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ABSTRACT 

We present the Visual Code Navigator, a set of three interrelated 
visual tools that we developed for exploring large source code 
software projects from three different perspectives, or views: 
The syntactic view shows the syntactic constructs in the source 
code. The symbol view shows the objects a file makes available 
after compilation, such as function signatures, variables, and 
namespaces. The evolution view looks at different versions in a 
project lifetime of a number of selected source files. The views 
share one code model, which combines hierarchical syntax-
based and line-based information from multiple source files 
versions. We render this code model using a visual model that 
extends the pixel-filling, space partitioning properties of shaded 
cushion treemaps with novel techniques. We discuss how our 
views allow users to interactively answer complex questions on 
various code elements by simple mouse clicks. We validate the 
efficiency and effectiveness of our toolset by an informal user 
study on the source code of VTK, a large, industry-size C++ 
code base. 

CR categories: H.5.2[User interfaces]: evaluation/methodology; 
I.3.2 [Graphic systems]: stand-alone systems; J.7 [Computers in 
other systems]: command and control 
Keywords: source code visualization, multiple views, treemaps, 
pixel-filling displays, source code analysis 

1. INTRODUCTION 

Program understanding is an important aspect of software 
maintenance. Current industrial projects are often based on 
collaborative development of millions of code lines. Industry 
practice studies have shown that maintainers spend 50% of their 
time on understanding this code [16]. In this context, software 
visualization addresses several facets of program and process 
understanding, such as reverse engineering and process recovery 
and execution and algorithm animation. 

In this paper, we focus on the first goal. We introduce the 
Visual Code Navigator (VCN), a toolset that provide three 
different, but strongly interconnected views on software source 
code. VCN aims to help the developer understand the structure, 
and its changes, of large software systems.  
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We start solely from the code base, i.e. a set of source code 
files, since this is often the only up-to-date, reliable source of 
information on a software project, and also the main material 
involved in the maintenance phase. Moreover, we believe that 
visualization tools must be tightly and non-disruptively 
integrated with the programmers’ accepted way of working, i.e. 
directly reflect, and make use of, the source code itself.  

VCN consists of three interrelated tools, or views, on the code 
base. The syntactic view shows the code syntactic constructs, 
such as classes, functions, statements, identifiers, and so on. The 
symbol view lets one see the symbols the code base makes 
available after compilation, e.g. functions, variables, and 
namespaces. Finally, the evolution view shows several versions 
of several source files during a project lifetime. Each view 
visualizes a different hierarchical aspect of the code base: text 
lines in file versions in the evolution view, syntactic structures in 
the syntactic view, and data/code symbols in the symbol view. 
The views use the same visual model to show hierarchical 
containment, based on the space partitioning properties of 
shaded cushion treemaps. For this, we extend the shaded 
cushions, as introduced in [26], with several new techniques. 
The three views are dense pixel displays that map up to 
thousands of source code artifacts on a single screen, allowing 
efficient zoom and pan techniques to quickly get overviews of 
large code bases and also details on demand. 

The structure of this paper is as follows. In Section 2, we 
review related work on source code visualization. Section 3 
outlines the code data model, i.e. how we acquire and represent 
source code information. Section 4 presents the three different, 
but correlated, views that visualize source code in VCN, and 
discusses several design and implementation techniques. In 
section 5, we illustrate our tools and techniques with the analysis 
of the source code of VTK, a large and complex C++ class 
library. Finally, section 6 discusses the contribution we bring to 
source code visualization and outlines future research directions. 

2. RELATED WORK 

We define the goal of source code visualization using the five 
dimensions model of Maletic et al [12]: task, audience, target, 
medium, and representation. The main task is to gain insight in 
the structure and semantics of a given code base. Specifically, 
we focus here on detailed, code-level understanding, as 
compared e.g. to getting architectural overviews of a code base 
[19]. The intended audience is mainly composed of code 
developers and maintainers, i.e. persons directly interested and 
involved in writing and manipulating source code as such, as 
opposed to e.g. system architects, who often manipulate code in 
terms of black-box components or packages rather than textual 
source. However, given the overview capabilities provided by 
the nested cushion techniques we use, our audience includes also 
system architects who need to quickly get condensed snapshots 
of a whole subsystem, and, from there, drill down to specific 
code details. The target of visualizations is the code base, i.e. 



the set of source code files involved in a project. We are also 
interested in grasping the source code evolution, so we assume 
the code is stored in a version control management system, such 
as CVS. We focus here on code written in C/C++, so our 
visualizations use, and reflect, language-specific syntactic 
information. The intended visualization medium is the standard 
PC graphics display used by most integrated development 
environments (IDEs). Finally, the representation is formed by 
dense-pixel displays that use shaded cushions to convey code 
hierarchy. 

