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Abstract—Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics)
approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more
scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic
scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on
well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using
skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a
multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define
skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human
perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual
quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based
similarity and computation time efficiency.

1 INTRODUCTION

Scatterplot matrices (SPLOMs) are one of the oldest, and still frequently
used, tools for exploring multidimensional data. Their attractiveness
comes from the fact that they re-use the 2D scatterplot metaphor, which
is very familiar and easy to understand for a wide spectrum of users,
in a small-multiples setting. However, SPLOMs require visual space
which is quadratic in the number of dimensions, and as such do not
scale well visually to datasets having more than roughly ten dimensions.
Scatterplot diagnostics, or scagnostics, attack this problem by essen-
tially selecting a subset of ‘interesting’ scatterplots from the d2 existing
ones for a d-dimensional dataset, and presenting this subset to the user.
The effectiveness of a scagnostic approach is, thus, directly linked to
its ability to quantify the degree of interestingness that a scatterplot
presents.

Many measures have been proposed to quantify the above-mentioned
interestingness. Roughly, these can be divided into measures that
capture the correlation of the variables in a scatterplot [54, 64], and
measures that capture the data pattern’s shape [59,63]. However, to our
knowledge, no measure combines both aspects in a way that is generic
for a wide class of patterns that can occur in scatterplots.

In this paper, we propose such a novel measure. We base our work
on skeleton-based descriptors, which have been used for a long time in
shape analysis to reason about, and analyze, 2D shapes [48]. State-of-
the-art variants of such descriptors (i) accurately capture shape geome-
try, orientation, and topology, (ii) provide the captured information in a
multiscale way, making them thus noise-resistant and allowing one to
filter details under a desired scale, and (iii) can be computed automati-
cally and in real-time for large input images. We adapt skeleton-based
descriptors to handle scatterplots representing complex spatial point
distributions and help discovering principal trends present in the scat-
terplot, while keeping the attractive scalability and ease-of-use of the
underlying techniques. Our descriptors can be easily added to any
SPLOM visualization, as they only require access to the underlying 2D
scatterplot images.

We present a scagnostics approach that is based on skeleton computa-
tions from scatterplots. Our individual contributions can be summarized
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as: (C1) Skeletons as descriptors: We use skeletons as shape descriptors
of scatterplots and define distance measures between scatterplots based
on skeleton similarity. The skeleton computation is based on a mul-
tiscale approach that is automatic, efficient, and robust. Our distance
measure captures shape and orientation of the scatterplots, see Sec-
tion 3. (C2) Comparison to perception-based distances: We perform a
user study to measure perceptual distances between scatterplots. The
outcome is compared against our skeleton-based distances and other
state-of-the-art methods. We show that our approach is closest to the
perception-based distances, in addition to being the computationally
most efficient, see Section 4. (C3) Skeletons as summarization: We use
skeletons as a visual representation for encoding the main features in
scatterplots. This sparse visual representation reduces the rendering
complexity and is, therefore, amenable for small-multiples approaches
such as SPLOMs. We incorporate the skeleton-based summarization in
an interactive visual SPLOM analysis, where filtering, selection, and
re-ordering is based on the skeleton-based scagnostics, see Section 5.

2 RELATED WORK

Related work can be categorized into approaches for characterizing
scatterplots and those for summarizing scatterplots.

2.1 Scatterplot characterization
Let D= {pi}⊂Rd , 1≤ i≤N be a d-dimensional dataset with N points
pi. Let S = {xi} ⊂ R2 be a scatterplot generated from D, i.e., where xi
represents the data point pi. Such scatterplots can be created in many
ways, e.g., by selecting two dimensions from {1 . . .d}, or by dimen-
sionality reduction, also called Multidimensional Projection (MP) [50].
For our work, both types of scatterplots are in scope. To characterize
S, one can study its actual 2D point distribution. Alternatively, one
can transform S to a so-called feature space, i.e., extract higher-level
measures from S that allow an easier, more global, and more insightful
reasoning about S.

Tukey and Tukey [59] proposed an initial characterization for 2D
scatterplots called scagnostics for ‘scatterplot diagnostics’. The pro-
posed features included geometric graph analysis, computing principal
curves, and kernel-based measures. An underlying probability function
was assumed when calculating these features.

Wilkinson et al. [63] refined the above characterization measures
for scatterplots. Their aim was to generate a small number of features
that could characterize the many types of possible point distributions
in S on a common scale. Attention was dedicated to scalability, as
several features proposed earlier [59] were prohibitively expensive for
large N (sample count). They proposed nine feature classes based on
geometric graphs defined by the scatterplot: outlying, skew, clumpy,
sparse, striate, convex, skinny, stringy, and monotonic. These measures
are based on the shape of S and do not take into account its orientation



in the embedding 2D space. The monotonicity feature is the closest to
describe orientation as it estimates whether the relationship in S follows
an entirely non-increasing or non-decreasing trend. However, different
scatterplots with different orientations with respect to the embedding
2D axes, and with different amount of noise, may produce the same
monotonicity value.

More recently, additional features have been developed to charac-
terize scatterplots. Sips et al. [49] proposed two quantitative measures
– distance consistency and distribution consistency. These measures
can be used to compute the class consistency, i.e., the visual separation
between projected classes (labeled points) in a scatterplot. Distance
consistency is defined as the distance to the classes’ barycenters; distri-
bution consistency is based on the spatial distribution of xi. Related to
the above, several metrics have been defined to characterize the quality
of scatterplots that represent MPs of high-dimensional data. Simple
global metrics include normalized stress and neighborhood preserva-
tion plots [37], distance preservation plots [25], cluster segregation
measures [44, 45], and projection precision scores [42]. More refined
metrics can show how MPs preserve distances [3, 20, 29, 31] or neigh-
borhoods [32] locally over S. However, such metrics are less interesting
in our context, as they are specific to scatterplots obtained by MP only.

Guo [17] proposed a maximum conditional entropy (MCE) that com-
putes the maximum between rows and columns in a 2D nested-means
discretized grid. This measure was aimed for the detection of point
clusters in 2D scatterplots representing MPs. Tatu et al. [54] proposed
several features for characterizing scatterplots of both classified and
unclassified data. Similar to Sips et al., a class distance measure and a
histogram-based density measure are proposed for classified data. For
unclassified data, a Rotating Variance Measure (RVM) was proposed
to find (non)linear correlations between dimensions. Shao et al. [46]
proposed grouping scatterplots according to motifs, i.e., locally similar
scatterplot segments. A motif dictionary is generated by clustering local
scatterplot segments through k-means and an interest measure is de-
fined based to the motif’s uniqueness in the dataset. They remarked that
the selection of an appropiate dictionary size is crucial for subsequent
analysis steps.

