
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]
1045-92

doi:10.1

� Cor

E-m

a.c.telea

Pleas
Journ
journal homepage: www.elsevier.com/locate/jvlc
Towards realism in drawing areas of interest on
architecture diagrams
Heorhiy Byelas, Alexandru Telea �

Department of Mathematics and Computer Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
a r t i c l e i n f o

Article history:

Received 24 October 2007

Received in revised form

4 September 2008

Accepted 12 September 2008

Keywords:

UML diagrams

Software visualization

Information visualization

Empirical evaluations

Visual shape comparison
6X/$ - see front matter & 2008 Elsevier B.V..

016/j.jvlc.2008.09.001

responding author. Tel.: +3140 2475008; fax:

ail addresses: h.v.byelas@rug.nl (H. Byelas),

@rug.nl (A. Telea).

e cite this article as: H. Byelas, A. T
al of Visual Language and Computi
a b s t r a c t

Areas of interest (AOIs) are defined as groups of elements of system architecture

diagrams that share some common property. Visualizing AOIs is a useful addition to

plain diagrams, such as UML diagrams. Some methods have been proposed to

automatically draw AOIs on UML diagrams. However, it is not clear whether actual

users perceive the results of such methods to be better or worse as compared to human-

drawn AOI, and what needs to be improved. We present here a process of studying and

improving the perceived quality of computer-drawn AOI. For this, we conducted a

qualitative evaluation that delivered insight in how users perceive the quality of

computer-drawn AOIs as compared to hand-drawn diagrams. Following these results,

we derived and implemented several improvements to an existing algorithm for

computer-drawn AOIs. Next, we designed a distance metric to quantitatively compare

different AOI drawings, and used this metric to show that our improved rendering

algorithm creates drawings which are closer to (good) human drawings than the

original rendering algorithm. We present here the results of the user evaluation, our

improved algorithm for drawing AOIs, and the quantitative analysis performed to

compare different drawings. The combined user evaluation, algorithmic improvements,

and quantitative comparison method support our claim of having improved the

perceived quality and understandability of AOI rendered on architecture diagrams.

& 2008 Elsevier B.V.. All rights reserved.
1. Introduction

UML diagrams are among the methods of choice for
system architects to describe and understand software
architectures and designs, e.g. the structural and func-
tional relations between the various interfaces, compo-
nents, or roles [1]. Their design and exploration is
supported by many tools, both commercial, such as
Rational Rose [2], Borland Together [3], Telelogic Tau [4],
and open source, such as ArgoUML [5]. Software elements
that share a common property are of particular interest in
system analysis, e.g. ‘‘all high-reliability components’’,
All rights reserved.

+3140 2468508.

elea, Towards realism
ng (2008), doi:10.1016
‘‘all components using over 1 MB of memory’’, ‘‘all
components introduced in the system version 2.3’’, or
‘‘all components in the same thread’’. We call such a set of
elements an area of interest (AOI). AOIs can be defined
using software metrics [6,7] computed by existing
analysis tools [8].

AOIs and their underlying defining metrics are usually
displayed in tabular format. Recently, a method was
proposed for visually combining AOIs and architecture
(UML) diagrams [9]. The chief advantage of this method is
that it shows AOIs in-place on the diagrams, so it enables
users to correlate concerns (AOIs) with system structure
(diagrams). At the same time, the method does not alter
the diagram layout, which can be used to encode
structural system properties. The method in discussion
renders AOIs as soft, fuzzy shapes surrounding the
diagram elements, by a combination of geometric and
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

www.sciencedirect.com/science/journal/yjvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2008.09.001
mailto:h.v.byelas@rug.nl
mailto:a.c.telea@rug.nl
dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]2
texture-based techniques (see, e.g. Fig. 22b). Roughly, the
rendering algorithm tries to imitate the way humans
would draw AOIs in practice using pen and paper. The
rendering method scales computationally well to tens of
areas and hundreds of elements, and produced results
which were found quite appealing by potential users.1

However, for the computer method to be actually
effective in practice, some important questions still
remain to be answered: Do actual users like computer-
drawn AOIs comparably to hand-drawn AOIs? If not, why,
and how can we improve the computer-drawn AOIs so
that they resemble more closely good-quality hand-drawn
ones? In this paper, we present our quest to measure and
improve the perceived quality of computer-drawn AOI. To
evaluate the quality of AOIs, we designed and executed a
detailed empirical evaluation. From the evaluation results,
we distilled salient strengths and weaknesses of the
original AOI-rendering algorithm [9] and of hand-drawn
areas. Our conclusion was that hand-drawn areas,
although quite variable across different humans, are
perceived as easier to understand than computer-drawn
ones. Two main drawbacks of computer-drawn areas were
found: incorrect exclusion of overlapping elements, and
unnatural flow-of-hand. Next, we modified and extended
the original AOI algorithm to address these limitations.
Finally, we designed a distance metric to compare AOI
renderings, and showed that the results of our improved
algorithm are closer to (good) human drawings than the
results of the original rendering algorithm.

This paper is structured as follows. Section 2 reviews
related work in visualizing AOIs on diagrams and
evaluating quality aspects related to diagram drawing.
Section 3 overviews the original AOI algorithm [9]. Section
4 details the algorithmic limitations of the original
method. Section 5 presents the empirical evaluation we
conducted to compare the quality of computer and human
drawings. Section 6 presents our new technique that
improves the rendering of AOIs on diagrams by correct
geometric exclusion of elements and natural flow-of-hand
rendering. Section 7 presents a quantitative comparison of
the human-drawn and computer renderings. Section 8
presents and discusses the results of our evaluation and
proposed algorithmic improvements for our goal of
enhancing the quality of computer-rendered AOI. Finally,
Section 9 concludes the paper.
2. Related work

Visualizing AOI can be described with the 5D model of
Marcus et al. [10]: task, audience, target, medium, and
representation. Our task is to understand how various
system aspects (the AOIs) map on some system descrip-
tion (the UML diagram). Our audience is mainly composed
of software architects. Our visualization target is a set of
diagrams, together with AOIs specified as sets of diagram
elements. The visualization medium is a modified UML
diagram viewer [11] that combines rendering diagrams
1 The proposed method has obtained the ‘‘best paper award’’ at ACM

SoftVis’06 [9].

Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
and AOIs. The representation enriches classical UML
diagram drawings with AOIs drawn as smooth soft-
textured shapes with a new technique.

Although current software design and system model-
ing methods produce numerous attributes apart from
structural data, e.g. metrics related to performance, trust,
security, debugging, and deploying, there is little wide-
spread support for showing such attributes on classical
(UML) diagrams. Modeling tools, e.g. Rational Rose [2] or
Together [3], are standard ways to visualize UML dia-
grams, but have little support for AOI beyond boxes. The
SUMLOW system allows users to construct UML models
by converting their hand-drawn sketches to the UML
formalism [12]. This system could support hand-drawn
AOIs but does not address the issue of automatically
constructing such annotations from a specification as they
are not part of the UML standard. Drawing AOIs as boxes
without changing the base diagram layout yields unac-
ceptably high visual clutter. Tools such as Rigi [13], Prefuse
[14], or MetricView [11], often used in reverse engineering
and reengineering, show an AOI by marking its elements
with icons scaled, colored, and shaped to show metric
values. Yet, inferring AOIs from such markers is hard for
diagrams with many overlapping AOIs. One can also move
all elements in an AOI close to each other and next draw a
surrounding frame [15]. However, diagrams are often laid
out manually with great care. It is well known that
changing the layout every time one changes the AOIs
destroys the user’s mental map. Moreover, layout adap-
tion does not work when one needs to show several AOIs
at the same time.

A separate class of methods draws AOIs as smooth
shapes around their respective elements. Methods such as
metaballs [16], H-BLOB [17], and 2D implicit surfaces [18]
compute AOIs as isosurfaces of some potential function, or
distance field, based on the elements’ locations. However,
it is hard to control both the smoothness and tightness of
such isosurfaces. Worse, the isosurface connectivity
highly depends on a correct isovalue which cannot be
easily chosen automatically [17]. Finally, distance fields
and isosurfaces are computationally expensive.