The challenge of source code visualization has been addressed 
by several tools. At one end of the granularity spectrum, tools 
such as Rigi [20], SHriMP [17], or SoftVision [18] are used in 
reverse engineering to understand subsystem structure and 
dependencies. The code base is a hierarchy of functions, classes, 
components, or packages. Usually, these tools do not reflect the 
source code layout itself, but strive to optimize the spatial code 
graph layout. Moreover, such tools do not show low-level 
system details, such as the many, minute source code edits done 
during debugging or the inner control flow of modules.  

At the other end of the spectrum, tools such as SeeSoft [4] and 
Augur [7] offer a line-oriented code representation colored by 
code attributes and metrics. These tools use the assumption that 
developers are comfortable with visualizations that present the 
code in the same spatial context in which it is constructed (i.e. 
written). While maintaining the 2D code line layout from a 
source file, they reduce a code line to a pixel line, thus 
condensing tens of thousands of lines on a single screen. This 
idea was first proposed by Eick et al. in SeeSoft [4] and was 
further refined by several tools: Augur, Aspect Browser, GSee, 
sv3D, Tarantula, Gammatella, Almost and CVSscan. Augur [7] 
combines information about artifacts and activities of a software 
project at a given moment. Aspect Browser [9] uses regular 
expressions to locate specific artifacts (e.g. keywords) and 
visualizes their distribution. GSee [6] tries to bridge the gap 
between fine and coarse-grained visualization tools, combining 
both elements in an orchestrated environment. sv3D [13] uses a 
3D line-based code representation to compact the space needed 
for display. Tarantula [11] is the first tool to use color and a line-
oriented display to present test line coverage overviews. A 
similar approach is proposed by Almost [15], a program trace 
visualization tool. This idea is further developed by Gammatella 
[14], which uses treemaps to show system-level test file 
coverage overviews. CVSscan [23] is the first to visualize by a 
line-based display the entire evolution of a file. 

However, these tools mostly fall at one or the other end of the 
granularity spectrum, and only a few try to bridge the gap. 
Moose [3] and Concept [2], for example, focus on exposing a 
comprehensive model of software, with different granularity 
levels, that can be further visualized. However, they currently 
lack the supporting visualization palette. GSee [6] and 
Gammatella [14], on the other hand, bring only fine (code lines) 
and coarse grained (files) elements together, and bind them 
through correlations. In this paper, we attempt a finer sampling 
of the granularity scale, supported by a rich set of visualization 
tools. We use line based displays and treemaps to depict also 
middle-sized artifacts such as syntactic constructs (e.g. function 
and class bodies) as well as artifacts resulting from compilation 
(e.g. namespaces and variables). We combine our multi-scale 
visualizations in an orchestrated environment that offers details 
on demand and enables code correlations across multiple 
versions. 

3. CODE DATA MODEL 

Our data source is the information stored in the CVS version 
control management system. This consists of several versions Vij 
of several source files Fj, as well as, for every version, its 
commitment date (time when it was added to the CVS 
repository), and author (who committed it). To decouple CVS 
from the visualization itself, data extraction is done by a separate 
tool. Our main visualization focus is a set of related source files 
Fj, called a project. Once all versions Vij of all files in a project 
are extracted, we pass them to a syntax fact extractor built by us. 
This is a modified GNU C/C++ compiler, with no code 
generation, which extracts the annotated syntax tree from the 
source code. This contains elements such as classes, data 
members, function signatures, macros, templates, for-loops, etc. 
[5]. Our data model contains thus, for every project P, the source 
code of all P’s files and, for every file Fj, an annotated syntax 
tree with all constructs in Fj. Essentially, our code data model 
captures the whole information range from local details, such as 
the contents of every single code line, to global structure, such 
as the global syntactic constructs in files and files in project 
structuring. Essentially, the above resembles the DATRIX code 
model extracted by the CPPX C++ source code analyzer [10]. 

The code data model is thus a set of related hierarchies, 
visualized by our three views, as follows. The evolution view 
shows the file versions in a project’s evolution, the files in a 
project, and the text lines in a file. The syntactic view shows all 
syntax constructs in a file’s syntax tree, i.e. reflects an 
implementation perspective. The symbol view shows the nesting 
of symbols in a compiled (object code) project, e.g. function 
signatures, classes, and data objects in namespaces, i.e. uses an 
interface perspective. Given that the hierarchical code relations 
are closely interrelated, our three views also have tightly 
coupled functionality. This is presented next. 

Throughout the presentation, we use code examples from the 
VTK code base. More details about our visualization case study 
are given in Section 5. 