Yates et al. [64] proposed a categorization based on Boolean logical
implication. The method categorizes scatterplots into eight different
classes. It defines four quadrants in the scatterplot based on the distribu-
tion of the points and on a discretization step, and assigns the scatterplot
to a class defined by which quadrants are filled. Such approaches have
limited characterization power as they aim to detect a single condition
– detection and separability of classes or, alternatively, detection of
correlations. In the specific case of Yates et al., characterization power
is further limited as that approach produces categorical, rather than
continuous, values.

A different direction to characterize scatterplots relates to studying
how humans perceive them. In this direction, much of the related work
is task-based, i.e., focuses on seeing how one can infer insight from
a scatterplot that help solving a given problem or answering a given
question. Within this area, a large number of papers focus on tasks
related to classification (labeled) data, e.g., the identification of class
clusters and their visual separation [13, 14, 44]. In the same direction,
Tatu et al. [55] studied the perceived quality of 2D projections based
on cluster separability and cluster density. Rensink et al. [40] studied
how correlation is perceived in similar scatterplots.

Yet another direction is the comparison of scatterplots. Globally
put, if one can automatically measure how similar two scatterplots are,
one can next classify (characterize) such scatterplots based on their
similarity to given templates. Similarly, if one can measure how similar
two scatterplots are perceived to be (by an observer), then one can
infer how users interpret a SPLOM ‘served’ to them by scagnostics
methods. Looking at plot similarity, Pandey et al. [35] derived key
perceptual features where a set of scatterplots were grouped based on
their perceptual judgment of similarity. Density, spread, and orientation
were found to be the three most dominant features that determine the
perceived scatterplot similarity. The need for developing additional
perceptually-balanced measures was also outlined in [35]. Separately,
Dang and Wilkinson [9] defined a scatterplot similarity measure based

on Euclidean distance in feature space.
Scherer et al. [41] defined a set of representative functional models

where the relative fitness of a scatterplot to each of these models is
computed. A regressional feature vector (a probability density function
for the functional model set) and a regressional coefficient feature
vector (the calculated coefficients for each functional model) are then
used for (dis)similarity computation. The dissimilarity is defined as a
weighted distance sum between the two previously defined scatterplots
feature vectors. A weighting factor is used to assign importance to the
overall functional form or the functional coefficients. Similar to the
approach by Shao et al. [46], the discriminative power is based on the
algorithm’s initial configuration, in this case of the chosen functional
models.

Closest to our evaluation part, Albuquerque et al. [1] developed a
perception-based visual quality measure used to compare scatterplots.
For this, a perceptual user-study was performed on a training set of
scatterplots, yielding a perceptual similarity ranking. To compare new
scatterplots, a principal component analysis (PCA) projection of the
training set and the new scatterplot was computed, and the nearest
k elements in the PCA projection were used to interpolate the new
scatterplot value. A key drawback of this approach to compare scat-
terplots is the need to train the similarity metric on a well-constructed,
comprehensive, training set that should capture well the space of all
possible scatterplots.

Our approach follows the idea of scagnostics, but we propose a
novel skeleton-based descriptor and a respective similarity measure that
capture well shape and orientation of scatterplots and can be computed
efficiently. We compare our approach against the work by Wilkin-
son et al. [63] and Tatu et al. [54], which following the discussion
above we consider the state of the art for scatterplot characterization in
scagnostics, see Section 4.

2.2 Scatterplot summarization
A related direction to scatterplot characterization is summarization,
or the way in which S is to be drawn. Indeed, knowing more about
the characteristics of S helps one emphasizing these in the resulting
visualization. This also helps visual scalability, i.e., cases where one
cannot draw the entire SPLOM at full level of detail due to the many
dimensions d present. In such cases, we want to show a summary that
reflects a scatterplot’s essential characteristics.

Besides the basic drawing of the cloud of points xi, extra information
can be added at the level of points, scatterplots, or an entire SPLOM.
At the point level, one can add more dimensions encoded in color,
transparency, shading [8], or glyph shape. This works well for relatively
low sample counts N or when one subsamples S to create more visual
space to encode data for groups of related points, e.g. via tag clouds
[38]. Given a large enough sample count N, overplotting eventually
occurs in S and single sample properties will not be distinguishable.
At the scatterplot level, this can be mitigated by spatially aggregating
values via density maps [31, 42]. At an even higher aggregation level,
a functional boxplot can be computed by binning over data ranges and
calculating summary statistics over bins [51]. For large SPLOMs, a
focus-plus-context approach is used, as single scatterplots become too
small to understand. For example, Yates et al. [64] proposed glyphs
based on the class categorization.

Summarization and characterization are linked by principal curves
[18]. The key idea is to summarize a 2D scatterplot by a 1D curve that
passes ‘through the middle of the data’ locally, thereby generalizing
the concept of linear regression or the concept of PCA to using curves,
and improving upon parametric nonlinear regressors by making the
curve independent on the orientation of the scatterplot with respect
to the 2D coordinate axes. Given a scatterplot S, principal curves
λ : R+→ R2, represented in non-parametric form, are computed by
initializing a discrete polyline representation Λ = {l j} to the largest
principal component of S and next iteratively adapting the polyline so as
to minimize the sum of squared distances from xi ∈ S to the closest l j ∈
Λ. While principal curves can summarize complex scatterplots better
than PCA, their computation is not guaranteed to converge, strongly
depends on proper initialization, and does not work for scatterplots



whose overall shape cannot be approximated well by a single curve, i.e.,
whose data are described by multiple trends. Most of these limitations
(but not the key last one) are removed by further refinements of principal
curves [34]. Figures 1 a) and b) show the principal curves computed
with the mentioned methods ( [18] and [34], respectively) for a 2D
noisy spiral-like scatterplot. It can be observed that the method in
a) [18] wrongly fits the curve to the scatterplot in areas where gaps are
small; the method in b) [34] is better, but is still very expensive, cf.
Section 3.2, .

