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Abstract: Projections are well-known techniques that help the visual exploration of high-dimensional
data by creating depictions thereof in a low-dimensional space. While projections that target the 2D
space have been studied in detail both quantitatively and qualitatively, 3D projections are far less well
understood, with authors arguing both for and against the added-value of a third visual dimension.
We fill this gap by first presenting a quantitative study that compares 2D and 3D projections along
a rich selection of datasets, projection techniques, and quality metrics. To refine these insights, we
conduct a qualitative study that compares the preference of users in exploring high-dimensional
data using 2D vs. 3D projections, both without and with visual explanations. Our quantitative and
qualitative findings indicate that, in general, 3D projections bring only limited added-value atop of
the one provided by their 2D counterparts. However, certain 3D projection techniques can show
more structure than their 2D counterparts, and can stimulate users to further exploration. All our
datasets, source code, and measurements are made public for ease of replication and extension.

Keywords: dimensionality reduction; projection quality evaluation; projection explaining

1. Introduction

Visual exploration of high-dimensional datasets is a key component of modern data
science pipelines, with many applications spanning disciplines as diverse as social sciences,
medicine, biology, and the exact sciences [1–4]. In the last decades, many visualization
methods have been proposed for high-dimensional data, such as parallel coordinates [5],
table lensing [6,7], and scatterplot matrices [8]. Dimensionality reduction (DR) methods,
also known as projections, occupy a particular place in this palette of methods, as they are
able to handle datasets having both very large number of samples (also called observations
or data points) and dimensions (also called attributes or variables). Tens of projection
methods have been proposed by the information visualization (infovis) and machine
learning (ML) communities [9–11], such as the by now famous t-SNE [12] technique.

Choosing a suitable projection technique for a given context (application, task, or
dataset) is critical since, even for the same dataset, different techniques yield different
visualizations, thus leading to potentially different insights and courses of action in the un-
derlying problem solving. This issue, well recognized in the infovis and ML communities,
has been mainly addressed by surveys that compare projection techniques from various
perspectives, including type of algorithm used [10,13], types of errors generated [9,14], and
types of tasks addressed [1,3]. The most recent survey in this area [15] aimed to provide
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fine-grained quantitative evidence to help practitioners choose suitable projections by
comparing 44 techniques over 18 datasets from the perspective of 7 quality metrics. The
study outlined that, from the perspective of such metrics, most algorithms fare relatively
similarly, after one optimizes for their various hyperparameters.

All above work in comparing projection techniques considered only two-dimensional
variants thereof, which reduce the high-dimensional data to 2D scatterplots. While 2D pro-
jections are the most common in practice, 3D projections have also been proposed [16–18].
Some researchers argue for their added value in terms of better capturing the structure
of high-dimensional data [16,17,19]. Other researchers argue that 3D projections are chal-
lenging to use given the need to choose suitable viewpoints and the presence of clutter
and occlusion [20,21]. However, 3D projections have been far less studied in the infovis
literature—to our knowledge, no quantitative studies have measured 3D projections as
Espadoto et al. [15] did for 2D projections.

The effectiveness of projections in explaining data structure can be increased by
explanatory tools that annotate the scatterplots to highlight the perceived patterns in terms
of the underlying data dimensions, as introduced by Da Silva [22]. While such tools have
been shown to add value when analyzing 2D projections [23,24], whether and how much
they support 3D projections has, to our knowledge, not been studied.

In this paper, we aim to shed more light on how 3D projections fare when compared
to their 2D counterparts by the following contributions:

• We run a quantitative study that compares 29 projection techniques, run to create
both 2D and 3D scatterplots, from the perspective of 3 quality metrics over 8 high-
dimensional datasets. We compare the computed quality metrics of the respective 2D
and 3D scatterplots to gauge the added-value of the third dimension;

• We perform a qualitative user study that compares the resulting 2D and 3D projection
scatterplots, augmented with the visual explanation proposed by Da Silva [22], from
the perspective of explaining projection patterns by the data dimensions;

• Our two studies show that, in general, 3D projections have roughly the same quality
(measured by metrics and user feedback) as compared to their 2D counterparts, while
they require more effort to analyze. However, we also found that, in some cases, 3D
projections—when augmented by visual explanations—can show more data structure;
and they can motivate users to explore the data more than 2D projections do.

