PortAssist: Visual Analysis for Porting Large Code Bases

Bertjan Broeksema* Alexandru Telea®
IBM Center for Advanced Studies (CAS), France University of Groningen, the Netherlands
ABSTRACT The tool is used as follows (Fig. 1). We select a query-and-rewrite

ibrary specific to a given porting task (1) and run its queries (2). Query

We present PortAssist, an interactive visual analysis tool that helps'; ; 9 ; 4
lits are shown in an effort estimation view to assess the overall porting

C/C++ developers to estimate the effort needed, and automate refa .
P effort and its spread over the code (3). We next select the mostdneq

toring, during software porting. We use automatic static analysis to". " ;
find code constructs to be refactored and visualize the refactoring im!its and check how rewriting these hits affects the code (4). From

pact at project, file, and construct level. The tool integrates software€S€, we select hits which are safe to automatically rewrite (5). The
querying, rewriting, and visualization into a KDevelop IDE plugin, Processis repeated until porting is complete. We next detail the tool's

and has been used to refactor industry-size code bases. views, using as example the portingkolelibs 3.5.10 (550 files, 750K
y lines) from version 3 of the Qt library (Qt3) to version 4 (Qt4). Queries

1 INTRODUCTION and rewrite rules are based on the official Qt3-to-Qt4 porting guide [5].

When porting large software code bases, developers must perforrp.1 Effort estimation view

many small-scale changes. An effort estimate, showing how changegy ;s \iew uses a table-lens (Fig. 2, rows=files, columns=queries).
dep_end on _each other, and automating such changes, are "‘?ys to %élls show the hit count in a file for a query. The leftmost column
fective porting. We present PortAssist, a KDevelop extension [4] o, ¢ total hit count for a file. Sorting on this column, we see that
which assists porting |ndustry-_3|ze CC++ code_b_ases. We SUPPOTE, ¢ porting effort falls in 5..10% of all files. Brushing table cells
the assessment of overall porting effort and deciding the porting or-;qpjiants the actual hit code in KDevelop's editor, and shows that
der by a project-level overview of the required changes at file Igavel,[he main rewrites involvet cast (Qt typecasting macrosflconSet()

(for tqmcl: efforfjest:gaate), igd f]\flle-Levii vrle}/vrofl;nhowrcir:largtg_es Ilm_ (constructing QlconSet objectapPtrList<T> (list containers), and
pac s%u ce coc eﬁb %pte ho' eac c')l'he (Okﬂ €-g ? e tm)a¥ t.QString::Iatinl (string localization)j.e. columns 2 to 5, which have
u?nlg iense rplxe dase recinnlquneds. . fr\;v?rwr(i)m |ntegrr]z;8|es ?a 'fhany large-value cells. To refine porting effort estimation, we define
analysis, source-code-querying, and program re g technsiogie 5 quality level for each rewrite (how well the rewrite engine handles
2 TOOL OVERVIEW that construct) to color column headers (green=easy, red=diffituilt).
Fig. 2, we see thaQSring::latinl is frequent, but easily portable;

The architecture of PortAssist is described below (see also Fig. 1). howeverOPtrList<T affects many files, but is harder to rewrite.

LG Code editor e e
source C/C++ Syntax e
i | Q trng ;51
Porting librar
F' Query query » Effort esFiT?t.ion view
queries engine PE !
. ® -
I Rewrite impact view
rewrites Rewpte T B — i
engine 1
J 9 P
PortAssist
rewritten code
B I . o
g R
Figure 1: Architecture of PortAssist and its supported workflow [m ! [N [.