4. VISUALIZATION MODEL 

We have chosen to use shaded cushions to represent the various 
hierarchies present in our data model (Section 3), for several 
reasons. First, shaded cushions can show up to thousands of 
elements in tree-like hierarchies on a single screen, as shown by 
various applications [26,22,23]. This is essential, since we want 
to visualize large, real-world code bases. Second, cushions 
combine best with two-dimensional spatial layouts. This serves 
us well, as we believe our target developer user group is most 
confident and comfortable with 2D layouts. Moreover, if we do 
not impose specific constraints on the layout to use, cushions 
can be combined with treemaps to make the most of the 
available screen space for displaying hierarchies. We use this 
cushion treemap combination in our symbol view (Section 4.2). 
In the syntactic and evolution views, we choose to use a 
different, code-oriented layout: the x axis maps the files 
visualized together, and the y axis maps the lines in a file. Here, 
we give up the treemap layout, but can still use cushions to 
effectively convey the hierarchy, by using a new cushion shape 
and shading (Section 4.1). Third, we implement several efficient 
cushion rendering methods, which allow us to perform 
interactive zoom and pan in our views, an essential aspect from 
a usability perspective. Finally, we use color encoding to display 
code attributes via the cushions. 



We detail next the design and implementation of our three 
views. 

4.1 Syntactic view 

The syntactic view shows the syntactic constructs in a given file. 
For every construct, we render a cushion whose geometric 
outline encompasses the construct’s text extent. Given the way 
constructs nest in source code, a cushion has the dotted line 
shape sketched in Figure 1a, consisting of one ‘body’ rectangle 
of size (w, h-2hl) and two ‘indent’ rectangles of sizes (ws, hl) and 
(we, hl), where ws and we are the start and end indents 
respectively and hl the font height. Note, however, that this is the 
most complex shape cushions may have, and occurs only in 
presence of extreme code indentation. Usually, code cushions 
consist of a body rectangle and, optionally, the lower indent 
rectangle (see Figure 3). 

The code cushion we propose is shown rendered in Figure 1b. 
To create this rendering, we extend the rectangular cushions 
[26], as follows. First, we define a 1D height profile f. This is a 
function with range [0..1] that consists of a bevel of width wf 
followed by a plateau region (Figure 1d). For the bevel, we used 
various monotonically increasing functions with the conditions f 
(0) = 0, f (wf) = 1, f ’(wf) = 0. In practice, we found an elliptic 
sector for f and a value wf of 0.3 to give the most aesthetically 
pleasing results. Next, we construct a 2D profile T(x,y) = g(x) 
g(y), where 
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This profile is essentially similar to the parabolic one used by 
the original cushion treemaps [26], with the difference that it has 
a plateau (flat) region in the middle of width 1 - 2wf, as sketched 
by the dotted profiles in Figure 2. However, if we directly use T 
as height profile scaled over the rectangle [0..w,0..h] for our 
code cushion, we do not get the result in Figure 1b. Indeed, T 
does not have zero values on the concave indent borders (left, 
top, bottom, and right borders of rectangles A, B, B’, and A’ 
respectively in Figure 1c). To achieve this, we use a cushion 
height profile H (x,y) defined as follows: 
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 To explain the above, consider the subdivision of the cushion 
shape sketched in Figure 1c. Outside the six border rectangles A, 
B, C, A’, B’, and C’, the profile H coincides with the rectangular 
profile T. Inside these rectangles, we multiply T with four bias 
functions Tx, T-x, Ty, and T-y, in order to obtain a profile H that is 
zero at the outer cushion border and increases towards the inside 
as specified by the 1D profile f depicted in Figure 1d. The bias 
functions Tx, T-x, Ty, and T-y are simply translated, scaled, and 
rotated copies of f. If we think of them being luminance textures, 
then, given a rectangle R with origin (Rx,Ry) and sizes (Rw,Rh), 
then R

xT (x,y) = f(x-Rx)Rw , R
yT (x,y) = f(y-Ry)Rh , R

xT− (x,y) = 

f(Rx-x)Rh, and R
yT− (x,y) = f(Ry-y)Rh. Practically, we construct H  
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Figure 1: Code cushion design  

by first rendering the code cushion textured with a luminance 
texture T stretched over the rectangle [0..w,0..h]. Next, we 
render the rectangles A, B, C, A’, B’, and C’ textured with the 
1D texture f, scaled, translated, and rotated as described above, 
using multiplicative blending.  Figure 1b shows the final result. 

To render a nested code structure, we must now combine the 
cushion height profiles H defined above. The original solution 
for this [26] was to sum up parabolic height profiles and 
illuminate the result (Figure 2a). In our case, since wf < 1 (in 
practice, wf = 0.3), the profiles of the deeper nested cushions 
(Figure 2b, continuous line) fall within the plateau (flat) region 
of the enclosing cushions  (Figure 2b, dotted line). We can thus 
obtain the same result as [26] by simply rendering the cushions 
in nesting order. This has the advantage that it does not require 
high precision height profile summing, so can be cheaply 
implemented using standard fixed-point OpenGL. Summarizing, 
our rendering runs over all syntax constructs, in nesting order, 
and renders their cushions using polygons textured with the 
cushion profile, stored as luminance OpenGL textures. A chief 
advantage of this efficient rendering is that users can 
interactively zoom and pan tens of files of thousands of lines of 
code in total (see e.g. Figure 6).  

surface
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Figure 2: parabolic cushions (a) and plateau cushions (b) 

Figure 3 shows our method for a code fragment of nesting 
depth 5. The eye perceives the height of the cushions to be 
proportional with the nesting depth. This result, known as the 
Cornsweet effect, was previously used to similar ends in 
visualizing nested height contours [25]. This works if the nested 
structures do not completely overlap, as they would in case of a 
treemap where parents are completely covered by their children. 
In the syntactic view, complete overlaps never happen. We 
prevent this by extending the right cushion margin with a small 
border. This is the reason why the cushions in Figure 3 visibly 
extend past the text’s right border. In the other three directions, 
cushion margins exactly match the text, a constraint imposed by 
the text layout itself. 