A recent technique in the class of smooth shapes draws
AOIs by shrinking and smoothing the convex hull of the
enclosed elements [9]. The features targeted by this
technique are:
1.
in
6/j.
AOIs do not change a given diagram layout.

2.
 AOIs drawing is real-time, even for large diagrams.

3.
 AOIs correctly surround the enclosed elements.

4.
 AOIs do not clutter the diagram or each other.

5.
 Computer- and human-drawn AOIs should resemble

each other.

The first two requirements were clearly satisfied by the
proposed technique, by construction. The technique did
not correctly handle requirement 3, as we shall see in
Section 4.1. Moreover, it was not measured how precisely
requirements 4 and 5 are satisfied.

A separate body of related work concerns evaluating
the quality of a visual depiction of system (UML)
architectures. Specifically, we want to assess which type
drawing areas of interest on architecture diagrams,
jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 1. Area of interest algorithm.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 3
of AOI rendering is the best, and why. Since we are not
aware of specific studies to evaluate the quality of
AOI renderings, we shall consider the wider range of
evaluating quality aspects of UML diagram renderings.
Purchase et al. have conducted numerous user experi-
ments to assess the comprehensibility, aesthetics,
and user preferences of UML (and similar) diagram
renderings [19–22]. Such results are valuable both as
methodology and lessons learned, yet they cannot be
applied directly to our problem, since AOIs are an
extension of the standard UML notation. Several authors
propose frameworks and methodologies to evaluate the
comprehensibility and overall quality of UML models
[23–28]. Still, the question ‘‘what are the good quality
criteria for visual modeling languages?’’ is not exhaus-
tively answered.

There is a large body of related work in the area of
quality attributes of hand-drawn diagrams and diagram
annotations beyond UML. Notably, Plimmer et al. have
presented several systems for human annotation of
computer-made diagrams [29,30]. In particular, the RCA
tool manages user-drawn annotations to fit around edited
source code in an IDE, which is similar to our requirement
that AOIs should fit the elements they enclose, regardless
of their layout [31]. Beautification issues of hand-drawn
diagrams and annotations are discussed by Plimmer and
Grundy [32] and Yeung et al. [33]. Identified desirable
issues such as annotation line smoothness, annotation
constrainment to user-specified layouts, and the use of a
natural stroke or flow-of-hand, are all directly relevant to
our computer-drawn AOIs. Our particular challenge is to
generate such annotations entirely automatically, rather
than starting from a user sketch.

One emerging conclusion from the previous work is
that plain, unannotated UML is often hard to comprehend
and can perform better if extended by task-specific
annotations. Our AOI are precisely such an annotation,
useful to show cross-cutting concerns atop of a given
system structure. Since this is a new notation, the
characteristics that make for a good AOI drawing have
not yet been studied in particular. Our aim is to construct
a computer algorithm that renders AOIs similarly to good
hand-drawn AOIs. The above-mentioned requirements of
the technique in [9] attempt to capture the in abstracto

quality criteria of a good AOI drawing. Yet, to assess the
perceived quality of an AOI drawing, we need a specific
study. In the remainder of this paper, we present such a
study and an improved computer AOI-rendering algo-
rithm based on the study results.
3. AOI construction

Let us first briefly overview the construction of the
AOIs as presented in [9]. AOIs are built in two stages. First,
a contour is built around the elements, in three steps
(Figs. 1b–d). Given the 2D bounding boxes ðb1i; b2i; b3i; b4iÞ

of the elements ei in the AOI (Fig. 1a), one first computes
the convex hull C ¼ fqig of the corners fbijg (Fig. 1b). The
hull is a start approximation for the AOI shape. The hull is
next subsampled (Fig. 1c) so that the distance d ¼ jqi �
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
qiþ1j between consecutive points is a given small fraction
of the hull perimeter jCj ¼

P
ijqi � qiþ1j, e.g. d ¼ 0:01jCj.

Next, the subsampled contour fqig is deformed so that
it fits tightly the elements inside and also becomes
smoother (Fig. 1d). For this, every point qi is moved to q0i
along the normal ~n to the line segment ðqi�1qiþ1Þ, i.e.
q0i ¼ qi þ �n~nþ �sðqi�1 þ qiþ1Þ=2. Here, �n and �s are para-
meters that control the shrinking and smoothing
strengths, respectively. Good values are �n ¼ 0:005jCj ¼
0:5d and �s ¼ jqi�1 � qiþ1j=4. If fqig are in counterclockwise
order, qi moves inwards in C. This shrinks the contour, but
also moves qi towards the middle of the segment
ðqi�1qiþ1Þ, which is the well-known geometric Laplacian
smoothing operation [34]. To prevent contour self-inter-
section, a point qi is moved only if

d ¼ min ð min
jj�ij41

jqi � qjj;min
j
jqi � pjjÞ42d (1)

i.e. if the contour point qi is farther from all corners pj and
other contour points qj (except its immediate neighbors qj�1,
qjþ1) than 2d. To prevent the contour to become too densely
or sparsely sampled, we check the distances minjj�ij41jqi �

qjj between the moved point qi and its neighbors, and insert
or remove points if these fall outside the range ½0:5d;2d�.
Points are moved until Nmax iterations are done.

In the second stage, given a contour constructed as
above, AOIs are drawn in three steps. If we want filled areas,
the contour is triangulated and drawn in the area’s color,
else this step is skipped. Next, the contour points qi are
offset outwards along the contour normal ~n, i.e.
q0i ¼ qi þ �n~n, where �n is the shrink factor. This creates a
narrow band along the contour (Fig. 2a). This band is
rendered using a gradient-like OpenGL texture with trans-
parency Tðx; yÞ ¼ xk (Fig. 2b) mapped on the quadrilaterals
ðqiqiþ1q0iþ1q0iÞ. Here, T ¼ 0 yields fully transparent pixels and
T ¼ 1 fully opaque ones, creating a soft border effect.

Fig. 3 shows several deformation steps for a simple
AOI, starting from the convex hull until a tight shape,
reached after 20 iterations. Different visual effects can be
achieved by tuning the parameters. The texture profile
parameter k controls the contour fuzziness: ko1 yields
‘‘hard’’, crisp contours, while k41 yields soft, fuzzy ones.
A good value is k ¼ 0:7, which was used for all images in
this paper. The number of iterations N controls the
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]4
contour tightness: N410 gives tight contours, whereas
No5 gives loose, more rounded ones.

4. Technical limitations

The original AOI-rendering algorithm (Section 3) has a
number of limitations of which we were already aware
during design and testing. We discuss these next.

4.1. Ineffective exclusion

The contour constructed as described in Section 3 may
erroneously overlap, or include, elements which are
Fig. 2. Drawing soft borders with textures. (a) Band construction and (b)

band texture.

Fig. 3. Tightness and smoothness control. (a) 0 iterations, (

Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
logically not in the AOI. To mark such elements as outside
the AOI, the original method draws a rectangular eraser

texture around the element, creating a narrow soft white
border, which should suggest the exclusion of that
element. The texture transparency profile, shown in
Fig. 4, is given by the following function:

f ðxÞ ¼
1; xob

x�b
b

� �k
; xXb

(
(2)

Here, b controls the eraser’s white border width.
Consider Fig. 5 where elements A–D are in the area and

E, F are outside. The eraser method works reasonably well
if we draw filled areas and the overlapping elements are
b) 3 iterations, (c) 10 iterations, and (d) 20 iterations.

