
Skeleton-Based Edge Bundling for Graph Visualization

Ozan Ersoy, Christophe Hurter, Fernando V. Paulovich, Gabriel Cantareira, and Alexandru Telea

Abstract—In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for bundles,
we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering, distance
fields, and 2D skeletonization to construct progressively bundled layouts for general graphs by iteratively attracting edges towards
the centerlines of level sets of their distance fields. Apart from clustering, our entire pipeline is image-based with an efficient imple-
mentation in graphics hardware. Besides speed and implementation simplicity, our method allows explicit control of the emphasis on
structure of the bundled layout, i.e. the creation of strongly branching (organic-like) or smooth bundles. We demonstrate our method
on several large real-world graphs.

Index Terms—Graph layouts, edge bundles, image-based information visualization.

1 INTRODUCTION

Graphs are among the most important data structures in informa-
tion visualization, and are present in many application domains in-
cluding software comprehension, geovisualization, analysis of traf-
fic networks, and social network exploration. Classical visualization
metaphors for general graphs include node-link diagrams [17], matrix
plots [34], and graph splatting [35]. For specific types of graphs, such
as hierarchies (trees), additional methods exist such as treemaps.

As the number of nodes and edges of a graph increases, node-link
graph visualizations become challenged byclutter, i.e. unorganized
groups of nodes and edges onto small screen areas. To reduce clut-
ter, and also address use-cases which focus on simplified depiction
of large graphs with an emphasis on graph structure, several methods
have emerged. Specifically,bundlingmethods are an interesting al-
ternative for classical node-link metaphors. Bundling typically starts
with a given set of node positions, either present in the input data,
or computed using a layout algorithm. Edges found to be close in
terms of graph structure, geometric position of their endpoints, data at-
tributes, or combinations thereof, are drawn as tightly bundled curves.
This trades clutter for overdraw and produces images which are easier
to understand and/or better emphasize the graph structure. Edge bun-
dles can be rendered using various effects such as blending or shad-
ing [15, 22, 32]. Edge bundling algorithms exist for both compound
(hierarchy-and-association) [14] and general graphs [15, 7, 24, 22].

In this paper, we present a novel approach for constructing edge
bundles for general graphs. We adapt a recent result which computes
centerlines, or skeletons, of groups of edges [32] and use the skele-
ton for actual edge bundling rather than shading only. In detail, we
combine edge clustering, distance fields, and 2D skeletonization to
construct bundled layouts by iteratively attracting edges towards the
centerlines of level sets of their distance fields. Apart from clustering,
our pipeline is image-based, which allows an efficient implementation
in graphics hardware. Besides speed, our method allows users to ex-
plicitly control the emphasis on bundle structure,i.e. create strongly
branching (organic-like) or smooth bundles which always have a tree
structure. This type of control can be helpful in applications where
one is interested to see how several edges ’join’ together into, or split
from, main structures, for example when exploring the structure of a

• O. Ersoy and A. Telea are with the University of Groningen, the
Netherlands, E.mail: o.ersoy@rug.nl, a.c.telea@rug.nl.

• C. Hurter is with DGAC-DTI R& D, ENAC/Univ. Toulouse, France,
E.mail: christophe-hurter@aviation-civile.gouv.fr.

• F. V. Paulovich and G. Cantareira are with the University of Sao Paulo,
Brazil, E-mail: paulovic@icmc.usp.br, cantareira@icmc.usp.br.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

network. Instances hereof are examining the local hierarchy of traffic
connections in a road or airline network, or identifying the number and
size of branches (fan in/out patterns) in software structures.

The structure of this paper is as follows. In Section 2, we review
related work on edge bundles. Section 3 presents our bundling algo-
rithm. Section 4 details implementation. Section 5 presents appli-
cations on large real-world graphs. Section 6 discusses our method.
Section 7 concludes the paper and outlines future work directions.

2 RELATED WORK

Related work in reducing clutter in large graph visualizations can be
organized as follows.

Graph simplificationtechniques reduce clutter by simplifying the
graph prior to layoute.g. by grouping strongly connected nodes and
edges into so-called metanodes, followed by using classical node-
link layouts for visualization. Several simplification methods exist,
e.g.[1, 2]. Graph simplification is attractive as it reuses existing node-
link layouts out of the box, but can be sensitive to simplification pa-
rameters, which further depend on the type of graph being processed.
It does not allow a continuous treatment of the graph: the simplifica-
tion events yield a set of discrete graphs rather than a smooth explo-
ration scale [22]. Also, simplification typically changes node positions
(collapse to metanodes), which can be undesirablee.g.when positions
encode information.

Edge bundlingtechniques trade clutter for overdraw, by routing ge-
ometrically and semantically related edges along similar paths. Fur-
ther details on clutter causes and reduction strategies in information
visualization are given in [11]. Bundling can be seen as condensing
the edges’ angle distribution along a reduced set of directions and also
sharpening the local edge spatial density, by making it high at bun-
dle locations and low elsewhere. This improves readability in terms
of finding groups of nodes related to each other by groups of edges
(the bundles). Bundling increases the amount of white space between
bundles, which makes their visual separation easier.

Dickersonet al. merge edges by reducing non-planar graphs to
planar ones [9]. Holten pioneered edge bundling under this name for
compound (hierarchy-and-association) graphs by routing edges along
the hierarchy layout using B-splines [14]. Gansner and Koren bundle
edges in a circular node layout similar to [14] using area optimiza-
tion metrics [13]. Dwyeret al. use curved edges in force-directed
layouts to minimize crossings, which implicitly creates bundle-like
shapes [10]. Force-directed edge bundling (FDEB) creates bundlesby
attracting control points on edges close to each other [15]. FDEB can
be significantly optimized using multilevel clustering techniques such
as the MINGLE method [12]. Flow maps produce a binary clustering
of nodes in a directed graph representing flows to route curved edges
along [24]. Control meshes are used by several authors to route curved
edges,e.g. [26, 36]; a Delaunay-based extension called geometric-
based edge bundling (GBEB) [7]; and ’winding roads’ (WR) which
use boundaries of Voronoi diagrams for 2D [22] and 3D [21] layouts.

Several techniques exist for rendering bundled layouts,e.g. color

clustering
distance

transform
skeletonization

feature

transform
tip detection

path

computation
attraction

relaxation &

smoothing
rendering

Shape construction Edge bundling Postprocessing

cluster set shapes Ω skeletons SΩ image data skeleton tips skeleton paths bundled edges smooth bundles final

image
input

graph

δ ω

ρ

α,β

γs,γr

I iterations

bundled edges

end user

Fig. 1. Skeleton-based edge bundling pipeline. End user parameters are marked in green. System preset parameters are in red.

interpolation along edges for edge directions [14, 7]; transparency or
hue for local edge density,i.e. the importance of a bundle, or for
edge lengths [22]. Whole bundles can be drawn as compact shapes
whose structure is emphasized by shaded cushions [32]. Graph splat-
ting visualizes node-link diagrams as continuous scalar fields using
color and/or height maps [35, 16].