Reddy et al. [39] extended principal curves into so-called data skele-
tons or Principal Trees, which summarize scatterplots where multiple
trends occur. For this, the dataset D is partitioned into k clusters, and
next a minimum spanning tree (MST) is computed from their centroids.
The data are then filtered to contain only clusters traversed by the
MST from one endpoint to another. For m such endpoints, a total of
m(m−1)/2 principal curves is computed. However, the method has
several problems. If a too low k value is used, the summarization will
not capture the overall shape of the data. Also, the method needs to
evaluate a high number of principal curves – O(m2d2) for a SPLOM
with d dimensions – which makes it slow for high-dimensional datasets.

The idea of a ‘skeletal’ representation of datasets was also explored
by Gerber et al. [16]. Here, a simplified geometric representation
of high-dimensional data is proposed based on regression curves and
dimensionality reduction. The set of regression curves represent a
topology-based skeleton of the data. While this approach cannot be
directly applied to 2D scatterplots, it can be used to simplify density
maps computed from scatterplots.

In the remainder of this paper, we extend the set of tools for scatter-
plot characterization with several descriptors based on shape skeletons.
As we will show, these are simple and fast to compute, and capture
dissimilarity between scatterplots, as perceived by humans, better than
other existing descriptors listed above.

3 SKELETON-BASED SCAGNOSTICS

Towards establishing skeleton-based scatterplot characterizations and
scagnostics, we first describe the concept of skeletons as shape de-
scriptors (Section 3.1), then detail how we construct skeletons from
scatterplots robustly, efficiently, and automatically (Section 3.2), and fi-
nally propose distance measures between scatterplots based on skeleton
descriptors (Section 3.3).

3.1 Shape descriptors
Scatterplot characterization can be seen as a particular case for the more
general field of shape analysis, which deals with the representation,
quantification, characterization, and classification of general 2D and
3D shapes [30]. While scatterplots are, formally speaking, not compact
subsets of R2 (as shapes are), we motivate the connection by the fact
that (a) for high point counts N and small scatterplot drawings, such as
in large SPLOMs, a scatterplot’s visual depiction typically converges
to a dense representation; and (b) the way humans perceive such a
scatterplot is by means of the same type of visual features (e.g. size,
skewness, orientation, genus, curvature, thickness) as when looking
at more general 2D shapes. Hence, it is interesting to adapt shape
descriptors known in the computer vision literature to characterize
scatterplots.

Medial axes, also called skeletons, are such a powerful descriptor
[48]. To define them, we introduce first the distance transform [7] of a
shape Ω⊂ R2 with boundary ∂Ω

DTΩ(x ∈ R2) = min
y∈Ω
‖x−y‖. (1)

Then, the skeleton of Ω is defined as

SΩ = {x∈Ω|∃f1 ∈ ∂Ω, f2 ∈ ∂Ω, f1 6= f2,‖x−f1‖= ‖x−f2‖=DTΩ(x)}
(2)

and represents the locus of maximally-inscribed disks in ∂Ω. The
points fi are the so-called feature points of a skeleton point x, i.e., the
closest points on ∂Ω to it. The mapping FTΩ associating to a shape
point x ∈ Ω its closest (feature) points on ∂Ω is called the feature

transform of Ω [19]. The pair (SΩ,DTΩ) is called the Medial Axis
Transform (MAT) of the shape Ω, and fully encodes the geometry
and topology of this shape, being a dual representation, and a lower-
dimensional one, to the boundary-based one. Skeletons are typically
very sensitive to ∂Ω, i.e., small perturbations of the latter can create
large changes in the former, typically known as spurious branches [48].
To address this in practice, one computes a so-called importance metric
ρ : S→ R+ which next allows computing regularized skeletons Sτ

Ω
=

{x∈ SΩ|ρ(x)≥ τ}. A well-known such metric, which we use next, sets
ρ(x) for x∈ SΩ to the shortest path along ∂Ω between the feature points
f1 and f2 of x. This allows interpreting Sτ

Ω
as the skeleton in which all

branches of SΩ caused by boundary details shorter than τ length-units
have been removed [58]. Besides making their computation robust
to noise, regularization also allows extracting multiscale skeletons
which describe a shape at a user-chosen level of detail [15, 52, 56,
58]. Multiscale MATs of shapes represented as images of resolutions
up to 10002 pixels can be computed accurately and automatically in
under one second on the CPU [58] and milliseconds on the GPU
[12]. Besides shape analysis, MATs have been used in information
visualization for graph bundling [12, 57], interactive semantic lenses
[21], and visualizing the quality of MP scatterplots [31, 32].

Skeletons have also intriguing (and not fully explored) connections
with principal curves. Alternative to Eqn. 2, they can be defined as
the local maxima of DTΩ [52, 58]; and principal curves are defined
as the minima of a related distance function [18], or ridges of the
probability density function S [34]. Separately, skeletons are intimately
related to graph bundling [12] which, in turn, is identical to the mean
shift operator well known in image processing [6], see [22, 60]; on the
other side, principal curves can be also defined by mean shift, and have
also been used to compute approximations to skeletons for character
recognition [26]. As such, skeletons can be seen as a generalization
of principal curves for more complex, articulated, shapes. And since
principal curves have been well proven to summarize scatterplots, we
state a similar potential for skeletons. This is demonstrated next.

3.2 Skeleton construction
To construct a skeleton, we need a compact 2D shape Ω embedded in
R2. We construct such a shape from a scatterplot S by computing the
discrete kernel density estimation (KDE) of S, modeled as a grayscale
pixel image

I(x ∈ R2) = ∑
y∈S

K
(
‖x−y‖

R

)
(3)

where K : R → [0,1] is a radial basis function like a Gaussian or
Epanechnikov (parabolic) kernel of radius R. Figure 1c shows I com-
puted for the spiral scatterplot shown in Figs. 1a,b. Identical KDE
estimations are used for image clustering [6], graph bundling [22, 60],
and 2D cluster detection [31]. The radius R is set to the average distance
δ of a point in S to its nearest-neighbor. This allows upper thresholding
I at a value ε > 1 to yield a shape Ω that contains most points in S and
is compact (see Fig. 1d showing Ω for the spiral scatterplot). Higher
ε values preserve only denser S regions in Ω; lower ε values capture
more of S. Outlying points in S, which are farther away from nearest
neighbors than δ , are ignored, thereby providing a simple but robust
way to capture, or summarize, the essence of S.