Fig. 4. Eraser texture design. (a) Texture and (b) profile.

in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 5. Limitations of the eraser technique. When drawing the AOI as a

contour, element E is incorrectly shown as being inside. (a) Filled

drawing and (b) contour drawing. Fig. 6. Evaluation process.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 5
completely inside the area, e.g. E in Fig. 5a. However, even
in this case the eraser cue is not salient enough to easily
see that E is outside the area. For elements partially
overlapping the area which need to be excluded, e.g. F in
Fig. 5a, the cue is even weaker. For contour-drawn areas,
the eraser technique works very weakly (F in Fig. 5b) or
not at all (E in Fig. 5b) as there is little or nothing to erase,
this is a serious limitation since contour drawing is
preferred to filled drawing in many situations, e.g. when
one has only few available colors, when printing contours
in black and white, when many contours overlap, or when
blending-capable graphics hardware is not available.
However, the most important problem of the eraser
technique was that it turned out to be very unnatural
for the most users who were shown it during our
evaluation study (Section 5).
4.2. Unnatural flow-of-hand

Fig. 5 also shows a second problem of the original AOI-
rendering technique. Close to the elements, the contours
are too tight. In the middle, they are too loose. Also, the
contour smoothness is not optimal. The contour looks too
much like a sharp-angled polyline. The problem is only
made worse by the eraser technique which introduces
extra angles (e.g. element F in Fig. 5). This image is clearly
different from user-drawn contours, which are much
smoother (see, e.g. Fig. 22). The non-uniform tightness
and angled look of the contours create a computer-made,
unnatural look, quite different from the flow-of-hand

typical to human drawings. This observation is in line
with the previous research that has shown that (software)
designers may prefer informally sketched designs and
annotations to formal diagram elements [35,36].
5. Evaluation of the AOI-rendering method

At this point of our work, several questions were
raised. We were aware of some limitations of the AOI
drawing technique (see Section 4). Yet, how bad would
real users find these in practice? Do other limitations exist
which we were not aware of? And above all, what are the
qualities of an AOI drawing that users would like the most,
and how to simulate these in a computer rendering?
Answering these questions is needed to estimate (and
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
improve) the acceptance and usability of the AOI techni-
que in practice.

To this end, we designed and executed an empirical
evaluation. Thirty users of higher computer science
education levels (master, post-master, Ph.D., and senior
software designers) were selected. Some users were
enrolled at the Eindhoven University in the Netherlands.
Some others were part of an industrial European research
project [37] where visualizing trust-related AOI on UML
and component diagrams were a key task. All users had
good knowledge of UML and had worked before for at
least a few months (up to a few years) with class diagrams
in daily software design activities. The evaluation flow is
depicted in Fig. 6. It consists of three stages: drawing
production, drawing comparison, and results evaluation.
These stages are discussed in the next sections.

5.1. Drawing production

In the first phase, the participants were given a
complex class diagram with 110 classes marked by
numbers, printed in black-and-white on an A4 paper
(Fig. 7) and seven AOIs, each given as a list of class
numbers, printed on a separate paper. The list is as
follows:
�

in
/j.
Area 1: 4, 5, 13, 12, 17.

�
 Area 2: 51, 52, 55, 58, 59, 57, 68.

�
 Area 3: 14, 21, 22, 32, 40, 41, 60, 58, 59, 80.

�
 Area 4: 33, 34, 35, 36, 43, 61, 62, 66.

�
 Area 5: 66, 82, 81, 95, 96, 103, 105, 104.

�
 Area 6: 49, 50, 51, 67, 69, 111, 76, 78.

�
 Area 7: 86, 92, 93, 99, 94, 80, 96, 95, 103.
The participants were next asked to draw the areas as
contours on this diagram, with a red marker pen we
provided ourselves. The subjects were told that the goal of
the drawing is to accurately and quickly convey, to
another person, which class is in which area(s), and which
area contains which classes. An example drawing, done on
a different, much smaller, UML diagram containing 10
classes and one AOI, was also provided for basic illustra-
tion purposes. The complete experiment instructions were
also provided on a separate A4 sheet. The subjects were
also given a few paper sheets to practice on, before
producing the final drawing. No verbal indications were
drawing areas of interest on architecture diagrams,
jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 7. Class diagram used in the evaluation.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]6
given during the actual work, which lasted approximately
15 min. The subjects were not supervised. Also, they all
worked independently, and had no knowledge of, or
access to, the results of other participants.

Fig. 22a shows a scan of the drawing done by one of the
participants.

Apart from the drawings made by the participants, and
without their knowledge, we also produced a computer
drawing on the same class diagram using the AOI-
rendering method described in Section 3. We adjusted
the algorithm and rendering parameters (e.g. line thick-
ness and color) to look as similar as possible to the human
drawings, and then printed the computer drawing on a
similar sheet of paper. The result of the computer-drawn
AOI is shown in Fig. 22b. Essentially, the only salient
difference between the computer and human drawings is
the shape of the contour.
5.2. Drawing comparison

In the second phase, we collected the results, and gave
to each participant two drawings: a randomly picked
drawing of another participant, as well as our unique
computer-rendered drawing (Fig. 22b). Without telling
which is which and without giving any hint that one of the
drawing was computer-made, we asked the participants
to complete a questionnaire (available in [38]). The
questions included the following:
1.
P
Jo
Rank the ease of understanding of the areas in each
drawing on a scale of 1 (hardest) to 5 (easiest),
accordingly to a Likert scale [39].
2.
 Which is the most complex area to understand?

3.
 Rank the perceived similarity between the two draw-

ings on a scale of 1–3.

4.
 List, in plain text, what you liked least in the given

drawings.
lease cite this article as: H. Byelas, A. Telea, Towards realism
urnal of Visual Language and Computing (2008), doi:10.101
5.
 List, in plain text, what you liked most in the given
drawings.

In the questionnaire, we mentioned that the main
quality of an AOI drawing is given by its understandability,
which is further related to its purpose. That is, the
drawings should clearly show which area contains which
classes, and which class is in which area(s). As mentioned
in the previous section, the purpose of the area drawings
was also discussed with the participants before the
experiment, in order to be sure that they understood the
use of such drawings.

5.3. Results evaluation

In the third phase, the questionnaire data were
analyzed and aggregated. After collecting the question-
naires, we also had some short discussions (10–15 min)
with the participants, in which we let them freely present
their impressions and explain their results, and silently
recorded their observations in writing. The results of this
phase are summarized in the table in Fig. 8.

Several points become apparent now, as follows.
Most users found the machine-generated drawing (M)

to be comparably understandable to the human-made one
(H). Yet, the human drawings were almost always found
to be better than the machine-generated ones, i.e. in
29 out of 31 cases (94%) (Fig. 8, column A). The perceived
similarity between the machine and hand-drawn
AOIs (Fig. 8, column D) showed a larger spread among
users: 19 out of 31 (61%) marked a 2 (‘‘not so different’’),
10 users (32%) marked a 1 (‘‘very different’’), and the
remaining two users (6%) marked a 3 (‘‘very similar’’). This
can be explained by the relatively large variability of
the different human drawings involved, and also in the
fact that we refrained from providing similarity criteria to
the users, to limit any potential biasing of the other
assessments.
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 8. Results of drawing comparison. Columns A–E indicate the following: which drawing was overall found to be better (human or machine), perceived

quality of the human drawing, perceived quality of the machine drawing, perceived similarity of the two drawings, and visually most complex area.

Columns F–I indicate often-perceived drawbacks of the machine drawings.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 7
It is interesting to see that there is only a weak
correlation between the perceived difference (column D)
and the numerical difference between the perceived
human and machine drawing qualities (columns B and
C). Users that perceived their two drawings as being very
different (value 1 in column D), e.g. rows 3, 5, 6, 8, 14, 17,
19, 22, 26, and 27 would score absolute human–machine
quality differences of 1 (4 users, or 40%), 2 (2 users, or
20%), 3 (3 users, or 30%) and, respectively, 4 (1 user, or
10%). The two users that perceived their respective human
and machine drawings to be very similar (score 3 in
column D) ranked their human and machine drawing
qualities to be 4 and 2, and 4 and 4, respectively. Finally,
the three users who indicated the highest human and
machine drawing quality scores (5 and 4, respectively) all
indicated a perceived difference of 2 between their
drawings. Overall, the emerging impression is that similar
drawings are not essentially implying the same drawing
quality (from the perspective of the indicated AOI goals),
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
nor would a similar quality in two different drawings
imply that they perceptually look the same.