3 ALGORITHM

The inspiration behind our method relates to a well-known fact in
shape analysis: given a 2D shape, its skeleton is a curve locally cen-
tered with respect to the shape’s boundary [6]. Skeleton branches cap-
ture well the topology of elongated shapes [20, 29]. Hence, if we could
create such shapes from sets of edges in a graph, their skeletons could
be suitable locations for bundling. To this end, we propose a skeleton-
based edge bundling method, as follows (see Fig. 1):

1. weclusteredges into groups, or clusters,Ci which have strong
geometrical and optionally attribute-based similarity;

2. for each clusterC, we compute a thin shapeΩ surrounding its
edges using a distance-based method;

3. for each shapeΩ, we compute its skeletonSΩ and feature trans-
form of the skeletonFTS;

4. for each clusterC, we attract its edges towardsSΩ usingFTS;

5. we repeat the process from step 1 or step 2 until the desired
bundling level is reached;

6. we perform a final smoothing and next render the graph using a
cushion-like technique to help understanding bundle overlaps.

We start with an unbundled graphG = (V,E) with nodesV and
edgesE. We assume that we have node positionsvi ∈ R2, either from
input data, or from laying outG with any existing methode.g. spring
embedders [17]. Edgesei ∈E are sampled as a set of points connected
by linear interpolation; other schemes such as splines work equally
well. The start and end points of an edge, denotedes

i andee
i respec-

tively, are the positions of the nodes the edge connects. Edge points
may come from input data,e.g. when we bundle a graph which has
explicit edge geometry. If no edge positions are available, we initial-
ize the edge points by uniformly sampling the line segments(es

i ,e
e
i)

with some small step. Our bundling algorithm iteratively updates these
edge points. Its output is a bundled layout ofG which keeps node po-
sitions intact and adjusts the edge points to represent bundled edges.

The six steps of our method are explained next.

3.1 Clustering

To obtain elongated 2D shapes, needed for our bundling (described
next in Sec. 3.3), we first cluster edges using a similarity metric
which groups same-direction, spatially close, edges, using the clus-
tering method described in [32]. We have tested several clustering al-
gorithms: hierarchical bottom-up agglomerative (HBA) clustering us-
ing full, centroid, single, and average linkage, andk-means clustering,
both with Euclidean and statistical correlation (Pearson, Spearmans

rank, Kendallsτ) distances. HBA with full linkage and Euclidean dis-
tance given by

d(ei ,ej) =

√

√

√

√

N

∑
k=1

‖eik −ejk‖2 (1)

whereeik,k∈1,N are uniformly spaced sample points along the edges,
with N ∈ [50,100], gives the best results,i.e. clusters with geomet-
rically close edges which naturally follow the graph structure. Using
the sameN for all edges removes edge length bias. HBA delivers a
dendrogramD = {Ci} with the edge setE as leaves and similarity
(linkage) valuesd(C), equal to the full linkage of clusterC based on
the distance metric in Eqn. 1, increasing from root to leaves. We select
a ’cut’ in D, or partition,P= {Ci ∈ D|d(Ci)< δ} of E based on a sim-
ilarity value δ , set by our algorithm as explained further in Secs. 3.5
and 4. If desired,d in Eqn. 1 can be easily adapted to incorporate edge
data attributes, as outlined in [32].

3.2 Shape construction

Clustering delivers sets of spatially close edges,i.e., the bundling
candidates. Given such a clusterC = {ei}, we consider its draw-
ing ∆(C) ⊂ R2, e.g. the set of polylines corresponding to its edges
ei if we use the default linear edge interpolation. We construct a
compact 2D shapeΩ ⊂ R2 surrounding∆(C), as follows (see also
Fig. 2). Given any shapeΦ ⊂ R2, we first define its distance transform
DTΦ : R2 → R+ as

DTΦ(x ∈ R2) = min
y∈Φ

‖x−y‖ (2)

a)

d)

b)

c)

Fig. 2. Shape construction: a) ∂Ω and S; b) DTS; c) FTS; d) bundling
result. See Secs. 3.2-3.4 for details.

Given a distance valueω, we next define our shapeΩ as

Ω = {x ∈ R2|DT∆(C)(x)≤ ω} (3)

whereDT∆(C) is the distance transform of the drawing∆(C) of C’s
edges. The shape’s boundary∂Ω is the level set of valueω of DT∆(C)
(see Fig. 2 a). This is equivalent to inflating∆(C) with a distanceω in
all directions. In practice, we setω to a small fraction (e.g. 0.05) of
the bounding box ofG. Efficient computation of distance transforms
is detailed further in Sec. 4.

3.3 Shape creation

Given a shapeΩ computed from an edge cluster drawing as outlined
above, we next compute its skeletonSΩ defined as

SΩ = {x ∈ Ω|∃y,z ∈ ∂Ω,y 6= z,‖x−y‖= ‖x− z‖= DT∂Ω(x)} (4)

i.e. the set of points inΩ which admit at least two different so-called
feature points on∂Ω, at distance equal to the distance transform of∂Ω
(Fig. 2 a).

GivenS, we now compute its so-called one-point feature transform
FTS : R2 → R2, defined as

FTS(x) = {y ∈ S|DTS(x) = ‖x−y‖} (5)

i.e. one of the feature points ofx. Figure 2 b,c show theDTSandFTSof
a skeleton. Gray values in Fig. 2 b indicate theDTS value (low=black,
high=white). Colors in Fig. 2 c indicate the identity of different feature
points: same-color regions correspond roughly to the Voronoi regions
of the skeleton branches [33]. The skeleton is the identity set ofFTS,
i.e. ∀x ∈ S,FTS(x) = x. Note that, in Eqn. 5, we use the distance
transformDTS of the skeletonS, and not the distance transformDT∂Ω
of the shape. Also, note that the one-point feature transform is simpler
than the so-called full feature transform

FT f ull
S (x) = argmin

y∈S
‖x−y‖ (6)

which recordsall feature points ofx [6].
In practice, we compute distance transforms, one-point feature

transforms, and skeletons in discrete image (screen) space. This al-
lows efficient implementation (see Sec. 4) and also further processing
of the skeleton for edge bundling, as described next.

3.4 Edge attraction

Using the skeletonSand its feature transformFTS, we now bundle the
edgesei ∈ C by attracting a discrete representation of each edge to-
wardsS. This idea is based on the following observations. First, given
the way we combine clustering and edge bundling, a cluster contains
only edges having close trajectories; the reasons for this are detailed
in Sec. 3.5. By construction, the skeletonSof a cluster is locally cen-
tered with respect to the (similar) edges in that cluster,i.e. a good
candidate for the position to bundle towards. Secondly,FTS(x)− x
gives, for each pointx ∈ R2, the direction vector fromx to the closest
skeleton point tox, i.e. the direction to bundle towards. We use these
observations to bundleei as follows.

First, we compute all branch termination points, ortips, T = {ti}
of S. Given thatS is represented in image space, we use a simple and
efficient 3× 3 pixel template-based method [19] to locateti . Next,
we compute all skeleton pathsΠ = {πi ⊂ S} between any two tips
ti and t j . The paths are represented as pixel chains and are found
using depth-first search from eachti on the skeleton pixel-adjacency-
graph. We next use these paths to robustly attract the edges towards
the skeleton.

