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Abstract: Understanding large multidimensional datasets is one of the most challenging problems
in visual data exploration. One key challenge that increases the size of the exploration space is the
number of views that one can generate from a single dataset, based on the use of multiple parameter
values and exploration paths. Often, no such single view contains all needed insights. The question
thus arises of how we can efficiently combine insights from multiple views of a dataset. We propose
a set of techniques that considerably reduce the exploration effort for such situations, based on the
explicit depiction of the view space, using a small multiple metaphor. We leverage this view space
by offering interactive techniques that enable users to explicitly create, visualize, and follow their
exploration path. This way, partial insights obtained from each view can be efficiently and effectively
combined. We demonstrate our approach by applications using real-world datasets from air traffic
control, software maintenance, and machine learning.

Keywords: information visualization; small multiple; big data; animation

1. Introduction

Information visualization (infovis) aims to leverage user ability to retrieve insight from data
representation thanks to the usage of computer-supported, interactive, and visual representations [1].
One of the main challenges of infovis is providing insight into high-dimensional datasets. Such datasets
consist of many elements (observations), each having multiple dimensions.

Many visualization techniques for high-dimensional data can be explained as element-based plots.
In such a plot, every element of the dataset is depicted separately (and in the same way as the
other elements). Examples of such plots are the classical 2D or 3D scatterplots (every element is a
point), parallel coordinate plots (every element is a polyline), multidimensional projections, and graph
drawings (every element is a graph edge).

When the number of input dimensions is high, no single such plot can be created that shows the
entire information present in the input data. This problem is typically solved by generating multiple
plots, for various parameter combinations, each of them showing a partial insight. For example, a 2D
scatterplot shows the correlation of only two of all the input dimensions, and a graph drawing can
generally show an uncluttered view of the input data for only a limited portion of a large graph.

One way to address this problem is to resort to interactive exploration, by allowing the user
to create multiple views, each which shows a different part, or aspect, of the data. The problem

Informatics 2017, 4, 26; doi:10.3390/informatics4030026 www.mdpi.com/journal/informatics

http://www.mdpi.com/journal/informatics
http://www.mdpi.com
http://dx.doi.org/10.3390/informatics4030026
http://www.mdpi.com/journal/informatics


Informatics 2017, 4, 26 2 of 22

then becomes how to navigate the (very large) space of all potential views and combine the partial
insights provided by them in an efficient and effective way. To address this data exploration issue, we
propose a set of innovative techniques where controlled animation plays a central role. Our techniques
considerably reduce the exploration effort by allowing the user to directly sketch the exploration
path over a visual depiction of the view space created by a small multiple metaphor. This way, a
potentially infinite set of intermediate views can be created easily and intuitively. Real-time linking
of the view-space navigation and the display of the intermediate views allows one to go forward,
backtrack, or change the exploration path. Finally, data patterns found in different views can be
selected and interactively combined to generate new views on the fly.

In summary, our contributions are

• a novel representation of the view space based on a small multiple metaphor
• a set of interaction techniques to continuously navigate the view space and combine partial

insights obtained from different views

We demonstrate our proposed techniques with the visual exploration of real-world
multidimensional datasets represented by multidimensional projections and bundled graph drawings
taken from the domains of air traffic control, software maintenance, and machine learning.

The remainder of this paper is structured as follows. Section 2 overviews related techniques for
visualizing multidimensional data using element-based plots, as well as techniques for interactive
view-space exploration. Section 2.2 introduces the design and implementation of our proposed
visualization and interaction. Section 4 shows applications of our techniques to different types of
element-based plots. Section 5 discusses our proposal and results. Finally, Section 6 concludes
the paper.

2. Related Work

Next, we overview related work to our proposal, structured along three directions: the types
of methods used for visualizing element-based plots Section 2.1) and the usage of animation for
multidimensional data exploration (Section 2.2).

2.1. Element-Based Plots

Let D = {di}, 1 ≤ i ≤ N, be a dataset containing n-dimensional elements di ⊂ Rn. Further, let
P = {pi} ∈ P be the set of parameters that controls a visualization and V(P, D) ∈ V the resulting view
for the given dataset D. In the following, we use the term visualization to denote the function that creates
a depiction (image) of a dataset, and the term view to denote such a depiction. That is, a visualization
is a function that inputs datasets, is controlled by parameters, and outputs views. Moreover, for
notation simplicity, we will shorten V(P, D) to V(P) when the input dataset D is constant and only
the visualization parameters P vary, and respectively to V(D) when the visualization parameters P
are constant but only the input datasets D change.

We define an element-based plot as a 2D drawing V(D) = {V(di)} ⊂ R2 consisting of N
visual shapes V(di), each mapping a dataset element di. Introduced as a concept by Hurter et al. [2],
element-based plots generalize many classical infovis techniques: for scatterplots, di are nD points
and V(di) are 2D points; for table lenses, di are nD points and V(di) are bar-chart-like displays of n
numerical values [3,4]; for parallel coordinate plots, di are nD points and V(di) are 2D polylines; for
2D and 3D scalar fields like color images or 3D data cubes (volumes), di are points in R2, respectively
R3, and V(di) are color-mapped pixels, respectively voxels [2,5,6]; and for graphs or trail-sets, di
are weighted relations or trajectories in some Euclidean space, and V(di) are 2D curves [7]. Key to
grouping all these visualization techniques under the denomination of element-based plots is the fact
that every data item di is mapped one-to-one to an independent visual element V(di). As we shall see in
Section 2.2, this allows us to manipulate the visualization V(D) in very flexible ways.
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Below we discuss two types of element-based plots which are particularly important in our
context, as they are those on which we validate our animation-based exploratory technique in the
remainder of this paper: multidimensional projections and graph drawings.