The hardest-to-grasp (most complex) areas were quite
consistent, i.e. Areas 2 and 3 (Fig. 8, column E). This also
matches our opinion, and gives further an indication that
the drawings done by different users are of comparable
quality concerning understandability. Among different
drawbacks of the machine-drawn areas found during the
results analysis, two were most frequently named. The
first drawback concerns the eraser technique (Section 4).
The eraser, used to mark elements overlapping an AOI
contour but not logically part of that AOI, is not working
well, as we indeed suspected beforehand. We call this the
wrong exclusion problem. For example, class 56 is not part
of Area 2, as it is wrongly suggested by the computer
drawing. This is clearly visible in Fig. 9, which shows a
zoomed-in detail from the diagrams in Fig. 22. Fig. 9a,
drawn using the AOI-rendering algorithm, does not show
the AOI correctly. Fig. 9b, done by a human, is however
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 9. Element 56 is not part of the area, as correctly shown in the

human drawing (b). The eraser-based technique incorrectly shows 56 as

inside the area.

Fig. 10. Geometric-based exclusion steps. (a) Start situation, (b) find cut

line, (c) connect contours, and (d) cut sharp corners.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]8
correct. This problem was found by most subjects, as
reflected in column G of the table.

The second drawback of the machine-generated areas
concerns the contours’ tightness and smoothness. These
were perceived as being unpleasantly non-uniform
(column F), and the flow-of-hand, i.e. similarity to the
way humans draw, was lacking (column G). All users
mentioned these aspects as hindering the drawings’ unde-
rstandability. As a third drawback, many subjects found
the computer-drawn areas’ overlaps confusing (column D).
Contours which are near-tangent close to their intersec-
tion points were consistently named hard to understand
in the light of the posed questions (Section 5.2). This was
something we did not expect beforehand.

Clearly, there was room for improvement. The collected
results point clearly in an overwhelming preference of the
users for the human drawings, a fact which is also
supported by the vast majority indicating higher or equal
quality scores for the human drawings. It is natural to
believe that a part of these differences are also reflected
by the above-mentioned drawbacks of the machine
drawings. In other words, removing some of these draw-
backs has the potential of increasing the quality of the
machine drawings. After analyzing the mentioned draw-
backs, we designed several algorithmic improvements to
the original AOI-rendering method to address them. These
improvements are presented next.

6. Algorithm improvements

In Section 5.3 we identified three main problems of the
computer-drawn AOIs: wrong exclusion, non-uniform
tightness/smoothness, and confusing overlaps. We pre-
sent next several algorithm improvements that address
the first two problems.

6.1. Improved exclusion

An important problem, discussed in Section 4 and
clearly visible from the empirical evaluation (Section 5),
was the ineffective exclusion of elements overlapping
with AOIs. In the previous work [9], the route of
geometrically eliminating overlapping elements by mod-
ifying the contour is not followed, as it is deemed too
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
complex to do for general diagrams. However, we have
examined this direction and found a working solution.
Our idea is to edit the contour, before deforming it, in
order to exclude the wrongly overlapping elements. The
process works as follows (see also the scheme in Fig. 10
and Listing 1).

Listing 1. Iterative exclusion algorithm
compute overlapping element set O ¼ foig

for (all oi in O)

f

c

in
6/j.j
reate contour piece Co aroundoi
p
o ¼ point on Co closest to contour C
p
C ¼ point on C closest to Co
re
ady ¼ false
w
hile (!ready)
f

//Move inner point left
p ¼ po
while (dðp; poÞodmax)
f

if (ppC intersects no elementej)
fready ¼ true;breakg

move p to left along Co
g

if (ready) break;
//Move inner point right
p ¼ po
while ðdðp; poÞodmaxÞ
f

if (ppC intersects no element ej)
f ready ¼ true;break g

move p to right along Co
g

if (ready) break;
//Inner move failed, do outer move
move pC to left along C
g

c
onnect Co to C using line ppC
c
ut sharp corners

g

drawing areas of interest on architecture diagrams,
vlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 9
First the overlapping element set O ¼ foig is com-

puted by testing, for all elements, if any of the four
element corners falls within the already computed AOI
convex hull C (Section 3). This requires a simple point-in-
convex-polygon test which is fast and robust. Next, each
element oi in O is excluded in turn, as follows. A finely
sampled rectangular contour Co is constructed around the
bounding box of oi (Fig. 10b). Next, a short cut line

connecting Co with the original contour C is computed
such that it does not intersect any of the elements ei in C.
To do this, we use the following heuristic. We find first the
closest two points po 2 O and p 2 C. Next, we move both po

and pC along the inner and outer contours O and C,
respectively, until the line does not intersect any element.
We start by moving po around O to the left (counter-
clockwise sweep) until a non-intersecting line is found or
a too high distance dmax from the starting position, as
computed along O, is reached. If no line can be drawn, we
try now moving po to the right (clockwise sweep). If this
fails too, then we move the other point p one step along
the outer contour C, and repeat the inner contour sweep
again. When a cut line was found (dotted line in Fig. 10b),
we connect the inner and outer contours by constructing
two sampled line segments, close and parallel to the cut
line (Fig. 10c).

6.1.1. Limitations and workarounds

There are situations when the above heuristic (or any
other algorithm, for that matter) cannot find a cut line
that connects the element to be excluded with the AOI
contour without hitting some other element contained in
that area. This occurs, e.g. when the element to be
excluded is completely surrounded by a ring of elements
which are in the area (Fig. 12). This situation can be easily
detected algorithmically by monitoring when point pC has
executed a full loop over the area’s contour C (line 32 in
the above listing). Although such configurations would
not be typically found in many software architecture
diagrams, we discuss below two methods to handle it.

The first solution groups all elements in O from an Area
A which cannot be excluded using the cut technique in a
new AOI Aexcl. Since these elements are completely
blocked from seeing A’s contour, they must be fully
contained in A. We now show the exclusion of these
elements from A by drawing the contour of Aexcl using the
standard AOI algorithm, i.e. taking care to exclude
elements which are in A but not in Aexcl. Next, we draw
the contour of A ignoring the exclusion. Fig. 12 (left) shows
an example. The Area A logically contains the elements
1–5 but not the elements Excl1 and Excl2. The latter two
cannot be handled by the cut line technique, so they
constitute Aexcl. Hence, we draw the contour of A ignoring
Excl1 and Excl2 and separately the contour of Aexcl, this
time taking care to avoid element 5, which is not in Aexcl.
The Aexcl contour is nested in the A contour, since the
elements in Aexcl are completely within A. This technique
handles well a large range of configurations. However, it
would fail when the inner contour drawing (Aexcl, which
involves the cut line method, fails from precisely the
same reason the initial exclusion of its elements from A

failed. This happens in configurations involving several
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
concentric rings of elements which alternately belong to A

and Aexcl. Although we could handle such situations by the
addition of more contour pieces, this would create AOIs
with several disconnected components which are increas-
ingly hard to follow visually.

From discussions with actual software engineers who
use UML and tested our tool on repeated occasions, we
observed a net preference for rendering AOIs as simply
connected contours (shapes without holes) rather than
multiple (inner and outer) contours. The main explanation
given was that simply connected shapes are easier to
follow visually, especially in complex diagrams with
several areas whose contours overlap. In such cases, one
needs to visually follow an area’s contour to discern that
area, so an area with multiple disconnected boundaries
may be wrongly perceived as several separate areas.
Secondly, there are cases when one avails a few (or no)
colors to draw the areas, e.g. in print-outs. In such cases, it
is hardly possible to group disconnected contours as inner
and outer boundaries of the same area.

A second solution for the cases when the cut line
algorithm fails due to blocked contour visibility is to use
as cut line the shortest segment linking the element(s) to
exclude with the AOI’s contour, i.e. the segment ðpo; pCÞ

computed as in lines 5 and 6 in Listing 1. Although this cut
will intersect (at least) one of the elements which are
logically inside the area, it has the desirable property of
being the shortest possible one, thus the visually least
disturbing, and also it generates a simply connected
contour.