The next step in the syntactic view design is to combine the 
cushion hierarchy with the code text itself. Our goal is to have a 



tool in which programmers can smoothly and easily navigate 
between the familiar, trusted text view a standard editor would 
offer and the syntactic cushion enhancement. We achieve this by 
blending the text graphics atop of the cushions. Users can 
control both text (αt) and cushions (αc) transparency via two 
sliders to instantly change the visualization focus from text to 
syntax.  

Figure 3 (left) depicts this by showing clear text (αt=1) over a 
faint syntactic background (αc=0.2), and a faint text (αt=0.3) 
over a strong syntactic background (αc=0.6). 
    

 
Figure 3: Cushion and text blending 

Finally, we color cushions to show the type of syntax 
construct they display. Users can browse all C/C++ syntax 
constructs in a tree view widget and change their color and 
visibility. For example, in Figure 3 we used yellow for for 
loops, green for comments, gray for functions, light blue for if 
statements, white for declarations and conditions, and red for 
macros. Visibility is turned off for many constructs, such as the 
finer-grained declarators and expression terms, to avoid non-
informative cluttering. In this way, we focus on the larger extent 
constructs, such as scopes, which help us grasp the overall 
program structure. By manually changing the colors, or 
choosing from predefined color schemes, we can quickly focus 
on various code aspects and answer queries such as “show all 
iterations (for, while, do)”, “is the code heavily using macros?”, 
“is the code deeply nested?” or “is the code richly commented?”. 
More examples hereof are presented in Section 5. 

 

 
Figure 4: Cushion profile choices 

By tuning the range of the profile function f  (Figure 4d, f=0), 
we can obtain effects ranging from classical ‘syntax 
highlighting’ (Figure 4 left) to a soft 3D shaded bevel effect 
(Figure 4 right, f∈[0..0.5]), or a high-contrast effect (Figure 3 
right, f∈[0..1]). The combination of cushion display and text 
graphics allows a smooth level-of-detail control. By changing 
the font height hl, which implicitly changes the cushion sizes, 
one can change the amount of code visualized on a single 
screen. In the extreme case when hl=1 pixel, the syntactic view 
becomes very similar to a line-based source code visualization 

such as SeeSoft [4]. Figure 6 shows 11 files visualized in this 
way in the syntactic view. The largest file is a C++ 
implementation file of 635 lines, the other 10 ones are header 
files. In total, this screen shows over 3400 code lines. Via the 
color coding (same as in Figure 3), we quickly see several 
things, as follows. The implementation file (leftmost) contains 
heavy iterations (yellow), but no deep nesting. The header files 
are clearly much richer commented (green) than the 
implementation. All files share the same initial comment block, 
i.e. the first green block at the top. Every header contains one 
large class (cyan). This class is almost the first thing declared in 
the headers, as there is not much else atop the cyan block. Some 
of the headers contain also inline functions (the white blocks 
below the cyan class block). There is no heavy use of macros, 
except in one file, as shown by the immediately salient red spot 
(A). For comparison purposes, the same code is shown in Figure 
6 (right), without the shaded syntax cushions. Obviously, it is 
almost impossible to grasp the code structure from this image.  

Another important issue is navigation in the syntactic view. As 
described above, code overviews can be generated by zooming 
out (decreasing the font size), fading out (decreasing the text 
opacity), and marking certain syntactic elements as invisible. 
Users can navigate this code overview by scrolling the rendered 
code columns. Why would navigating this overview be better 
than scrolling text in a classical editor? First, our experience is 
that, when looking at some code detail, programmers often have 
requests such as “I want to go to the start of the third previous 
function in this file”, “go to that deeply nested for loop 
somewhere below this point”, or “go to that code fragment 
somewhere in the beginning of the file, below that richly 
commented code”. Scrolling the syntax-colored, cushioned code 
overview serves exactly these requests, as one quickly sees the 
size, nesting, type, and distribution in file of the source code. 
However, often one needs details on demand as well. We 
provide these by displaying, at any time, the detailed code under 
the mouse position in a separate classical text editor view under 
the cushion view (Figure 6 left). However, this can disrupt the 
navigation process, as the user must continuously change focus 
between the cushion and detailed view. We address this problem 
by providing two details-on-demand cursor modes:  the spotlight 
cursor (Figure 5 left) and the syntax cursor (Figure 5 right). 
Following the model of Furnas [8], both cursors modulate the 
text and cushion opacity based on the degree of interest (DoI), 
which is a function f(d) of the geometric distance d from the 
point of interest located at the mouse cursor (depicted as a cross 
in Figure 5). For the spotlight cursor, we 
use )1)(cos(2

