization approach aims to support two tasks (T1
and T2), which we introduce in the following sections.

Predicting system efficacy (T1)

Consider the works presented in Sec. Related work that
use projections to represent observations in classification
tasks (e.g.,’%*"), or the projections of traditional pattern
classification datasets (e.g.,'?). If a projection shows good
visual separation between the classes in the training data,
and if this is expected to generalize to test data, it is natural
to suppose that building a good classifier will be easier than
when such separation is absent.

On the other hand, there is little evidence in the
literature to defend the use of projections as predictors of
classification system efficacy. As a consequence, it is unclear
whether and, even more importantly, ow insights given by
projections complement existing methods of prognosticating
and diagnosing issues in the classification pipeline. In
Section T1: Predicting system efficacy, we present a study
that focuses precisely on these questions. It is important to
emphasize the term predictor: we aim at obtaining insights
on the ease of building a good classification system by using
projections before actually building the entire system.

In summary, the study presented in Section
T1: Predicting system efficacy consists on the following.
Considering a particular classification dataset split into
training and test data, a projection of each of these sets is
computed. Some claims are made about the classification
problem based on the visual feedback provided by the
training set projection, and are followed by evidence that
supports its predictive feedback. In many cases, some aspect
of the problem is altered (e.g. features or observations under
consideration), and the visual feedback is again evaluated.

We are aware of a single previous work that studies how
projections relate to classifier efficacy*’, which provides
evidence that projections showing well-separated classes (as
measured by the so-called silhouette coefficient) correlate
with higher classification accuracies. However, that study
has significant limitations. Firstly, characterizing a projection
by a single numerical value (the silhouette coefficient) is
coarse and uninsightful. To support understanding how a
classification system relates to what a projection shows on
a finer scale, we perform and present our analyses at the
observation level. Secondly, the silhouette coefficient used
by Brandoli et al.** can be severely misleading, since it may
be poor (low) even when good visual separation between
classes exists. This happens, for instance, when the same
class is spread over several compact groups in a projection.
Thirdly, we present a concrete projection-based methodology
to improve classification system (T2), whereas Brandoli et
al.*? only conjecture this possibility.

Consider simple alternatives to visualize classification
system issues, such as confusion matrices 32 or listing
misclassified observations together with their k-nearest
neighbors. While simple to use, these mechanisms have
significant limitations: confusion matrices become hard to
inspect for a moderate number of classes, while listing does
not scale well to hundreds (or even tens) of observations.
Most importantly, these alternatives do not encode spatial
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information about observations in confusion zones, which we
define in Sec. T1: Predicting system efficacy.

Improving system efficacy (T2)

In Section T2: Improving system efficacy, we propose a
projection-based methodology for interactive feature space
exploration that allows selecting features to improve the
efficacy of a classification system (T2). This methodology
is highly dependent on the use of projections as predictors
of classification system efficacy (T1). As such, we describe
next our methodology that jointly addresses the two tasks.

We implement this methodology in a visual analytics tool
that links views of projections, representations of feature
relationships, feature scoring, and classifier evaluation, in
an attempt to provide a cost-effective and easy-to-use
way to select features for arbitrary (“black-box™) learning
algorithms.

The visual analytics workflow supported by our system,
detailed in Sec. T2: Improving system efficacy, is illustrated
by Fig. 1. This figure shows how our visual tools interact
to support T1 and T2 for the overall goal of building better
classification systems. The process can be summarized by
a simplified 10-step flowchart. We start by partitioning a
collection of objects of interest (images, in this example)
into training and validation sets. Next, we extract a number
of features from the training images, transforming them
into observations (1). These observations are mapped into
a projection (2). Optionally, to assure that the projection
has a high quality, we may evaluate the various projection
error metrics proposed in**** and fine-tune the DR
algorithm parameters accordingly. Assuming the projection
has sufficient quality, we study the visual separation between
the classes using our proposed visual tools. If the separation
is poor (4), we use our iterative feature exploration/selection
tools (T2) to prune the feature set under consideration (5),
and repeat the DR step until we obtain a good separation
or decide that such separation is too difficult. If good
separation is obtained (3), we proceed in building, training,
and evaluating a classifier in the validation set, using the
traditional machine learning protocol (6). If the evaluation
shows good performance (7), the workflow ends with a
good classification system that may be used in production.
If the evaluation reveals poor performance (8), we use again
our visual exploration tools to study what has gone wrong
in the validation set. For instance, we may find that some
types (i.e., subsets of classes) of observations are consistently
misclassified. In this case, and depending on the importance
of these observations, we can choose to filter them out,
simplifying the classification problem for the purposes of
designing the system (9). Alternatively, we may find that
such filtering is not possible, due to the relevance of the
misclassified observations. In that case, we decide that we
need to design new features, possibly using insights obtained
through visual feedback (10).