For eachei ∈C with start and end pointses
i andee

i respectively, we
select a skeleton pathπ(ei) ∈ Π so that{FTS(es

i),FTS(ee
i)} ⊂ π(ei),

i.e. a path passing through the feature points of both edge end points.
If there are several such paths inΠ, we pick any one of them, the
particular choice having no influence on the algorithm.

We now useπ(ei) to bundleei along the skeleton, as follows. Con-
sider a pointx ∈ ei located at arc-length distanceλ (x) from es

i . We
movex towardsFTS(x) with a distance which is large ifx is far away
from FTS(x) and/or close to the middle of the edge:

xnew=

[

1−αφ
(

λ (x)
λ (ee

i)

)]

x+αφ
(

λ (x)
λ (ee

i)

)

FTS(x) (7)

Here,α ∈ [0,1] controls the tightness of bundling: Large values bring
the edge closer to the skeleton, whereas small values bundle less. The
functionφ : [0,1]→ [0,1] defined as

φ(t) = [2 min(t,1− t)]K (8)

modulates the motion amount so that the edge’s end pointses
i andee

i
do not move at all, points close to these end points move less, and
points around the middle of the edge move most. This produces the
curved edge profile we require for bundling, and also keeps edge end
points fixed to their node locations. The parameterK controls how
smoothly edges twist, or curve, from their nodes to reach their bundled
location. HigherK values produce more twists, and lowK values
produce smoother twists. Values ofK ∈ [3,6] give very similar results
to known bundling methodse.g. [14, 15, 22]. Also, for anyx ∈ S,
FTS(x)= x (Sec. 3.3), so for such points we havexnew= x (Eqn. 7),i.e.
points which have reached the skeleton, the extreme bundling location,
do not move any longer.

Equation 7 is equivalent to advecting edge pointsx in the gradi-
ent field−∇DTS. Distance transforms of any shape except a straight
line have div∇DTS 6= 0 [28]. Hence, our attraction typically shortens
and/or lengthens edges, since these get immediately curved after one
application of Eqn. 7. We compute the edge pointsx used in Eqn. 7
by uniformly sampling edges in arc-length space with a distance equal
to a small fixed fraction (0.05) of the layout’s bounding box. This
removes points where the edge contracts (div∇DTS < 0) and inserts
points where the edge dilates (div∇DTS> 0) as needed, thus ensuring
a uniform edge sampling density.

3.4.1 Attraction singularities

As explained, Eqn. 7 is equivalent to advectingx in the field−∇DTS.
This field is smooth everywhere inR2 except on pointsx where
‖FT f ull

S (x)‖ > 1, i.e. points located on the skeleton of the skeleton’s
complement, or Voronoi diagram ofS, S= SR2\S. Intuitively, Scorre-
sponds in Fig. 2 c to color discontinuities. Although this singularity set
is small,i.e. a set of curves in 2D, we need special treatment for such
situations. If we were to directly advect a curve using Eqn. 7 with no
further precaution, singularities would appear where the curve crosses
S, since∇DTS has a high absolute divergence,i.e. changes direction
rapidly, in such areas [28]. Such singularities appear as sharp kinks in
the curve, which defeats our purpose of creating smooth bundles. For
example, attracting the blue edgee in Fig. 3 a towards the Y-shaped
skeleton yields the red line which shows two kinks, wheree crossesS
(dotted line) at pointsa andb. The problem is made only more com-
plex by the fact that we use a sampled edge representation, sox may
be close, but not on,S.

We solve such situations by an implicitregularizationof the ad-
vection field determined byFTS. First, we enforce the constraint that
pointsx ∈ e can only be advected to points on the edge’s pathπ(e).
This ensures that, during advection, parts ofe cannot be attracted to-
wards other skeleton branches than the set ofcontiguousbranches
which form π. Intuitively, Eqn. 7 should not pulle towards non-
connected skeleton branches. We achieve this constraint as follows
(see Fig. 3 b). For eachx∈ e, we evaluate itsFTS(x). If FTS(x)∈ π(e),
we attract the ’regular’ pointx using Eqn. 7, else we markx as special
case. Special points alonge (yellow in Fig. 3 b) form compact sets
σi , which are preceded and followed one by regular pointsσstart

i and
σend

i respectively, whose feature points belong toπ(e) by construc-
tion. We next map each special pointx to a corresponding pointxmap

on π(e) using arc-length interpolation along bothσi and their corre-
sponding path fragments[FTS(σstart

i),FTS(σend
i)] ⊂ S (dark green in

skeleton S

skeleton S
_

skeleton S

curve to bundle

curve to bundle

desired result

undesired result

special points σ

ei0

eiN

eiN

ei0

FTS(ei0)

FTS(eiN)

FTS(ei0)

FTS(eiN)

σstart

σend

a

b

a)

b)

skeleton S
_

skeleton S

curve to bundle

undesired result

eiN

ei0

FTS(ei0)

FTS(eiN)

ac)

skeleton S
_

skeleton S

curve to bundle

desired result

eiN

ei0

FTS(ei0)

FTS(eiN)

ad)

skeleton S

β

_

regularization

regularization

x

path fragment [FTS(σ
start),FTS(σ

end)]

xmap

Fig. 3. Attraction singularities. Naive solution (a,c) and corresponding
solutions with regularization (b,d). Final bundled curve is shown in red.
Voronoi regions of the branches of Sare shown in different hues.

Fig. 3 b), and usexmap in Eqn. 7 instead ofFTS(x). This ensures that
both special and regular points are attracted to the same pathπ(e), and
thus, sinceπ(e) is a compact curve, that the motion ofe is smooth.

However, the above regularization does not eliminateall sharp
kinks in the advection of an edge: Consecutive points of the edge can
’see’ points on the same skeleton pathπ, and still be separated by a sin-
gularity (see pointa in Fig. 3 c). As explained, advecting such points
a using Eqn. 7 would produce undesirable bends. Since the feature-
point ofa is located on the same pathπ(e) as those ofa’s neighbors on
the edge, we cannot finda using the path-based detection criterion out-
lined above. We solve this problem by using an angle-based criterion:
Given our discrete edge representatione= {xi}, we test if the feature
vectorsFTS(xi)−xi andFTS(xi+1)−xi+1 of consecutive edge sample
pointsxi andxi+1 form a large angleβ . If β exceeds a user-defined
valueβmax, we markxi as a special point and treat it as explained ear-
lier for the path-based detection criterion. In practice,βmax= π/4 has
given good results for all graphs we tested. The overall effect is that
sharp edge angles are eliminated and edges are advected smoothly to-
wards the skeleton (Fig. 3 d). As a more complex example of our
regularization, Fig. 2 d shows the bundling of a set of edges (green)
close to the skeleton in Fig. 2 a.

