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Abstract

Dimensionality reduction is a compelling alternative for high-dimensional data visualization. This method provides

insight into high-dimensional feature spaces by mapping relationships between observations (high-dimensional vectors)

to low (two or three) dimensional spaces. These low-dimensional representations support tasks such as outlier and

group detection based on direct visualization. Supervised learning, a subfield of machine learning, is also concerned

with observations. A key task in supervised learning consists in assigning class labels to observations based on

generalization from previous experience. Effective development of such classification systems depends on many

choices, including features descriptors, learning algorithms, and hyperparameters. These choices are not trivial, and

there is no simple recipe to improve classification systems that perform poorly. In this context, we first propose the use of

visual representations based on dimensionality reduction (projections) for predictive feedback on classification efficacy.

Secondly, we propose a projection-based visual analytics methodology, and supportive tooling, that can be used to

improve classification systems through feature selection. We evaluate our proposal through experiments involving four

datasets and three representative learning algorithms.
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Introduction

In supervised learning, a subfield of machine learning,

the important task of pattern classification consists on

assigning a class label to a high-dimensional vector based

on generalization from previous examples1. In broad terms,

this task is typically solved by finding parameters for a

classification model that maximize a measure of efficacy. In

this context, efficacy refers to desirable characteristics that

a classification system should possess to be efficient and

effective. These characteristics include quantitative metrics

capturing the classification accuracy (which captures the

effectiveness aspect), but also the use of a limited set of so-

called features to describe the input space (which captures

the efficiency aspect).

Pattern classification is a challenging task, partly due to its

extremely large design space. For our purposes, this task can

be divided into representation and learning, as follows.

Representation is concerned with how objects of interest

are modeled as high-dimensional vectors. Elements of these

vectors usually correspond to measurable characteristics

(features) of the objects. Many different features can be

considered, and it is generally unclear which of them

are valuable for generalization. For example, in image

classification, a wide variety of color, texture, shape,

and local features can be extracted from images2. Using

too few features can lead to poor generalization, thereby

reducing classification effectiveness; and using too many

features can be prohibitively expensive to obtain or compute,

thereby reducing efficiency, or even introduce confounding

information into the training data3;4. Deep neural networks

recently became able to bypass feature design by dealing

directly with raw images5;6. Yet, such networks require

very large amounts of labeled (training) data, which are not

always available, and pose additional design challenges of

their own7. Hence, feature selection for classification system

design still is a very important open problem.

Learning algorithms have to be selected, fine-tuned, and

tested once a representation is available. A huge number

of such algorithms exists, based on a wide variety of

principles, and no single algorithm is the best for every

situation8. Practitioners usually compare algorithms and

hyperparameter choices using cross-validation1. However,

this approach is bounded by the limited feedback that

numerical (classification) accuracy measures can provide.

As a consequence, when suboptimal results are obtained,

designers are often left unaware of which aspects limit

classification system accuracy, and what can be done to

improve such systems. This and other issues have been

referred to as the “black art” of machine learning 9, and

motivate our interest in using interactive techniques to assist

the design of classification systems.
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Dimensionality reduction (DR) techniques are a highly

scalable alternative for high-dimensional data visualization

and exploration10. Given a dataset composed of high-

dimensional vectors (also called observations or data points),

DR techniques find corresponding low-dimensional vectors

that attempt to preserve the so-called data structure. This

structure is characterized by distances between observations,

presence of clusters, and overall spatial data distribution11;12.

In this text, we refer to the representation obtained by

DR by the term projection. For visualization purposes, DR

techniques typically reduce the number of dimensions to

two or three. The resulting projections are typically depicted

by scatterplots, and enable insight into the structure of the

original data13.

Visual exploration of high-dimensional datasets via

projections has been widely applied to many data types,

such as text documents14, multimedia collections15, gene

expressions16, and networks17. However, projections are

rarely used for the task of classification system design.

Considering the aforementioned difficulties in designing

such systems, we propose a visual analytics approach

based on dimensionality reduction that supports two (highly

interrelated) tasks:

T1: predicting classification system efficacy, and

T2: improving classification systems.

With respect to task T1, we show how the presence of visual

outliers, overall visual separation between observations in

distinct classes, and visual distribution of observations of

a given class are reflected in classification results. More

specifically, we show that the structure of a projection is

often a good predictor of the accuracy that a classifier can

deliver on the original data, both in the case of using a

predefined feature set, and in the case of performing feature

selection; that confusion zones, containing misclassification

results, can be often spotted using projections; and that

projections can help the guided pruning of a complex dataset

to increase classification accuracy.

Concerning task T2, we propose a combination between

the aforementioned projections and visualizations called

feature projections, which present correlations between

features and information derived from traditional feature

scoring techniques to help designers select important

features for classification systems. Overall, our contributions

show that projections are valuable tools for various aspects

of classification system design, especially in cases where

traditional aggregate accuracy metrics do not provide

sufficient insights.

We illustrate our approach through use cases involving

both real and synthetic challenging datasets and representa-

tive learning algorithms.

This paper is organized as follows. Section Preliminaries

presents our notation and definitions. Section Related work

places our effort in the contexts of information visual-

ization and machine learning. Section Proposed approach

summarizes our approach and compares it to related work.

Section T1: Predicting system efficacy details our first con-

tribution – showing how projections can be used as insight-

ful predictors of classification system efficacy. Section

T2: Improving system efficacy details our second contribu-

tion – showing how the visual feedback given by projections

can be integrated into an interactive and iterative workflow

for improving system efficacy through qualitative and quan-

titative data exploration. This workflow is summarized in

Section Proposed workflow. Section Discussion provides a

critical analysis of the experiments, limitations, and weak-

nesses of our proposals. Importantly, it outlines cases where

projections are known to fail as predictors of classification

system efficacy, and why such cases do not contradict our

proposal. Finally, Section Conclusion summarizes the paper

and presents directions for future work.

Preliminaries

The following is a summary of the definitions and notation

employed in this text.

A (supervised) dataset D is a sequence D =
(x1, y1), . . . , (xN , yN ). Every pair (xi, yi) ∈ D is

composed of an observation xi ∈ R
D, and a class label

yi ∈ {1, . . . , C}, where C is the number of classes. As

an example, observations may correspond to images of

animals, and the classes to the C distinct species present in

the images. The j-th element of xi corresponds to feature

j, and is typically measured from an object of interest.

Considering the previous example, a feature may represent

the redness of an image.

We denote the set of all features under consideration by

F = {1, . . . , D}. For any F ′ ⊆ F , having D′ ≤ D features,

we denote by DF ′ the dataset corresponding to D with

features restricted to F ′.

A learning algorithm finds a function, called classifier,

that maps observations to classes based on generalization

from a training (data)set D. Generalization is usually

evaluated by cross-validation, which consists on partitioning

the available data into a set for model learning and a set for

model evaluation. Feature selection aims at finding a small

feature subset F ′ ⊆ F such that the restricted training set

DF ′ is sufficient for generalization.