The added value of our visual tools, which are represented
in Figure 1, is twofold.

Firstly, the tools provide evidence about potential flaws in
aclassifier before it is built (T1). This is supported by Section
T1: Predicting system efficacy, which shows how qualitative
feedback obtained from projections relates to classification
system efficacy in (unseen) test data.
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Figure 1. Visual analytics workflow for classification system design proposed in this paper (see Sec. Proposed approach).

Secondly, our tools provide a (partially guided) way to
iteratively improve the overall classification system. This is
supported by Section T2: Improving system efficacy, which
shows how their visual feedback can be used to improve
classification system efficacy in (unseen) test data through
feature selection.

T1: Predicting system efficacy

As outlined in Sec. Proposed approach, this Section is
concerned with how projections can be used to predict
classification system efficacy (T1). The main role of this
Section is to support the actual interactive projection-based
system for classification system improvement presented in
Sec. T2: Improving system efficacy.

For this purpose, we conducted experiments on several
datasets, which are presented in Secs. Madelon dataset,
Melanoma dataset, Corel dataset, and Parasites dataset. Sec-
tion Experimental protocol details the aspects of the experi-
mental protocol that hold for every dataset under considera-
tion.

Experimental protocol

The first step in our protocol is to randomly partition a dataset
into training and test sets (one third of the observations).
Following good practice in machine learning, the partitioning
is stratified®, i.e., the ratio of observations belonging to each
class is preserved in the test set.

Projections can be created independently for the training
and for the test data. These projections can be represented
by scatterplots, where each point is colored according to its
class label. When displaying classification results for a test
set in a scatterplot, we will use triangular glyphs to represent
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misclassified observations, colored based on their (incorrect)
classifications, and rendered slightly darker (for emphasis).

In addition to showing these scatterplots, we also display a
metric called neighborhood hit (NH)'*. For a given number
of neighbors k£ (in our experiments, k = 6), the NH for a
point p; € P is defined as the ratio of its k-nearest neighbors
(except p; itself) that belong to the same class as the
corresponding observation x;. The NH for a projection is
defined as the average NH over all its points. Intuitively, a
high NH corresponds to a projection where the real classes
(ground truth) are visually well separated. Therefore, the NH
metric is a good quantitative characterization of a projection
for our purposes.

The DR technique that we use in this work is a fast
implementation of t-distributed Stochastic Neighbor Embed-
ding (t-SNE)*, using default parameters and Euclidean
distance. We chose t-SNE due to its widespread popularity,
and demonstrated capacity to preserve neighborhoods in
projections 3. However, our proposal does not depend on this
particular technique, and other DR techniques can be used
with no additional burden. For instance, we employed LSP '#
in our early work, but decided in favor of t-SNE due to its
ability to preserve clusters in projections.

Our workflow requires a projection that preserves well
neighborhoods from RP in R2. This may be assessed
through the projection quality metrics described in****. If a
projection shows poor quality, it should be discarded (Fig.
1, step 2) and not used further in the workflow. Instead,
the measures outlined in“*** should be used to improve
projection quality. Conversely, if a projection shows good
quality, it becomes an excellent candidate for assessing the
visual separation between groups, an can be used further in
the workflow (steps 3 and 4).
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Feature selection will be performed in many of our
experiments. We will select a subset of features F' C F
to investigate the effect of restricting the input of the DR
technique to these features — that is, we will compare
the projections of both D and Dr,. We perform feature
selection/scoring using extremely randomized trees*’, with
1000 trees in the ensemble. Scores are assigned to features
based on their power to discriminate between two given
sets of observations. As will become clear in the next
sections, the choice of feature selection technique does not
affect our proposal. Feature selection is always performed
considering only the training set, as this allows assessing the
generalization of the selection to the test set.