This paper is structured as follows. Section 2 introduces several notations and dis-
cusses related work on evaluating 2D and 3D projections. Section 3 presents our first
contribution, the quantitative comparison of 2D and 3D projections. Section 4 presents our
qualitative study of the same projections, augmented by visual explanations. Section 5 dis-
cusses the main findings and limitations of our study. We conclude by outlining directions
of future work (Section 6).

2. Related Work
2.1. Preliminaries

We start by introducing some key concepts and notations, useful for explaining related
work as well as our contribution. Let x = (x1, . . . , xn), xi ∈ R, 1 ≤ i ≤ n be a n-dimensional
(nD) real-valued sample, and let D = {xi}, 1 ≤ i ≤ N be a dataset of N samples. Let
xj = (xj

1, . . . , xj
N), 1 ≤ j ≤ n be the jth dimension of D. Thus, D can be seen as a table with

N rows (samples) and n columns (dimensions). A projection technique is a function

P : Rn → Rq, (1)

where q� n. In our work, we consider q ∈ {2, 3} and denote the corresponding projection
functions by P2, respectively P3. The projection P(x) of a sample x ∈ D is a qD point.
Projecting an entire dataset D yields a qD scatterplot, denoted as P(D). The projection
function P is also influenced by so-called hyperparameters which are typically fine-tuned by
the user to optimize for specific quality metrics (discussed below).
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The quality of a projection technique P can be gauged by several metrics defined as

M : {(D, P(D))} → R+. (2)

A metric M measures how well the projection P(D) captures specific properties of the
dataset D, the underlying idea being that a good projection will keep similar points in D
close to each other in P(D). We detail the specific metrics used in our work in Section 3.3.

2.2. Evaluating Projections

Since Principal Component Analysis (PCA) [25,26] was first proposed, tens of different
projection techniques have been developed, offering many options to data scientists, but
also the added challenge in choosing a suitable technique for their goals. To guide this
choice, several surveys of projection techniques have been performed. We organize these
surveys from the perspective of their goal, as follows.

Technique-centric surveys: These works aim to compare projection methods from
the viewpoint of the cost function used to create P(D) from D and the algorithms used
to optimize this cost. Fodor [27] presented the first such survey that we are aware of,
which organizes 12 projection techniques in a taxonomy based on their respective cost
functions. Sorzano et al. [10] discussed 30 such techniques with a focus on optimization
heuristics and cost functions. Cunningham et al. [28] refined the work of Sorzano et al.
with a focus on linear projections. Conversely, Yin [13] performed a survey for nonlinear
projections. Engel et al. [29] proposed a taxonomy covering nine projections from the
viewpoint of out-of-sample ability and computational complexity. Bunte et al. [30] proposed
a theoretical framework to unify nine existing projection techniques from the perspective
of how similarity is computed and which error metric a projection minimizes. Finally,
Xie et al. [31] surveyed 27 variants of the Random Projection (RP) method [32], aiming to
provide a literature guide to this subclass of techniques.

Task-centric surveys: These surveys categorize projection techniques based on the
visual exploration tasks that these support. Buja et al. [33] and Hoffman et al. [1] compared
projections from an interaction perspective. Kehrer et al. [3] compared projections with
other visualization algorithms from the perspective of visual exploration of multidimen-
sional, multi-source, and multi-type data. A similar comparison of projections with other
visualization algorithms was performed by Liu et al. [2]. Nonato and Aupetit [9] surveyed
the use of 28 projections in visual analytics (VA) tasks, and categorized these based on the
type of errors that they produce and their effect on the performed tasks.

Quantitative surveys: These works compare projections by measuring various quality
metrics (M, Equation (2)) on different datasets. Gisbrecht et al. [34] evaluated 10 projection
techniques on 3 synthetic datasets from the perspective of one quality metric as well as
computational complexity. Maaten et al. [11] evaluated 14 projection techniques from the
perspective of three quality metrics, out-of-sample ability, and computational complexity.
More recently, Espadoto et al. [15] presented the most comprehensive, to our knowledge,
quantitative evaluation of projections, which included 44 techniques evaluated against
7 quality metrics over 18 datasets. For each technique, grid-search was used to derive
optimal hyperparameter values. We use the work of Espadoto et al. as a model and
inspiration for our comparison of 2D with 3D projections (see Section 3).