Dimensionality reduction (DR) finds a projection P =
p1, . . . ,pN , where pi ∈ R

d, that attempts to preserve

the structure of an original (unsupervised) dataset D =
x1, . . . ,xN , considering that each observation xi corre-

sponds to point pi. For the purposes of visualization, d is

usually 2 or 3. DR is related to the feature selection task,

discussed in the next section. However, there are important

differences, especially in our context: firstly, feature selec-

tion can be seen as a specific type of DR, where the d

dimensions of the resulting projection are chosen from the

D dimensions (features) of the input data; in contrast, DR

methods used in data visualization typically synthesize d

new dimensions from the original D, as to better preserve

the data structure. All state-of-the-art DR methods, such as

the ones used in our work, are of this type. Secondly, DR

(used for visualization) has a 2D or 3D target space, whereas

feature selection typically yields higher-dimensional spaces

(d > 3). Thirdly, and most importantly, feature selection, as

used in our context, aims to reduce the dimensionality of

an input space for increasing the efficacy of a classification

system; in contrast, DR (again, as used in our context) aims

to create visualizations that help designers understand this

input space.
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Related work

High-dimensional data visualization is a challenging and

important task in many scientific and business applications.

For an extensive overview of the field, we refer to the

recent survey by Liu et al.18. There are many alternatives

for visual exploration of high-dimensional data, such as

parallel coordinate plots19, radial plots20, star plots21, star

coordinates22, table lenses23, and scatterplot matrices24.

A common challenge for these methods is scalability to

datasets with relatively modest numbers of observations

and dimensions. Dimensionality reduction (DR) techniques

effectively address these scalability issues by finding a low-

dimensional representation of the data that retains structure,

which is defined by relationships between points, presence

of clusters, or overall spatial data distribution 11–13;18. The

resulting projections can be represented as scatterplots,

which allow reasoning about clusters, outliers, and trends by

direct visual exploration. These and other tasks addressed by

DR-based visualizations are detailed by Brehmer et al.10.

DR techniques are typically divided into linear (e.g.,

PCA, LDA, MDS) and non-linear (e.g., Isomap, LLE, t-

SNE)12;13. Although many traditional DR techniques are

computationally expensive, highly scalable techniques have

also been proposed (e.g., LSP14, LAMP25, LoCH26). These

techniques are currently capable of dealing with hundreds of

thousands of observations (or more) – although visual clutter

eventually becomes a problem. Guidelines for choosing

suitable DR methods for a particular task are outlined by

Sedlmair et al.27.

More related to our work, several visualization techniques

have been proposed to help the interactive exploration of

projections. Most notably, Tatu et al.28 propose a process

for finding interesting subsets of features, and displaying

the results of dimensionality reduction restricted to these

features, with the goal of aiding qualitative exploration.

Yuan et al.29 present an interactive tool to visualize

projections of observations restricted to selected subsets

of features. Additionally, in their tool, features are placed

in a scatterplot based on pairwise similarities. This is

analogous to the representation we propose in Section

T2: Improving system efficacy. However, differences exist –

Yuan et al. 29 aim at subspace cluster exploration, while our

goal is to provide support for classification system design.

This difference is manifested by our additional mechanisms,

which include feedback from automatic feature scoring

techniques and classification results. The work of Turkay et

al.30 also combines scatterplots of observations and features

for high-dimensional data exploration, and is also concerned

with tasks that are unrelated to classification system design.

Pattern classification is one of the most widely studied

problems in machine learning. Learning algorithms such as

k-nearest neighbors, naive Bayes, support vector machines

(SVMs), decision trees, artificial neural networks, and their

ensembles, have been applied in a wide variety of practical

problems1. Since the objective of pattern classifiers is to

generalize from previous experience, hyperparameter search

and efficacy estimation are usually performed using cross-

validation31. Diagnosing the cause of poor generalization

in classification systems is a hard problem. Options include

using cross-validation to compute efficacy indicators (e.g.,

accuracy, precision and recall, area under the ROC curve),

and learning curves, which show generalization performance

for an increasing training set. In multi-class problems,

confusion matrices can also be used to diagnose mistakes

between classes32.

In the context of visualization, Talbot et al.33 propose

the visual comparison of confusion matrices to help users

understand the relative merits of various classifiers, with

the goal of combining them into better ensemble classifiers.

In contrast to their work, we offer finer-grained insight

into a single classification system by using projections as

a visualization technique. Other visualization systems also

aim at integrating human knowledge into the classification

system design process. Decision trees are particularly

suitable for this goal, as they are one of the few easily

interpretable classification models34. Schulz et al.35 propose

a framework that can be used to visualize (in a projection)

the decision boundary of a support vector machine, a model

which is usually hard to interpret. Projections have also

been used specifically for visualizing internal activations of

artificial neural networks 36. More related to our work, other

works also propose visualizations that consider classification

systems as black-boxes. They usually study the behavior

of such systems under different combinations of data and

parameterizations. In this context, Paiva et al.37 present

a visualization methodology that supports tasks related

to classification based on similarity trees. Similarly to

projections, similarity trees are a high-dimensional data

visualization technique that maps observations to points in a

2D space, but connects them by edges to represent similarity

relationships. In contrast to our methodology for system

improvement, their methodology focuses on visualization of

classification results and observation labeling. At a higher-

level of abstraction, the use of visualization techniques to

“open the black box” of general algorithm design, including

(but not limited to) classification systems, is also advocated

by Mühlbacher et al.38.

Active learning refers to a process where the learning

algorithm iteratively suggests informative observations for

labeling. The objective of this process is to minimize the

effort in labeling a dataset. Because this is an iterative

and interactive process, visualization systems have been

proposed to aid in the task, and sometimes include

a representation of the data based on projections39;40.

However, in these examples, projections do not have a role

in improving classification system efficacy.

Feature selection is another widely researched problem

in machine learning, because the success of supervised

learning is highly dependent on the predictive power of

features3;4. Feature selection techniques are usually divided

into wrappers, which base their selection on learning

algorithms, and filters, which rely on simpler metrics derived

from the relationships between features and class labels4.

The work of Krause et al.41 is an example of visualization

system that aids feature selection tasks by displaying

aggregated feature relevance information, which is computed

based on feature selection algorithms and classifiers. Their

glyph-based visualizations are completely different from

the projection-based integrated visualizations that implement

our methodology, which are outlined in the next section.
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Proposed approach

Our visualization approach aims to support two tasks (T1

and T2), which we introduce in the following sections.

Predicting system efficacy (T1)

Consider the works presented in Sec. Related work that

use projections to represent observations in classification

tasks (e.g.,39;40), or the projections of traditional pattern

classification datasets (e.g.,13). If a projection shows good

visual separation between the classes in the training data,

and if this is expected to generalize to test data, it is natural

to suppose that building a good classifier will be easier than

when such separation is absent.

On the other hand, there is little evidence in the

literature to defend the use of projections as predictors of

classification system efficacy. As a consequence, it is unclear

whether and, even more importantly, how insights given by

projections complement existing methods of prognosticating

and diagnosing issues in the classification pipeline. In

Section T1: Predicting system efficacy, we present a study

that focuses precisely on these questions. It is important to

emphasize the term predictor: we aim at obtaining insights

on the ease of building a good classification system by using

projections before actually building the entire system.

In summary, the study presented in Section

T1: Predicting system efficacy consists on the following.

Considering a particular classification dataset split into

training and test data, a projection of each of these sets is

computed. Some claims are made about the classification

problem based on the visual feedback provided by the

training set projection, and are followed by evidence that

supports its predictive feedback. In many cases, some aspect

of the problem is altered (e.g. features or observations under

consideration), and the visual feedback is again evaluated.