Our angle criterion is a one-dimensional version of the divergence-
based Hamilton-Jacobi skeleton detector of [28]. It subsumes the path-
based criterion. In theory, it would be sufficient to use the angle cri-
terion to achieve smooth motion. However, the path-based criterion is
more numerically robust as it involves no angle estimation or thresh-
olding. Since its application is equally fast (we need paths anyway to
regularize the attraction in both cases), we use it when applicable to
reduce any chance for numerical instabilities.

3.5 Iterative algorithm

For a given graph layout, one application of the clustering, shape con-
struction, and edge attraction steps outlined above yields a new layout
whose edges are closer to their respective cluster skeletons. To achieve
full bundling, we repeat this process iteratively until a user-specified
number of iterationsI is reached. More iterations yield tighter bun-
dled edges. This process is strictly monotonic,i.e. edges can only get
closer to their clusters’ skeletons (hence to each other) by construction,
as explained below (see also Fig. 4).

First, let us explain why clustering needs to be repeated during the
iterative process. For the first clustering, we use a high similarity
thresholdδ in order to guarantee elongated, thin, clusters regardless
of the edge spatial distribution in the input graph (Sec. 3.1). This
is essential for getting the initial bundling under way. Indeed, if we
had weakly coherent clusters, these would contain edges that inter-
sect each other at large angles, hence the shapes surrounding them,
and their skeletons, would be meaningless as bundling cues. For sub-
sequent iterations, we decreaseδ and recluster the graph each few
(3to5) iterations. This produces fewer, increasingly larger, clusters,
which allows fine-scale bundles to group into coarse-scale ones. How-
ever, these large clusters arelocally elongated, since they contain al-
ready partially bundled edges. Hence, coarsening the clustering will
not group unrelated edges. The overall effect is bottom-up bundling:
First, the closest edges get bundled, yielding fine-scale local bundles,
followed by increasingly coarser-scale bundle merging.

Similarly, we decreaseα during the iterative process. Initial large
α values yield strongly coherent initial bundles, needed for cluster-
ing stability as explained above. Subsequent relaxedα values allow
edges in more complex, larger, bundles to adjust themselves. Concrete
values forδ andα are given in Sec. 4.2.

3.6 Postprocessing

3.6.1 Relaxation and smoothing

The output of our bundling algorithm has a strong branch-like structure
(seee.g. Fig. 6 f). This is the inherent effect of using skeletons as
bundling cues. Indeed, skeleton branches asymptotically meet at large
angles [25]. This visual signature of our bundles may be desirable for
use-cases where one is interested to see the branching structure of a
graph. However, often the fact that two bundles join at some point
in a thicker bundle is irrelevant, and should not be over-emphasized.
We offer this possibility by performing a final postprocessing on the
bundled layout. Here, two variations are proposed. First, we apply
a simple Laplacian smoothing filter along the edgesγs times, much
like [15]. This removes sharp bundle turns, which by construction
appear precisely, and only, where skeleton branches meet. Indeed,as
known from medial axis theory, a skeleton branch is always a smooth
curve; the only curvature discontinuities along a skeleton appear at
branch junctions [25]. A second postprocessing we found useful is to
interpolate linearly with a valueγr ∈ [0,1] between the bundled graph
and its initial layout. This relaxes the bundling, which is desirable
when users want to see the individual edges within a bundle and/or
where these come from in the initial layout. The effect is similar to the
spline tightness parameter in [14].

Figure 6 a,b show the effect of smoothing on a graph whose nodes
use a radial layout. Smoothing (b) removes the strong branching ef-
fect visible in (a) at the locations indicated by arrows. The result is
very similar to the HEB layout [14]. However, it is important to stress
that we obtain our bundling with no graphhierarchyinformation. Fig-
ures 6 e,f show the effect of smoothing and relaxation on the well-
known US airlines graph, whose bundled layout is shown in Fig. 7 j.
Smoothing removes the ’skeleton effect’ from the bundles, while re-
laxation makes these thicker with less effect on their curvature. As
such, the two effects serve complementary goals.

3.6.2 Rendering

Finally, we propose a simple but effective rendering technique for eas-
ier visual following of the rendered bundles (Fig. 6 c,d). The principle

iteration 1 iteration 2

iteration 12iteration 10

iteration 4 iteration 7

Fig. 4. Iterative bundling of the US migrations graph. Colors indicate edge clusters (see Sec. 3.5).

follows [32]: We render each bundle in back-to-front order, decreas-
ingly sorted by skeleton pixel count|S|, as if they were covered by a
3D cushion profile bright at the bundle’s center and dark at its periph-
ery. This helps following a given bundle, especially in regions where
several bundles cross. In contrast to [32], we use a much simpler tech-
nique (see Fig. 5). Edges are rendered as alpha-blended polylines. We
modulate the saturationS and brightnessB of each polyline pointx
based on its distance to the skeletond(x) = DTS(x), which is already
computed for the attraction phase (Sec. 3.3). For this, we use

S(d) =
√

1−d/δS (9)

B(d) = 1−
√

d/δB (10)

This yields thin, specular-like, white highlights in the middle of the
bundles (where the skeleton is located) and darkens the edges as they
get further from the skeleton. The parameterδB is the local thick-
ness of the bundle. For an edge pointx ∈ Ω, δB(x) = DTS(FT∂Ω(x)),
i.e. the distance of the closest point on the shape boundary∂Ω to the
shape’s skeleton. This does not require any extra computations, since
we anyway computeFT∂Ω andDTS as part of the shape construction
(Sec. 3.2, see also Sec. 4 for implementation details). The parameter
δS< δB controls the highlight thickness and is set to a small fraction
(e.g.0.2) ofδB. This technique has several differences as compared to
splatting-based shading techniques for bundles [32, 22]. First, our ren-
dering does not change the screen-space thickness of a bundle, which
is determined by the bundling layout – thin bundles stay thin. In con-
trast, splatting techniques tend to make thin bundles relatively thicker,
which consumes screen space and increases occlusion chances. Sec-
ondly, if we relax the bundling as described earlier, individual edges
become visible but still show up as a coherent whole due to the cush-
ion shading. Figure 6 d shows this. To better illustrate the effect, we
decreased here the overall opacity of the edges. The inset shows how
bundles appear as shaded profiles even though they are not, techni-
cally speaking, compact surfaces. Thirdly, although we could use a

physically correct shading model (like [22]), we found our pseudo-
illumination adequate in terms of our goal of understanding overlap-
ping bundles.

B

DTS

S

1 1

δΒ δS < δΒ

bundle local width

skeleton S

δΒ

δShalo

DTS

Fig. 5. Cushion shading for bundles (Sec. 3.6.2).