Fig. 12 (middle) shows such a situation. The AOI
contains elements 1–4 but must exclude element 5, which
cannot be connected via a straight path with the area’s
contour. Since no non-intersecting cut line can be found,
the shortest cut line is used, which will intersect element
3. To further emphasize this cut, we skip the sharp corner
cutting and smoothing (described in the next section)
for this cut. The cut will, hence, stay thin and have a
visually distinct appearance from the regular cuts
(compare Fig. 12, left, with Fig. 11f). For comparison
purposes, Fig. 12 (right) also shows the original eraser
technique described in [9], which only works on filled
areas. Overall, the preferences informally observed ranked
the shortest-cut solution as the most accepted (Fig. 12,
middle), followed by the multiple contours (Fig. 12, left)
and finally the eraser technique (Fig. 12, right).

6.2. Natural flow-of-hand

Our experiment subjects found contours having sharp
corners to be unnatural. Moreover, the contour editing
presented in Section 6.1 can create contours having
unnecessary sharp corners. We reduce these in a separate
pass. For each point pi along the contour, we compute the
angle a ¼ dpi�1pipiþ1 made by that point with its two
neighbors. If the angle drops below a minimal value amin,
and the line pi�1piþ1 does not intersect any diagram
element ei, then we remove pi from the contour by
connecting pi�1 and piþ1. Good values for amin are in the
range [40,70] degrees. We repeat this procedure itera-
tively until no removal is possible. The final result is
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 11. Geometric-based exclusion. The convex hull is edited to iteratively exclude all overlapping elements (E, then F) and also cut sharp corners. After

that, smoothing and shrinking take place. (a) Convex hull, (b) exclude F, (c) exclude E, (d) smooth (1 step), (e) smooth (2 steps), and (f) smooth (5 steps).

Fig. 12. Exclusion algorithm for cases when no straight cut from the excluded element (5) to the area’s contour is possible. Shortest-cut solution (left) and

eraser solution (right).

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]10
shown in Fig. 10d. When excluding several overlapping
elements oi, sharp corners are removed after excluding
each element oi, and not at the end. This gives better
quality, as unnecessary sharp corners are eliminated as
soon as possible. This also accelerates the further
smoothing steps, since the contour gets simpler (less
points). Finally, the shrinking is more stable if sharp
corners are eliminated, a well-known fact from the
geometric level set theory [40].

Fig. 11 shows the same diagram as in Fig. 5. We see
how the elements F and E are iteratively removed (Figs. 11
b and c). The red line shows the contour after exclusion
and sharp corner removal. The dotted black line shows the
contour after exclusion but before sharp corner removal.
Figs. 11d–f show the result after doing a few smoothing
steps. Clearly, these results are better than the original one
in Fig. 5b. The exclusion algorithm now very clearly shows
what is inside, and what outside, an area. The unnatural
eraser effect is now gone, and the contour resembles
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
much more to what a human would draw. The sharp
corner cutting procedure has the additional positive effect
of smoothing the contour, yielding a more natural ‘‘flow-
of-hand’’-like drawing.

A final improvement of the original method targets the
problem shown in Fig. 5, i.e. the fact that the drawn
contours are too tight close to the elements and too loose
in the middle. A more uniform tightness along the entire
contour is preferred. We achieve this by the following
preprocessing step. Right after the convex hull is sampled,
and before the exclusion begins, we offset every point pi

on the contour C outwards with a small distance equal to
the shrinking step �n (Section 3). Fig. 13a shows this
process on a zoom-in at one of the corners of the diagram
in Fig. 5. The offset makes the initial contour looser, which
gives it further space to deform and nicely curve itself
around the elements (Fig. 13b).

Fig. 14b shows the result of our improved method on
the same diagram detail as in Fig. 9. We see that the
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 13. Contour smoothing close to elements. (a) Contour offsetting and

(b) smoothed contour.

Fig. 14. Comparison of human drawing (a) with the improved rendering

method (b). Details from Figs. 22b and c.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 11
improved method (Fig. 14b) is more similar to hand-
drawing (Fig. 14a) than the original method (Fig. 9a).
Given the contour’s initial construction from a fixed
convex hull [9] and the smoothing constraints described
above, the AOI shape has only a limited freedom to
deform. Following the terminology of [33], we can classify
our AOI annotations as having a medium-to-high level
of formality.
2 The implementation of the fast marching method used is available

at www.cs.rug.nl/�alext/AFMM.
7. Quantitative analysis

As the results of our user study showed (Section 5), the
human-made drawings were perceived by users to be
almost always better understandable than our computer-
generated ones. We presented in Section 6 several
algorithm improvements by which we hoped to address
the shortcomings of our computer-rendering method.

However, how to measure how well we improved as
compared to the original algorithm? Repeating the user
study (Section 5) with the same audience could be biased,
since the users by now knew our aims, diagram datasets,
and already had some experience. Conducting the same
study on a different group of subjects and/or different
datasets could be done, but how to quantitatively
compare subjective qualitative opinions of two different
groups and/or datasets? Additionally, a user experi-
ment does not give a precise, quantitative answer for
how much closer or further our new algorithm improves
the rendering.
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
If we were interested to test the suitability of the AOI
renderings for a very specific comprehension task, e.g. the
amount of time it takes to visually locate a given diagram
element in a given area, we could indeed perform two
user experiments to measure the time difference when
using the improved, versus the original, rendering meth-
ods. However, there are several drawbacks to such an
approach. First, as indicated by the user comments
collected in our study, human-drawn AOIs have several
quality attributes which help comprehension (e.g. the
natural flow-of-hand). These are hard to quantify by
means of, e.g. timing a single (or a few) narrow tasks. We
do not yet know which tasks would be the most
representative here. Our main assumption is that drawing
AOIs as humans do it is good for comprehension, in line
with the previous authors [31–33]. Hence, we would like
to test that our improved algorithm produces drawings
closer to human drawings than the original algorithm.

We designed a way which provides a quantitative
answer to the above point. The quantitative analysis
pipeline (Fig. 15) is described next.

Firstly, we extracted the area contours from all
drawings, i.e. human- and computer-generated with both
the original and improved algorithm. For this, we used a
simple filter-by-color thresholding technique, which
was reliable as the contours and diagrams were drawn
with two predefined distinct colors, i.e. red, respectively,
black. An example of the extracted contour is shown in
Fig. 16, which is indeed a clean, noise-free, contour
representation.

Next, we would like to measure the difference between
any two contours, i.e. human- and/or computer-drawn.
We do this as follows. Consider two contours Ci and Cj like
the ones in Fig. 16. For a contour C, we denote by D the
distance transform, or distance map, of C. The distance
map is defined as

D ðpÞ ¼min
q2C
jp� qj; 8p 2 R2 (3)

for any point p in the 2D plane. Essentially, DðpÞ gives the
distance from any point p to the closest point q on the
contour C. We know that the distance map of an object C

is the solution to the so-called Eikonal equation:

jrDj ¼ 1 (4)

with the boundary condition D ¼ 0 on all points of C. We
solve Eq. (4) using the fast marching method as described
by Sethian in [40], on the same pixel grid as the one on
which the scanned contour C is stored, and obtain the
distance map D at a pixel-level spatial resolution. A careful
implementation of the fast marching method ensures the
distance map D is computed on an image of 1024� 768
pixels in under 1 s on a 1.8 GHz Windows PC [41].2 Fig. 17
shows the distance map D (using a blue-to-red colormap)
of the contour C (shown in white).

Now, given a contour Ci and its distance map Di,
computed as above, we define the distance dij of Ci to
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

http://www.cs.rug.nl/~alext/AFMM
http://www.cs.rug.nl/~alext/AFMM
dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 15. Quantitative analysis process.

Fig. 16. Extracted contour.

Fig. 17. Distance map D (blue-to-red colormap) of contour C (white),

used to compare C with a second contour C0 (black) (For interpretation of

the references to colour in this figure legend, the reader is referred to the

web version of this article).