We are aware of a single previous work that studies how

projections relate to classifier efficacy42, which provides

evidence that projections showing well-separated classes (as

measured by the so-called silhouette coefficient) correlate

with higher classification accuracies. However, that study

has significant limitations. Firstly, characterizing a projection

by a single numerical value (the silhouette coefficient) is

coarse and uninsightful. To support understanding how a

classification system relates to what a projection shows on

a finer scale, we perform and present our analyses at the

observation level. Secondly, the silhouette coefficient used

by Brandoli et al.42 can be severely misleading, since it may

be poor (low) even when good visual separation between

classes exists. This happens, for instance, when the same

class is spread over several compact groups in a projection.

Thirdly, we present a concrete projection-based methodology

to improve classification system (T2), whereas Brandoli et

al.42 only conjecture this possibility.

Consider simple alternatives to visualize classification

system issues, such as confusion matrices 32, or listing

misclassified observations together with their k-nearest

neighbors. While simple to use, these mechanisms have

significant limitations: confusion matrices become hard to

inspect for a moderate number of classes, while listing does

not scale well to hundreds (or even tens) of observations.

Most importantly, these alternatives do not encode spatial

information about observations in confusion zones, which we

define in Sec. T1: Predicting system efficacy.

Improving system efficacy (T2)

In Section T2: Improving system efficacy, we propose a

projection-based methodology for interactive feature space

exploration that allows selecting features to improve the

efficacy of a classification system (T2). This methodology

is highly dependent on the use of projections as predictors

of classification system efficacy (T1). As such, we describe

next our methodology that jointly addresses the two tasks.

We implement this methodology in a visual analytics tool

that links views of projections, representations of feature

relationships, feature scoring, and classifier evaluation, in

an attempt to provide a cost-effective and easy-to-use

way to select features for arbitrary (“black-box”) learning

algorithms.

The visual analytics workflow supported by our system,

detailed in Sec. T2: Improving system efficacy, is illustrated

by Fig. 1. This figure shows how our visual tools interact

to support T1 and T2 for the overall goal of building better

classification systems. The process can be summarized by

a simplified 10-step flowchart. We start by partitioning a

collection of objects of interest (images, in this example)

into training and validation sets. Next, we extract a number

of features from the training images, transforming them

into observations (1). These observations are mapped into

a projection (2). Optionally, to assure that the projection

has a high quality, we may evaluate the various projection

error metrics proposed in43;44, and fine-tune the DR

algorithm parameters accordingly. Assuming the projection

has sufficient quality, we study the visual separation between

the classes using our proposed visual tools. If the separation

is poor (4), we use our iterative feature exploration/selection

tools (T2) to prune the feature set under consideration (5),

and repeat the DR step until we obtain a good separation

or decide that such separation is too difficult. If good

separation is obtained (3), we proceed in building, training,

and evaluating a classifier in the validation set, using the

traditional machine learning protocol (6). If the evaluation

shows good performance (7), the workflow ends with a

good classification system that may be used in production.

If the evaluation reveals poor performance (8), we use again

our visual exploration tools to study what has gone wrong

in the validation set. For instance, we may find that some

types (i.e., subsets of classes) of observations are consistently

misclassified. In this case, and depending on the importance

of these observations, we can choose to filter them out,

simplifying the classification problem for the purposes of

designing the system (9). Alternatively, we may find that

such filtering is not possible, due to the relevance of the

misclassified observations. In that case, we decide that we

need to design new features, possibly using insights obtained

through visual feedback (10).

The added value of our visual tools, which are represented

in Figure 1, is twofold.

Firstly, the tools provide evidence about potential flaws in

a classifier before it is built (T1). This is supported by Section

T1: Predicting system efficacy, which shows how qualitative

feedback obtained from projections relates to classification

system efficacy in (unseen) test data.
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Figure 1. Visual analytics workflow for classification system design proposed in this paper (see Sec. Proposed approach).

Secondly, our tools provide a (partially guided) way to

iteratively improve the overall classification system. This is

supported by Section T2: Improving system efficacy, which

shows how their visual feedback can be used to improve

classification system efficacy in (unseen) test data through

feature selection.

T1: Predicting system efficacy

As outlined in Sec. Proposed approach, this Section is

concerned with how projections can be used to predict

classification system efficacy (T1). The main role of this

Section is to support the actual interactive projection-based

system for classification system improvement presented in

Sec. T2: Improving system efficacy.

For this purpose, we conducted experiments on several

datasets, which are presented in Secs. Madelon dataset,

Melanoma dataset, Corel dataset, and Parasites dataset. Sec-

tion Experimental protocol details the aspects of the experi-

mental protocol that hold for every dataset under considera-

tion.

Experimental protocol

The first step in our protocol is to randomly partition a dataset

into training and test sets (one third of the observations).

Following good practice in machine learning, the partitioning

is stratified45, i.e., the ratio of observations belonging to each

class is preserved in the test set.

Projections can be created independently for the training

and for the test data. These projections can be represented

by scatterplots, where each point is colored according to its

class label. When displaying classification results for a test

set in a scatterplot, we will use triangular glyphs to represent

misclassified observations, colored based on their (incorrect)

classifications, and rendered slightly darker (for emphasis).

In addition to showing these scatterplots, we also display a

metric called neighborhood hit (NH)14. For a given number

of neighbors k (in our experiments, k = 6), the NH for a

point pi ∈ P is defined as the ratio of its k-nearest neighbors

(except pi itself) that belong to the same class as the

corresponding observation xi. The NH for a projection is

defined as the average NH over all its points. Intuitively, a

high NH corresponds to a projection where the real classes

(ground truth) are visually well separated. Therefore, the NH

metric is a good quantitative characterization of a projection

for our purposes.

The DR technique that we use in this work is a fast

implementation of t-distributed Stochastic Neighbor Embed-

ding (t-SNE)46, using default parameters and Euclidean

distance. We chose t-SNE due to its widespread popularity,

and demonstrated capacity to preserve neighborhoods in

projections13. However, our proposal does not depend on this

particular technique, and other DR techniques can be used

with no additional burden. For instance, we employed LSP14

in our early work, but decided in favor of t-SNE due to its

ability to preserve clusters in projections.

Our workflow requires a projection that preserves well

neighborhoods from R
D in R

2. This may be assessed

through the projection quality metrics described in43;44. If a

projection shows poor quality, it should be discarded (Fig.

1, step 2) and not used further in the workflow. Instead,

the measures outlined in43;44 should be used to improve

projection quality. Conversely, if a projection shows good

quality, it becomes an excellent candidate for assessing the

visual separation between groups, an can be used further in

the workflow (steps 3 and 4).
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Feature selection will be performed in many of our

experiments. We will select a subset of features F ′ ⊆ F
to investigate the effect of restricting the input of the DR

technique to these features – that is, we will compare

the projections of both D and DF ′ . We perform feature

selection/scoring using extremely randomized trees47, with

1000 trees in the ensemble. Scores are assigned to features

based on their power to discriminate between two given

sets of observations. As will become clear in the next

sections, the choice of feature selection technique does not

affect our proposal. Feature selection is always performed

considering only the training set, as this allows assessing the

generalization of the selection to the test set.

Learning algorithms will be used to evaluate whether

good projections (with respect to perceived class separation)

correspond to good classification systems. We consider

three distinct algorithms: k-nearest neighbors (KNN, using

Euclidean distances), support vector machines (SVM,

using radial basis function kernel)48, and random forest

classifiers (RFC)49. These techniques were chosen for being

both widely used in machine learning and representative

of distinct classes of algorithms. Note that any other

classification technique can be used together with our

approach, since the techniques are treated as black-boxes,

i.e., we assume no knowledge of their inner workings.