3.6.3 Interaction

We have experimented with several types of interactive exploration
atop of our method. In particular, our image-based pipeline and ex-
plicit representation of edge clusters allows us to easily brush or select
groups of edges showing up as bundles or branches thereof. Three
types of selection were found useful, as follows (see also Fig. 8 e-g
and example discussed in Sec. 5). Given the mouse positionx, we first
select all bundled edges within a disc of small radiusr centered atx
by computing the feature transform of thebundlededges and then se-
lecting all edges which contain feature points in the disc. This query
is useful for basic edge brushing and for building the next two queries.
Secondly, we want to select all edges in the most prominent bundle,
or bundle branch, passing through the disc. We repeat the basic se-
lection, count the number of selected edges having the same cluster
id, and retain the ones having the cluster id for which the most edges
were found. This selects the thickest bundle branch close to the mouse,
since edges within any bundle branch always have the same cluster ids,

a) no relaxation or smoothing b) smoothing

e) smoothing f) relaxation

c) relaxation and shading d) translucency

Fig. 6. Layout postprocessing. Edge smoothing (a vs b, Fig. 7 j vs e). Edge relaxation (Fig. 7 j vs f). Cushion shading (c), see-through detail (d).

by construction. Finally, to select an entire cluster, we do the basic se-
lection and return all edges in the cluster whose id is the one for which
the most edges were found.

4 IMPLEMENTATION

Several implementation details are crucial to the efficiency and robust-
ness of our method, as follows.

4.1 Image-based operations
We compute shapes, skeletons, skeleton tips, and distance and feature
transforms in an image-based setting. First, we render all edges us-
ing standard OpenGL polylines. Next, we use a Nvidia CUDA 1.1
based implementation of exact Euclidean distance-and-feature trans-
forms [4]. We extended this technique to compute robust skeletons
based on the augmented fast marching method (AFMM) in [33]. In
brief, we arc-length parameterize the shape boundary∂Ω and detect
SΩ as pixels whose neighbors’ feature points subtend an arc on∂Ω
larger than a given valueρ . The valueρ indicates the minimal detail
size on∂Ω which creates a skeleton point. Since∂Ω is a level-set of a
distance transform at valueω of a set of smooth curves (edges), it only
contains ’sharp’ details at the curve end points. Hence, settingρ = πω,
i.e. half the perimeter of a circle of radiusω, guarantees that skele-
ton tips correspond to edge end points. The skeletonization method
choice is essential: the AFMM guarantees that no spurious branches
appear due to boundary perturbations, which in turn guarantees stable
bundling cues. However, even if all skeletontips correspond to edge
end points, this does not mean that all edgeend pointscorrespond to
skeleton tips. Short edges within a large cluster do not produce skele-
ton tips. This is another reason for using the displacement functionφ
(Eqn. 8) to guarantee that no edge end points move during bundling.

Graph Nodes Edges Clusters/iteration Total (GPU)
I = 1 I = 5 I = 10 (sec.)

US airlines 235 2099 90 15 9 6.3
US migrations 1715 9780 57 14 7 4.1
Radial 1024 4021 94 30 24 7.4
France air 34550 17275 207 40 26 29.2
Poker 859 2127 86 28 23 5.2

Table 1. Graph statistics for datasets used in this paper.

Graph Tips Points Inflation Holes Skel. Paths Attraction
(I = 5) (ms) (ms) (ms) (ms.) (ms)

US airlines 22 8388 77 120 314 98 20
US migrations 28 9780 78 134 339 170 77
Radial 14 21580 80 96 357 45 17
France air 34 23759 81 148 374 222 88
Poker 28 2385 64 117 238 146 13

CUDA implem. 2 8 2 < 12 3

Table 2. SBEB performance. Figures are averages for all clusters at it-
eration I = 5 for different graphs. First rows show CPU timings. Last row
shows CUDA-based timings (which are uniform for the tested graphs).

The original CPU-based AFMM [33] is too slow for our task. Ta-
ble 2 show the inflation (Eqn. 2) and skeletonization times (Eqn. 4),
the latter also including the skeleton feature transform, on a 2.8 GHz
quad-core Windows PC (Sec. 5) for several graphs at an image sizeof
10242. Table 1 gives statistics on these graphs, including the (decreas-
ing) number of clusters at several iterations. On the average, the time
needed by the AFMM to process a cluster sums up to 0.4 seconds (in
line with [33]). For a graph with 200 clusters (Fig. 7 a-b), this yields
80 seconds/iteration. The AFMM isO(δ |C| log(δ |C|)) where|C| is
the number of pixels on all edges in a clusterC, since the AFMM
computes within a band of thicknessδ around its input shape,i.e.
|Ω| = O(δ |C|). In contrast, our CUDA implementation takes 4 mil-
liseconds per distance, feature transform, and skeletonization for the
same image on a Nvidia GT 330M GT card, in line with performance
reported in [4],i.e. 0.8 seconds per iteration for the graph in Fig. 7 a-
b. Graphs with fewer clusters require proportionally less time, since
the speed of the CUDA method isO(N) for an image ofN pixels,
thus image-size-bounded. Overall, the CUDA solution is roughly 100
times faster than the CPU-based AFMM.

The complexity of the skeleton path computations (Sec. 3.4) is
discussed next. Following earlier comments on the distance-level-
set nature of∂Ω, the number of skeleton tips|T| for a shape is
O(|∂Ω|/(πω)). Since we setω to a fixed fraction of the image size
(0.05, see Sec. 3.2), we get on the average a few tens of tips per skele-
ton, regardless of the number of edges in a cluster (Tab. 2 (Tips)).
AFMM guarantees 1-pixel-thin skeletons [33], so all nodes in the
skeleton pixel-adjacency-graph are of degree 2, except skeleton junc-

tions which areO(|T|) in number. The length of the skeleton of a
shape∂Ω is O(|∂Ω|). Hence, the depth-first-search finding of skele-
ton paths between tips (Sec. 3.4) isO(|T|2|∂Ω|) using a brute-force
method. Table 2 (Paths) shows the costs for the graphs in this paper
using quad-core multithreading with one depth-first-search per thread.
The same implementation on CUDA reduces the costs to 12 millisec-
onds (or less for skeletons with fewer tips) as more cores are avail-
able. This cost could be reduced further, if desired, by using the same
depth-first search on the much simpler graph whose nodes are skeleton
tips and skeleton branch junctions and edge weights given by skeleton
branch lengths, or faster all-pairs shortest path algorithms at the ex-
pense of a more complex implementation [18].

The attraction step is linear in the number of edge discretization
points,i.e. tens of thousands for large graphs (Tab. 2 (Points)). Edges
are attracted independently to their cluster skeleton, so CUDA paral-
lelization of this step is immediate.

Inflating edges can produce shapes of genus> 0, i.e. with holes.
Technically, this is not a problem, as skeletonization, path computa-
tion, and attraction can handle this. However, we noticed that such
holes are rarely meaningful. Holes create loops in the skeleton and
thus loops in asinglebundle, which is supposed to be a tight object.
To remove this, we fill all holes in our shapes prior to skeletonization
using an efficient CUDA-based scan fill method, as follows: Given a
background seed pixel outside the imageΩ, e.g. the pixel(0,0), we
mark it with a special valuev. Next, we fill horizontal scan line seg-
ments of background value from eachv-valued pixel in parallel, one
scan line per thread. We repeat alternating horizontal with vertical
scan line passes until no pixel is filled any more. Checking the stop
condition requires only non-synchronized writing to a global boolean
variable, set to false before each pass. This parallelizes more effi-
ciently than classical scan line or flood fill. Marking all non-v pixels
as foreground fills all holes inΩ. The entire fill takes under 20 scan
iterations for all images we examined. CUDA filling adds around 8
milliseconds/image of 10242 pixels in comparison with around 0.15
seconds/image for classical CPU flood fill (Tab. 2 (Holes)) up to a
total of roughly 25 milliseconds per cluster per iteration. Note that,
due to filling, all skeletons, and thus the created bundles, become trees
rather than graphs. Although we do not use this property now, it may
enable future interaction work such as user manipulation of the layout
by means of bundle handles.

