
PortAssist: Visual Analysis for Porting Large Code Bases

Bertjan Broeksema∗

IBM Center for Advanced Studies (CAS), France

Alexandru Telea†

University of Groningen, the Netherlands

ABSTRACT

We present PortAssist, an interactive visual analysis tool that helps
C/C++ developers to estimate the effort needed, and automate refac-
toring, during software porting. We use automatic static analysis to
find code constructs to be refactored and visualize the refactoring im-
pact at project, file, and construct level. The tool integrates software
querying, rewriting, and visualization into a KDevelop IDE plugin,
and has been used to refactor industry-size code bases.

1 INTRODUCTION

When porting large software code bases, developers must perform
many small-scale changes. An effort estimate, showing how changes
depend on each other, and automating such changes, are keys to ef-
fective porting. We present PortAssist, a KDevelop extension [4]
which assists porting industry-size C/C++ code bases. We support
the assessment of overall porting effort and deciding the porting or-
der by a project-level overview of the required changes at file level
(for quick effort estimate), and a file-level view of how changes im-
pact source code and depend on each other (for fine-grained analysis),
using dense pixel-based techniques. The workflow integrates static
analysis, source-code-querying, and program rewriting technologies.

2 TOOL OVERVIEW

The architecture of PortAssist is described below (see also Fig. 1).

source

�les
C/C++

parser

Syntax 

tree

Code editor

queries

rewrites

Porting library

Query 

engine
query 

hits

Rewrite

engine

Data

E!ort estimation view

Rewrite impact view

KDevelop

PortAssist
rewritten code

1

1

2

3

4

5

Figure 1: Architecture of PortAssist and its supported workflow

We first describe the constructs to be rewritten using a XML-based
query pattern language on the abstract syntax tree (AST) of the input
code. Constructs include usage of an API (functions or classes), usage
of language features like copy constructors, default arguments, and
templates, or any other C/C++ construct. Patterns are matched on the
input code’s AST extracted by KDevelop’s built-in parser. Porting is
specified similarly using programtransformations which read an AST
fragment (query hit) and output another AST fragment. Both queries
and transformations are executed automatically, see examples at [1, 2].

∗e-mail: bertjan.broeksema@fr.ibm.com; The work presented here was
done while B. Broeksema was with KDAB Inc, Berlin, Germany

†e-mail: a.c.telea@rug.nl

The tool is used as follows (Fig. 1). We select a query-and-rewrite
library specific to a given porting task (1) and run its queries (2). Query
hits are shown in an effort estimation view to assess the overall porting
effort and its spread over the code (3). We next select the most frequent
hits and check how rewriting these hits affects the code (4). From
these, we select hits which are safe to automatically rewrite (5). The
process is repeated until porting is complete. We next detail the tool’s
views, using as example the porting ofkdelibs 3.5.10 (550 files, 750K
lines) from version 3 of the Qt library (Qt3) to version 4 (Qt4). Queries
and rewrite rules are based on the official Qt3-to-Qt4 porting guide [5].

2.1 Effort estimation view
This view uses a table-lens (Fig. 2, rows=files, columns=queries).
Cells show the hit count in a file for a query. The leftmost column
shows total hit count for a file. Sorting on this column, we see that
most porting effort falls in 5..10% of all files. Brushing table cells
highlights the actual hit code in KDevelop’s editor, and shows that
the main rewrites involveqt cast (Qt typecasting macros),QIconSet()
(constructing QIconSet objects),QPtrList<T> (list containers), and
QString::latin1 (string localization),i.e. columns 2 to 5, which have
many large-value cells. To refine porting effort estimation, we define
a quality level for each rewrite (how well the rewrite engine handles
that construct) to color column headers (green=easy, red=difficult).In
Fig. 2, we see thatQString::latin1 is frequent, but easily portable;
however,QPtrList<T> affects many files, but is harder to rewrite.

most important �les

qt_cast QIconSet QPtrList QString::latin1

Figure 2: Effort estimation view, sorted on total hits per file

2.2 Rewrite impact view
Developers want to see how rewriting changes their code before firing
it off, e.g. code affected by several rewrite rules; and where rewrites



occur in a file. Therewrite impact view addresses these questions
(Fig. 3). Selecting a file (A) shows the query hits in that file, one hor-
izontal bar for hits for a specific query, with hit locations in red (B).
Thex axis maps the file extent (left=first line, right=last line). Blocks
represent AST constructs, scaled by size (lines of code), nested as they
appear in the code, and colored by construct type (see color legend in
Fig 3). Construct types not listed in the colormap and/or under a few
pixels are not rendered to limit clutter. The view can be zoomed like a
table lens. Vertical red bars indicate code containingseveral hits: For
these, the user must choose the order of rewrite rules or handle them
manually. The spread of red bars in the file shows where rewrites need
to occur,e.g. in the preamble or main code range, or within function
or class declarations. The view is linked with the code editor (C) by
brushing and selection, allowing users to examine in detail the poten-
tial effects of a rewrite before actually performing it, as described next.