Hyperparameter search is conducted by grid search on

a subset of the hyperparameter space for each learning

algorithm. Concretely, we choose the hyperparameters with

highest average accuracy on 5-fold cross-validation on the

training set. For KNNs, the hyperparameter is the number

of neighbors k (from 1 to 21, in steps of 2). For SVMs, the

hyperparameters are C and γ (both from 10−10 to 1010, in

multiplicative steps of 10). For RFCs, the hyperparameters

are the number of estimators (10 to 500, in steps of 50)

and maximum tree-depth (from 1 to 21, in steps of 5).

In the next sections, we use the term classifier to refer

exclusively to a particular combination of learning algorithm

and hyperparameters trained on the entire training set. The

hyperparameters are always found by the procedure outlined

in the previous paragraph. In summary, following good

machine learning practice, the test set does not affect the

choice of hyperparameters.

Classification results are always quantified, in this paper, by

the accuracy (AC, ratio between correct classifications and

number of observations) on the test set.

Presentation of experiments is uniform across datasets. For

each experiment, a high-level claim is first stated. This

claim is followed by supportive images, showing projections

and classification results. In several cases, some aspect of

the problem is altered (e.g., features or observations under

consideration), and we show how our projections reflect the

expected outcome.

Limitations of our study are discussed in Section

Discussion.

Madelon dataset

Data: Madelon is a synthetic dataset created by Guyon

et al.50, which contains 500 features and 2 class labels.

We split the Madelon training set into training (1332
observations) and test (668 observations) sets, following

our experimental protocol. The number of observations in

each class is balanced. This artificial dataset was created

specifically for the NIPS 2003 feature selection challenge.

Only 20 of the 500 features are informative, i.e., useful

for predicting the class label. According to its authors, this

dataset was designed to evaluate feature selection techniques

when features are informative only when considered in

groups50.

Goal 1: Our first goal is to show that, for this dataset, poor

separation between classes in the projection corresponds to

poor classification accuracy. While this correspondence may

appear obvious, it is easy to show that it does not always hold

(see Sec. Discussion). Therefore, analyzing the link between

visual separation and classification accuracy is worthwhile.

Consider the projection of the training data shown in Fig.

2a. The two class labels, represented by distinct colors, are

not visually separated in the projection, as also shown by the

low neighborhood hit of 53.9%.

training set test set
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b
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e
t 

(2
0

)

(a) poor separation and NH (b) poor separation and NH

(c) good separation, improved NH vs (a) (d) good separation, improved NH vs (b)

Figure 2. Madelon dataset. (a) Training set (NH: 53.9%). (b)

Test set (NH: 50.97%). (c) Training set, feature subset (NH:

83.56%). (d) Test set, feature subset (NH: 74.15%).

If our projection is representative of the distances in the

high-dimensional space, it is natural to interpret Fig. 2a as

evidence that the classification problem is hard, at least if the

learning algorithm being used is based on distances. We will

show that, for this example, this observation holds even for

learning algorithms that do not directly work with distances

in the high-dimensional space. This characteristic is crucial

if we want to use projections as visual feedback about the

efficacy of classification systems that use such algorithms.

Figure 2b shows the projection of the test data, which

also has a low neighborhood hit (NH) and poor separation.

Following the experimental protocol outlined in the previous

section for hyperparameter search, consider the best (in

terms of average cross-validation accuracy) classifier for

each learning algorithm. If the hypothesis about the difficulty
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of this classification task is true, the expected result would be

a low accuracy on the test data.

Figures 3a and 3b show the classification results for KNN

(54.94% accuracy) and RFC (66.17%). The SVM classifier

achieved 55.84% accuracy, and is not shown due to space

constraints. Triangles in the scatterplots show misclassified

observations, colored based on their misclassification. The

accuracies on the test set are considerably low, and both

KNN and SVM perform close to random guessing.

KNN classifier RFC classifier

a
ll
 f

e
a

tu
re

s
 (

5
0

0
)

fe
a

tu
re

 s
u

b
s

e
t 

(2
0

)

(a) poor separation and low accuracy (b) poor separation and low accuracy
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Figure 3. Madelon classification. (a) KNN (AC: 54.94%). (b)

RFC (AC: 66.17%). (c) KNN, feature subset (AC: 88.62%). (d)

RFC, feature subset (AC: 88.92%).

Goal 2: Although these results show that the poor visual

separation is correlated to a low classification accuracy,

nothing we have shown so far tells that good separation

relates to high accuracy. Let us investigate this next,

specifically showing how we can select an appropriate subset

of features to get a good class separation.

Using extremely randomized trees as a feature scoring

technique, consider a subset containing 20 of the original 500
features, chosen based on their discriminative power in the

training set. In other words, we chose the best features F ′ ⊆
F to separate the two classes in the high-dimensional space.

Figure 2c shows the projection of the training set restricted

to these features. Compared to the previous projection of the

training set (Figure 2a), the NH has improved considerably,

and the visual separation has also improved. This visual

feedback gives evidence that the classification task may

become easier using a feature subset.

Figure 2d shows that feature selection also enhances

the visual separation of the test set. Therefore, the visual

separation after feature selection generalizes well to the test

data.

The final question is whether the good visual separation

corresponds to higher accuracy in the test set. Figures 3c

and 3d confirm this hypothesis. Notice that, after feature

selection, both learning algorithms have greatly improved

their results on the test set, with an increase of nearly 34%
for KNN and 22% for RFC. In comparison, the neighborhood

hit increased by almost 24% for the test set, and by almost

30% for the training set. A similar increase happens in

the case of the SVM, which goes from 55.84% to 86.68%
test accuracy after feature selection. In other words, as

could be expected, removing irrelevant features considerably

enhances the generalization capacity of the learned model.

Even more interestingly, after feature selection, we see

that the misclassified observations in the test set are

often surrounded by points belonging to a different class

(see triangular glyphs in Figs. 3c and 3d). Thus, these

observations could be interpreted as outliers according to

the projection. Such feedback is hard to obtain from a

traditional machine learning pipeline, and is valuable for

understanding classification system malfunction. Manually

inspecting misclassified observations and their neighbors

without the help of visualization would be very time-

consuming, and would not convey nearly as much insight

about the structure of the data. Alternatives such as

confusion matrices, for example, are difficult to interpret

even for a modest number of classes (a confusion matrix for

a 10-class problem has 45 independent values). The feedback

presented by projections can, for example, prompt the users

to consider special cases in their feature extraction pipeline.

Findings: In summary, the use case presented in this section

shows how projections can predict classification system

efficacy. In this use case, poor visual separation matches

low classification accuracy, and good visual separation

matches high classification accuracy. Furthermore, points

that appear as outliers in a projection are often difficult

to classify correctly. As we already mentioned in Section

Proposed approach, previous studies showing these insights

at an observation level are missing from the literature,

making it unclear exactly whether and how insights provided

by projections are useful. Such study is crucial to establish

projections as an appropriate vehicle for visual feedback,

which is basis of the interactive approach proposed in Sec.

T2: Improving system efficacy.

Melanoma dataset

Data: The melanoma dataset contains 369 features extracted

from 753 skin lesion images, which are part of the EDRA

atlas of dermoscopy51, using the feature extraction methods

described in52. Class labels correspond to benign skin lesions

(485 images) and malignant skin lesions (268 images). Note

the considerable class imbalance in favor of the benign

lesions.