We first describe the constructs to be rewritten using a XML-based - = -~ |gt_cast | |QlconSet IQ_Pt,rList [astring:fatint]
query pattern language on the abstract syntax tree (AST) of the input ont<T> (conet Q0bjectY) | Qeensel | QPULEtoTs | qetrmgritnti) conet Guardedeti<T o
code. Constructs include usage of an API (functions or classeg) usa = L = -
of language features like copy constructors, default arguments, and - = — _
templates, or any other C/C++ construct. Patterns are matched on the = s e -
input code’s AST extracted by KDevelop’s built-in parser. Porting is : ' - :
specified similarly using progratnansformations which read an AST : £
fragment (query hit) and output another AST fragment. Both queries - . E
and transformations are executed automatically, see examples at [1, 2] L

<

*e-mail: bertjan.broeksema@fr.ibom.com; The work presented hers
done while B. Broeksema was with KDAB Inc, Berlin, Germany

fe-mail: a.c.telea@rug.nl Figure 2: Effort estimation view, sorted on total hits per file
2.2 Rewrite impact view

Developers want to see how rewriting changes their code before firing
it off, eg. code affected by several rewrite rules; and where rewrites

occur in a file. Therewrite impact view addresses these questions rewriting theimplementation of a method depends on the complex-
(Fig. 3). Selecting a file (A) shows the query hits in that file, one hor- ity of the code around the hit location. For example, rewrites in deeply
izontal bar for hits for a specific query, with hit locations in red (B). nested control/loop structures or C-style casts may make the code more
Thex axis maps the file extent (left=first line, right=last line). Blocks unreadable than rewrites in simpler structures like sequences of assign-
represent AST constructs, scaled by size (lines of code), nestegyas th ment statements, since the former structures are already more complex
appear in the code, and colored by construct type (see color legend ithan the latter even before rewriting [6]. Hence, rewrites inside com-
Fig 3). Construct types not listed in the colormap and/or under a fewplex structures should be done with greater care.

pixels are not rendered to limit clutter. The view can be zoomed like a

table lens. Vertical red bars indicate code contairsagral hits: For C_FileA >
these, the user must choose the order of rewrite rules or handle thel ***"
manually. The spread of red bars in the file shows where rewrites nee‘ﬁmfgfﬁ)

Ranges

[l I |] O OO

Ranges

|

to occur,e.g. in the preamble or main code range, or within function

or class declarations. The view is linked with the code editor (C) by
brushing and selection, allowing users to examine in detail the poten
tial effects of a rewrite before actually performing it, as described next.

Situation before performing the rewriting
E SRS AT part;

’\

ublic ObjectImp {
friend class ExternalFunc;

public:
External (ExecState *exec, KHTMLPart *#p)

1

class External :

QGuardedPtr<T>
query hit (editor view)

: ObjectImp(exec-=interpreter()->builtinObjectPrototype()), part(p)
virtual value get(ExecState *exec, const Identifier &proj
virtual const ClassInfo* classInfo() const { return &unf

static const ClassInfo info;

enum { AddFavorite };
private:

i3

pertyName) const;
o b

[« (3

®

t

Query Current File

Q dedPtr<T>

0 OO m IR

Ranges ‘
Ranges

File B - zoomed
Qstring:latin1() const
(__FileC)

QGuardedPtr<T=

u
QObject queryList
QObiectList

QPtrlist<T>
QPtrList<T>:containsRef
Qstring:latin1() const

(File C-zoomed)

QGuardedpPtr<T>

QObject :queryList
QObjectList
QPtrist<T>

QPtrList<T>:containsRef

query hits

[®

Project Overview

Query Id
QGuardedrtr<T>
QPtrList<T>
QPtrList<T>::containsRef
qt_cast<T>(const QObject*)

o]
o]
o]
o] I

oo

QPointer<kHTMLPart> part;
i

class External : public objectImp {
friend class ExternalFunc;

public:
External (ExecState *exec, KHTMLPart *p)

: ObjectImp(exec->1nterpreter()->builtincbjectPrototypel)), part(p) { }
virtual value get(ExecState *exec, const Identifier &propertyName) const;
virtual const ClassInfo¥ classInfo() const { return &nfo; }
static const ClassInfo info;
enum { AddFavorite };

private:

Configure Colors

=1y Current File

Overview

Query id
QPtrList<T>
QPtrList<T> :containsRef
qt_cast<T=>(const QObject*)