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]12
another contour Cj as

dij ¼
1

2

P
p2Cj

Di ðpÞ

jCjjDimax

þ

P
p2Ci

Dj ðpÞ

jCijDjmax

 !
(5)

In the above, Dj denotes the distance map of contour Cj,
while Dimax

and Djmax
are the maximum values of Di and Dj,

respectively, over the considered images. jCij and jCjj

denote the contour lengths in pixels. The above definition
of dij ensures d is a symmetric function dij ¼ dji, and also is
normalized between 0 and 1. Intuitively, Eq. (5) states that
the distance between the two contours C and C0 is
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
proportional with the area between the two contours,
which is a perceptually good measure [42]. Alignment and
image registration problems were, in our situation, not an
issue, since all drawings were done on the precisely the
same class diagrams, rendered on identical canvases,
scanned at the same resolutions. However, the distance
metric given by Eq. (5) is robust to small shifts and
rotations. Let us stress that the proposed distance function
is just one of the many ways in which we can compare
contour drawings. Other more sophisticated measures,
e.g. perceptual-based metrics [43], template-based
matching [44], or contour matching using the earth
mover’s distance [45], can be used as well. We prefer to
use our simpler metric since its behavior is easier to
interpret and its implementation is quite straightforward.
Also, using more complex distance metrics typically
involves having a clearer idea of which features (e.g.
angles, protrusions, concavities, and flat regions) are
perceptually more important for the match, and how to
quantify this importance, which is the information that
we do not have at the present moment.

We can now build a matrix dij containing all distances
between any two contours of the 31 hand-drawn ones
plus the two computer-drawn ones (with the original,
respectively, improved, methods). However, as the user
evaluation results showed (Fig. 8), not all hand drawings
are found to be of the same quality. We are in particular
interested to see how our computer-drawn contours
compare to the good human drawings and, also, if the
proposed improvements did, indeed, bring us closer to
these drawings.

For this, we first split the 31 human drawings into
three groups: good, average, poor, based the ‘‘human
quality’’ scores of 5, 4 and 3, respectively (see Fig. 8).
Fig. 18 shows the distances of the six good drawings
ðH1 . . .H6Þ to themselves and to the computer-generated
drawings with the original (OLD) and improved (NEW)
methods. We see that all drawings in this table are quite
similar to each other. We also see that the NEW drawing is
consistently closer to the human drawings than the OLD
drawing.

Fig. 19 graphs the distances between all 31 human
drawings and the two (initial and improved) computer
drawings. The human drawings are grouped according to
their perceived quality, as described above. Several
observations can be made here. First, there is some
variation in the distances within the same quality class.
This is expected, since each quality value was assigned
subjectively by just one person.
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 18. Distance table of the best human drawings and AOI rendering.

Fig. 19. Comparison of AOI-rendering algorithms. The improved rendering method (bottom graph) yields results closer to the human-drawn AOIs than the

original rendering method (top graph).

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 13
However, the distance values, averaged per quality
class (Fig. 20), show that the computer-generated draw-
ings are closer to good than to bad drawings, both for the
original and improved methods. Also, we see that the
improved method brings the computer-generated draw-
ings closer to the human drawings in all quality classes as
compared to the original method. The improvement is of
roughly 20 percent for the ‘‘good’’ and ‘‘average’’ classes
and 12 percent for the ‘‘bad’’ class. This is also visible from
the graphs in Fig. 19. More importantly, the improved
method brings the computer drawings closer to the good
human drawings than to the bad ones.

Finally, we notice an outlier: the human-drawing 30 in
Fig. 19. Looking at it (Fig. 21), we can indeed see it has a
very different style from a typical good human drawing
(e.g. Fig. 22a). Also, the user who made drawing 30 forgot
to draw one area (Area 6 - see Section 5), which explains
the high spike in the distance metric. This shows that our
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
distance metric is quite discriminative in the presence of
erroneous drawings.
8. Discussion

8.1. Comparison with original method

To discuss our findings, let us consider three drawings
of AOI on the diagram used in our evaluation (Fig. 22): The
top image is an actual scan of one of the best, most
understandable, human drawings. The middle image
shows the result of the original AOI drawing method [9],
as it was shown to the evaluation subjects. In this
drawing, we recognize all problems named so far: some
elements (A, B, and C) are incorrectly included in
surrounding areas, whereas they should be outside, as
shown in the top drawing; and the contours are tight and
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 20. Comparison of average distances between three groups of human drawings (good, average, bad) and two computer-generated drawings (initial

and improved).

Fig. 21. Atypical human drawing.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]14
sharp close to the elements but loose and smooth in the
middle. The bottom drawing shows our improved algo-
rithm. The elements A, B, and C are now correctly
excluded. The contours have a more uniform smoothness
and are not so tightly close to the elements. We found this
drawing to be of a higher quality as compared to the one
produced by the original algorithm. Probably the most
appealing fact is that the areas drawn here simply look

natural and quite similar to the human-drawn ones.
Fig. 23 shows another example featuring 12 areas on a

different class diagram with 110 classes, this time drawn
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
as filled contours. The right zoom-ins show the areas
framed in white on the left images. We see now the two
problems of the original method again: Class A is
incorrectly marked as contained in Area 1. This is because
the eraser (Section 4.1) is overwritten by the color of Area
2, in which A is indeed included. Class B is only in Area 2,
so the eraser is visible as a faint white border. However,
when the diagram is zoomed out, this eraser becomes
almost invisible. The improved method (Section 6)
remediates both problems. Now the inclusion of A in Area
2 and the fact B is outside both Areas 1 and 2 is clear.
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 22. Comparison of AOI drawings. (a) Human drawing, (b) original

method, and (c) improved method.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 15
The AOI-rendering technique can be used on different
types of diagrams besides class diagrams. Fig. 24 shows
two AOI rendered on a message sequence chart. Here, the
new exclusion technique is crucial, due to the typical
layout of such diagrams. In [46], AOIs are used to show
performance-related parameters on a dataflow diagram
of a component-based system. Generally speaking, the
AOI-rendering technique can be used to emphasize logical
subsets on many types of graph-like diagrams.
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
The improved method does not introduce new para-
meters that the user has to explicitly tune. The main
user parameters, i.e. AOI color, drawing mode (filled or
contour), AOI transparency, and contour tightness, are
still the same as in the original method. In particular,
the relatively complex geometric exclusion algorithm is

fully automatic. The speed of the improved method is
slightly (about 10–15%) worse as compared with the
original method. This is due mainly to the exclusion
process which has to find an optimal cut line (Section 6)
and also cut corners, both being iterative processes.
However, we should stress that we have not highly
optimized this code. Standard geometric optimizations
such as spatial search techniques [47] can easily
eliminate this performance decrease. Even with the
performance drop, the AOI rendering still occurs in
subsecond time.
8.2. Incorporating edges in AOI

In some cases, it may be desirable to constrain not only
elements of a diagram to be contained in a given AOI, but
also edges denoting relationships between such elements.
For example, if two elements e1 and e2 are contained
in an Area A, then one may desire to constrain A to also
include all edges (e1; e2) between them. A typical use-case
hereof is emphasizing structural patterns such as design
patterns. This can be achieved by adding sample points on
the edges whose both end-elements are contained in a
given AOI to the set of sample points generated on the
elements’ bounding boxes. The AOI construction algorithm
will treat all these points uniformly, i.e. deforming the
contour and constructing the cut lines without getting too
close to them. When using straight-line segments to
represent edges, these are contained by default in the
initial convex hull that encloses all the area elements,
so the only difference is the increased number of sites
(points) taken into account during the area deformation
and exclusion step. Note that precisely the same technique
can be used for handling elements with non-rectangular
shapes.

This technique works very well for diagrams having
areas with little overlap. Consider, for example, a class
hierarchy drawn on several layers as a tree or directed
acyclic graph. The elements’ convex hull will automati-
cally include all edges in this hierarchy. The deformation
(shrinking) step will move the contour inwards, as usual.
If sample points on these edges are explicitly added to the
AOI, the contour shrinking will stop when getting in their
proximity, the rest of the algorithm staying unchanged.