Goals: The main goal of the experiments performed using

this real-world dataset is to show the type of feedback that

can be obtained through projections when the classification

problem is difficult and the visual class separation is poor.

Figure 4a shows the projection of the training data. We

see that the separation between classes is poor, which is

confirmed by a low NH. Consider the set of 20 best features

to discriminate between the two groups in the training set,

according to extremely randomized trees. The corresponding

projection of the training data restricted to these features

is shown in Fig. 4c. Arguably, the separation is slightly

improved, which is confirmed by a higher NH value.

Figures 4b and 4d show the projections of the test data

before and after feature selection, respectively. The poor

separation is confirmed in the test data. More importantly,

the separation does not seem to be better in the test set after
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Figure 4. Melanoma dataset. (a) Training set (NH: 64.87%). (b)

Test set (NH: 62.35%). (c) Training set, feature subset (NH:

72.38%). (d) Test set, feature subset (NH: 62.55%)

feature selection. In other words, feature selection does not

appear to have generalized particularly well to the unseen

(test) data. From this evidence, we naturally suspect that

classification accuracy is poor, and that feature selection will

not enhance accuracy. Our next experiments confirm this

suspicion.

Figure 5a displays the classification results on the test set

obtained by the most effective learning algorithm (SVM,

according to our protocol), using all the features. The class

unbalance of the data places the expected accuracy of always

guessing the most frequent class at 64%. Hence, an accuracy

of 77.69% is not quite satisfactory. KNN also performs

poorly, achieving only 73.71% accuracy (Fig. 5b). This is

evidence that the classification task is hard.

SVM classifier KNN classifier
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Figure 5. Melanoma classification. (a) SVM (AC: 77.69%). (b)

KNN (AC: 73.71%). (c) SVM, feature subset (AC: 74.9%). (d)

KNN, feature subset (AC: 77.69%). The uniformity of blue

classifications in the center of the projections shown in (c) and

(d) confirms that distances in the projection are good indicators

of classifier behavior.

Figures 5c and 5d show the classification results obtained

after feature selection. As we see, feature selection improved

the efficacy of the KNN classifier (from 73.71% to 77.69%)

to the same level as an SVM using all features. On the other

hand, the SVM results deteriorated after feature selection.

Furthermore, notice the uniformity of blue classifications

in the center of the projections shown in Figs. 5c and

5d. This confirms that distances in the projection are good

indicators of classifier behavior in this case, even when the

learning algorithm does not directly use distances in the high-

dimensional feature space (Fig. 5c).

As anticipated by the projection, feature selection did

not improve generalization efficacy. Even so, reducing

the number of features to approximately 5% of the

original has benefits in computational efficiency and

knowledge discovery. The reduced set of features contains

valuable information to the system designer, and indicates

characteristics of the problem where designers may decide

to focus their efforts. In other words, the use of feature

selection, while not directly improving classification system

accuracy, added value by reducing costs through data

reduction.

Corel dataset

Data: The Corel dataset contains 150 SIFT features

extracted from 1000 images by Li et al.53. Class labels

correspond to 10 image types: Africa, beach, buildings,

buses, dinosaurs, elephants, flowers, horses, mountains, and

food. The dataset is perfectly balanced between classes.

Goals: This experiment shows that projections can give

insight into class-specific behavior, and also provides more

evidence that projections can predict classification accuracy.

Figures 6a and 6b show projections of the training and

test data, respectively. Except for a confusion zone between

the classes marked as green, orange, yellow and brown, both

projections show well-separated clusters. This separation is

confirmed by a high NH value in both cases.
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(c) good separation of class 4 (d) good separation of class 4
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yellow, orange, 
brown classes

class 4
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Figure 6. Corel dataset. (a) Training set (NH: 85.7%). (b) Test

set (NH: 82.73%). (c) Training set, feature subset (NH: 28.68%,

4 vs rest NH: 100%). (d) Test set, feature subset (NH: 22.18%, 4

vs rest NH: 99.34%). Consult text on Fig. 6d misclassification.
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These projections can be interpreted as evidence that the

classification task is easy. Confirming this hypothesis, Fig.

7a shows the classification results for the best classifier

(RFC). As expected, the accuracy obtained is very high

(91.81%), considering that this is a balanced 10-class

problem. More interesting, however, is the fact that many

classification errors occur in the confusion zone observed

in the projection of the test set. Thus, conclusions drawn

from the visual feedback about confusion zones in this

training set do generalize to unseen (test) data. Notice that

the concept of confusion zone is only possible because

the data are spatially represented. It is, to our knowledge,

not possible to depict a confusion zone otherwise. This is

another valuable characteristic of our proposed projection-

based representation.

all features (150) feature subset (10)

class 4

(a) good class separation, good accuracy (b) poor class separation, poor accuracy

(except for class 4 vs rest)

class 4

Figure 7. Corel classification. (a) RFC (AC: 91.81%). (b) RFC,

feature subset (AC: 34.55%, 4 vs rest AC: 99.7%).

We also use this dataset to consider an alternative

scenario for predicting system efficacy. This scenario

shows, again, that projections may be reliable predictors of

classification system behavior. Consider the best 10 features

to discriminate class 4 (purple) from other classes, according

to extremely randomized trees. The projection of the data

restricted to this set of features is shown in Fig. 6c. As

expected, note how class 4 is very well separated (center

left), while observations in the other classes are poorly

separated from each other. This is confirmed by low NH

values (28.68%) and perfect binary NH values, when class

4 is considered against the rest. Figure 6d confirms that this

characterization generalizes to the test data.

The poor separation between classes other than 4 leads

us to expect poor accuracy results. Figure 7b shows the

classification results using the features selected to separate

class 4 from the rest, in the multi-class problem, which

confirm this expectation. In contrast, the binary classification

accuracy is almost perfect (99.7%, image omitted for

brevity). There is a single mistake in the binary classification,

which is placed in the top left corner of the projection (top

left of Fig. 6d). The projection was also able to predict the

existence of this outlier.

Parasites dataset

Data: The parasites dataset contains 9568 observations

and 260 traditional image features extracted from (pre-

segmented) objects in microscopy images of fecal samples54.

We restricted ourselves to a subset of the original data

that contains only the protozoan parasites (divided into

six classes) and impurities (objects that should be ignored

during analysis). Almost sixty percent of the observations

correspond to impurities, which gives a significant class

imbalance.

Goal: We present here one last example of the predictive

power of projections, using a medium-sized realistic dataset.

In this case, the projection reveals the presence of a large

number of confounding observations that, when removed,

increase classification accuracy.

Figure 8a displays the projection of the training set. We

immediately see that impurities (marked pink) spread over

almost the entire projection space. This is also seen in the

projection of the test set (Fig. 8b). In other words, we have

weak evidence that the impurities may be confounded with

almost every other class.
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Figure 8. Parasites dataset. (a) Training set (NH: 74.35%). (b)

Test set (NH: 68.49%). (c) Training set, observation subset (NH:

87.22%). (d) Test set, observation subset (NH: 82.31%).

Can the other classes be reasonably well separated from

each other when impurities are ignored? Figures 8c and

8d show the projections of the training and test data,

respectively, when the impurities are removed from the data.

Therefore, our question is answered positively.