Having Ω, we now compute its MAT (following Eqns. 1, 2) using
the fast and accurate method [12] which implements the earlier multi-
scale skeletonization in [58] on the GPU using NVIDIA’s CUDA, see
Fig. 1e for the distance transform DTΩ. Next, we regularize SΩ using
the boundary-length importance metric ρ in [58], already outlined
in Section 3.1. Setting τ ≈ πR effectively removes all undulations
on ∂Ω caused by the setting of R. Figure 1f shows Sτ

Ω
for the spiral

dataset. As visible, this is very close to the principal curves computed
by [18] and [34] (Figures 1a,b respectively). However, the complexity
of the fast algorithm to compute principal curves in [34] is O(N2) for
N points in S. The complexity of the method in [18] is not detailed, but
this method is much slower: In detail, computing the principal curves in
Figures 1 a) and b) takes about 5 seconds ( [18]) and 20 seconds ( [34]),
respectively. In contrast, our method, including KDE estimation and
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Fig. 1. Principal lines (a,b) vs. skeletons (f) of scatterplots. Skeleton
computation includes generating greyscale image I (c), compact shape
Ω (d), and distance transform DTΩ (e).

regularized skeletonization, operates in O(N). Practically, we compute
the skeleton in Figure 1f) in a few milliseconds on a modern PC.

The above procedure delivers the full MAT (skeleton SΩ, distance
transform DTΩ) and also the feature transform FTΩ. The process is
simple, automatic, and testedly robust, as shown by its earlier use for
computing skeletons of curve sets [12, 57] and 2D scatterplots [31].

3.3 Dissimilarity Measures
As outlined in Section 2, an important class of methods for scatterplot
characterization is based on measuring the dissimilarity of the
scatterplot shapes. We propose two such novel measures based on the
skeletal descriptors introduced in Section 3.2, as follows.

Hausdorff Distance: This metric is often used in computer vision and
shape analysis to compare two shapes [10]. Given two shapes Ω1 and
Ω2, their Hausdorff distance is defined as

DH(Ω1,Ω2) = max(max
x∈Ω1

(DTΩ2(x)),max
x∈Ω2

(DTΩ1(x))) (4)

where DTΩ is the distance transform of a shape Ω given by Eqn. 1.
Computing DH is much faster if we consider, instead of two shapes,
their skeletons SΩ1 and SΩ2 in Eqn. 4, as the skeleton of a shape
is typically much smaller, pixel-count wise, than the shape itself.
Moreover, our skeletonization framework already allows for a fast
computation of distance transforms. DH accounts for the form of a
shape, as its skeleton branches capture its part-whole structure and
geometry thereof. However, DH cannot easily model the similar-
ity of two scatterplots in terms of the amount of correlation they contain.

Fréchet Distance: Elongated shapes can be described well by their
centerlines, which are non-self-intersecting curves locally centered
within the shape. The principal curves introduced in Section 2.2 are one
instance hereof. For a shape Ω, we compute its centerline as the longest
path π ∈ Sτ

Ω
between any two endpoints of branches of Sτ

Ω
, Given two

such 2D paths π1 and π2 for two shapes, we define their similarity as
the Fréchet distance DF (π1,π2) between them, given by

DF (π1,π2) = inf
π1,π2

max
t∈[0,1]

‖π1(t)−π2(t)‖ (5)

where the curves π1 and π2 are parametrized over t ∈ [0,1]. We evaluate
Eqn. 5 over the pixel-chain representations of pi extracted from the
image skeleton Sτ

Ω
, using the method by Alt and Godau [2]. Compared

to the Hausdorff distance DH , DF better ‘pairs’ points from the com-
pared centerlines, avoiding one-to-many pairings. However, DF cannot
be readily used for entire skeletons that have multiple branches, as it
only captures the main trend in the scatterplot, as given by the longest
skeletal path.

4 EVALUATION

We next explore how well the distance measures introduced in Sec-
tion 3.3 succeed in capturing the similarity of scatterplots in a SPLOM,
as perceived by a human user. For this, we measure how humans per-
ceive similarity between scatterplots (Section 4.1) and compare these

values with our distance measures, and other well-known scagnos-
tic distance measures (Section 4.2), computed automatically from the
scatterplot shapes (Section 4.3).

4.1 Experiment
To measure similarity perception, we performed the following experi-
ment. First, we generated a range of synthetic scatterplots having each
N = 1000 points, by manipulating four parameters controlling the point
distribution: rotation, skewness, linear-to-quadratic shape interpolation,
and amount of Gaussian noise. Visual inspection was used to filter out
plots that were seen as being too similar, as we next aim to test how
good our distance metrics are when comparing reasonably different
scatterplots (the hard case). We also added a few scatterplots of actual
data from the Abalone dataset, UCI Repository (see Section 5 next).
This yielded 29 scatterplots used in the experiment (Figure 2), images
are available in the supplementary material . As visible, these span a
quite wide range of shapes.

Fig. 2. Base scatterplots representing a wide range of possible point
distributions used in the distance-perception experiment.

We asked users to visually compare the 29 scatterplots and rank
pairs of plots in terms of six similarity levels: identical, very similar,
somewhat similar, somewhat dissimilar, very dissimilar, and opposite.
This agreement ranking scheme was chosen to avoid response bias
[43, 61] caused by a numerical bipolar and/or asymmetric scale. The
levels were then mapped to a 0 to 5 range for their statistical analysis
where 0 denotes identical pair of plots.

To perform this, we used Amazon’s Mechanical Turk (MTurk) plat-
form [36], an online labor market for Human Intelligence Tasks (HITs).
MTurk users, called workers, are given a single task to fulfill in ex-
change for monetary compensation. Possible tasks range from verifica-
tion and data entry to image classification and categorization, the latter
being close to our task. MTurk has been successfully used as a source
of participants for studies given that it simplifies the creation of a large
participant pool, a compensation system, and offers a simple study
design [5, 33]. Each pair of scatterplots is defined as an item for the
workers. Each unique worker is allowed to work on at least one item.
MTurk creates batches where a group of items are passed to two differ-
ent random workers and records their answers and (dis)agreements. At
most two workers can be assigned to each batch, so multiple batches
must be created for a high enough sample of users. Given that workers
are allowed to work on different batches, a single item may be handled
by a unique user more than once. We created ten batches with the
maximum allowed of two workers each. In the worst case, each item in
a batch would be handled by only two unique users once. In our study,
a total of 40 unique workers analyzed the items with an average of 13
unique users per item, a minimum of 10 and maximum of 17.