Clustering using HBA is fast. The CPU implementation in [8] con-
structs the complete dendrogram of a graph of 10K edges in 0.1 sec-
onds on our considered machine. We next added the GPU-based clus-
tering in [5], which is roughly 10 to 15 times faster. Note that only
a few clustering passes are needed for a complete layout (Sec. 3.5).
Also, we do not need to construct the entire dendrogram, but only the
bottom-most part thereof, until we reach the cut valueδ (Sec. 3.1) at
which we extract the clusters to bundle further.

Finally, postprocessing (Sec. 3.6) poses no performance problems,
so we implement it in real-time using standard OpenGL polyline
rendering and CPU-based smoothing and relaxation. All in all, the
CUDA-based bundling takes 5 to 30 seconds for producing a final lay-
out for the graphs we tested (Tab. 1, right column),i.e. 25 millisec-
onds per cluster times the total number of clusters processed during
theI = 10 iterations plus the clustering time. In terms of memory, our
method is scalable: we only need a few 10242 images (distance and
feature transforms and skeletons) and discard these once a cluster is
processed; all paths between skeleton tips for the current cluster; and
the graph edge polylines. For all graphs presented here, this amounts
to under 100 MB total application memory requirements per graph.

4.2 Parameter setting

Our entire method has a few parameters: the clustering similarity
thresholdδ , edge advection factorα , total number of iterationsI , and
smoothing and relaxation amountsγs andγr . These parameters allow
covering a number of different scenarios, as follows.

Clustering similarity threshold δ : This parameter specifies the
granularity level at which we cut the cluster dendrogram to obtain

sets of edges to bundle at the current iteration (Sec. 3.1). We setδ as
a linearly decreasing function on the iteration numbert ∈ [1, I] from
δ (1) = 0.95 to δ (I) = 0.7. This yields strongly coherent clusters in
the first iteration, regardless of the initial edge position distribution,
and alsolocally strongly coherent clusters in the subsequent iterations
(Sec. 3.5).

Edge advection factor α: The advection valueα ∈ (0,1) controls
how much edges approach the skeleton at one iteration. This implic-
itly controls the bundling convergence speed. Too high values yield
tight bundles and convergence after the first few iterations, which
is fine for graphs which already have relatively grouped edges, but
limits the freedom in decluttering complex graphs. Too low values
allow the iterative process to adapt itself better to newly discovered
clusters as the edges approach each other, but convergence requires
more iterations. In practice, we setα as a linearly decreasing function
of the iteration number fromα(0) = 0.9 to α(I) = 0.2.

Number of iterations: In practice, afterI ∈ [10,15] iterations, we
obtain tight bundles of a few pixels in width for all graphs we worked
with. This is expectable, given that(1− α)I becomes very small
for α < 1, I > 10. In practice, we always setI = 10 and then use
smoothing and relaxation to interactively adjust the result as desired.

Smoothing: The smoothing amountγs ∈ N describes the number of
Laplacian smoothing steps executed on the bundled layout (Sec. 3.6).
Valuesγs ∈ [3,10] give an optimal amount of smoothing which keeps
the structured aspect of the layout but eliminates the skeleton-like
look. Larger values make our layout look similar to the force-directed
method of [15]. In practice, we noticed that the smoothing amount
strongly depends on the task at hand: In some cases, users attach
semantics to the branching structure,i.e. want to clearly see which
groups of edges get merged together, so no smoothing is needed. In
the general case, however, the exact bundle merging events are not
relevant, so we use by defaultγs = 5.

Relaxation: The relaxation amountγr ∈ [0,1] controls the interpo-
lation between the fully bundled layout and original one (Sec. 3.6).
Relaxation is most conveniently applied interactively, after a bundled
layout has been computed. Valuesγr ∈ [0,0.2] give a good trade-off
between bundling and overdraw.

Overall, the entire method is not sensitive to precise parameter set-
tings. For the graphs in this paper and other ones we investigated,
we have obtained largely identical bundled layouts with different pa-
rameter settings in the ranges indicated above. We explain this by the
stability of the inflated shape skeletons to small local variations of the
positions of edges, and the smoothing effect of the entire iterative pro-
cess on the layout. As such, the only two parameters we expose to
users areγs and γr , the others being set to predefined values as ex-
plained above.

5 APPLICATIONS

We now demonstrate our skeleton-based edge bundling (SBEB)
method for several large, real-world, graphs. Statistics on these graphs
are shown in Tab. 1.

Figure 7 illustrates the SBEB and compares it with several exist-
ing bundling methods. Note that in all images here generated with our
method, we used simple additive edge blending only, as our focus here
is the layout, not the rendering. Images (a,b) show an air traffic graph
(nodes are city locations, edges are interconnecting flights). Images
(c,d) show a graph of poker players from a social network. Edges in-
dicate pairs of players that played against each other. The node layout
is done with the spring embedder provided by the Tulip framework [3].
Given the average node degree and node layout algorithm used, related
nodes tend to form relatively equal-size cliques. Bundling further sim-
plifies this structure; here, bundles can be used to find sets of players
which played against each other.

a) c)b) d)

e) f)

g) h)

i) j)

Fig. 7. Air traffic graph (a: original, b: bundled). Poker graph (c: original, d: bundled). US migrations graph (e: FDEB, f: GBEB, g: WR, h: SBEB).
US airlines graph (i: FDEB, j: SBEB). Colors in (a-d,h,j) indicate clusters (displayed for method illustration only).

Images (e-h) show the US migrations graph bundled with the WR,
GBEB, FDEB, and our method (SBEB) respectively. Overall, SBEB
produces stronger bundling, due to the many iterationsI = 10 being
used), and emphasizes the structure of connections between groups of
close cities (due to the skeleton layout cues). If less bundling is de-
sired, fewer iterations can be used (Fig. 4). Adjusting the postprocess-
ing smoothing and relaxation parameters, SBEB can create bundling
styles similar to either GBEB (higher bundle curvatures, more em-
phasis on the graph structure) or FDEB (smoother bundles). Finally,
images (i,j) show the US airlines graph bundled with the FDEB and
SBEB respectively. SBEB generates stronger bundling (more over-
draw) but arguably less clutter. Note also that SBEB generates tree-
like bundle structures which is useful when the exploration task at
hand has an inherent (local) hierarchical nature,e.g. see how traffic
connections merge into and/or split from main traffic routes.