Considering again all observations, Figure 9a shows

classification results for the best classifier (SVM, according

to our protocol). Given the perceived poor visual separation,

this result may be considered surprisingly good, which

shows that perceived confusion is not definitive evidence. In

Section Discussion, we will show an extreme example of this

behavior. In a number of cases, however, we have seen that

the evidence is much stronger in the other direction: when the

perceived visual separation between classes in a projection is

good, the classification results are also good.
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Figure 9. Parasites classification. (a) SVM (AC: 92.7%). (b)

KNN (AC: 82.29%). (c) SVM, observation subset (AC: 94.55%).

(d) KNN, observation subset (AC: 89.49%).

Consider next our dataset restricted to all the classes

except impurities. Figure 9d shows KNN classification

results, which are improved from 82.29% to 89.49%
accuracy. However, SVM results are not significantly

improved in this restricted task (approximately 2% accuracy

increase). Once again, note how the confusion zones contain

the majority of misclassifications. Apparently, the SVM

learning algorithm is able to deal better with the confusion

between impurities and parasites. In this case, the projection

was better to anticipate the behavior of the distance-based

learning algorithm.

This is the largest dataset considered in our experiments.

Note that the projections of the training and test sets are

somewhat similar (e.g., Figs. 8c and 8d). This highlights

the importance of using representative datasets to study a

problem using projections.

The difficulty of separating impurities from other classes

could also be diagnosed from a confusion matrix. In practice,

this insight could be used by the designer to study the

classification of impurities as a separate problem. However,

projections provide a more compelling visual representation

of the same phenomenon, allowing the designer to inspect the

observations in confusion zones. Such spatial information

about relationships is lost in a confusion matrix.

As a last example for this section, we now show how

additional visual feedback may be encoded into a projection.

Consider the aggregate projection error, a per-point

metric of distance preservation after DR43. Intuitively, a

point has a high aggregate error when its corresponding

high-dimensional distances to the other observations are

poorly represented by the low-dimensional distances in

the projection. This feedback about the quality of a given

projection is also important to our methodology.

Figure 10a shows the aggregate error for the parasites

test set restricted to non-impurities (higher errors in darker

colors). We see a point near the center of the projection with

a relatively high aggregate error (square in Fig. 10a). As

colors map relative errors, this does not necessarily mean

that the absolute aggregate error is high. Yet, this point is

clearly an outlier in aggregate error when compared to its

low-dimensional neighbors. In Fig. 10b, we see that the

point is surrounded by points belonging to other classes.

By our definition, this point is an outlier with respect to its

positioning given its class label. Note that the aggregate error

is computed without any information about class labels, and

also draws attention to this particular observation.

One possible explanation for a high aggregate error is

that the projection placed a point in a poor manner. In fact,

the point is correctly classified by RFC and SVM, which

weakly supports this hypothesis. However, KNN classified

the point incorrectly (see inset in Fig. 10b). Therefore, it is

still unclear whether this point is a true outlier in the feature

space. However, the error visualization was successful in

focusing attention into an interesting observation, which

warrants further inspection of its characteristics and features.

low high
aggregate error

(a) (b)

aggregated projection error class information

K
N

N
 c

la
ss

ifi
ca

tio
n

Figure 10. Parasites test set, observation subset. (a)

Aggregate error. (b) Original classes, inset showing KNN

classification.

Several other error metrics and visual depictions of

projection quality could be employed to enable similar

feedback and help interpreting projections (e.g.,43;55).

Task 1: Conclusions

The experiments performed for the four datasets in this

section support our claim that projections can provide

useful visual feedback about the ease of designing a good

classification system. This visual feedback helps finding

outliers, overall separation between observations in distinct

classes, distribution of observations of a given class in

the feature space, and presence of neighborhoods with

mixed class labels (confusion zones). Arguably, the first

two tasks have the most well-developed traditional feedback

mechanisms: outlier detection, manual misclassification

inspection, efficacy measures, and confusion matrices. The

qualitative nature of the last two tasks makes them more
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difficult. This makes a strong case for the use of projections,

even if there is no hard guarantee that the visual feedback

offered by projections is definitely helpful for a given dataset.

In section Discussion, we present an extreme example of this

issue.

T2: Improving system efficacy

The previous section showed how projections can be useful

for predicting classification system behavior. If a particular

system performs well, there is no further effort required

from the system designer. Instead, consider a classification

system that generalizes poorly to unseen data. Because the

design space (feature descriptors, learning algorithms and

hyperparameters) is immense, designers can benefit from

insightful feedback about their choices. In that case, we have

already shown that qualitative feedback from projections can

be highly valuable.

Building on the use of projections for the first task

(T1), this section focuses on the use of projections

for the task of improving classification system efficacy

(T2). In section Proposed methodology and tooling, we

present our significant extension of the visual feedback

methodology proposed in56, which enables T2. In

Sections Madelon: relationship between relevant features,

Melanoma: alternative feature scores, and

Corel: class-specific relevant features, we describe use

cases that employ this methodology.

Proposed methodology and tooling

Our methodology for classification system improvement

through interactive projections is implemented into a tool∗

composed of six linked views (Fig. 11), as follows.
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Figure 11. Feature exploration tool, showing the Corel dataset.

Shows the observation view, feature view, group view,

observation projection view (lensing observations, colored by

classification; yellow observations are selected), feature scoring

chart (showing best features to discriminate yellow class vs

rest), and feature projection view (showing best features to

discriminate yellow class vs rest, using a heat colormap).

The observation view shows the image associated to each

observation x in the dataset D, if any, which are optionally

sorted by a feature of choice. This provides an easy way to

verify if a feature corresponds to user expectations.

The feature view shows all features F , optionally

organized as a hierarchy based on semantic relationships.

Within this view, users can select a feature subset F ′ ⊆ F
to further explore.

The group view allows the creation and management

of arbitrary observation groups by direct selection in the

observation view or in the observation projection view

(discussed next). Initially, groups correspond to classes.

The observation projection view shows a scatterplot

of the projection of DF ′ , the dataset composed of all

observations restricted to the currently selected feature

subset F ′. Points can be colored by a user-selected

characteristic (such as class label or feature value), and are

highlighted to show the selected set of observations.

Figure 11 also illustrates lensing, which optionally

displays secondary characteristics on a neighborhood. In this

particular case, the secondary characteristic is classification

outcome (correct classifications in blue, incorrect in red).

The feature scoring chart ranks the features in F ′

by a relevance metric chosen by the user. We pro-

vide a variety of feature selection techniques, including

extremely randomized trees (which we employed in Sec-

tion T1: Predicting system efficacy)47, randomized logistic

regression57, recursive feature elimination58, and others. The

feature scoring view also allows the user to select a subset of

F ′ through interactive rubber-banding.

The feature projection view is a new addition to the

tool presented in56. Each point in this view corresponds to

a feature in F . Features are placed in 2D by a technique that

tries to preserve the structural similarity between features.

For our purposes, we define the dissimilarity di,j between

features i and j as di,j = 1− |ri,j |, where ri,j is the

(empirical) Pearson correlation coefficient between features

i and j. This dissimilarity metric captures both positive

and negative linear correlations between pairs of features.

The dissimilarity matrix, which contains the dissimilarity

between all pairs of features, can be represented in two

dimensions by a projection, which is analogous to the

projection of observations. As already mentioned in Sec.

Related work, similar visualizations already exist in the

literature29;30. However, we combine the feature projection

view with task-specific information in a novel manner, as

shown in the next sections.