We calculated next the intra-user variance in ranking per item. The
average intra-user variance per scatterplot image for unique users with
multiple answers per item was 0.246, with a standard deviation of
0.496. The inter-user standard deviation in ranking was 0.784. The
inter- and intra- user values show good agreement between users as
both deviations lie within one ranking level. We generated a plot pair
from a single base scatterplot as a sanity check and workers did, indeed,
rank it on average as < 0.05(identical). Figure 3 shows the scatter-
plot pairs found to have the largest perceptual dissimilarity and the
largest deviation in ranking dissimilarity, respectively. We see that the



a) b)

Fig. 3. a) Scatterplot pair with largest perceptual dissimilarity found
(avg= 4.29, stddev= 0.59). Considered either Very Dissimilar or Opposite
(14/15 users).b) Scatterplot pair with the largest deviation (avg = 2.30,
stddev = 2.19) caused by mirroring symmetry with users considering it
Very Similar and identical (7/13) or Opposite (5/13).

largest dissimilarity (Figure 3a) was found to be 4.29 on average, i.e.,
somewhere between the ranks of 4 (very dissimilar) and 5 (opposite),
with a quite good consensus (stddev = 0.59). The largest deviation in
perceptual similarity was found between the plots in Figure 3b, where
the average similarity was 2.3, but with a large standard deviation of
2.19, i.e., two levels on our six-point scale, which says that there was
disagreement between users in rating the similarity.

For more insight into the perceptual dissimilarity, we constructed a
dissimilarity matrix having one entry per plot pair of the SPLOM, with
the average ranking for that pair as value computed over all users who
ranked the pair. We use this matrix to project the plots, seen as high-
dimensional points, by multi-dimensional scaling (MDS), a commonly
used MP technique. Figure 4 shows the result, where perceptually
similar plots are placed close to each other. We see how orientation
plays a role in the perception of similarity – for instance, plots in
the top-left of Figure 4 are relatively horizontal, while plots in the
bottom-left are diagonal. Separately, we see how shape influences the
perceived similarity, by noticing the decreasing quadratic behavior of
the scatterplots clustered middle-right in Figure 4 to those top-right.
Finally, we see how the horizontal axis of the figure encodes spread in
the plots, with widely spread points in the plots to the right and tight
line-like point distributions in the plots to the left, respectively.

Fig. 4. MDS of the experiment perceptual dissimilarity matrix between
scatterplot pairs. Changes in the scatterplots can be observed, such as
the linear-to-quadratic behavior (middle-right to top-right) and rotational
effect (top-left to bottom-left).

4.2 State-of-the-art Dissimilarity Measures
We want to compare our distance metrics introduced in Section 3.3
with existing state-of-the-art scagnostic metrics, which we describe in
the following for the reader’s convenience.

Scagnostics Distance: Wilkinson et al. [63] defined nine measures for
characterization of scatterplots based on three geometric graphs: the
minimum spanning tree MST, the convex hull (H), and the alpha shape
graph (A) [11] of the point-set S, see Table 1. Here, the length of a tree

Measure Definition
coutlying length(MSToutliers)/length(MST )
cskew (q90−q50)/(q90−q10)
cclumpy max j

[
1−maxk (length(ek))/length(e j)

]
csparse q90

cstriate
1
|V | ∑v∈V (2) I

(
e(v,a)
‖e(v,a)‖ ·

e(v,b)
‖e(v,b)‖ <−0.75

)
cconvex area(A)/area(H)

cskinny 1 -
√

4π area(H)/perimeter(A)
cstringy |V (2)|/(|V |− |V (1)|)
cmonotonic r2

S

Table 1. Scagnostics measures from Wilkinson et al. [63].

is the sum of the lengths of all its edges; qi is the ith percent quartile of
the edge-length distribution in the MST; V are the nodes of the MST;
V (1) and V (2) are nodes in V of degree 1 and 2, respectively; e(a,b)
is the 2D vector corresponding to an edge with vertices a and b in the
MST; I is an indicator function returning 1 if the argument is true and
0 otherwise; and rS is the Spearman rank correlation coefficient of the
x and y coordinates of the scatterplot points.

Once these nine measures are computed, a scatterplot can be seen as
a point in R9. Next, given that all measures are computed on the same
scale, dissimilarity can be computed by the squared Euclidean distance
in R9, following Dang et al. [9]. We refer to this as Scagnostics
Dissimilarity. While capturing many aspects of shape, this approach
has limitations. First, computing H and A is quite sensitive to outliers,
which need to be removed by ‘peeling’ points located on H and A,
respectively, until these contours change little [63]. Our skeleton
descriptors remove the influence of outliers by the joint effect of
importance-based skeleton pruning and KDE density thresholding,
see Section 3.2. Second, implementing these measures [63] is
quite involved, as it requires computing the MST, convex hull,
and alpha shape, with a binning scheme for performance consider-
ations. We argue that our skeleton-based descriptor is simpler to realize.

RVM Distance: The Rotating Variance Measure (RVM) aims to find
linear and nonlinear correlation between dimensions. To do this, Guo
[17] notes that a scatterplot exhibiting a strong correlation is one whose
density field contains a small high-value band; conversely, a lack of
correlation corresponds to a field with local maxima spread throughout
the image. Thus, the scatterplot is first transformed to a density field
I. Tatu et al. [54] compute the density I(x) of a pixel x as the inverse
of the distance of x to its kth nearest neighbor. Alternatively, we could
have computed I as in Eqn. 3, but we stick to the definitions by Tatu
et al. for a fair comparison. Having I, we can compute the RVM of a
scatterplot S as

RV M(S) =
1

∑x miny v(x,y)
(6)

where v(x,y) is the minimal mass distribution centered at pixel x =
(x,y) along different directions, i.e.

v(x) = min
θ∈[0,π]

∑α∈[−L,L] αI(x+αu(θ))
∑

s
α∈[−T,T ] I(x+αu(θ))

(7)

where u(θ) is a 2D unit vector with orientation θ , α is a distance
in the range [−L,L] along the direction u, and I(x) is the density at
position x (Eqn. 3). Eqn. 7 is trivially parallelizable on CUDA as v(x)
is independent for each pixel x. Finally, the RVM dissimilarity of two
scatterplots S1 and S2 is defined by

DRV M (S1,S2) = |RV M (S1)−RV M (S2) |. (8)

Parameter settings for computing DRV M are discussed further in Sec-
tion 4.5.