Figure 8 shows further examples. The images (a,b) show flight
paths within France, as recorded by the air traffic authorities [16].
Edge endpoints indicate start and end locations of flight records. The
original edges are not straight lines, but actual flight paths (polylines).
Note that this dataset is not a graph in the strict sense, since only very
few edge endpoints are exactly identical within the dataset. This has
to do with the fact that flight monitoring systems record flights (trails).
However, edge endpoints are spatially grouped since flights typically
start and end in geographically concentrated locations such as airports.
Given this, our method is able to create a bundled layout of this dataset

with the same ease as for actual graphs. Bundling puts close flight
paths naturally into the same cluster. The bundled version emphasizes
the connection pattern between concentrated take-off and landing loca-
tions, which are naturally the airports. The zoom-in details (Fig. 8 c,d)
show the organic effect achieved by bundling.

Figure 8 e-g show a citations graph (433 nodes, 1446 edges). Nodes
are InfoVis papers, laid out according to content similarity: close
nodes indicate papers within the same, or strongly related, topics.
The layout algorithm used for the nodes is multidimensional scaling
with least-square projection [23]. Paper similarity is measured using
cosine-based distance between term feature vectors [27]. Topics were
added as annotations to the image to help explanation. Bundling ex-
poses a structure of the citations between topics. We use the bundle-
based selection (Sec. 3.6.3) to highlight one of the bundles, which
becomes now dark blue (Fig. 8 f). It appears that this bundle con-
nects papers related to the Graph drawing and Treemap topics. The
direction of edges is indicated by node label colors: citing papers are
green, cited papers are blue. Green and blue labels are mixed within
this bundle, which is expected, since papers in these two topics typ-
ically cross-reference each other. Figure 8 g shows a selection of all
edges which end at nodes within the ball centered at the mouse cur-
sor. Concretely, we highlighted here all papers citing papers in the
Graph drawing topic. Note that this selection is a purely node-based
one, i.e. it does not use bundles for choosing the edges. However,
bundles have now another use: they allowhighlightingspecific edges

a) b)

c) detail of (a) d) detail of (b)

e) f) bundle selection g) topic selection

volume

rendering

spreadsheets

virtual worlds world wide web

UI design

!sheye views

automated design

algorithm

animation

treemaps

graph

drawing

graph

drawing

graph

drawing

treemaps

Fig. 8. Bundling of airline trails (a,b) and details (c,d). Bundling of citations graph (e). Selected bundle (in dark blue) shows citations involving two
topics (f). Citations to a selected topic (g). In (f,g), node labels indicate edge direction (citing papers=green,cited papers=blue).

in the graph without increasing clutter, since these edges follow the al-
ready computed bundles. Also, note that for this type of node layout,
our clustering-based bundling makes sense: edges will be grouped in
the same bundle if they have similar positions, meaning start/end from
similar topics; if the node layout effectively groups nodes into related
topics, then bundles have a good chance to show inter-topic relations
in a simplified manner.

6 DISCUSSION

In comparison to existing bundling techniques, our method has the
following advantages and limitations:

Generality: Our method can treat directed or undirected graphs. By
default, we assume the graph is directed, so edges running between
the same sets of nodes in opposite directions will belong to different
clusters, hence create different bundles. For undirected graphs, we
only need to symmetrize the edge similarity function (Eqn. 1).

Structured look control: Users can control the ’structured look’ of
a bundled layout, ranging between smoothly merging bundles and
bundles meeting at sharp angles, by manipulating a single parameter
(smoothingγs, Sec. 3.6). This implicitly allows removing sharp
ramifications when these are meaningless. Other methods, with the
exception of HEB, do not allow explicit control of this aspect, since
there is no explicit hierarchy aspect in the bundles. In our case,
hierarchy is modeled by the cluster skeletons (at fine level) and by the
progressively simplified cluster structures (at coarse level).

Robustness: Our method operates robustly on all graphs we ex-
perimented on,i.e. yields a set of stable skeletons and bundles
progressively converging towards an equilibrium state. This is
explained by the regularization of the feature transform (Sec. 3.4) and
the inherent robustness of the skeletonization method used (Sec. 3.3).
Briefly put, adding or removing a small number of nodes or edges will
not change the bundling since the distance-based shapes are robust to

small changes in the input graph and so are their skeletons too.

Speed and simplicity: Due to the CUDA implementation of its core
image-based operations, our method is considerably faster than [15]
and slightly faster than [22]. However, we should note that it is not
clear if the timings reported in [22] include also the cost of comput-
ing the Voronoi diagram underlying the grid graph. The only faster
bundled method we are aware of is the MINGLE method [12], which
takes 1 second for the US migrations graph and 0.1 seconds for the
US airlines graph, in contrast to our 4.1 seconds and 6.3 seconds re-
spectively. MINGLE and SBEB share some resemblance in bottom-up
aggregation of edges, but also have some differences. MINGLE com-
pares edges essentially based on end point positions, whereas we use
the entire edge trajectory (which may allow us to bundle graphs with
curved edges better). The complexity of MINGLE isO(|E|log|E|) for
a graph withE edges, whereas SBEB is essentiallyO(|C|) whereC is
the average cluster size. By using a better cluster selection than our
current iso-linkage cut in the cluster tree (Sec. 3.1), it is possible to
reduce|C| and thus make SBEB faster.

Apart from this, our method works entirely image-based, rather
than manipulating a combination of hierarchical mesh-based and
image-based data structures. The CUDA-based image processing code
used by our method is available at [31].

Apart from the above, there are several other differences between
our method and recent edge bundling techniques. In contrast to
force-directed bundling [15] which bundles pairs of edges iteratively,
in a point-by-point manner, we bundle increasingly larger groups
of edges (our clusters) along their common center in one single
step, using skeletons. In the limit, our method can behave like the
force-directed bundling,i.e. if we were to treat, at each iteration,
only the most cohesive leaf cluster. However, this is practically not
interesting, as it would artificially increase the computational cost
without any foreseeable benefits. Further, while Lambertet al. [22]
use shortest paths in a node-based grid graph to route edges, in our
method edges bundle themselves using only edge information. As
such, there is no relation between the Voronoi diagrams used in [22]

and our skeletons (which, formally, can be seen as a Voronoi diagram
in which inflated edges are the sites). Distance fields and skeletons
are also used in [32], but in different ways; first, an edge distance
field is computed using a considerably less accurate quad-splat-based
method, whereas our distance transform is pixel-accurate. Secondly,
skeletons are used asshadingcues and not for layout, whereas we use
skeletons to actually compute edge layouts. In comparison to [24],
where bundles split in exactly two sub-bundles, our bundle splits can
have in general any degree, as implied by the underlying skeletons.
Also, our method can handle general graphs.