Multidimensional projections (MPs) are a particularly important type of element-based plots.
Here, di are nD points (as for table lenses, parallel coordinate plots (PCPs) [8,9], or scatterplots [10]),
and V(di) are 2D points (as for scatterplots). Hence, MPs are as visually scalable and clutter-free as
scatterplots, and more visually scalable and clutter-free than table lenses and PCPs. Moreover, MPs
improve upon scatteplots since scatterplots are constructed by using only two of the n dimensions of
D, whereas MPs are constructed by considering all n dimensions. As such, scatterplots visually encode
the similarity of points di ∈ D according to only two of their n dimensions, whereas MPs encode the
similarity according to all n dimensions.

Many MP techniques exist, having various trade-offs between the simplicity, speed, and accuracy
of encoding n-D point similarities. They can be grouped in two main classes. Similarity-based projections
require only a N × N real-valued similarity (distance) matrix encoding the pairwise similarities of
points di ∈ D to construct V(D). In this class, Multidimensional Scaling (MDS) and its variants
compute V(D) using an optimization process similar to force-based schemes akin to those used in
graph layouts [11]. A different approach is proposed by t-SNE [12], which defines the probabilities of
picking point pairs in D and minimizes the Kullback-Leibler divergence between those probabilities
and those that have the same point pairs as neighbors in the 2D projection. This results in projections
that successfully show which n-D points are neighbors to each other, which then helps in visually
finding clusters of similar points. In contrast, Attribute-based projections require access to the nD
dimensions, or attributes, of the observations di ∈ D to compute the projection V(D). The simplest,
and arguably most known, projection in this class is the simple 2D scatterplot created by selecting two
dimensions of D. Another well known member of this class is principal component analysis (PCA),
which projects pi on the plane defined by the axes that describe most of the variance in D [13]. However,
PCA is notoriously inaccurate in encoding similarity when D resides on highly curved manifolds in n-D.
ISOMAP [14] first determines which n-D points are neighbors to build a neighborhood graph, then
computes the distances over the neighborhood graph, and finally performs MDS with those distances.
Finally, LAMP [15] uses a small number of so-called landmark points that are projected to 2D with a
classical MP technique (such as MDS), while the remaining points are arranged around the landmarks
using locally affine transformations.

We also note that other classification of MP techniques exist. For instance, these
can be grouped into global (scatterplots, PCA, star coordinates [16,17], orthographic star
coordinates [18], biplots [19,20], radial visualizations [21,22]), and local (LAMP, LLE [23], t-SNE [12]).
Global techniques use the same transformation to project all points to the target (2D) space. They are
simpler and faster to compute but may generate large projection errors. Local techniques may use
different transformations for different point neighborhoods. They are in general more complex and
slower than local techniques, but they preserve the so-called ‘data structure’ better after the projection
than local techniques.

Among all the aforementioned multidimensional visualization techniques (scatterplots, table
lenses, PCP’s, and projections), the latter are the most visually scalable and clutter free, as they map
an n-D point to a 2D point. However, projections are fundamentally weak in accurately showing
similarities between n-D points for the entire input dataset D [24]. As such, given such a dataset D,
there is typically no single projection V(D) that can faithfully show all patterns D. We shall show in
Section 4 how we effectively address this problem by interactively combining insights obtained from
different projections of a given dataset D.

Graph drawings (GDs) are a second important type of element-based plots. In detail, a graph
is a dataset D = (N, E) with nodes n ∈ N and edges e ∈ E. Both nodes and edges can have
data attributes, thereby making D a multidimensional dataset. A graph drawing is a visualization
V(D) = (V(N), V(E)), where V(D) is typically a 2D scatterplot of points V(n)|n ∈ N. V(D) is
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typically created by embedding methods such as force-directed layouts [25] but also, as shown recently,
multidimensional projections [26]. V(E) can be a set of straight line segments V(e)|e ∈ E. However,
V(e) can also be 2D curves, as follows. Drawing large graphs (thousands of edges or more) with straight
lines easily creates massive clutter which renders such drawings close to useless. One prominent
method to simplify, or tidy up, such drawings is to bundle their edges, thereby trading clutter for
overdraw—that is, many bundled edges will overlap in V(E). This creates empty space between
the edge bundles which allows one to easily follow them visually, thereby assessing the coarse-scale
connections between groups of related nodes in V(N) more easily than in an unbundled drawing. The
drawback of bundling is that individual edges in V(E) are harder to distinguish due to the overlap.
Numerous edge bundling (EB) methods exist [27–32]. However, as a recent survey points out [7], no
such method is optimal from all perspectives. For instance, some methods offer a very precise control
of the shape and positions of the bundled edges, but only handle particular types of graphs [27,32].
Other methods can handle graphs of any kind and are very scalable but offer far less control on the
resulting look-and-feel of the bundled drawing [28,29]. Yet other methods fall in-between the above
two extremes but generate a very wide set of drawing styles [33].

2.2. Navigating Multidimensional Data Visualizations

Exploring the space of visualizations that one can create for a given multidimensional dataset is a
wide topic. Several technique classes exist to this end, as follows.

Animation is a prominent technique that supports exploring the parameter space P and the
related view space V . Animation has a long history in data exploration [34,35]. In this context,
animation corresponds to a (smooth) change of the visual variables used to encode the input data
V(D) [1,36].

Animation has proven to help users transition between visual configurations [37] while
maintaining the mental map of the data exploration [38]. The simplest form of animation, used
by virtually all visualization tools, lets an user vary the value of pi interactively by a classical user
interface (GUI) while watching how the V(P) changes. While simple, this type of animation does
not ‘guide’ the user in the exploration of the parameter space P and the related view space V in
any way. Within the scope of multidimensional visualization, parameter-space animations include
rolling-the-dice [39], where the user controls the plane on which the multidimensional data is projected;
the grand tour [40], where a large sequence of 2D projections are displayed from a multidimensional
dataset in a flip-book manner (the parameters P controlling projection-plane orientation in nD being
varied randomly); the class tour [41], which refines the grand tour so as to generate projections which
preserve class separation of the data points; combinations of the grand tour with projection pursuit [42]
(the parameters P controlling the projection-plane orientation being varied along the derivatives of
the so-called projection pursuit index, so as to drive the tour through interesting projections); and
drawing faded trails that connect two consecutive views in a tour to give a feeling of how the projection
plane changed in between [43]. A limitation of most grand tour techniques is that they only handle
attribute-based projections [44].