The above surveys provide a wealth of information helping practitioners in under-
standing how different projection techniques operate and how to choose a suitable one for
a given problem context. However, they largely omit 3D projections.

2.3. Three-Dimensional Projections

Technically, most existing projection techniques can be used equally easily to create a
2D or a 3D projection. Using a 3D projection would be likely advantageous, since there are
more dimensions (q = 3) which can capture the structure of the high-dimensional data.
Yet, the literature on 3D projections is far less rich than on their 2D counterparts.
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A first challenge for 3D projections is finding a good viewpoint to explore them
from—an inherent problem for any 3D scatterplot, produced by projections or not. This
can be done by using multiple 2D views linked by interaction [35] or by smoothly ani-
mating transitions between 2D scatterplot views [36,37]. More specific for 3D projections,
Coimbra et al. [17] proposed a tool to aid users in choosing suitable viewpoints for a 3D
projection and interpreting the spread of points along the screen’s X, Y, and depth axes.

A second, more fundamental, challenge is to show why, what for, and how much
3D projections are better than 2D projections. There is evidence both for and against 3D
projections [38]. For visualizing text data, 2D projections were found easier to use and
interact with than 3D projections [20,21]. Sedlmair et al. [18] empirically found 2D and
3D projections equally effective at visual cluster separation tasks. 2D projections were
found to work better for tasks related to inter-sample distance assessment and searching
specific sample structures [39,40]. On the other hand, Jolliffe [19] argued that 3D projections
are better at encoding data structure for datasets with intrinsic dimensionality exceeding
three. Other arguments in favor of 3D scatterplots (as opposed to their 2D counterparts)
are better showing variations in sample density [37] and decrease of information loss [41].
Yuan et al. [42] also showed how specific sampling methods can be used to decrease the
amount of occlusion in 3D scatterplots while retaining the patterns these visually encode.
3D scatterplots allow one to easier select specific structures, e.g., point clusters for further
investigation than corresponding 2D scatterplots, as the third dimension allows more space
for getting these structures separated from each other [43]. A survey of use-cases where
3D scatterplots are preferable to 2D ones was given by Sanftmann and Weiskopf [44]. The
well-known TensorFlow [45] embedding tool features both 2D and 3D projections using
UMAP, PCA, and t-SNE, but uses 3D as default view.

Closest to our work, Poco et al. [16] compared 2D and 3D projections computed using
the LSP technique [46]. Their quantitative comparison (by a single quality metric) showed
higher accuracy for the 3D projection; the qualitative comparison (done by user studies)
showed increased user confidence and satisfaction. Similarly, Coimbra et al. [17] argued
for the added value of 3D vs. 2D projections. However, both papers only studied one
projection technique, and used a single quality metric. Generalizing their findings for more
3D projections needs more evaluations—a task we approach in this paper.

2.4. Explaining Projections

Whether 2D or 3D, ‘raw’ projections that show only the scatterplot P(D) are of little
use. Hence, several techniques aim to enrich such scatterplots with additional information
to help users understand the visual structures they contain. The simplest explanation
color codes points in P(D) by the value of a dimension xj or, for image data, a thumbnail
representing each sample point [47]. While simple to implement, understanding how
several such dimensions explain the plot requires the use of small multiples or manually
cycling through color-coding all dimensions. Biplot axes [48,49] and axis legends [17,50]
explain the projection’s global structure in terms of the dataset dimensions. Local projec-
tion errors [51–53] explain how well visual patterns in P(D) encode the structure of the
corresponding data in D.

Besides projection errors, local explanations also aim to explain what, in the data,
is common to groups of close points in P(D), such as the contribution and variance of
each dimension xj [22]; correlation of two dimensions xj and xk, local dimensionality [23];
and salient values common to point clusters [54], to mention only the most common such
techniques. They key added value of such techniques is that they explicitly annotate visual
structures in the projection P(D) with information from D, thereby making it directly
visible what these structures mean data-wise. To our knowledge, such local explanations,
most notably the ones in [22,23], have not been used so far for 3D projections. Related to
our research question, we would like to find out whether 3D projections would fare better
than their 2D counterparts when supported by such explanations.
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3. Quantitative Study

As explained in Section 2, there is currently very little quantitative evidence on how
3D projections perform, in terms of quality metrics, as compared to their 2D counterpart.
We address this problem by designing and evaluating a benchmark, similarly to the earlier
one proposed by Espadoto et al. [15] for 2D projections, which we will next refer to as the
‘2D benchmark’ for simplicity. Constructing the benchmark involves selecting a number of
datasets (Section 3.1), projection techniques (Section 3.2), and quality metrics to compute
(Section 3.3). We describe these next, also outlining important aspects where we differ from
the 2D benchmark.