4.3 Quantitative Comparison of Dissimilarity Metrics
We define the perceptually based dissimilarity matrix as our ground
truth, i.e., as the values that the metrics computed automatically from



scatterplots should emulate. To gauge the (dis)agreement of the two,
we compute our proposed metrics DF and DH (Section 3.3) and the
existing metrics DS and DRV M (Section 4.2) and compare them with
the ground truth. To allow for such a comparison, we normalize the
dissimilarity values to the unit interval (using minimum and maximum
values, where the minimum is always 0 due to the sanity check). We
computed the element-wise absolute difference to the ground truth,
results are shown in Fig. 5. We see that both our measures DF and
DH yield the best agreement with the ground truth, i.e., lowest val-
ues of average and maximum differences. We verified this further
by computing the Frobenius norm F of the differences between the
perceptual dissimilarity matrix and the four matrices computed with
the four measures obtaining F = 16.676 for DS, F = 16.906 for DRV M ,
F = 10.119 for DH , and F = 11.5043 for DF . These results show that
our proposed dissimilarity metrics DH and DF perform better than
the existing well-accepted metrics DS and DRV M in terms of closeness
to perceptual distances. Moreover, we see that our original hypoth-
esis, i.e. the fact that skeleton descriptors are effective in capturing
the perceptual similarity of scatterplots, does indeed hold, as both DF
and DH are computed based on skeletons. In fact, DH , which follows
the skeletal information closest, offers the best agreement with the
perceptually-measured distances.
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Fig. 5. Element-wise absolute differences averages and standard devi-
ation between dissimilarity measures and perceptual similarity matrix.
Proposed methods have lower average element-wise difference. Red:
maximum element-wise difference.

Human perception of scatterplots, as shown in Figure 4, may not
be invariant to mirroring and rotational transformations. While DS
and DRV M are invariant to mirroring transformations, our proposed
measures based on skeleton descriptors are not. In case of rotational
transformations, the monotonicity feature in DS may change. This
leaves DRV M as the only rotational invariant metric in our comparison.

In the following, we want to discuss a few interesting cases. For
Figure 3b, users were not able to agree on the scatterplot-pair similarity.
The mirroring symmetry visible in this figure caused a large standard
deviation in ranking. This strong orientation effect on similarity is
captured also by the shape metrics we propose, and best by DH : The
average normalized perceptual dissimilarity for the plots in Figure 3b is
0.54, while the normalized Hausdorff dissimilarity DH is 0.74, which
is in line with the user study. In contrast, the normalized Scagnostics
Dissimilarity DS is only 0.007. This indicates that DS finds these plots
to be very similar, which contradicts the users’ perception. Figure 6
shows another example. For this scatterplot pair, DRV M delivers that
the plots are very similar (DRV M = 0.01), given that both distributions
can be characterized by a narrow high-density band. In increasing
dissimilarity order, the other computed metrics are DS = 0.47, DF =
0.58, and DH = 0.82, where the latter two are equally close to the
perceptual distance 0.7 and much closer than the other two metrics.
4.4 Visual Comparison of Dissimilarity Metrics
To gain more insight on how DF and DH actually compare scatterplots
as compared to DS and DRV M , we show the respective dissimilarity
matrices using MDS, similarly to how we did it in Figure 4 for the

Fig. 6. Performance of computed distance metrics for comparing two
plots having a perceptual distance of 0.7: DRV M = 0.01, DS = 0.47, DF =
0.58, and DH = 0.82. Narrow high-density plots are considered similar by
DRV M regardless of orientation.

perceptual distances. Figure 7a shows the MDS projection for DF . We
can clearly see the effect of scatterplot orientation: Starting from the
top in counter-clockwise direction, we see clusters of scatterplots with
roughly vertical, positive-slope, horizontal, and negative slopes. The
linear-to-quadratic plot shape variation is captured in the lower-right
corner (red inset in Figure 7a).

As explained in Section 3.3, the Hausdorff distance DH improves
upon DF by also capturing scatterplot shape, apart from the main
trend. Figure 7b shows this. The plot orientation change is captured
by the vertical axis. In contrast to the DF projection, DH also allows
capturing the scatterplot spread – if we focus on the upper part of
Fig. 7b, we can see the change from right-skewed towards a left-skewed
distributions. In contrast to the above, DRV M (Fig. 7c) mainly separates
plots having a narrow spread (thin shapes, more to the right in the figure)
from wide-spread plots (thick shapes, center and left in the figure).
However, plots having different shapes (A) or different orientations
(B) are seen as similar. Finally, Figure 7d shows the MDS plot of
the Scagnostic distance DS. We see how plots appear to be grouped
based on skinniness (similar to DRV M), with very skinny ones being
separated from the others (A). However, orientation and/or correlation
are not well captured; for instance, horizontal plots are seen as similar
(B), but so are plots having strong direct and inverse correlations (C).
Overall, this visual analysis strengthens the quantitative comparison
from Sec. 4.3 in telling us that DF and especially DH capture perceived
plot similarities better than DS and DRV M .

4.5 Computational Performance Comparison
We detail how we implemented the four distance metrics introduced in
Section 3.3 to ease replication and compare computational performance
figures.

For RVM and Scagnostics Dissimilarity we used binning on a
75×75 grid to improve efficiency, as suggested in literature [63]. The
first three steps of the RVM measure, namely density estimation, mass
distribution computation (Eqn. 7), and pixel-wise minimum calculation
(Eqn. 6) were implemented using CUDA. Angles θ ∈ [0,π] were sam-
pled with a step of 0.1π radians. The oriented line segment of length
2L was sampled at each consecutive pixel. For all scatterplots, DRV M
computation took between 45.5 and 82.1 ms. Arguably, this is also the
most complex measure to implement.

For DS, the main bottleneck is the computation of the MST graph.
We used for this the VTK Toolkit [27]. Computing the MST using a
75×75 grid for one of the base scatterplots in Figure 2 takes between
293 and 1,075 ms. Reducing the bin resolution to 60×60 lowers this
to the range of 122 to 446 ms. Overall, DS is the slowest measure to
compute.

Since DF and DH are both skeleton-based, they share several com-
putation steps. As outlined in Section 3.2, we compute the MAT (reg-
ularized skeleton and distance transform) using the fast CUDA-based
method [12] (which is publicly available). For the base scatterplots, this
took between 15.8 and 21.6 ms per plot. Given that the skeletonization
process already computes the distance transform DTS of a skeleton,
computing DH via Eqn. 4 requires a simple maximization of DTS1 over
the pixels of S2, which takes under 1 ms per plot. For DF , we compute
the longest path between endpoints of a skeleton S using Dijkstra’s
algorithm on the pixel connectivity graph of S as implemented in VTK.
This took between 4.2 and 47.8 ms per plot. This large variance is
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Fig. 7. MDS of dissimilarity matrices between scatterplot pairs computed with our Fréchet (a) and Hausdorff (b) distances, and with the RVM (c) and
Scagnostics (d) distances. Zoomed inset (red, (a)) captures linear-to-quadratic plot behavior.

caused by the large variance in number of skeleton endpoints E, given
that the number of paths between endpoints is E2. Having the longest
path, DF is computed in under 1 ms per plot. Overall, DH took between
16.8 and 22.6 ms per plot, and DF took between 21.4 and 68.1 ms per
plot, respectively.