We chose (absolute metric) multidimensional scaling59

to compute feature projections. According to preliminary

experiments, MDS presents more coherent relationships

between features and classes than t-SNE, which is important

in the next sections. This is probably due to the difference

in goals between the two techniques: absolute metric MDS

attempts to preserve (global) pairwise dissimilarities59,

while t-SNE is particularly concerned with preserving

(local) neighborhoods13. Alternative (dis)similarity metrics

between features are also available in the tool, including

mutual information, distance correlation and Spearman’s

correlation coefficient. The feature projection view provides

∗Available at http://www.cs.rug.nl/svcg/People/PauloEduardoRauber-

featured.
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a counterpart to the observation projection view, and enables

several interactions that will be detailed in the next sections.

Our visual analysis tool is implemented in Python, and

uses numpy 60, scipy 61, pyqt, matplotlib 62, skimage 63,

sklearn 64, pyqtgraph, and mlpy 65.

The next sections describe how our tool can be used

to support the task of classification system improvement

based on visual feedback obtained from both observation

and feature projections. For an overview of tool usage, see

Section Proposed workflow.

Madelon: relationship between relevant features

Goal: In this section, we illustrate how the feature

projection view can be used to select features by

considering relationships between relevant features. As

already mentioned, feature selection is a major challenge in

classification system design. In particular, insight into the

feature space can be very valuable when hand-engineered

(off-the-shelf) features are used.

Consider a selection of the 20 best features to discriminate

between the two classes of the Madelon dataset (Sec.

Madelon dataset) , performed using the feature scoring chart

based on extremely randomized trees. The corresponding

projections of observations and features are shown,

respectively, in Figs. 12a and 12b. Each feature in the

feature projection view is colored according to its relevance

score (darker colors represent higher relevance according

to extremely randomized trees). The 20 selected features

are outlined in black. Note that the most relevant selected

features (darker colors) are placed near the center of the

feature projection, except for the least relevant one. This

finding is notable, since the feature projection is created

without any information about feature scores. This shows

that relevant features are related (according to the feature

dissimilarity and relevance scoring metrics) in this dataset.

Note that, in general, relevant features are not necessarily

related3. For instance, a feature can simply complement the

discriminative role of other features.

Showing the relationships between feature scoring and

feature similarity is a main asset of the feature projection

view. Figures 12c and 12d show how such insight can be

used: by removing the outlier feature (i.e., the feature that

is apparently unrelated to the rest of the selection), visual

separation is preserved. In other words, the feature projection

view let us prune the feature space while maintaining the

desired visual separation (and NH), thereby reducing the size

of the data that needs to be considered next.

Improvement: Table 1 presents the results of each

learning algorithm on the Madelon test set, following the

protocol described in Sec. Experimental protocol, before

and after removing the outlier feature mentioned above.

As conveniently anticipated by the observation projection

of the training set (Fig. 12c), the classification efficacy is

maintained (and perhaps slightly improved). In summary, the

feature removal suggested by the feature projection view has

reduced the data size, but maintained classification accuracy.

Corel: class-specific relevant features

Goal: This section shows how the feature projection view

can be used together with the observation projection view to
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Figure 12. Madelon training set. (a,b) Observation and feature

projections, 20 features selected (NH: 83.56%). (c,d)

Observation and features projections, one less feature (NH:

84.55%).

Table 1. Madelon test set accuracies, feature selection

according to Fig 12.

Features/Algorithm KNN RFC SVM

20 features 88.62% 88.92% 86.68%
19 features 88.92% 88.92% 89.22%

find class-specific relevant features, using the Corel dataset

(Sec. Corel dataset) as an example. When improving system

efficacy, such information is useful both for feature selection

and for understanding classification system behavior.

We already showed (Sec. Corel dataset) that we can

choose features that are good to discriminate one of the

classes in the Corel dataset (class 4, which corresponds to

dinosaur drawings), while making discrimination between

the other classes very difficult. Figures 13a and 13b show

the corresponding observation and feature projections. Once

again, we see that the discriminative features are highly

related.

Consider an analogous feature selection aimed to

discriminate class 3 (bus pictures) from the other classes.

Figures 13c and 13d show the corresponding projections.

Comparing the feature views (Figs. 13b and 13d), we easily

see that the sets of powerful discriminative features for

the two classes are disjoint. This information could not be

easily obtained from the feature scoring bar chart mentioned

in Section Proposed methodology and tooling, since features

are generally difficult to locate in that visualization. As

inspecting the precise ranking of each feature is easier in

the bar chart, the two views are complementary. These

interactions require very little effort from the user, who can

inspect several feature combinations in a few minutes.

If the user is interested in a rough estimate of classification

efficacy, our tool can also compute and display classification

results (for a chosen learning algorithm) based on k-fold
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Figure 13. Corel training set. (a,b) Observation and feature

projections, feature subset (4 vs rest, Binary NH: 99.73%). (c,d)

Observation and feature projections, feature subset (3 vs rest,

Binary NH: 99.25%).

cross-validation. This process partitions the current data

into k disjoint validation sets, and a classifier trained on

the rest of the data is used to classify each validation

set. Classification results for the distinct validation sets are

aggregated and displayed, leading to images similar to Fig.

7. These representations do not replace proper evaluation in

a held-out test set (as in Sec. T1: Predicting system efficacy

or the following paragraph), but are useful feedback sources

during the interactive feature analysis process.

Improvement: Table 2 presents the result of each learning

algorithm on the Corel test set, following the protocol in

Sec. Experimental protocol, for the task of discriminating

classes 3 and 4 from the rest (i.e., classes 3 and 4 are

treated as a single class in a binary classification task), for all

features and the subset of 26 features that were considered

(separately) relevant for classes 3 and 4. As predicted by the

observation projections of the training set shown in Figs. 13a

and 13c, the classification efficacy is preserved. In summary,

our visual analysis allowed us to prune the feature space from

150 to only 26 features, and construct a binary classifier for

classes 3 and 4 vs rest that has the same quality as a classifier

that uses all features.

Table 2. Corel test set accuracies, classes 3 and 4 vs rest,

relevant features according to Fig. 13.

Features/Algorithm KNN RFC SVM

All (150) features 98.18% 98.79% 98.48%
26 features 98.48% 98.79% 98.79%

Melanoma: alternative feature scores

Goal: The joint display of feature similarity and relevance is

useful in other ways, as shown next. Here, our representation

enables comparing the results of different feature scoring

techniques. Since the techniques are based on distinct

principles, comparing their results to find features that

are consistently considered effective is a valuable task for

improving system efficacy.

Consider the feature projection view of the melanoma

training set (Sec. Melanoma dataset) shown in Fig. 14a.

As usual, colors represent the relevance of each feature

to discriminate between the two classes present in the

dataset (according to extremely randomized trees). We

see a concentration of relevant features between the

center and the bottom right. Again, the feature placement

reinforces the feature scoring information. The presence

of zones of highly relevant features is highly suggestive

for the exploration of the feature space, as shown in Sec.

Madelon: relationship between relevant features.

feature projection
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feature projection

(randomized logistic regression)
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Figure 14. Feature projection for melanoma training set. (a)

Feature scoring by randomized decision trees. (b) Feature

scoring by randomized logistic regression

Consider an alternative feature (relevance) scoring

obtained by another technique – in this case, randomized

logistic regression57 – shown in Fig. 14b. We see that the

distribution of relevancies is very different according to the

second technique, which places higher cumulative relevance

into fewer features. However, note that the two techniques

agree on the irrelevance of the features in the bottom right

and top left. This visual metaphor, where similar features

are placed near each other, is a natural way to display such

information.