Small multiples: Explicitly showing a sampling of V partially addresses this issue. One can
show a history of views V(Pi) obtained for various parameter settings Pi used in the exploration so
far. The history can be shown as a linear, grid-like, or hierarchical set of thumbnails depicting V(Pi),
a metaphor also called ‘projection board’ [44]. By clicking on the desired thumbnail, the user can go
back to the corresponding state Pi and associated view V(Pi), and continue exploration from there.
Approaches that utilize such a methodology are Ma’s Image Graphs [45] and Elmqvist et al.’s Data
Meadow [37]. Most projection pursuit variants also fall into this category [42,46], every view Vi being
one deemed ‘interesting’ from the perspective of the projection pursuit index, a metric which typically
measures the distance from a given projection to an uninteresting generic Gaussian-like scatterplot.
However, a limitation of most projection pursuit variants is that, just like grand tour variants, they
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require attribute-based projections [44]. Projection pursuit methods have been recently enhanced by
limiting the number of interesting views to n/2 [47].

Many scagnostics techniques also use the small-multiple metaphor to show interesting projections,
where interest is defined in a wide variety of ways [48–51]. Besides using the exploration history,
the views V(Pi) can be picked by optimizing for diversity of this set, by subsampling an initial large
random sampling of V , or by iteratively refining a given set of views to improve their diversity [52].
Other methods add aesthetic constraints, such as a symmetry score, to exclude unsuitable views right
from the view set [53]. The thumbnails V(Pi) can also be placed in 2D by projecting the set of presets Pi
by using Multi-Dimensional Scaling (MDS) methods [52,53], similar to those discussed in Section 2.1,
or simply arranging them in increasing distance to the currently shown one [54]. Other arrangements
use a regular grid layout that allows performing additional view transformations by a spreadsheet-like
metaphor [55]. All above metaphors assume a small set of preset views V(Pi), so that they can all
be displayed simultaneously as thumbnails without taking too much screen space. If users are not
satisfied with these proposed views, they can usually only adjust the parameters Pi that generated
them in the hope to get better ones. Another way to refine the set V(Pi) is to mark the views that
are closest to what the user has in mind and supersample V around such ‘interesting’ views to get
better ones [56].

Preset controller: In contrast to small multiples, Van Wijk et al. [57] show several values of specific
parameter-sets Pi by a 2D scatterplot S = {x(Pi)}, where x(Pi) ∈ R2 is the projection of the point Pi.
Next, one can manipulate a point of interest x ∈ R2, or the scatterplot points x(Pi), and generate a
corresponding parameter-set value p ∈ P by using Shepard interpolation of the values Pi based on the
distances ‖x− x(Pi)‖. While the preset controller is very simple to use and is scalable in the number
of parameters |P|, it does not explicitly depict the view space V but, rather, only an abstract view of
the parameter space P .

Direct manipulation: Animation can be also controlled directly in the view space V rather than
in the parameter space P . For this, the user directly manipulates the depicted visual elements in V(P)
to modify the parameters P. Examples of such manipulations are deformation, focus-and-context,
and semantic lens techniques, all of which typically linearly interpolate between two parameter-set
values P1 and P2 and show the corresponding animation of V(P1) to V(P2). Such animations
have been applied to large element-based plots such as bundled graphs and scatterplots [6,58].
Smooth real-time animations of large datasets have been made possible by using GPU-based
techniques [59]. For multidimensional projections, we have the following direct manipulation
techniques. Control-point-based projections, such as LSP [60], PLMP [61], generalized Sammon
mapping [62], hybrid MDS [63], and LAMP [15], allow users to interactively (dis)place a small subset
of V(D), called control points, on the 2D view plane, after which they arrange the remaining points
around these controls so as to best preserve the nD data structure. This effectively allows users to
customize their projections, at the risk of creating visual structures that do not relate well to the data.
Targeted projection pursuit (TPP) [64] allows users to drag elements in a multidimensional projection
plot V(D) to, for example, better separate classes. From the resulting scatterplot Vuser(D), it seeks
the parameters P for an actual projection V(P, D) that is close to Vuser(D). While powerful as an
interaction mechanism, TPP limits itself to only linear projections. Recently, ProjInspector use a preset
controller, where the k presets correspond to user-chosen DR projections Vi(D), 1 ≤ i ≤ k. When one
drags the point of interest in the controller, the tool generates a view V(D) that blends all Vk(D) by
means of mean values coordinates interpolation [44]. ProjInspector is arguably the closest technique to
the one we present here, as such, we will discuss the similarities and differences in detail in Section 5.

Interaction techniques: All the above-mentioned visualization techniques use a mix of interaction
techniques to enable exploration. While these are not specific to multidimensional data exploration, it
is worth mentioning them here, as they next allow us better placing our contribution. First, as already
explained, the parameters P can be changed by means of classical GUIs: the elements of the view
V(D), the control points of a preset controller [44,57], and the control points of a projection [15,60–63]
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are changed by simple mouse-based click-and-drag. Techniques can be next classified as single-view or
multiple-view. Single-view techniques are either interaction-less, e.g., some grand tour and projection
pursuit variants, or require direct manipulation in the single view, as explained earlier. Multiple-view
techniques display several views Vi(D) of the data. If direct manipulation is implemented in one
view Vi(D), then the elements undergoing change should be updated in all other views Vj(D) –
a well-known technique under the name of linked views [65] or coordinated views [66]. Depending
on the exact semantics of the views, either unidirectional or bidirectional linking can be used [67].
For instance, a preset controller is unidirectionally linked to the data view(s) it controls. Finally,
brushing and selection are ubiquitous techniques for exploring the view space, by showing details
of the data element under the mouse and click-and-drag (typically) to select a subset of V(D) for
special treatment, respectively [68]. We will use all these techniques in the design of our exploratory
visualization in Section 2.2.