QGuardedPtr<T>

query hits

QGuardedPtr<T>

query hit (editor view)

Situation before performing the rewriting

Situation after rewriting loops if C functions public protected private

A

B

C

Figure 3: Potential rewrite inspecting (top). After the rewriting (bottom)

Several facts are visible in Fig. 3 top. Here, we selected a hit of
theQGuardedPtr<T> query, which needs porting from Qt3 to its Qt4
syntax (QPointer<T>). All hits for this query occur outside function
or class declarations (red block on white area at the left of topmost
bar in Fig. 3 top), and that code is not affected by other queries (no
red blocks beneath). Hence, we can safely use the rewriting engine for
this rewrite. A right-button click on the query hit offers this possibility.
Fig. 3 bottom shows the rewrite effect: TheQGuardedPtr<T> query
hits have disappeared, which has now three queries (colored bars) as
compared to four before rewriting. The editor is updated too, since the
rewrite changes the underlying source file.

Deciding whether to do an automatic rewrite, ordering of rewrites,
and overall assessment of a rewrite’s complexity depend on more than
query hit count, hit locations, and hit overlaps. Thecontext of a code
fragment,e.g. surrounding code constructs and comments related to
it, is important. To support better reasoning about a rewrite’s impact,
we add different color-mapped metrics to the impact view. One case
which proved useful was to highlight changes in public method decla-
rations as compared to changes of protected or private methods. This
reflects the well-known fact thatinterface changes are more likely to
propagate than implementation changes. Hence, rewriting a public
method declaration will likely trigger more code changes in the very
end, and should be done with great care. Separately, the quality of

rewriting the implementation of a method depends on the complex-
ity of the code around the hit location. For example, rewrites in deeply
nested control/loop structures or C-style casts may make the code more
unreadable than rewrites in simpler structures like sequences of assign-
ment statements, since the former structures are already more complex
than the latter even before rewriting [6]. Hence, rewrites inside com-
plex structures should be done with greater care.

File A

File B

File B - zoomed

File C

File C - zoomed

Figure 4: Rewrite impact view colored on rewriting complexity

We support such analyses by color-mapping complexity. Top-level
structures, (e.g. class declarations and function bodies, get a light gray
tint to show an overview of global structure. Different loop structures
get different green tints depending on loop type (e.g. for, do-while).
Control structures have different tints of purple depending on their type
(if, switch, etc). C-style casts have a light blue color. Fig. 4 shows re-
sults for three files ofkdelib. The first file (A) is a low-complexity,
declaration-only, header (overall gray tint) and thus easily rewritable.
For the next two files (B,C), we show a view of the whole file and a
zoom-in of a complex part thereof. These files contain several deeply
nested loop/control structures and C-style casts. In file B, the hits
(QString::latin1() function calls) appear in a recurring pattern contain-
ing ado-while loop (light green) which ends with several C-cast state-
ments (nested cyan block). The hits are the last block statements,i.e.
loop control expressions, hence can be rewritten easily even though the
loops themselves are complex. For file C, we show hits for six differ-
ent queries. The first five queries have few, concentrated, hits as shown
by the red bar locations (Fig. 4, file C, unzoomed view). The last hit,
again forQString::latin1(), has more hits spread over a larger file area.
Zooming in file C shows that most hits are outside complex structures,
except forQString::latin1() hits (red bars inside green blocks). Hence,
QString::latin1() rewrites in this file should be done carefully.

PortAssist was used for porting in an industrial setting, and is
openly available as a KDevelop 4.0.1 extension [1], including query
and rewrite rules, and demonstration videos [3].

REFERENCES

[1] B. Broeksema. KDevelop C++ query and rewriting extension, 2010.
http://www.gitorious.org/kdevcpptools/kdevcpptools.

[2] B. Broeksema. A visual tool-based approach to porting C++code. MSc
thesis, Dept. of Comp. Sci., Univ. of Groningen, the Netherlands, June
2010. http://www.cs.rug.nl/svcg/SoftVis/Refactor.

[3] B. Broeksema. Portassist video demonstration, 2011.www.cs.rug.nl/
svcg/SoftVis/Refactor.

[4] KDevelop team. KDevelop IDE for C++, 2010.www.kdevelop.org.
[5] Nokia, Inc. Qt 3 to Qt 4 porting guide, 2011.http://doc.qt.nokia.

com/4.6/porting4.html.
[6] H. Sutter and A. Alexandrescu.C++ Coding Standards: 101 Rules, Guide-

lines, and best practices. Addison-Wesley, 2005.