The image features in this dataset have meaningful names,

which can be inspected by hovering over the points. Using

this mechanism, we find that the irrelevant peripheral points

correspond mostly to histogram bins that have little (or even

zero) variance across all images in our dataset. As expected,

these features have almost no predictive power.

Improvement: Table 3 presents the result of each learning

algorithm on the Melanoma test set, following the protocol

in Sec. Experimental protocol, for all 369 features and the

58 (mostly) relevant features shown in Fig. 14a and 14b.

Although the KNN and SVM results deteriorated slightly,

the RFC result improved. Also, our analysis allowed us to

discard a significant number of hand-engineered features.

Besides saving significant time in feature extraction, the
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insight provided by our visual analysis of the feature space

helps in deciding which types of features are most relevant

for classification.

Table 3. Melanoma test set accuracies, relevant features

according to Fig. 14

Features/Algorithm KNN RFC SVM

All (369) features 73.71% 76.49% 77.69%
58 features 73.31% 77.29% 76.10%

Proposed workflow

We now summarize the value added by the insights

described in Sections T1: Predicting system efficacy and

T2: Improving system efficacy by revisiting the high-level

workflow outlined in Fig. 1.

Our workflow begins when the user loads the data into

our analysis tool and considers the observation projection. If

the perceived class separation in this projection is good, the

classification task is likely quite simple (as discussed in Sec.

T1: Predicting system efficacy). As an extreme example,

consider the projection of the Corel dataset, where even

a 1-nearest neighbor algorithm in the 2D projection space

would achieve good results. In such cases, the user can

follow the traditional machine learning pipeline, with a high

expectation that the system will perform well.

A more interesting scenario occurs when the perceived

class separation in the projection is poor. In this case, the

next step is to use the mechanisms provided by our tool

to find a feature subset that brings separation. This may

require several iterations of feature scoring, analysis, and

backtracking. If no separation improvement can be found,

there are two possible scenarios: classification efficacy is

satisfactory (the projection is misleading with respect to

classifier behavior) or unsatisfactory. The first case is easy to

diagnose, and consists on conducting experiments following

the traditional machine learning pipeline. The second case

is the most complicated. In this case, we have shown that

the qualitative aspects of our proposed visualizations are

crucial in enabling the designer to diagnose the system.

For this purpose, our tool provides mechanisms to detect

the presence of outliers and confusion zones, and also to

inspect classification results based on a visual metaphor that

represents observations in a consistent way. By inspecting

the observation projection, the designer receives visual

feedback about which features are important to eliminate

confusion between classes. Furthermore, using the feature

projection view and feature scoring methods, the designer

can reason about the discriminative power of features,

and focus effort on related (or complementary) feature

descriptors. The new alternatives devised during this analytic

process can be fed back into the tool, closing the cycle.

Discussion

This section discusses several important aspects of our

proposed methodology and experiments.

Coverage: As any experimental study, many conclusions

are limited to the datasets that we presented. The particular

random choice of training and test data also affects

the results, although the amount of data we considered

diminishes this concern. Importantly, the extent of our

validation (i.e., experimental protocol, number of datasets

and learning algorithms) is in line with most similar papers

in visual analytics and machine learning.

While we have conducted experiments in additional

datasets (not presented for the sake of space, considering

our focus in qualitative aspects), the four datasets discussed

in the text illustrate well all types of feedback that can

be obtained from projections. We also experimented with

other dimensionality reduction techniques (namely,14;25),

but obtained the best predictive feedback from t-SNE46.

Although the success of our methodology is dependent on

choosing an appropriate dimensionality reduction technique,

a comparative analysis between such techniques was

considered beyond the scope of our work. Instead, we simply

aim to show how a particular technique can be successfully

combined with our methodology.

Our choice of learning algorithms for validation (KNN,

RFC, SVM) considers their widespread popularity, and aims

to make our approach appealing to a large number of

practitioners. The positive results obtained with these highly

distinct algorithms suggest that our approach is valuable for

other learning algorithms.

Limitations: It is easy and instructive to construct

a synthetic example where projections do not provide

valuable visual feedback for classification system design,

This is described next. Consider the task of classifying

observations sampled from two 10-dimensional parallel

(affine) hyperplanes that correspond to distinct classes.

Consider also that the distance between these hyperplanes

is small when compared to the expected distance between

any pair of neighboring sample elements from the same

hyperplane. By construction, this classification task is very

easy for a linear SVM, which consistently obtains 100%
accuracy following the experimental protocol detailed in Sec.

Experimental protocol. At the same time, a DR technique

that tries to preserve the original distances in the high-

dimensional space will not show a clear separation between

the two classes, as shown in Fig. 15. In simple terms, the

visual feedback is misleading, because the classification task

is easy, but there is no apparent visual separation between

classes. It is important to note that other learning algorithms

did not perform well on this test set (KNN: 51.20%, RFC:

54.94%). However, we believe it is also possible to construct

examples where the visual feedback is unhelpful for those

algorithms.

Figure 15. Planes classification, Linear SVM (AC: 100%).
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Despite this worst case behavior, we argue that the

results presented in Secs. T1: Predicting system efficacy

and T2: Improving system efficacy support our claims that

our proposed approach is highly valuable, particularly

considering the very low investment necessary to explore

data by our proposed methodology and tooling.

Scalability: Our feature space exploration approach benefits

from the visual scalability of projections to hundreds of

thousands of high-dimensional observations and hundreds of

dimensions, although visual clutter eventually becomes an

issue for the quality of the visual feedback.

Even in cases where features are difficult to interpret, we

have shown that our methods can be used to effectively

support the tasks T1 and T2. However, more study is

needed to assess how suitable our methods are for datasets

containing thousands of features.

The computational scalability limits are imposed by the

requirement of near-interactive response times. For instance,

considering a dataset (Madelon) composed of N = 2000
observations and D = 500 dimensions, the tool employed

in our experiments requires approximately 20s to compute

both observation and feature projections and present them for

exploration using a typical desktop computer (3.5 GHz Linux

PC, 16GB RAM). Clearly, the main bottleneck consists

on recomputing such projections for different subsets of

features. For some DR techniques13, this issue becomes

significant in datasets containing more than a few thousands

of observations, while others are able to deal with hundreds

of thousands of observations at interactive rates14;25.

Conclusion

In this paper, we have shown that projections are useful

tools for predicting classification system efficacy in several

real and synthetic datasets. The visual feedback given

by projections is especially helpful in qualitative tasks.

These tasks include inspecting the presence of outliers,

overall separation between observations in distinct classes,

distribution of observations of a given class in the feature

space, and presence of neighborhoods with mixed class

labels.

We also introduced a methodology that uses projections as

a basis for an interactive system designed to give insight into

the feature space. This methodology, and associated tooling,

can aid a designer in improving classification systems, either

directly (by suggesting features that should be eliminated

from consideration) or indirectly (by providing feedback

about which types of features are most important and

for which observations). In particular, we showed how a

projection representing observations can be integrated with

an interactive representation of feature similarity to aid in

this task.

As future work, we will consider studying further

the connection between the observation and feature

projections. We will also consider specific features of some

dimensionality reduction techniques, such as control point

positioning, which may be valuable for our methodology.

Furthermore, we intend on providing visual support to semi-

supervised learning tasks, such as active learning. Other

important direction for future work consists on designing

inverse mappings from the 2D observation projection to the

feature space to allow users to synthesize improved features

by interactively moving misclassified observations to their

desired neighborhoods.
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