1)( +=
π
Kddf , where K gives the spotlight width, 

which is efficiently implemented by using an alpha texture. For 
the syntax cursor, we simply set f(d) = 1 for the cushion right 
under the mouse. 

a) 

 

 
Figure 5: spotlight cursor (left) and syntax cursor (right) 
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Figure 6: Syntactic view of 11 files with cushions (left) and without (right)   

Summarizing, a typical use scenario for the syntactic view is 
as follows. First, the user opens the files of interest, selects a 
small font height (e.g. one pixel), and chooses a predefined 
cushion color scheme for the types of syntax structures he wants 
to see (Figure 6 left). If some area of interest pops up, e.g. a 
particular cushion color, size, and nesting mix, the user zooms 
on it increasing the font height. Next, the spotlight cursor is 
activated, and the area is brushed to see the concrete code at 
hand. Typically, an interesting area of the size of a function or 
class, of about 100 lines of code, gets now in focus (Figure 5 
left). Next, the syntax cursor is activated to further zoom on a 
substructure of interest, such as the for loop in focus in Figure 
5 right. At this point, the cushion opacity is typically decreased 
in favor of the text, and the user can further inquire the code 
using context-specific queries. Queries usually move the point of 
interest to some other part of the code base, where the process 
starts again anew. 

4.2 Symbol view 

The second tool in the VCN system is the symbol view. This is a 
shaded cushion treemap that displays the symbols a project 
contains after compilation, i.e. the symbols a linker would see at 
that stage. In C/C++, these are all global scope objects: function 
signatures, class and namespace method and data members, 
templates, enumerations, typedefs, and global variables [5]. The 
symbol view is correlated with the syntactic view: One can 
select a hierarchical code element (file, scope, variable, 
declaration and so on) in one view and see it depicted in the 
other too. Note, however, that the symbol view does not show 
any data inside function bodies. This information is inexistent 
from a linker perspective. 

The symbol view treemap shows the C++ scope containment, 
as extracted by our code analyzer (Section 3). Treemap nodes 
are colored by their type: green for functions and methods, red 
for variables and data members, cyan for typedefs, and yellow 
for function arguments (Figure 7). Less saturated colors indicate 
symbols in the global scope, more saturated ones symbols in 
class or namespace scope. We also visualize the (included) files 

the symbols come from, as a separate subtree, colored orange. 
The size of terminal (leaf) symbols is equal to their byte count, 
or sizeof C operator, except for function bodies. Since the 
symbol view has no information over these, we set their size to 
be the number of code lines of the function signature 
(declaration). Non-leaf symbol sizes are the sum of their 
children’s sizes. The above metric allows comparing objects to 
answer questions like “which are the ‘heaviest’ variables or 
types in a scope?” or “which are costly functions from a 
parameter passing perspective?”  The latter is easily answered, 
since function arguments are children of function declaration 
nodes. Other questions the symbol view can answer are “where 
are the inlines or template declarations?”, “which file contains 
just function prototypes?”, “which classes have the largest 
interface (most methods)”, or “which declarations are heavily 
commented?” The last is easily visible, since richly commented 
declarations have more code lines than their ‘bare’, code only 
counterparts. 

Figure 7 shows the symbol view for the standard C/C++ 
headers (e.g. stdio.h, iostream.h, etc) included by a VTK file. 
The space is partitioned in three: the files (orange, below), the 
global C namespace (treemap left half), and the C++ std 
namespace (treemap right half). Further partitioning of the std 
namespace indicates its various classes, e.g. iostream, 
vector, list, etc. We see that the headers are dominated by 
function prototypes (small green and yellow cushions). There 
are just a few functions having more than one code line (the few 
larger green cushions). The global C scope has overall functions 
with the same argument list size (uniform distribution of small 
yellow cushions in the left treemap half). In contrast, the std 
namespace has much more variation in function argument size 
(varying-size yellow cushions, right treemap half). This is so 
since std template methods often use relatively large iterator 
types as arguments. There are just a few variables (red) in the 
headers, which matches expected good programming rules. A 
relative surprise is the small number of typedef declarations 
(cyan). We expected these would be more numerous in standard 
headers.
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Figure 7 : Symbol view. Borderless (top left) and bordered treemap (top right) and visual brushing for queries (bottom row)

We tested two variations of the symbol view: a classical 
borderless cushion treemap (Figure 7 top left) and one with one-
pixel borders (Figure 7 top right). Remarkably, all our users 
found the bordered treemap easier to understand, as the nesting 
is clearer. Moreover, scopes (class, structure, and namespace) 
appear here explicitly as thin, dark blue borders. 