Learning algorithms will be used to evaluate whether
good projections (with respect to perceived class separation)
correspond to good classification systems. We consider
three distinct algorithms: k-nearest neighbors (KNN, using
Euclidean distances), support vector machines (SVM,
using radial basis function kernel)*®, and random forest
classifiers (RFC)*. These techniques were chosen for being
both widely used in machine learning and representative
of distinct classes of algorithms. Note that any other
classification technique can be used together with our
approach, since the techniques are treated as black-boxes,
i.e., we assume no knowledge of their inner workings.
Hyperparameter search is conducted by grid search on
a subset of the hyperparameter space for each learning
algorithm. Concretely, we choose the hyperparameters with
highest average accuracy on 5-fold cross-validation on the
training set. For KNNs, the hyperparameter is the number
of neighbors k£ (from 1 to 21, in steps of 2). For SVMs, the
hyperparameters are C' and ~ (both from 1070 to 10'°, in
multiplicative steps of 10). For RFCs, the hyperparameters
are the number of estimators (10 to 500, in steps of 50)
and maximum tree-depth (from 1 to 21, in steps of 5).
In the next sections, we use the term classifier to refer
exclusively to a particular combination of learning algorithm
and hyperparameters trained on the entire training set. The
hyperparameters are always found by the procedure outlined
in the previous paragraph. In summary, following good
machine learning practice, the test set does not affect the
choice of hyperparameters.

Classification results are always quantified, in this paper, by
the accuracy (AC, ratio between correct classifications and
number of observations) on the test set.

Presentation of experiments is uniform across datasets. For
each experiment, a high-level claim is first stated. This
claim is followed by supportive images, showing projections
and classification results. In several cases, some aspect of
the problem is altered (e.g., features or observations under
consideration), and we show how our projections reflect the
expected outcome.

Limitations of our study are discussed
Discussion.

in Section

Madelon dataset

Data: Madelon is a synthetic dataset created by Guyon
et al.”’, which contains 500 features and 2 class labels.
We split the Madelon training set into training (1332
observations) and test (668 observations) sets, following
our experimental protocol. The number of observations in
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each class is balanced. This artificial dataset was created
specifically for the NIPS 2003 feature selection challenge.
Only 20 of the 500 features are informative, i.e., useful
for predicting the class label. According to its authors, this
dataset was designed to evaluate feature selection techniques
when features are informative only when considered in
groups .

Goal 1: Our first goal is to show that, for this dataset, poor
separation between classes in the projection corresponds to
poor classification accuracy. While this correspondence may
appear obvious, it is easy to show that it does not always hold
(see Sec. Discussion). Therefore, analyzing the link between
visual separation and classification accuracy is worthwhile.

Consider the projection of the training data shown in Fig.
2a. The two class labels, represented by distinct colors, are
not visually separated in the projection, as also shown by the
low neighborhood hit of 53.9%.

training set

test set

all features (500)

feature subset (20)

5
VS .

(c) good separéfion, improved NH vs (a)

(d) good separation, improved NH vs (b)

Figure 2. Madelon dataset. (a) Training set (NH: 53.9%). (b)
Test set (NH: 50.97%). (c) Training set, feature subset (NH:
83.56%). (d) Test set, feature subset (NH: 74.15%).

If our projection is representative of the distances in the
high-dimensional space, it is natural to interpret Fig. 2a as
evidence that the classification problem is hard, at least if the
learning algorithm being used is based on distances. We will
show that, for this example, this observation holds even for
learning algorithms that do not directly work with distances
in the high-dimensional space. This characteristic is crucial
if we want to use projections as visual feedback about the
efficacy of classification systems that use such algorithms.

Figure 2b shows the projection of the test data, which
also has a low neighborhood hit (NH) and poor separation.
Following the experimental protocol outlined in the previous
section for hyperparameter search, consider the best (in
terms of average cross-validation accuracy) classifier for
each learning algorithm. If the hypothesis about the difficulty
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of this classification task is true, the expected result would be
a low accuracy on the test data.

Figures 3a and 3b show the classification results for KNN
(54.94% accuracy) and RFC (66.17%). The SVM classifier
achieved 55.84% accuracy, and is not shown due to space
constraints. Triangles in the scatterplots show misclassified
observations, colored based on their misclassification. The
accuracies on the test set are considerably low, and both
KNN and SVM perform close to random guessing.

KNN classifier

v .
vy,

RFC classifier
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MRS 4 "vv w e
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a9
(c) good separation and higher accuracy

(d) go?)d separation and hiéhe'r accuracy

Figure 3. Madelon classification. (a) KNN (AC: 54.94%). (b)
RFC (AC: 66.17%). (c) KNN, feature subset (AC: 88.62%). (d)
RFC, feature subset (AC: 88.92%).

Goal 2: Although these results show that the poor visual
separation is correlated to a low classification accuracy,
nothing we have shown so far tells that good separation
relates to high accuracy. Let us investigate this next,
specifically showing how we can select an appropriate subset
of features to get a good class separation.

Using extremely randomized trees as a feature scoring
technique, consider a subset containing 20 of the original 500
features, chosen based on their discriminative power in the
training set. In other words, we chose the best features 7' C
F to separate the two classes in the high-dimensional space.
Figure 2¢ shows the projection of the training set restricted
to these features. Compared to the previous projection of the
training set (Figure 2a), the NH has improved considerably,
and the visual separation has also improved. This visual
feedback gives evidence that the classification task may
become easier using a feature subset.