However, when several areas considerably overlap and
they also contain many edges, the blocking configuration
described in Section 6.1.1 may occur more frequently. Such
situations can generate overly complex curved contours,
which, again, are hard to follow visually. An alternative
solution to handle the logical edge inclusion in AOIs is to
refrain from geometrically including them in the areas,
but mark them with the color(s) of the area(s) they are
part of. Though not ideal, this solution is robust and easy-
to-implement.
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 23. Comparison of filled AOI drawing. The improved method removes several problems of the original method. (a) Original method and (b) improved

method.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]16
8.3. Limitations

Although the improved AOI drawing method
yields better appreciated drawings, which are measurably
closer to human drawings than the original method,
it still has some limitations. First, our users have found
near-tangently intersecting contours to be hard to under-
stand (Section 5.3). We have not addressed this problem
yet. For this, we should consider a global contour
rendering rather than the per-contour rendering we
use now.

Besides a possible optimization of the contour crossing
angles, a global contour construction could also optimize
the actual positions of contour points, in order to pull
apart AOI fragments which are too close. Although
this direction should be explored in future work, it
introduces some important problems. In typical usage
scenarios, one needs to switch areas on and off inter-
actively during analysis. If the shape and position of an
AOI are influenced by other AOIs, then toggling on or off
an Area Ai may abruptly change the look of another Area Aj

in the same drawing, which is highly disruptive. Pre-
computing all AOI contours beforehand is not an option,
since a typical diagram can easily have tens of areas
showing different concerns (performance, resource usage,
reliability, coding and documentation aspects, and so on),
and we do not know in advance which areas one may
want to visualize at a time. Finally, a global optimization
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
may incur performance problems on large diagrams with
many areas.
8.4. Human–machine drawing comparison

The distance metric proposed to compare contours is
well known in shape analysis and computer vision
applications (see, e.g. [42]). Its main advantage is good
robustness to small-scale geometric noise, and rotation
and scale invariance. However, it does not take into
account specific quality attributes for the tasks related to
AOI. For example, we can argue that a small geometric
difference between two contours is perceptually more
important if located at some point where several contours
overlap or intersect, or in an area covered by a complex
diagram, than at the periphery of the drawing. Integrating
perceptually driven distance metrics [43,44] in our
evaluation should lead to further insights.

Finally, we are aware that we have not conducted a
formal user experiment, i.e. a quantitative measurement
of the (in)validation of a hypothesis. Our evaluation’s
main goal was to harvest information about the differ-
ences perceived between computer- and human-drawn
AOIs, and to adapt our computer drawings accordingly.
Assuming that our hypothesis holds that human-drawn
AOIs are easy to understand, we argue that our improved
rendering algorithm produces better drawings, since these
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

Fig. 24. Example of drawing AOIs on message sequence diagrams.

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 17
are measurably closer to human drawings than the
original computer drawings.

The main advantages of the machine drawings, as
compared to the human drawings are as follows:
�

P
Jo
Rapid and automatic handling of complex areas on
large diagrams. A human will typically take several
minutes to draw a set of areas, while the algorithm
presented here needs a few seconds.

�
 Correct drawing. As shown by the experiment, humans

can draw incorrect areas, especially for complex
configurations (see, e.g. Fig. 9).

�
 Easy parameterization of the drawing process (contour

smoothness, color, thickness, filled or not).

The main elements which still need to be incorporated in
the automatic algorithm, as outlined by the user study, are
as follows:
�
 Contour crossings: Although the improved algorithm
presented here significantly reduces sharp angles and
produces overall smooth contours, it can still produce
contour crossings having small angles. These crossings
can be detected, and an additional force can be added
to the contour points in the crossing’s vicinity to
maximize these angles in the shrinking process.

�
 Contour separation: Since contours are drawn indepen-

dently, they can have (near) overlapping fragments,
which are hard to separate visually. This could be
lease cite this article as: H. Byelas, A. Telea, Towards realism in
urnal of Visual Language and Computing (2008), doi:10.1016/j.
addressed by a separate relaxation pass: After all
contours are constructed independently, repulsion
forces are added to the contour points, and several
deformation steps are performed. Alternatively, the
contours can be drawn iteratively, and the repulsion
forces can be added to each newly drawn contour as it
is shrunk.
9. Conclusions

We have presented our attempt to computer-rendered
areas of interest (AOIs) on UML diagrams so they resemble
easy-to-understand human drawings. First, we compared
an existing AOI-rendering method [9] with human-drawn
results by means of an empirical evaluation, and found
some aesthetic and correctness limitations of the existing
method, as well as what users consider to be a good
drawing. The method in [9] scored averagely in aesthetics
and overall quality. Next, we designed several improve-
ments to the original rendering method. The geometric
exclusion technique creates contours which correctly and
visibly exclude all elements. The corner-cutting technique,
which eliminates sharp corners, and the inflation techni-
que, which preprocesses the contour before shrinking,
combine to create a smooth, evenly fitting, natural flow-
of-hand drawing style. Our third contribution is a
quantitative way to measure how close are the compu-
ter-generated renderings to the human drawings. We used
this measure to show that our proposed improvements
drawing areas of interest on architecture diagrams,
jvlc.2008.09.001

dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]18
effectively brought the computer-made drawings closer to
typical (good) human drawings.

To our knowledge, our work is one of the first attempts
to measure empirically and quantitatively the quality of
UML diagram annotations, such as AOI, and to use these
measurements to improve computer-generated annota-
tions. We found that user studies, although highly time-
consuming and laborious, are excellent and indispensable
instruments to get deeper understanding of what makes a
visualization good and accepted. In our case, there was
very strong consensus among very diverse users, who did
not communicate with each other, about what is nice and
less nice in the AOI drawings. Designing the proposed
rendering improvements followed naturally, once we
understood what the users like to see in the drawings.
Hence, we believe that we succeeded to address here
requirements 3 (correctness) and 5 (measured similarity
with human-drawn areas) from the desirable set of five
requirements on AOI drawing (Section 2). Requirements 1
and 2 were already addressed by the original rendering
method.

We next consider to design a computer-rendering
method that mimics even closer (good) human drawings.
A way to do this is to perform a machine-learning process
that optimizes the proposed distance metric by varying
the computer method’s rendering parameters. Another
direction is addressing requirement 4 (limited cluttering)
on complex diagrams, by a combination of geometric,
shading, and texture techniques.
Acknowledgments

This research was part of the ITEA project Trust4All,
which develops methods to describe, evaluate, and assess
trust in component-based middleware frameworks. This
project was partly conducted while the authors were with
the Eindhoven University of Technology, the Netherlands.

References

[1] O.M. Group, The unified modeling language, 2008 hwww.uml.omgi.
[2] IBM, Rational Rose modeling tool, 2007 hwww.306.ibm.com/

software/rationali.
[3] Borland Inc., Together modeling tool, 2007 hwww.borland.com/

togetheri.
[4] Telelogic, Telelogic Tau modeling tool, 2008 hwww.telelogic.com/

products/taui.
[5] ArgoUML. ArgoUML modeling tool, 2008 hargouml.tigris.orgi.
[6] N. Fenton, S. Pfleeger, Software Metrics: A Rigorous and Practical

Approach, Chapman & Hall, London, 1998.
[7] N. Gill, P. Grover, Component-based measurement: a few useful

guidelines, ACM SIGSOFT Software Engineering Notes, 28 (2003).
[8] J. Wust, SDMetrics: the software design metrics tool for UML, 2005
hwww.sdmetrics.comi.

[9] H. Byelas, A. Telea, Visualization of areas of interest on software
architecture diagrams, in: Proceedings of the ACM SoftVis, 2006,
pp. 105–114.

[10] A. Marcus, L. Fend, J.I. Maletic. 3d representations for software
visualization, in: Proceedings of the ACM SoftVis, 2003, pp. 27–36.

[11] M. Termeer, C. Lange, A. Telea, M. Chaudron, Visual exploration of
combined architectural and metric information, in: Proceedings of
the VISSOFT, IEEE Press, New York, 2005, pp. 21–26.