Other approaches: Visualization presets have also been investigated for graph datasets [69].
Separately, exploratory visualization approaches have used the view space in a foresighted manner to
sketch possible next steps along the visual exploration path. Several such approaches exist, which can
be subsumed by the term ‘visualization by example’ [70]. All such approaches allow one to select a
desired view V(Pi) from a range of candidates, the main distinction being how these candidates are
picked from the view space calV and how V is presented to the user.

Our proposal: We combine several of the advantages, and reduce some of the limitations, of
the above-mentioned techniques for navigating a view space V constructed from a high-dimensional
dataset D by means of a parameter space P , as follows:

• Genericity: We handle all types of element-based plots (Section 2.1), e.g., scatterplots, graph/trail
drawings, and DR projections, in an uniform way and by a single implementation.

• View by example: We provide an explicit small-multiple-like depiction V(Pi) of the view space V .
• Continuity: We allow a continuous change of the current view based on smooth interpolation

between the small-multiple views V(Pi) without having to bother about understanding the
explicit abstract parameter space P . This allows generating an infinite set of intermediary views
in V .

• Free navigation: The view generation is in the same time controlled by the user (one sees along
which existing views one navigates) and unconstrained (one can freely and fully control the shape
of the navigation path).

• Ease of use and scalability: We generate our intermediary views by simple click-and-drag of a
point in the view space; these views are generated in real-time for large datasets D (millions
of elements).

• Control: Most importantly, and novel with respect to all approaches discussed so far, we propose a
simple mechanism for changing only parts of the current view, while keeping other parts fixed.
This enables us to combine insights from different views V(Pi) on-the-fly, to accumulate insights
on the input dataset D.

3. Proposed Method

We next present our animation-based exploration of visualization spaces for element-based plots,
following the discussion in Section 2. To better outline the added-value of our proposal, we first
classify the types of such animation-based explorations along two axes that explain how the transition
between views in V can be created: explicit vs. implicit, and guided vs. free, as follows (see also
Figure 1).

The first axis (vertical in Figure 1) describes the type and number of preset views V(Pi) between
which the user can navigate, and has two values (options):

• Guided: The set of preset views between which the user can choose V(Pi) is limited by
construction, and depends on the dimensionality of the input dataset D.
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• Free: The set of preset views is fully configurable by the user, who can choose any number and
type of views in V to animate between.

The second axis (horizontal in Figure 1 characterizes how the user can control the animation
during the transition between two views V1 ∈ V and V2 ∈ V , and has tho values:

• Implicit: Once the transition (animation) between V1 and V2 is triggered by the user, the generation
of intermediate views between V1 and V2 happens automatically (usually via some type of linear
interpolation). The user can specify V1 and V2, but not the path in the view-space V along which
the animation evolves nor can he slow/accelerate/pause the animation.

• Explicit: The user can choose the path along which the animation evolves, and also the speed thereof.

Explicit Implicit

G
u
id
e
d

F
re
e

Histomages Rolling-the-Dice

Our proposal FromDaDy

Figure 1. Animation design space between two data views V1 and V2. The user can control or not the
transition (controlled vs. automatic), and the transition is defined by the user or predefined by the tool
(explicit vs. implicit). The presented tools are Histomages [71], Rolling-the-Dice [39], FromDaDy [58],
and our proposal.

To clarify the above, some examples of existing animations follow.
Implicit and guided transition: Rolling-the-dice [39] is a metaphor of a 3D rolling die which

allows smooth transitions between 2D scatterplots obtained from an nD dataset. The preset views
Vi are implicitly defined by the pair-wise combinations of data dimensions in the input dataset D
(n2/2 in total). The transitions are automatic linear interpolations between two such scatterplots.

Implicit and free transition: In FromDady [58], the user can interactively define views to animate
between, based on desired combinations of the dataset’s attribute-pairs. In contrast to ScatterDice, the
user can control the transition speed and direction (V1 to V2 or conversely) with a mouse drag gesture.
However, the set of preset views Vi is given by the pair-wise combinations of dimensions in the input
data. Moreover,the transition is not entirely free, although one can control its direction and speed, its
path is still a linear interpolation between V1 and V2.

Explicit and guided transition: The user can define an open set of preset views Vi that can be
interpolated. For example, in the preset controller, these views are arbitrary parameter-sets Pi
that generate corresponding views V(Pi) [57]. However, the transitions between views are still
automatically determined, typically by linear interpolation. Further examples hereof are [2,6,71].

Explicit and free transition: To our knowledge, no existing technique allows freely defining both the
endpoints Vi ⊂ V and the controllable interpolation path for the animation. Our proposal, described
next, fills this gap.
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3.1. Our Proposal

Our key idea is to combine the main strengths of the explicit and free animation methods existing
in prior work, in an efficient and effective way. To this end, we choose to

• Depict the view presets V(Pi) by a simple grid-like small-multiple metaphor (as in [55]). This way,
users see directly which visualizations V(Pi) they can interpolate between, rather than seeing the
more abstract parameters Pi that would generate these visualizations (as in [57]).

• Allow one to freely sketch the interpolation path between two such view presets V(Pi), in an
interactive and visual way (as in [57]), rather than automatically controlling the interpolation via
a linear formula.

We proceed as follows. Figure 2 illustrates the process for a multidimensional dataset D that we
visualize using multidimensional projections, which are introduced in Section 2.1. We proceed by
allowing users to specify any (small) set of views Vi for the given dataset D. These can be created
either by the same visualization method, but using different parameter values Pi, or by completely
different methods. The only restriction is that these should be element-based plots, i.e., consist each
of N visual elements Vi(dj), 1 ≤ j ≤ N, one for each data element dj ∈ D. We organize these view
presets in a simple square grid, much like [55], to minimize the used screen space to display them
(see Figure 2b).

a) dataset D b) user-supplied presets Vi c) dense presets Vi e) interpolated view Vi (x)d) user interaction

current
point x

x1 x2

x3

x4 x5

||x1−x|| ||x2−x||

||x5−x||
||x4−x||

||x3−x||

lock points

Figure 2. Proposed animation-based exploration pipeline. See Section 3.1.