The symbol view offers several interactive queries. Brushing 
over a file (Figure 7 bottom left, red rectangle) shows all 
symbols defined in that file as highlighted cushions (same 
figure, orange rectangles). Brushing a function (Figure 7 bottom 
right, red rectangle) shows the file is declared in and the types of 
its arguments and return (same figure, orange rectangles). 
Finally, Figure 7 (bottom right) illustrates another cushion 
treemap feature. By tuning the cushion height profile, deeper 
nested structures become more visible, as compared e.g. to the 
other three images in Figure 7, which better convey the scope 
(shallow) nesting of code symbols.  

We implemented the symbol view’s shaded cushion treemap 
using the ARB_fragment_program OpenGL extension. 
Compared to the software rendering used in [26], this allows us 
to zoom and pan the view in real time, as well as quickly change 
the light direction to better grasp the structure nesting. 

4.3 Evolution view 

The evolution view is the last source code view in the VCN. As 
its name says, it displays the evolution, or change, in the source 
code of several files in a project’s lifetime. Compared to 
previous work in this direction (i.e. Evolution Spectrograph 
[27]), the evolution view offers more detailed images of files, 
enabling cross file correlations at line level. This view uses a 2D 
pixel-filling display based on the file layout, similar to the 
syntactic view. For a file, the x axis maps the version number 
and the y axis maps the line number. In the data model from 
Section 3, the evolution view shows, for a file Fj, all its versions 
Vij stacked along the x axis. A version Vij is drawn as a vertical 
pixel stripe, every horizontal pixel line representing one or more 
source code lines in Vij, colored by the line type or the line 
author, as described below. To separate between versions, we 
blend a vertical cylinder-like shaded cushion profile over each 
version colored stripe. In detail, the evolution view uses the 
pixel-filling code display technique described by Voinea et al. in 
[23] for a single file evolution. While similar to the technique 
proposed by Viégas et al. in [21], the former scales better when 
the number of versions becomes larger the 100. Here, as a new 
element, we correlate the evolution of several files Fj from a 
project, by displaying the visualizations of all Fj in a matrix: 
Every row displays a file, every column displays an attribute 



type (line type, author, etc), aligned on version number. Figure 8 
shows an evolution view of three files F1, F2, and F3 from the 
VTK code base. For every file (matrix row), 110 versions Vj, 
j=[1..110] are shown. The largest versions in this picture have 
about 650 lines. The left matrix column shows the source code 
colored by line type: green = comments, black (dark) = function 
declarations, pink = strings, and blue = C/C++ code, shaded by 
the nesting level (darker = deeper nested). The right matrix 
column shows the lines’ authors, i.e. the persons who committed 
the respective lines in the CVS repository (see Section 3).   

 The evolution view allows us to see several facts in the source 
code. First, we quickly get an overview of the file size evolution 
in time. Large changes between consecutive versions, denoting 
major code rewriting, are easy to spot, such as version 50 for F3 
(bottom row) and version 77 for both F1 and F2. Moreover, 
sharing the same time axis allows quickly correlating whether 
changes in different files happen at or around the same version. 
If so, this is a sign an important change occurred which 
influenced more than just one file. We noticed this sign several 
(about 10) times in our VTK case study. 
 

V50 V77 V1 V110 

Authors Line type 

 
Figure 8: Evolution view of three files, one on each row 

Second, we get an overview of the impact every developer 
(author) had on the source code. For example, the red author is 
obviously the main responsible for F1, the orange one for F2. 
The green one has done most work on F2, but also starts 
contributing from around version 50 to F1. The black author 
worked a little bit in all three files. Besides author impact, the 
right column shows also how persistent was someone’s work, 
i.e., whether it survived to the last (rightmost) version or was 
deleted by someone else. For example, the top-right image in 
Figure 8 shows that much of the black author’s work in the 
middle of the evolution of Fj (versions 50 to 77) is actually 
thrown away by the major rewriting at version 77. Code 
persistence can be detected by looking after continuous ‘wavy’ 
stripes having the same color in the author view, which span 
several contiguous versions. If the same stripe pattern is visible 
also in the line type view, the probability we have a persistent 

code fragment is strengthened even more. By correlating mouse-
based brushing in the evolution view with detailed code display 
in the syntactic view, one can examine the actual facts to 
validate, or infirm, the formed hypotheses. 