[12] Q. Chen, J. Grundy, J. Hosking, An e-whiteboard application to
support early design-stage sketching of UML diagrams, in:
Proceedings of the VL/HCC, IEEE Press, New York, 2003,
pp. 219–226.
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.101
[13] S. Tilley, K. Wong, M. Storey, H. Müller, Programmable reverse
engineering, International Journal of Software Engineering and
Knowledge Engineering 4 (4) (1994) 501–520.

[14] Prefuse, The prefuse information visualization system, 2007 hhttp://
prefuse.orgi.

[15] E. Gansner, S. North, An open graph visualization system and its
applications to software engineering, Software—Practice and
Experience 30 (11) (2000) 1203–1233.

[16] J. Rilling, S.P. Mudur, On the use of metaballs to visually map code
structures and analysis results onto 3D space, in: Proceedings of the
WCRE, IEEE Press, New York, 2002, pp. 299–306.

[17] T. Sprenger, R. Brunella, M. Gross, H-blob: a hierarchical clustering
method using implicit surfaces, in: Proceedings of the Visualization,
IEEE Press, New York, 2000, pp. 61–68.

[18] M. Balzer, O. Deussen, Exploring relations within software systems
using treemap enhanced hierarchical graphs, in: Proceedings of the
VISSOFT, IEEE Press, New York, 2005, pp. 89–94.

[19] H.C. Purchase, D.A. Carrington, J.-A. Allder, Graph layout aesthetics
in UML diagrams: user preferences, Journal of Graph Algorithms
and Application 6 (3) (2002) 255–279.

[20] H.C. Purchase, D.A. Carrington, J.-A. Allder, Empirical evaluation of
aesthetics-based graph layout, Empirical Software Engineering 7 (3)
(2002) 233–255.

[21] H.C. Purchase, L. Colpoys, D.A. Carrington, UML collaboration
diagram syntax: an empirical study of comprehension, in: Proceed-
ings of the VISSOFT, 2002, pp. 13–22.

[22] H.C. Purchase, R. Welland, M. McGill, L. Colpoys, Comprehension of
diagram syntax: an empirical study of entity relationship diagram
notations, International Journal of Human–Computer Interaction 61
(2) (2004) 187–203.

[23] J. Krogstie, Evaluating UML using a generic quality frame-
work, in: UML and the Unified Process, Idea Group Inc., 2003,
pp. 1–22.

[24] A. Bobrowska, A framework for empirical evaluation of model
comprehensibility, in: Proceedings of the SOFSEM, Springer, Berlin,
2005, pp. 72–81.

[25] J. Aranda, N. Ernst, J. Horkoff, S. Easterbrook, A framework for
empirical evaluation of model comprehensibility, in: Proceedings of
the International Workshop on Modeling in Software Engineering
(MISE), 2007, pp. 7–15.

[26] O.I. Lindland, G. Sindre, A. Solvberg, Understanding quality in
conceptual modeling, IEEE Software 11 (1994) 42–49.

[27] M. Page-Jones, What every programmer should know about object-
oriented design, Dorset House Publishing, 1995.

[28] J. Rumbaugh, Notation notes: principles for choosing notation,
Journal Object-Oriented Programming 12 (4) (1999).

[29] X. Chen, B. Plimmer, CodeAnnotator: digital ink annotation within
eclipse, in: Proceedings of the OZCHI, ACM, New York, 2007,
pp. 211–214.

[30] B. Plimmer, J. Grundy, J. Hosking, R. Priest, Inking in the IDE:
experiences with pen-based design and annotation, in: Proceedings
of the VL/HCC, IEEE Press, New York, 2006, pp. 111–115.

[31] R. Priest, B. Plimmer, RCA: experiences with an IDE annotation
tool, in: Proceedings of the CHINZ, ACM, New York, 2006,
pp. 53–60.

[32] B. Plimmer, J. Grundy, Beautifying sketching-based design tool
content: issues and experiences, in: Proceedings of the AUIC,
Australian Comp. Soc., 2005, pp. 31–38.

[33] L. Yeung, B. Plimmer, B. Lobb, D. Elliffe, Levels of formality in
diagram presentation, in: Proceedings of the OZCHI, ACM Press,
New York, 2007, pp. 311–317.

[34] G. Taubin, Geometric signal processing on polygonal meshes, in:
EUROGRAPHICS STAR Reports, 2000.

[35] V. Goel, Sketches for Thought, MIT Press, Cambridge, MA, 1995.
[36] B. Plimmer, M. Apperley, Interacting with sketched interface

designs: an evaluation study, in: Proceedings of the CHI, ACM,
New York, 2004, pp. 1337–1340.

[37] ITEA, The Trust4All project, 2005 hwww.win.tue.nl/trust4alli.
[38] A. Telea, AOI user study, 2007 hwww.win.tue.nl/�alext/

ARCHIVIEW/experiment.htmli.
[39] R.A. Likert, A technique for the measurement of attitudes, Archives

of Psychology 140 (1932).
[40] J. Sethian, Level Set Methods and Fast Marching Methods, Cam-

bridge University Press, Cambridge, 1999.
[41] D. Reniers, A. Telea, Tolerance-based feature transforms, in:

Advances in Computer Graphics and Computer Vision, vol. 4,
Springer, Berlin, 2008, pp. 187–200.

[42] L.F. Costa, R.M. Cesar, Shape Analysis and Classification: Theory and
Practice, CRC Press, Boca Raton, 2001.
in drawing areas of interest on architecture diagrams,
6/j.jvlc.2008.09.001

http://www.uml.omg
http://www.306.ibm.com/software/rational
http://www.306.ibm.com/software/rational
http://www.borland.com/together
http://www.borland.com/together
http://www.telelogic.com/products/tau
http://www.telelogic.com/products/tau
http://www.argouml.tigris.org
http://www.sdmetrics.com
http://www.prefuse.org
http://www.prefuse.org
http://www.win.tue.nl/trust4all
http://www.win.tue.nl/~alext/ARCHIVIEW/experiment.html
http://www.win.tue.nl/~alext/ARCHIVIEW/experiment.html
http://www.win.tue.nl/~alext/ARCHIVIEW/experiment.html
dx.doi.org/10.1016/j.jvlc.2008.09.001


ARTICLE IN PRESS

H. Byelas, A. Telea / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]] 19
[43] S. Berretti, A.D. Bimbo, P. Pala, Retrieval by shape similarity with
perceptual distance and effective indexing, IEEE Transactions of
Multimedia 2 (4) (2000) 225–239.

[44] D.M. Gavrila, Multi-feature hierarchical template matching using
distance transforms, in: Proceedings of the ICPR, 1998, pp. 439–444.

[45] K. Gtauman, T. Darrell, Fast contour matching using approximate
earth mover’s distance, in: Proceedings of the CVPR, 2004,
pp. 220–227.
Please cite this article as: H. Byelas, A. Telea, Towards realism
Journal of Visual Language and Computing (2008), doi:10.1016
[46] E. Bondarev, M. Chaudron, H. Byelas, P. de With, A toolkit for design
and performance analysis of real-time component-based software
systems, in: Proceedings of the International Conference on Soft-
ware Engineering Advances (ICSEA), IEEE Press, New York, 2006,
pp. 4–12.

[47] S. Arya, D. Mount, N. Netanyahu, R. Silverman, Y. Wu, An optimal
algorithm for approximate nearest neighbor searching, Journal of
the ACM 45 (1998) 891–923 hwww.cs.umd.edu/mount/ANNi.
in drawing areas of interest on architecture diagrams,
/j.jvlc.2008.09.001

http://www.cs.umd.edu/mount/ANN
dx.doi.org/10.1016/j.jvlc.2008.09.001

	Towards realism in drawing areas of interest on architecture diagrams
	Introduction
	Related work
	AOI construction
	Technical limitations
	Ineffective exclusion
	Unnatural flow-of-hand

	Evaluation of the AOI-rendering method
	Drawing production
	Drawing comparison
	Results evaluation

	Algorithm improvements
	Improved exclusion
	Limitations and workarounds

	Natural flow-of-hand

	Quantitative analysis
	Discussion
	Comparison with original method
	Incorporating edges in AOI
	Limitations
	Human-machine drawing comparison

	Conclusions
	Acknowledgments
	References