As explained in Section 2.2, manually generating a rich set of view presets Vi can be delicate.
Typically, one starts with a small set of just a few salient view presets, for instance, one for each type
of visualization method considered for a given dataset. In our running example in Figure 2, we have
five such presets, corresponding to five multidimensional projection methods (PCA [13], Isomap [14],
LAMP [15], MDS [11], and t-SNE [12]). In general, these views can be very different. In other words,
they are a very sparse sampling of the rich view space V . We do not know what lies in between, so,
navigating between them can be unintuitive.

To alleviate this, and also to realize our animation-based exploration mechanism presented next,
we propose a view-space interpolation mechanism, as follows. Let x ∈ R2 be a point in the 2D grid
space where we place the view thumbnails. Placement of thumbnails can be freely specified by the
user, based on perceived similarities between the views and following the design of the original preset
controller [57]. Let now xi be the centers of the thumbnails Vi in this grid. We use an Inverse Distance
Weighting (IDW) method, such as the Shepard method [72], to compute the elements V(x, dj) of the
interpolated view at position x as:

V(x, dj) =



N

∑
i=1

wi(x)Vi(dj)

N

∑
i=1

wi(x)
, if ‖x− xi‖ 6= 0 for all i

Vi(dj), if ‖x− xi‖ = 0 for some i

(1)
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Here, ‖ · ‖ denotes 2D Euclidean distance, and wi(x) = 1
‖x−xi‖p is the interpolating basis function

controlled by the power parameter p > 1. Typically we use p = 2, which leads to classical inverse
quadratic Shepard interpolation. Key to our idea is the fact that all element-based plots consist of sets
of simple graphical elements Vi(dj) such as dots or line segments. These can be thus easily interpolated
using Equation (1). If desired, different types of (smooth) scattered-point interpolation can be used,
such as radial basis functions or mean values coordinates [44].

Having now a way to interpolate between views, we supersample the view space V to generate
additional views between the presets provided by the user and display these additional interpolated
views along with the provided ones. Figure 2c shows this: here, from the original five presets, we
create an additional number of 20 presets, yielding to a total grid of 5× 5 = 25 views. The interpolated
views now give a better idea of what the animation-based exploration will produce when we will
navigate the view space between the originally provided views.

Having now the densely-sampled view space, we provide an interactive way for users to generate
arbitrary views. For this, the user drags a so-called focus point x over the thumbnail grid. Note that x can
assume any pixel position over the extent of the grid, i.e., is not constrained to the centers of the grid
cells only. We then generate the view V(x) corresponding to this point, using the same interpolation
(Equation (1)) as for the view-space supersampling, based on the distance of x to the centers of the
originally-provided views (Figure 2d), and display this view at full resolution in a separate window
(Figure 2e).

As noted, the original views can be freely arranged over the thumbnails grid. This, and changing
the power p in Equation (1), offers a flexible way of specifying how the original views are mixed
to yield the view V(x) at some position x. To better understand this, Figure 3 shows the effects of
these two changes. Here, we have five views V1 . . . V5, arranged on a five by five thumbnails grid.
Each entire view (and thus thumbnail) is simply a colored pixel in RGB space, for illustration purposes:
V1 = red, V2 = green, V3 = yellow, V4 = purple, V5 = blue, and V6 = purple. As such, we can render
the interpolated views V(x) at all the positions x over the thumbnails grid. In other words, the color
images in Figure 3 show the entire view space V that can be generated from the five presets, something
we cannot do, of course, for actual views of complex datasets. Figure 3a shows how the interpolated
views (colors) smoothly vary between the five presets. Figure 3b shows how the view space changes
if we drag the five preset views to be in the same horizontal grid row, as indicated by the arrows in
Figure 3a. Finally, Figure 3c,d shows the effect of changing the value p from the default p = 2 used in
the first two images (a,b) to p = 1 and p = 0.5, respectively. This allows us to control the shape of the
zone of influence of each view over the thumbnails grid.

V1
V2

V3

V4V5

V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5

Figure 3. Thumbnail grid and view interpolation. Each image shows a set of five preset views V1 . . . V5

arranged on a five by five grid. The views are simple color pixels for illustration purposes. Each grid
pixel is colored to reflect what the interpolated view would be at that position. (a) Initial placement of
the preset views; (b) Effect of dragging the views along the arrows shown in (a); (c,d) Effect of setting
p = 1 and p = 0.5, respectively. The grids (a,b) use the default p = 2.

Several types of exploration of the view space are now possible using these mechanisms (see also
Figure 4). The simplest is to click on one of the cells of the thumbnails grid. This sets the current view
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to the preset view Vi corresponding to that cell (Figure 4a). Separately, one can drag the mouse to
follow a path in the view space. Making this path pass through a number of preset views Vi essentially
constructs a ‘visual story’ that leads the user through the insights provided by these views, in visiting
order (Figure 4b). In this sense, our technique is a specific instance of the design space model proposed
in [73]. We offer the possibility of saving such a path and explicitly drawing it atop the thumbnails grid.
This allows one to revisit an earlier-inspected view in the view space, thus, to backtrack the exploration,
following well-known principles in information visualization [74] (Figure 4c).

Presets view Current view Presets view Current view Presets view Current view

a) Go to original presets b) Creating a visual storyline c) Revisiting an existing storyline

Figure 4. Three different types of navigation of the view space.