5. CASE STUDY: THE VTK SYSTEM 

We have used VCN’s three views in a study to understand VTK 
[24]. VTK is a complex C++ library of hundreds of classes in 
over 2000 files, spanning over 100 versions, developed by tens 
of programmers over a 10 year period. Our three users, who 
were experienced with C++ but never used VTK,  acquired 100 
versions of several VTK files with CVSgrab, analyzed them 
using VCN, and addressed several questions: (Q1) Are VTK 
files fine-grained (many small functions) or coarse-grained (few 
large functions)? (Q2) What is the typical structure of a public 
VTK class? (Q3) Can you locate and describe a few large 
structural changes in the VTK evolution? (Q4) What is the 
typical frequency and usage of macros in VTK? (Q5) Is VTK 
code richly commented? A fourth user, with over seven years of 
VTK programming experience, specified the VTK files to 
analyze and assessed the answers delivered by the former users 
after about two hours of investigation. 

Several snapshots reflecting the typical use of VCN during our 
study have already been shown in the previous sections. Overall, 
our users had similar observations at the end of the study, as 
follows. Q1 and Q2 were quickly answered by both the syntactic 
view (e.g. Figure 6a) and the line metric symbol view (Section 
4.2). The studied files had functions of 30..100 lines of code, 
except some small inlines in the headers. The VTK classes have 
a rich public interface and relatively fewer protected and private 
members. Here, the symbol view performed better than the 
syntactic view, as it shows classes and their members as a 
simple treemap, compared to the more complex shaped code 
cushions. The evolution view was used for Q3, the structural 
changes found are discussed in Section 4.3. Q4 was answered by 
the syntactic view by using red as macro color (Figure 6 left, 
third file-column from right). Finally, Q5 was answered equally 
well by the syntactic and line-type colored evolution views.  

A prototype of the VCN including a pre-parsed VTK code 
base is available at www.win.tue.nl/~lvoinea/VCN.html 

6. CONCLUSION AND FUTURE WORK 

We have presented VCN, a toolset that offers three views, at 
different level of detail, on source code structure and evolution: 
The syntactic view shows code structure, the symbol view 
shows code from a linker’s perspective, and the evolution view 
shows code changes during a project’s lifetime.  

Both the syntactic and symbol view visualize C++ syntax 
construct nesting. The syntactic view shows all constructs, 
including e.g. the function body implementations, and targets the 
code writing and debugging phase. In contrast, the symbol view 
shows only constructs a linker would see after compilation, so it 
offers a coarser view on the software. 

The evolution view and (zoomed out) syntactic view share 
basically the same 2D pixel-filling, file-based layout. One may 
wonder whether to merge the two in one view, capable of 
rendering code at several levels of detail. From fine to coarse, 
these would be: text (classical editor), syntax cushions over 
variable-height font text (syntactic view), one pixel per character 
rendering (as in [1] and [4]), and several code lines per fixed-
width pixel stripes (the evolution view and [23]). Conceptually, 
we see no problem with this. However, having already 



implemented all the above, we see several technical problems in 
crafting one single, efficient implementation that would address 
all above visualizations and their underlying code data models. 
Another interesting note from our case studies is that code 
perception varies discontinuously when we continuously vary 
the text scale (font size). The evolution view targets a perception 
scale at which individual code structures (loops, declarations, 
etc) become unimportant, and only the file size and overall code 
change patterns throughout the file are relevant. The next 
discrete perceptual scale is the syntactic view, where code 
structure itself becomes relevant. The next scale is the usual text 
editor view where one focuses on the meaning of individual 
words. Hence, users like to have these views separate, next to 
each other, rather than combined in one. 

Apparently similar, the syntactic view fundamentally differs 
from the so-called ‘syntax highlighting’ built in many code 
editors. The latter only emphasizes individual lexical tokens and, 
at most, comment blocks. Our syntactic view visualizes the full 
syntax construct range present in the language, so it generalizes 
syntax highlighting, which, thus, would better deserve the name 
‘lexical highlighting’. 

Our tools and techniques are immediately applicable to other 
programming languages besides C/C++, if appropriate syntax 
extractors (parsers) are available. Our choice for C/C++ was 
motivated by their widespread use in industry-size projects. 
Moreover, C++ code is well known for its complexity, so 
visualization tools have here their best chance to prove 
themselves. 

 We plan to extend VCN to explore new dimensions of source 
code, such as visualizing change at file group (directory) and 
project level, and computing and visualizing structural, instead 
of line-based, code change.  Our goal is to smoothly integrate 
VCN in the code development and maintenance cycle to validate 
and promote the use of visualization in software engineering. 