Given the above, we see that our skeleton-based measures DH and
DF are the first- and second-fastest dissimilarity metrics, respectively.
Given they also approximate the perceptual distance best (Section 4.3),
we argue that they are both effective and efficient ways to characterize
scatterplots in a scagnostics context.

5 VISUAL ANALYSIS

So far, we have shown how skeleton-based descriptors can effectively
and efficiently capture the perceptual similarity of scatterplots in a
SPLOM. However, they can be used for more. We show next how
we leverage them to create summarized visual representations for the
point distributions in scatterplots. These representations can be used to
quickly scan a SPLOM to find interesting (or similar) patterns in the
data. As a case study, we use the Abalone dataset from the UCI Repos-
itory, which contains N = 4177 instances describing snails along eight
numerical and one categorical anatomical dimensions [4, 62]. In all
cases, we display the original scatterplots in the upper-triangular part of
the SPLOM, and our summarizations (of the same scatterplots, i.e., not
flipped along the diagonal) in the corresponding lower-triangular part.
This way, one can compare the scatterplots, respectively summariza-
tions, among themselves, but also link a scatterplot to its summarization
(see Fig. 9 and further).

5.1 Visual Encoding
We first describe the proposed scatterplot summarizations. For each of
them, we outline the task(s) it is aimed to support.

Model comparison: Bivariate relationships can be explored via
scatterplots. Mathematical or sketch-based models can be defined
and compared against the principal data trends. High model-data
agreement means a high predictive power for the model. We support

visually assessing this agreement by color mapping the distance from
the skeleton to a given model at every skeleton point x. If the model is
described by a 2D curve M given e.g. as y = f (x), then this distance
is DTM(x), the distance transform (Eqn. 1) of M indexed over the
skeleton points x. Figure 9 (blue cells) shows this for the model
f (x) = 0.6x2+0.3x, using a color map from dark-green (low) to yellow
(medium-low) to orange (medium-high) to red (high). Dark-green
colors encode a low distance, thus, a good model-data agreement,
such as in the SPLOM columns 1 and 3. In contrast, column 2 shows
warmer colors, thus high disagreement. In the red inset, we change the
model to g(x) = 3x for a subset of the SPLOM (four scatterplots). We
now see a much higher disagreement (red skeletons) for the top two
of these plots (A,B). This was to be expected, since those scatterplot
shapes are clearly more similar to a quadratic curve than to a straight
line. We also support sketching any model interactively by drawing
a curve (represented as a sequence of connected pixels) in a small
pop-up window and comparing the scatterplots in the SPLOM against
the drawn model, see accompanying video.

Data summarization: So far, our skeletons summarize only the shape
of a scatterplot S. We extend this visual encoding by annotating each
skeleton point x with information from all scatterplot points y that x
summarizes. For this, we map each y to its closest x ∈ Sτ

Ω
. Note that

this mapping is many-to-one in areas where the scatterplot shape S
is convex, one-to-many mapping where S is concave, and one-to-one
where S is straight [48]. We easily compute this mapping as it is equal
to the feature transform FTSτ

Ω
(see Section 3.1), or alternatively by

gathering all y located on lines perpendicular to the tangent to Sτ
Ω

at x.
We next aggregate the values of all y found for a given skeleton point x
and display the result on x using the same color mapping as used above
for model comparison. We next propose two such aggregations.

Density mapping: We aggregate the densities I(y) of scatterplot
points (Eqn. 3) weighted by the inverse distance 1/‖x− y‖ so that
points closer to x have a higher contribution. Figure 8a shows how this
makes skeletal summarizations represent well both the shape and local
density of the scatterplots. We see, for example, a high-density area
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Fig. 8. (a) Density mapping summarization. Color indicates local scatterplot density, in a direction orthogonal to the skeleton. (b) Combined mapping
summarization of local data-fit to a model (opacity) and local data density (color).

of abalones with low to mid-range height (thus a skewed distribution),
while for diameter the distribution is much more centered (normal
distribution).

Combined mapping: We can map two scalar properties of the scat-
terplot S to two attributes, e.g., color and opacity, of the skeleton points.
Figure 8b maps the model-data agreement explained earlier to opacity
(for a model f (x) = 0.6x2 +0.3x), and point density to color, respec-
tively. This shows both how much and where data agrees to a model.
Low-agreement areas naturally filter out (due to transparency), helping
to focus on high-agreement areas. In these, color tells how many points
support the agreement, so how strong the agreement is. For instance,
we see that while height is strongly correlated with shucked weight (red
colors on skeleton in Fig. 8a, detail A), this correlation poorly fits our
quadratic model f (few opaque points on skeleton in Figure 8b, detail
B). In contrast, the correlation of whole weight with shucked weight fits
the model very well: The skeleton in Figure 8a (detail C) shows about
the same number of points as the one in Fig. 8b (detail D).

Other encodings: Besides the above, other encodings of scatterplot
data on the skeleton are easily possible. For instance, we can immedi-
ately encode the local thickness of the scatterplot by simply considering
the values of DTSτ

Ω
over the scatterplot points y. This elegantly sub-

sumes the DRV M metric (Section 4.2) in our framework. Additionally,
we can quantify the jaggedness of a scatterplot using the number of
branches of its skeleton [48]. For space limitation reasons, we do not
detail such options further.

5.2 Interactive Exploration
For SPLOMS with many dimensions d, appropriate interaction tech-
niques must be provided so one can easily select a subset of interest to
explore further. Our visual encodings presented so far allow exploring
bivariate relationships for a small number of scatterplots. Visual explo-
ration of SPLOMs often uses overview abstractions and/or interaction
based on the ‘interestingness’ of representative plots. We provide inter-
action methods for interactive visual analysis based on dissimilarity
measures for locating similar plots and for model evaluation, as follows.