Besides arranging the preset views in the thumbnails grid and interactively dragging the focus
point over the grid to generate a current view, we provide a third (and last) interaction mechanism
called the lock tool. This allows the user to select points in the current view by lasso selection (see Figure
2e). The underlying data points di ∈ D corresponding to these selected points are then excluded from
the interpolation in Equation (1) when the focus point is dragged. This offers the possibility to the
user of locking interesting visual patterns that have been discovered, during the animation, in one or
several current views. This way, the user can effectively interactively create a custom view that blends
insights obtained from different parts of the exploration process.

3.2. Implementation Details

We next detail the implementation of our proposal. Since we heavily rely on animation, we need
to be able to generate the current view V(x), by using the interpolation in Equation (1), in real-time
for large element-based plots containing hundreds of thousands of points or more. We developed
our exploration tool in C# using .NET 4.5 and using OpenGL for rendering. To support scalable
animation, we investigated different solutions. We first found that the fixed OpenGL pipeline (used
earlier for similar animation-based explorations [2]) and the render-to-texture OpenGL extension (also
used earlier for similar goals [58]) do not provide enough scalability. We next investigated the use
of the OpenGL transform feedback (also used earlier for similar goals [6]). This technique addresses
scalability issues and is faster than the render-to-texture solution. However, the implementation
becomes quite complex, as one has to code all the interaction and interpolation in a fragment shader
whose code becomes hard to manage. We therefore explored another solution based on coding
Equation (1) in NVIDIA’s CUDA parallel programming language. This solution proved to be even
faster than the transform feedback one, while allowing for a simple implementation too. As a result,
our tool can generate fluent animations of datasets having up to one million visual elements (points)
on a modern GPU.

4. Applications

We now demonstrate the working of our proposed animation-based exploration techniques by
applying them to two types of element-based plots—multidimensional projections (Section 4.1) and
bundled graph drawings (Section 4.2). Additional video material illustrating our animation-based
exploration is available online [75].
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4.1. Multidimensional Projections

Our datasets D are here tables where each row corresponds to an observation and each column
to a different (numerical) property measured for the respective observations. Hence, D can be seen
as point sets in a high-dimensional space. The preset views Vi we start with are various projections
of such nD datasets to two dimensions. We consider three such datasets, and associated projections,
as follows.

4.1.1. Software Dataset

In this dataset, observations correspond to N = 6733 software repositories from SourceForge.net.
The n = 12 dimensions are different quality metrics of the software repositories, such as the
number of lines per method, coupling between objects, and the cyclomatic complexity of methods.
For each repository (observation), metric values are averaged over all its units of computation (classes,
methods, files). Details on these metrics and the data are available [76]. Additionally, every observation
is labeled by its type (e.g., small library, large library, monolithic application).

One interesting question for this dataset is whether projections can help us separate repositories of
one kind (say, small class libraries) from those of other kinds (say, large monolithic systems). Note that
none of the metric values present in the data contains absolute size information.

Figure 5 shows a five by five thumbnail grid based on the Isomap, LAMP, t-SNE, PCA, and MDS
projections. Here and next, we chose these projections as they are well-known in the literature and often
used in practice when analyzing multidimensional data. The projected points are colored based on their
class (repository kind) attribute, which is not used by the projection. In the thumbnails, but even more
so when interactively navigating the view space by clicking anywhere in the thumbnail grid, we see
that no single view can separate well points of one color (class) from the others. The view that yields the
best separation is t-SNE, also shown in detail in the right image in Figure 5. However, even in this view,
we see no clear segregation of points of one class from the others. We conclude that the 11 recorded
metrics are not a good predictor of the type of software system in a repository—in other words,
systems of different kinds can have similar qualities, and conversely. Interestingly, the same result
was noted by the original paper that analyzed this dataset [76], which did not use multidimensional
visualization. Separately, a different work also showed that using 2D projections cannot achieve the
desired separation but that such a separation is better possible using a 3D projection [77].

Figure 5. Software quality dataset (Section 4.1.1). No projection in the view space is able to separate
well repositories of one kind from those of other kinds.
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4.1.2. Segmentation Dataset

In this use-case, the dataset D is a set of seven images. Every dataset element di ∈ D corresponds
to a three by three block of pixels from one of the images, that is manually labeled into six classes
(e.g., brickface, sky, grass, etc). Each of the N = 2300 elements has 17 dimensions which describe
image features computed on the block of pixels. This dataset is well known in the machine learning
literature , in the context of designing classifiers able to predict the six classes from the 17 measured
dimensions [78]. To do this, one way is to engineer discriminating features using the raw 17 ones
present in the data. Projections can help us in determining how good the engineered features are: if we
find a projection where same-class points are well separated into clusters then the features that the
projection has used as input are a good start for building a good classifier [79].

Figure 6 shows our method applied on this dataset, with the right image showing the t-SNE
projection. As visible, several of the intermediate views (between the five presets) are able to separate
well one or more classes from the others but no single view can do this for all classes. More interesting,
we see that different views can separate well different classes. This is a key insight that we interactively
refine further (see Figure 7). We start from the central t-SNE view (a). Next, we see in the tumbnail grid
that the LAMP view V1 separates cluster 1 (red) very well from the rest (f). We navigate to V1, where
we can easily select the red points and lock them for transitions. (b) From here, we notice another
view (V2, image (g)) where clusters 2 (gray-blue) and 3 (purple) are well separated. We navigate from
V1 to V2. Since cluster 1 is locked, it will stay well separated during this process. We now can easily
select clusters 2 and 3 and lock them. Next, we repeat the process by finding V3 where we can separate
cluster 4, and finally V4, which separates the two remaining clusters 5 and 6. The entire process takes
around two minutes and requires only basic click, drag, and brush mouse interaction. The iterative
lock-and-view-change process is equivalent with an iterative classifier design where one finds specific
features (given by the projections corresponding to the views Vi), which are good to separate one or a
few classes from the rest. While we have not created and tested such a ‘cascading’ classifier, doing so
should be relatively straightforward now that we know which configurations are good in separating
one class from the rest, and the order of these configurations.