Figure 2d shows that feature selection also enhances
the visual separation of the test set. Therefore, the visual
separation after feature selection generalizes well to the test
data.

The final question is whether the good visual separation
corresponds to higher accuracy in the test set. Figures 3c
and 3d confirm this hypothesis. Notice that, after feature
selection, both learning algorithms have greatly improved
their results on the test set, with an increase of nearly 34%
for KNN and 22% for RFC. In comparison, the neighborhood
hit increased by almost 24% for the test set, and by almost
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30% for the training set. A similar increase happens in
the case of the SVM, which goes from 55.84% to 86.68%
test accuracy after feature selection. In other words, as
could be expected, removing irrelevant features considerably
enhances the generalization capacity of the learned model.

Even more interestingly, after feature selection, we see
that the misclassified observations in the test set are
often surrounded by points belonging to a different class
(see triangular glyphs in Figs. 3c and 3d). Thus, these
observations could be interpreted as outliers according to
the projection. Such feedback is hard to obtain from a
traditional machine learning pipeline, and is valuable for
understanding classification system malfunction. Manually
inspecting misclassified observations and their neighbors
without the help of visualization would be very time-
consuming, and would not convey nearly as much insight
about the structure of the data. Alternatives such as
confusion matrices, for example, are difficult to interpret
even for a modest number of classes (a confusion matrix for
a 10-class problem has 45 independent values). The feedback
presented by projections can, for example, prompt the users
to consider special cases in their feature extraction pipeline.
Findings: In summary, the use case presented in this section
shows how projections can predict classification system
efficacy. In this use case, poor visual separation matches
low classification accuracy, and good visual separation
matches high classification accuracy. Furthermore, points
that appear as outliers in a projection are often difficult
to classify correctly. As we already mentioned in Section
Proposed approach, previous studies showing these insights
at an observation level are missing from the literature,
making it unclear exactly whether and how insights provided
by projections are useful. Such study is crucial to establish
projections as an appropriate vehicle for visual feedback,
which is basis of the interactive approach proposed in Sec.
T2: Improving system efficacy.

Melanoma dataset

Data: The melanoma dataset contains 369 features extracted
from 753 skin lesion images, which are part of the EDRA
atlas of dermoscopy?', using the feature extraction methods
described in*?. Class labels correspond to benign skin lesions
(485 images) and malignant skin lesions (268 images). Note
the considerable class imbalance in favor of the benign
lesions.
Goals: The main goal of the experiments performed using
this real-world dataset is to show the type of feedback that
can be obtained through projections when the classification
problem is difficult and the visual class separation is poor.
Figure 4a shows the projection of the training data. We
see that the separation between classes is poor, which is
confirmed by a low NH. Consider the set of 20 best features
to discriminate between the two groups in the training set,
according to extremely randomized trees. The corresponding
projection of the training data restricted to these features
is shown in Fig. 4c. Arguably, the separation is slightly
improved, which is confirmed by a higher NH value.
Figures 4b and 4d show the projections of the test data
before and after feature selection, respectively. The poor
separation is confirmed in the test data. More importantly,
the separation does not seem to be better in the test set after
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Figure 4. Melanoma dataset. (a) Training set (NH: 64.87%). (b)
Test set (NH: 62.35%). (c) Training set, feature subset (NH:
72.38%). (d) Test set, feature subset (NH: 62.55%)

feature selection. In other words, feature selection does not
appear to have generalized particularly well to the unseen
(test) data. From this evidence, we naturally suspect that
classification accuracy is poor, and that feature selection will
not enhance accuracy. Our next experiments confirm this
suspicion.

Figure 5a displays the classification results on the test set
obtained by the most effective learning algorithm (SVM,
according to our protocol), using all the features. The class
unbalance of the data places the expected accuracy of always
guessing the most frequent class at 64%. Hence, an accuracy
of 77.69% is not quite satisfactory. KNN also performs
poorly, achieving only 73.71% accuracy (Fig. 5b). This is
evidence that the classification task is hard.
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Figure 5. Melanoma classification. (a) SVM (AC: 77.69%). (b)
KNN (AC: 73.71%). (c) SVM, feature subset (AC: 74.9%). (d)
KNN, feature subset (AC: 77.69%). The uniformity of blue
classifications in the center of the projections shown in (c) and
(d) confirms that distances in the projection are good indicators
of classifier behavior.
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Figures 5c and 5d show the classification results obtained
after feature selection. As we see, fe