REFERENCES 
[1] Ball, T., and Eick, S., “Software visualization in the large”, IEEE 

Computer, 29(4), 1996, pp. 33-43 

[2] CONCEPT project, http://www.cs.concordia.ca/CONCEPT/ 

[3] Ducasse, S., Gîrba, T., Lanza, M., “Moose: a Collaborative and 
Extensible Reengineering Environment”, Tools for Software 
Maintenance and Reengineering, Franco Angeli, 2005 

[4] Eick, S. G., Steffen, J. L., and Sumner, E. E., “SeeSoft --A Tool for 
Visualizing Line Oriented Software Statistics”, IEEE Trans. on 
Software Engineering, 18(11), 1992, pp. 957-968 

[5] Ellis, M.A., and Stroustrup, B., The Annotated C++ Reference 
Manual, Addison-Wesley, 1990 

[6] Favre, J.M., “GSEE: A Generic Software Exploration 
Environment”, Proc. IWPC'01, IEEE CS Press, 2001, pp. 233 

[7] Froehlich, J., and Dourish, P., “Unifying Artifacts and Activities in 
a Visual Tool for Distributed Software Development Teams”,  Proc. 
ICSE ‘04, IEEE CS Press, 2004,  pp. 387 – 396 

[8] Furnas, G., “Generalized Fisheye Views”, Proc. CHI ’96, ACM 
Press, 1996, pp. 16-23 

[9] Griswold, W.G., Yuan, J.J., and Kato, Y., “Exploiting the Map 
Metaphor in a Tool for Software Evolution”, Proc. ICSE ‘01, IEEE 
CS Press,  2001, pp. 265 – 274 

[10] Holt, R., Hassan, A., Laguë, B., Lapierre, S., and Leduc, C., “E/R 
Schema for the Datrix C/C++/Java Exchange Format”, Proc. WCRE 
’00, IEEE CS Press, 2000, pp.  284-287,  See also:  
swag.uwaterloo.ca/~cppx 

[11] Jones, J.A., Harrold, M.J., and Stasko, J., “Visualization of Test 
Information to Assist Fault Localization”, Proc. ICSE ‘02, ACM 
Press, 2002, pp. 467 – 477. 

[12] Maletic, J.I., Marcus, A., and Collard, M.L., “A Task Oriented View 
of Software Visualization”, Proc. VISSOFT ’02, IEEE CS Press 
2002, pp. 32-40 

[13] Marcus, A., Feng, L., and Maletic, J.I., “3D Representations for 
Software Visualization”, Proc. ACM SoftVis ‘03, ACM Press, 2003, 
pp. 27 – 36 

[14] Orso, A., Jones,  J, and Harrold, M.J., “Gammatella: Visualization 
of program-Execution data for deployed software”, Proc. ACM 
SoftVis ‘03, ACM Press, 2003, pp. 173 - 188 

[15] Renieris, M., and Reiss , S.P., "ALMOST: exploring program 
traces", Proc. NPIVM’99, ACM Press, 1999, pp. 70-77 

[16] Standish, T.A., “An Essay on Software Reuse”, IEEE Trans. on 
Software Engineering, 10 (5), Sep. 1984, pp. 494 — 497 

[17]  Storey, M.A., Best, C., Michaud, J., Rayside, D., Litoiu, M., and 
Musen, M., “SHriMP Views: an Interactive Environment for 
Information Visualization and Navigation”, Proc. CHI ‘02, ACM 
Press, 2002, pp. 520 – 521 

[18] Telea, A., Maccari, A., and Riva, C., “An Open Toolkit for 
Prototyping Reverse Engineering Visualization”, Proc. IEEE 
VisSym ‘02, The Eurographics Association, 2002, pp. 241 – 251. 

[19] Tilley, S.R., Wong, K., Storey, M., and Müller, H.A., 
Programmable Reverse Engineering, Intl. Journal of Software 
Engineering and Knowledge Engineering, vol. 4, no. 4, World 
Scientific, 1994, pp. 501-520 

[20] Tilley, S.R., Wong, K., Storey M., and Muller, H.A., “Rigi: A visual 
tool for understanding legacy systems”, International Journal of 
Software Engineering and Knowledge Engineering, December 1994 

[21] Viégas, F., Wattenberg, M., Dave, K., “Studying Cooperation and 
Conflict between Authors with history flow Visualizations”, CHI 
‘04, CHI Letters, 6(1), ACM Pres, 2004, pp. 575-582 

[22] Voinea, L., Telea, A., and Van Wijk, J.J., “A Visual Assessment 
Tool for P2P File Sharing Networks”, Proc InfoVis’04, IEEE CS 
Press, 2004, pp. 41-48 

[23] Voinea, L., Telea, A., and Van Wijk, J.J., “CVSscan: Visualization 
of Code Evolution”, Proc SoftVis ’05, ACM Press, 2005, pp. 47-56, 
209 

[24] VTK Web Repository: http://www.vtk.org/get-software.php#cvs 

[25] Van Wijk, J.J., and Telea, A., “Enridged Contour Maps”, Proc. 
IEEE Visualization ’01, IEEE CS Press, 2001, pp. 69-74 

[26] Van Wijk, J.J., and van de Wetering, H., “Cushion treemaps: 
visualization of hierarchical information”, Proc. InfoVis ‘99, IEEE 
CS Press, 1999, pp. 73-78 

[27] Wu, J., Spitzer, C., Hassan, A., Holt, R., “Evolution Spectrographs: 
Visualizing Punctuated Change in Software Evolution”, Proc. 
IWPSE ’04, IEEE CS Press, 2004, pp. 57-66 

 

 