Ranges

10 o s -5
[T W) [0 e
MIHIT—— =R

if

1
]
Situation after rewriting

Mloops C functions

Figure 3: Potential rewrite inspecting (top). After the rewriting (bottom)

Several facts are visible in Fig. 3 top. Here, we selected a hit of
the QGuardedPtr <T> query, which needs porting from Qt3 to its Qt4
syntax QPointer<T>). All hits for this query occur outside function
or class declarations (red block on white area at the left of topmos

bar in Fig. 3 top), and that code is not affected by other queries (no
red blocks beneath). Hence, we can safely use the rewriting engine fo

this rewrite. A right-button click on the query hit offers this possibility.
Fig. 3 bottom shows the rewrite effect: TR&uardedPtr<T> query
hits have disappeared, which has now three queries (colored bars)

Qstring tin1() const

I I

Figure 4: Rewrite impact view colored on rewriting complexity

We support such analyses by color-mapping complexity. Top-level
structures, €.g. class declarations and function bodies, get a light gray
tint to show an overview of global structure. Different loop structures
get different green tints depending on loop typsy.(for, do-while).
Control structures have different tints of purple depending on their type
(if, switch, etc). C-style casts have a light blue color. Fig. 4 shows re-
sults for three files okdelib. The first file (A) is a low-complexity,
declaration-only, header (overall gray tint) and thus easily rewritable.
For the next two files (B,C), we show a view of the whole file and a
zoom-in of a complex part thereof. These files contain several deeply
nested loop/control structures and C-style casts. In file B, the hits
(QString::latin1() function calls) appear in a recurring pattern contain-
ing ado-while loop (light green) which ends with several C-cast state-
ments (nested cyan block). The hits are the last block statements,
loop control expressions, hence can be rewritten easily even though the
loops themselves are complex. For file C, we show hits for six differ-
ent queries. The first five queries have few, concentrated, hitoagish
by the red bar locations (Fig. 4, file C, unzoomed view). The last hit,
again forQString::latinl(), has more hits spread over a larger file area.

Zooming in file C shows that most hits are outside complex structures,

except forQString: :1atinl() hits (red bars inside green blocks). Hence,
Sring::latinl() rewrites in this file should be done carefully.
PortAssist was used for porting in an industrial setting, and is

openly available as a KDevelop 4.0.1 extension [1], including query

And rewrite rules, and demonstration videos [3].

compared to four before rewriting. The editor is updated too, since tthEFERENCES

rewrite changes the underlying source file.

Deciding whether to do an automatic rewrite, ordering of rewrites,
and overall assessment of a rewrite’s complexity depend on more tha
query hit count, hit locations, and hit overlaps. Tdoatext of a code
fragment,e.g. surrounding code constructs and comments related to
it, is important. To support better reasoning about a rewrite’s impact
we add different color-mapped metrics to the impact view. One cas
which proved useful was to highlight changes in public method decla-
rations as compared to changes of protected or private methods. Th
reflects the well-known fact thanterface changes are more likely to

method declaration will likely trigger more code changes in the very

&
&

[4]
8]

propagate than implementation changes. Hence, rewriting a publigs]

[1] B. Broeksema. KDevelop C++ query and rewriting extensi@dl0.
http://www.gitorious.org/kdevcpptools/kdevcpptools.

B. Broeksema. A visual tool-based approach to porting Cegte. MSc
thesis, Dept. of Comp. Sci., Univ. of Groningen, the Nethetta June
2010. http://www.cs.rug.nl/svcg/SoftVis/Refactor.

B. Broeksema. Portassist video demonstration, 20&dv. cs. r ug. nl /
svcg/ Sof t Vi s/ Ref act or.

KDevelop team. KDevelop IDE for C++, 2010ww. kdevel op. or g.
Nokia, Inc. Qt 3to Qt 4 porting guide, 201kt t p: / / doc. qt . noki a.
conl 4.6/ porting4. htni.

H. Sutter and A. Alexandresc@++ Coding Sandards: 101 Rules, Guide-
lines, and best practices. Addison-Wesley, 2005.

end, and should be done with great care. Separately, the quality of