Figure 6. Segmentation dataset (Section 4.1.2). Different views can separate well one or more of the
classes, but no view succeeds this for all classes.
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a) start point b) lock cluster 1 c) lock clusters 2,3 d) lock cluster 4
e) separate
clusters 5,6

1

3

2

4

5
6

f) V1 separates cluster 1 g) V2 separates clusters 2,3 h) V3 separates cluster 4 i) V4 separates clusters 5,6

Figure 7. Creating a mixed view which separates well the six classes present in the segmentation dataset.

4.2. Bundled Graph Drawings

Graphs are used to encode large relational datasets, such as the dependencies between components
in a software system. As outlined in Section 2, a graph drawing can also be seen as an element-based
plot, where the drawn edges are the elements. As also explained there, edge bundling (EB) is an
established effective instrument for reducing clutter in large graph drawings, allowing one to follow
easier the coarse structure of a graph. However, we have outlined that no single bundling method
is ideal. The situation here is very similar to the visual exploration of multidimensional projections:
we can generate a right set of bundled drawings; each drawing may be good for conveying partial
insights in the input graph; but no drawing is optimal in this respect. Hence, having a way to merge
the insights obtained from multiple EB drawings is useful.

We can use our method to mix several drawings created by different EB methods, as follows.
For this, we consider a dataset having 1024 nodes, which are functions of a software system, and
N = 4021 edges, which model function calls. The nodes are laid out in a radial way (for details, see
the radial dataset in [28,29]). Figure 8 (b) shows the unbundled graph, where one clearly cannot see
any structure. The thumbnail grid is based on five presets, containing the bundling of the graph by
the KDEEB method [29] (images (c) and (d); we used here two parameter sets for KDEEB, the first by
pre-clustering graph edges based on their spatial similarity, and the second by using no clustering),
the SBEB method [28] (image (e)), and the ADEB method [30] (image (f)). We start our navigation from
the unbundled view to view 2, where we see three bundles which are well separated from the others.
As such, we want to keep these, so we lock them. We continue the same process by going through
views 3 to 5, each time locating bundles that are well readable in the current view, and locking these.
The final image (g) shows the locked bundles in the context of a view that is very close to the original
unbundled graph. This represents thus a ‘patchwork’, or mix, between four types of bundling, applied
selectively on different parts of the data and the original data. Obtaining such a view is not possible by
using any of the EB algorithms in existence.
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Figure 8. Extracting relevant structures from four types of bundling algorithms to create a new
bundling view for a graph dataset.

A second use-case regards the visual comparison of EB techniques. Given several such techniques
(or results of the same technique but obtained for different parameter values), an important question is
which are the main differences between them. Knowing this helps users in, for example, assessing
which techniques behave similarly and thus can be substituted for each other in an application. Figure 9
shows how we can answer this question. We use here the same thumbnails grid and dataset as in
Figure 8. However, we only perform four simple navigations, by going several times to-and-fro
between the four preset views in the grid corners. The right image in Figure 9 shows intermediate
frames during these animations. We see here that going from SBEB to ADEB or from SBEB to
KDEEB-NoCluster creates relatively structured in-between frames. Hence, the methods SBEB, ADEB,
and KDEEB-NoCluster provide similar layouts in terms of their visual signatures. In contrast, going
from KDEEB-Cluster to KDEEB-NoCluster or to ADEB creates intermediate views that look completely
messy. This tells us that the KDEEB-Cluster method has a very different visual signature (style of
result) than the other methods. A second use-case for this scenario is to compare the quality of two EB
techniques A and B: if we know that, for example, A is of high quality, and our animation shows only
small differences between A and B, then we can infer that B is also of good quality (the converse being
also true).
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Figure 9. Understanding differences between several EB techniques. The transition between
KDEEB-cluster and any other technique produces fuzzy intermediate states (1 and 2), while the
transition between SBEB and the othe techniques produces sharper images (3 and 4). This shows that
KDEEB-Cluster is visually very different from the other clustering techniques considered.

In the examples above, we had as input data general graphs and, as such, we used general-graph
bundling methods such as KDEEB, SBEB, and ADEB. Hence, even if the nodes are laid out on a
circle, the bundling methods we use should not be confused with, for example, HEB [27]; the only
resemblance is that both bundling methods read an input graph whose nodes were laid out on a circle.
However, this does not mean that we cannot use HEB or any other method for hierarchical graphs as a
preset view, as long as the input graph is hierarchical, of course.

As a final note, we remark that our animation technique provides, for free, the standard relaxation
introduced by Holten [27] and since then implemented by virtually all other EB techniques. Briefly put,
this technique generates intermediate views between the fully unbundled and fully bundled one by
linear interpolation. Our technique does this by default if we add the unbundled view as a preset
and then simply animate our focus point between this view and any preset corresponding to a fully
bundled view (see Figure 10)).
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Figure 10. Bundling relaxation provided for four bundling techniques (presets in the corners of the
grid) by our animation technique.

5. Discussion

We next discuss several aspects of our proposed exploration method.
Generality: Our technique can be applied to any so-called element-based plots, i.e., visualizations

that consist of a (large) number of simple geometric objects such as points or lines. Scatterplots,
projections, graph drawings, Cartesian uniformly-sampled fields, and parallel coordinate plots (the
latter two not illustrated in this paper) fall into this class. All that one needs is a number of such plots
expressed as a set of 2D primitives.

Another generic aspect is the generation of the preset views used for the thumbnails grid. For this,
we used here a different visualization method (projection technique or bundling method) for each
preset view. However, many more options are possible. For example, one can use any suitable
scagnostics or projection pursuit-like technique to generate a (small) set of interesting views (given any
application-specific definition of interestingness) and directly use them as presets. In particular, the
projections of high-dimensional data of Lehmann and Theisel [47] is interesting, as it captures (much
of) the structure of an nD dataset with only n/2 projections. As above, the only constraint here is that
all these presets are element-based plots of the same dataset.