Scatterplot querying: We extend the model-fit functionality described
above by applying it to the level of scatterplots within a SPLOM instead
of each point in a scatterplot skeleton. For this, we color-code the fit of
a scatterplot with a given model on the scatterplots’ backgrounds. This
helps finding those scatterplots in the SPLOM having high and/or low
fits. Once found, these can be explored in detail using the pixel-level
mechanisms outlined in Section 5.1. We can also filter scatterplots
according to their normalized fit to the model. Alternatively, we can se-
lect a scatterplot of interest S and then only show the other scatterplots
(from a large SPLOM, whose entire display would not fit the screen)
that are more similar to S than a user-given threshold ε . Figure 10a
shows an example for the model f (x) = 0.6x2 + 0.3. The Hausdorff
distance DH (which, as shown in Section 4, best captures perceptual
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Fig. 9. Summarized agreement of a scatterplot with an analytic model.
Blue SPLOM cells show the data fit to f (x) = 0.6x2 +0.3x. Red cells show
the data fit to g(x) = 3x. Colors map the model-data fit from dark-green
(low) to red (high).

distance) of the scatterplots to the model is computed and color-coded
using a colormap from light green (similar) to light orange (dissimilar),
where brighter colors are used to prevent skeleton visibility issues. We
define a threshold ε = 0.10 of the normalized dissimilarity to show
scatterplots that fit the model well enough to allow for predictions.
This threshold value corresponds to a point between our perceptual
defined experimental range of Identical and Very Similar. Hence, scat-
terplots below this threshold value would be considered perceptually
very similar by users.

We see that only the diameter vs. whole weight scatterplot, outlined
blue in Figure 10, fits the model well. Other scatterplot cells that are
still close to the model show up in greenish color; orange indicates
scatterplot cells that have a much shallower or steeper slope and are
thus very far from the model. In contrast, in Figure 10b we select the
scatterplot whole weight vs. shucked weight (marked red), and show all
other scatterplots more similar to it than ε . Three such scatterplots are
found, outlined blue in the figure. As visible, these are indeed very
similar in shape, thickness, and orientation to our selected plot. Both
cases in Figure 10 can be thought of querying for similar scatterplots
in a large SPLOM given either a model (Figure 10a) or an example
(Figure 10b). For an example in a larger SPLOM (50 dimensions) see
accompanying video. As such, our technique is similar to approaches
well known in shape retrieval, such as query-by-example [53, 65]. Not
surprisingly, at this point of reading, we see that many such methods



Fig. 10. Focus-and-context shows only scatterplots fitting a model (a) or fitting a given scatterplot example (b) better than a given user threshold ε . In
both cases, the scatterplot cells returned by the ‘query’ are outlined in blue.

also use skeleton descriptors. On a different note, our visual encoding
of scatterplot querying presented above follows the well-known
Shneiderman mantra [47]: overview (we show the SPLOM with
color-coded dissimilarities on background); zoom-and-filter (select a
plot of interest for more information); and details on demand (we next
show this plot, and the most similar ones to it, at high resolution).

Fig. 11. Reordering of SPLOM based on similarity with the scatterplot
outlined red. Background color shows scatterplot similarities.

Reordering: Reordering rows/columns of SPLOMs is a common task
in optimization of SPLOM analysis. We propose doing this based on the
dissimilarity DH to a selected scatterplot S. The first two dimensions to
be placed in the new SPLOM (left-to-right, top-to-bottom) are the ones
S uses. Next, we add to the new SPLOM the dimension that minimizes
the average dissimilarity to S given the already placed dimensions,
and so on, until all dimensions d have been accounted for. Figure 11
shows the SPLOM reordering with respect to the scatterplot diameter
vs. whole weight, which was also selected in Figure 10a. As visible,
scatterplots close to the one driving the reordering (marked red) are
more similar to it than ones being further in the SPLOM. We also color
the scatterplot-cell backgrounds by the similarity DH . We see that,
indeed, cells close to S are more similar. More valuably, we can now
explain what makes scatterplots different: For instance, we see that
all scatterplots on the bottom row (orange) are much more different
than the other ones (green). Hence, the key dimension distinguishing
scatterplots in the SPLOM from the selected S is height.

6 DISCUSSION AND CONCLUSION

We have proposed a novel way to quantify and represent scatterplots in
a SPLOM in a summarized manner. For this, we leverage properties

of skeleton-based descriptors, well-known and used since long in com-
puter vision and shape analysis. We first use skeletons to summarize
complex scatterplot shapes in a compact curve-set, and show that this
representation is closer to perceptual distances between a wide varia-
tion of scatterplots, and faster to compute, than established scatterplot
similarity metrics. This allows us next to use skeleton-based descriptors
to summarize more information about the scatterplot, such as the local
point density and confidence-fit to analytic or sketch-based models.

The main limitation of our approach described in Section 3.1 is
the assumption that a scatterplot’s visual depiction typically converges
to a dense visual representation. This is not always the case, e.g. for
scatterplots having just a few points, or scatterplots where there are large
gaps between highly concentrated point clusters. However, we argue
that the first case is less interesting from a scagnostics perspective, while
the latter one can be easily handled by existing cluster-based scagnostics
techniques. Separately, we note that the skeleton representation is
unable, without the aid of our additional data summarization visual
encoding, to caputre the density distribution in a scatterplot. Density-
weighted skeletal (dis)similarity measures may be further investigated
to improve the comparison of point distributions with locally different
point densities.

To our knowledge, this is the first time that shape skeletons have
been used to summarize data, rather than just shape, in information
visualization (or, for that matter, in other fields, too). Additionally,
we use skeletons to depict the encoded information in a compact way,
thereby enriching the palette of available scagnostic techniques. We
show how such descriptors can be leveraged to easily pose model-fit
queries including sketch-based models and queries-by-example to find
relevant scatterplots in a large SPLOM. Our proposal applies to any
SPLOM, requiring only access to the individual 2D scatterplots; robust
to noise, given known skeleton regularization properties; automatic,
requiring no parameter tweaking; and fast and simple to compute,
given existing GPU parallelizations of 2D skeletonization [12]. At a
higher level, our work shows how bridges can be formed (and exploited)
between information visualization and the more classical shape analysis,
image processing, and shape retrieval domains.

Future work envisages integrating our skeleton-based descriptors
in existing frameworks for SPLOM exploration [9, 28], adding more
data attributes to the skeleton to better capture scatterplot similarity,
enhancing the skeleton visualization to better explain this similarity,
and extending this approach to 3D scatterplots, based on recent break-
throughs in fast-and-accurate 3D skeleton computation [23, 24].
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