Limitations: There is no fundamental reason why a skeleton-based
layout should be preferable to other bundling heuristics, apart from the
intuition that a skeleton represents the local center of a shape. Hence,
the quality of our layouts (or any other bundled layout) is still to be
judged subjectively. Moreover, any bundling inherently destroys in-
formation: edges are overdrawn, so cannot be identified separately;
and edge directions are distorted. Hence, bundling should be used for
those applications where one is interested in coarse-scale connectivity
patternsand when one cannot apply explicit graph simplificatione.g.
due to the lack of suitable node clustering guidelines and metrics. If
desired, SBEB can be modified to incorporate additional bundling con-
straintse.g.maximal deformation of certain edges - the skeletons pro-
vide only bundlingcuesbut the attraction phase can decide whether,
and how much, to bundle any given edge. In the longer run, it is in-
teresting to use shape perception results from computer vision [6, 20]
to quantitatively reason about the quality of a bundled layout. Here,
our image-based approach may prove more amenable to quantitative
analysis than other bundling heuristics which are harder to describe in
terms of operators having well-known perceptual properties. However,
this is a challenging task and requires further in-depth study.

ACKNOWLEDGEMENTS

The work of F. V. Paulovich and G. Cantareira has been supported by
FAPESP-Brazil. We also thank D. Holten for insightful discussions.

7 CONCLUSION

We have presented a new method for creating bundled layouts of gen-
eral graphs. Using the property of 2D skeletons of being locally
centered in a shape, we create elongated shapes from a graph with
given node positions, and use skeletons as guidelines to bundle simi-
lar edges. To guarantee the stability and smoothness of the result, we
regularize the feature transforms of 2D skeletons. Our layout amounts
to a sequence of edge clustering and image processing operations. Us-
ing a CUDA-based implementation we achieve comparable or higher
performance than existing comparable methods, and keep implemen-
tation simple. Finally, we emphasize edge bundles using shaded cush-
ion techniques computed directly on the bundled edges.

We plan to exploit skeleton properties to generate bundling vari-
ations. Modifying the Euclidean distance metric would yield lay-
outs similar to cartographic diagrams [30]. We plan to use bundle-
bundle and bundle-node distance fields to globally optimize the layout
for maximal readability and incorporate spatial constraints like labels,
bundle crossing minimization, and node-edge overlap reduction. In the
long run, we plan to study the optimality criteria of bundled layouts by
using existing results from shape perception in computer vision which
are directly applicable to our skeleton-based layout method.

REFERENCES

[1] J. Abello, F. van Ham, and N. Krishnan. AskGraphView: A large graph
visualisation system.IEEE TVCG, 12(5):669–676, 2006.

[2] D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-based and
steerable graph hierarchy exploration. InProc. EuroVis, pages 67–74,
2007.

[3] D. Auber. Tulip visualization framework, 2011.tulip.labri.fr .
[4] T. Cao, K. Tang, A. Mohamed, and T. Tan. Parallel banding algorithm

to compute exact distance transform with the GPU. InProc. ACM SIG-
GRAPH Symp. on Interactive 3D Graphics and Games, pages 134–141,
2010.

[5] D. Chang, M. Kantardzic, and M. Ouyang. Hierarchical clustering with
cuda/gpu. InProc. ISCA, pages 130–135, 2009.

[6] L. Costa and R. Cesar.Shape analysis and classification: Theory and
practice. CRC Press, 2000.

[7] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-based edge
clustering for graph visualization.IEEE TVCG, 14(6):1277–1284, 2008.

[8] M. de Hoon, S. Imoto, J. Nolan, and S. Myiano. Open source clustering
software.Bioinformatics, 20(9):1453–1454, 2004.

[9] M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng. Confluent draw-
ings: Visualizing non-planar diagrams in a planar way. InProc. Graph
Drawing, pages 1–12, 2003.

[10] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing into
forcedirected layout. InProc. Graph Drawing, pages 8–19, 2007.

[11] G. Ellis and A. Dix. A taxonomy of clutter reduction for information
visualisation.IEEE TVCG, 13(6):1216–1223, 2007.

[12] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglomera-
tive edge bundling for visualizing large graphs. InProc. PacificVis, pages
187–194, 2010.

[13] E. Gansner and Y. Koren. Improved circular layouts. InProc. Graph
Drawing, pages 386–398, 2006.

[14] D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data.IEEE TVCG, 12(5):741–748, 2006.

[15] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization.Comp. Graph. Forum, 28(3):670–677, 2009.

[16] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading data
across views to support iterative exploration of aircraft trajectories.IEEE
TVCG, 15(6):1017–1024, 2009.

[17] I.Tollis, G. D. Battista, P. Eades, and R. Tamassia.Graph drawing: Al-
gorithms for the visualization of graphs. Prentice Hall, 1999.

[18] G. Katz and J. Kider. All-pairs shortest-paths for large graphs on the
GPU. InProc. Graphics Hardware, pages 208–216, 2008.

[19] R. Klette and A. Rosenfeld.Digital geometry: Geometric methods for
digital picture analysis. Morgan Kaufmann, 2004.

[20] I. Kovacs, A. Feher, and B. Julesz. Medial-point description of shape: A
representation for action coding and its phychophysical correlates.Vision
research, 38:2323–2333, 1998.

[21] A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling forgeographi-
cal data visualization. InProc. Information Visualisation, pages 329–335,
2010.

[22] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges
into bundles.Comp. Graph. Forum, 29(3):432–439, 2010.

[23] F. Paulovich, L. Nonato, R. Minghim, and H. Levkowitz. Least square
projection: A fast high-precision multidimensional projection technique
and its application to document mapping.IEEE TVCG, 14(3):564–575,
2008.

[24] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map
layout. InProc. InfoVis, pages 219–224, 2005.

[25] S. Pizer, K. Siddiqi, G. Szekely, J. Damon, and S. Zucker.Multiscale
medial loci and their properties.IJCV, 55(2-3):155–179, 2003.

[26] H. Qu, H. Zhou, and Y. Wu. Controllable and progressive edge clustering
for large networks. InProc. Graph Drawing, pages 399–404, 2006.

[27] G. Salton. Developments in automatic text retrieval.Science, 253:974–
980, 1991.

[28] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker. Hamilton-Jacobi
skeletons.IJCV, 48(3):215–231, 2002.

[29] K. Siddiqi and S. Pizer.Medial Representations: Mathematics, Algo-
rithms and Applications. Springer, 1999.

[30] R. Strzodka and A. Telea. Generalized distance transforms and skeletons
in graphics hardware. InProc. VisSym, pages 221–230, 2004.

[31] A. Telea. CUDA skeletonization and image processing toolkit, 2011.
www.cs.rug.nl/ ˜ alext/CUDASKEL .

[32] A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualiza-
tion of large graphs.Comp. Graph. Forum, 29(3):543–551, 2010.

[33] A. Telea and J. J. van Wijk. An augmented fast marching method for
computing skeletons and centerlines. InProc. VisSym, pages 251–259,
2002.

[34] F. vam Ham. Using multilevel call matrices in large software projects. In
Proc. InfoVis, pages 227–232, 2003.

[35] R. van Liere and W. de Leeuw. GraphSplatting: Visualizing graphs as
continuous fields.IEEE TVCG, 9(2):206–212, 2003.

[36] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-basedhierarchi-
cal edge clustering of graphs. InProc. PacificVis, pages 55–62, 2008.