Scalability and simplicity: Our technique is simple to implement, requiring only the application
of Equtaion (1) on the sets of 2D primitives corresponding to the preset views. Our current CUDA-based
implementation can handle interpolation of datasets of roughly 10 preset views, each having about
one million points, in real time on a modern GPU.

Ease of use: The technique is fully automatic, requiring no user parameter setting, apart from
organizing the available preset views in the thumbnails matrix—which can be done by a simple
click-to-place process. Apart from that, all interactions are done via mouse dragging (to control the
animation) and brushing (to lock or unlock elements in the current view).

Related techniques: We have discussed several related techniques in Section 2. It is insightful to
visit these after the presentation of our own method to pinpoint similarities and differences.
Grand tours: As this family of techniques, we aim to explore a nD space by means of projections, and
use animation to transition from a projection to another. However, our techniques are applicable to
any element-based plot, beyond projections, e.g., bundled graph drawings; for projections, we can
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handle any projection type, whereas tours are (to our knowledge) limited to attribute-based projections;
we explicitly show the view space V , and exploration path therein, in the thumbnail grid, wheras
tours do not do this; we propose the lock mechanism to combine insights from different views in a
synthesized view.

Projection pursuit techniques: As this family of techniques, we pre-select a small set of preset views
to start the exploration from. We do not propose any specific ways to choose these presets, whereas
the key goal of pursuit techniques is precisely how to find interesting projections. However, animation
for exploration of the view space between these presets is our key contribution, whereas pursuit
techniques typically present these interesting views in a static (table like) fashion. Separately, we
mention a similarity between targeted projection pursuit (TPP) [64] and our work in the sense that both
techniques use direct manipulation to modify the view. However, TPP does this by moving elements
(points) in the view and then automatically searches for a projection that best fits the user-modified view.
In contrast, we lock elements in the current view and we go to the next view(s) under user control.
Finally, we note that TPP only handles linear projections, whereas we handle any projection type, and
actually any element-based plot.

Projection inspector: As already mentioned, ProjInspector [44] is arguably the closest technique to
ours. Both techniques use a weighted interpolation of a small number of precomputed projections
to generate, on-the-fly, a new projection. The interpolation is directly controlled by the user using a
preset controller metaphor. Yet, key differences exist: (a) ProjInspector’s preset controller must be
a regular k-sided convex polygon (where k is the number of presets), since they use mean values
coordinates to compute the preset weights. In contrast, we use Shepard-type interpolation, which does
not have such constraints. The difference is very important. It allows us to arrange our presets in any
way so as to flexibly define regions over the thumbnail grid where only certain presets have a large
influence. The importance of this flexibility was demonstrated earlier by Van Wijk et al. [57]. In contrast,
ProjInspector only allows permuting presets along what is essentially a sampled circle. (b) ProjInspector
does not use animation for data exploration. In contrast, we allow users to define multiple exploration
paths, which are explicitly drawn and visualized in the thumbnail grid, and then (re)run the exploration
along them. (c) ProjInspector only handles control-point-based projections [15,60–63]. As outlined
several times, we handle any projection, and actually any element-based plot. (d) ProjInspector is
designed to work interactively for datasets of moderate size; the largest dataset at which the authors
report interactive exploration has 19029 points. Our GPU-based implementation allows handling up
to one million points at interactive rates (Section 3.2).

Limitations and open points: Our technique has, however, several limitations, as follows.
First, different placements of the preset views in specific places in the thumbnails grid can result

in significantly different view-space explorations, due to the fact that the interpolation in Equation (1)
considers the distances form the current focus point to these preset views. As such, certain intermediate
views can or cannot be possible to realize, depending on where the presets are placed. Finding the
optimal placement of presets for a given exploration of the view space is a challenging, and not yet
solved, problem. However, we note that the same issue exists for all comparable techniques, most
notably the original preset controller [57] and ProjInspector [44].

Secondly, we note that some intermediate views created by interpolation typically may not
correspond to an actual view of the input dataset realized by any given visualization method. On the
one side, this is a positive thing, in the sense that they let us create views on our data which would
not have been possible by using any of the considered existing visualization methods. However, this
can also be dangerous, in the sense that the created views may reflect the actual data in misleading
ways. Whether the latter is the case has to be determined on a case-by-case basis, using the semantics
of the actual visualizations at hand and what is important that any view preserves from the data.
We should also note that the same problem is present in basically all control-point-based projection
methods [15,60–63]: an important use-case thereof allows users to freely place the controls, with no
relation to the underlying data similarity. As such, the resulting projection(s) may be misleading.
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However, this freedom is important when the underlying data dimensions do not fully reflect the true
similarity of the observations, e.g., when the dimensions are features extracted automatically from
complex data such as images, video, or music [15]. Manually arranging the controls allows users to
craft a projection that best matches their own understanding of similarity. Precisely the same freedom
is offered by our interactive navigation combined with the lock mechanism.

6. Conclusions

In this paper, we presented a new technique to support the interactive visual exploration of
multidimensional datasets. For this, we leverage the user’s cognitive ability in terms of discovering
stable and/or changing patterns in an animated view that is created under direct control of the user, by
interpolation from a number of so-called preset views. Our technique combines and generalizes earlier
animation and interaction techniques for exploring multidimensional data from a variety of viewpoints.
Our proposal is generic (it works for any element-based plot consisting of a set of 2D point or line
primitives), simple to implement and use, and scalable up to roughly one million data elements. We
demonstrate our technique by applying it on multidimensional projections and bundled graph layouts
and on several real-world datasets.

Future work can target a number of directions. First, it is interesting to explore semi-automatic
ways for detecting patterns of interest in the views created by animation, so that the user can select and
lock these more easily when creating mixed views. Secondly, a more flexible layout than the grid one
can be considered for the presets. Finally, and most challengingly, extending our technique to handle
more types of visualizations than element-based plot would open its applicability to even wider areas
of information visualization.
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