3.1. Datasets

To compare 3D vs. 2D projections, we first selected a number of 8 datasets.
Table 1 lists their details, including their sparsity ratio γn = 1 − u

nN , γn ∈ [0, 1], where
u is the number of non-zero data values; and intrinsic dimensionality ρn ∈ [0, n], defined as
the number of principal components (of the total n), computed by PCA, needed to explain
95% of the data variance [15]. More information about these datasets is available in the
Section 5 Availability. These metrics can be interpreted as follows: The sparsity ratio is typi-
cally quite high for text word-vectors (the data is sparse), and quite low for table data having
a small number of dimensions (the data is dense). If a dataset is sparser, its points are closer
in the nD space [55,56], and as a consequence projection techniques have more challenges
to identify and separate point-clusters in the projection space. The intrinsic dimensionality
intuitively tells how many dimensions we actually need to represent the data. Datasets having
an intrinsic dimensionality equal to, or close to, q are far easier to project to qD, as their
structure can be ‘unfolded’ to be mapped to the qD space. This was recognized early on by
algorithms such as Isomap [57] which explicitly exploited the (low-dimensional) manifold-like
structure of the data when constructing the projection. Conversely, datasets having a high
intrinsic dimensionality are far more challenging to project.

The metric values in Table 1 show that our selected datasets cover quite different
characteristics, in line with those selected in the 2D benchmark. Using more datasets is
definitely desirable. However, this would be too expensive, given that we aim next to
project each of them by several techniques, both in 2D and 3D, and compute several quality
metrics for each combination.

Table 1. Selected datasets for evaluation and their trait values (Section 3.1).

Dataset Type Samples N Dimensions n Intrinsic Dimensionality ρn Sparsity γn

Air quality [58] tables 9357 13 5 0.1372
Breast cancer [59] tables 569 30 10 0.0059
City pollution [60] tables 32,681 10 6 0.0052

Concrete [61] tables 1030 8 6 0.1773
DefaultCC [62] tables 30,000 23 8 0.1070
Software [63] tables 6773 12 7 0.0818

Wine [64] tables 6497 11 8 0.0023
Reuters [65] text 8432 1000 696 0.9488

In additional contrast to the 2D benchmark, we selected datasets which are known, from
earlier studies, to exhibit discernible structure in terms of clusters of samples. This will be
important for our qualitative study (Section 4) in which we aimed to compare how easy such
structure is perceived in 2D, respectively 3D, projections. Indeed, selecting some arbitrary
dataset that would not have any clear structure would make the qualitative comparison
of 2D vs. 3D projections useless. Secondly, we selected on purpose 7 of the 8 datasets as
being relatively low-dimensional (up to 30 dimensions): If 3D projections would not prove
better than 2D ones, even for such datasets, then the challenge would be even harder for
higher-dimensional ones. The eight dataset (Reuters) was taken as a control sample, to gauge
how our results would extrapolate for data having high (intrinsic) dimensionality.
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3.2. Projections

From the 44 projection techniques present in the 2D benchmark, we selected those
which could compute, out-of-the-box, both 2D and 3D projections, yielding a total of 29
projection techniques for our evaluation. We excluded techniques which are not open
source. Table 2 lists, for these, whether they are (non)linear, accept samples or sample-pair
distances as input, project local neighborhoods differently or work globally the same for the
entire dataset, their computational complexity, whether they have out-of-sample quality,
whether they are deterministic or stochastic, and the public source of their implementation
(for replication purposes). Complexity is a function of the number of dimensions n, number
of samples N, number of iterations i (for iterative methods), and number of weights w (for
deep learning methods). As Table 2 shows, the selected projections cover a wide spectrum
of methods.

Table 2. Selected projection techniques for evaluation and their characteristics (Section 3.2).

Projection linearity Input Neighborhood Complexity Out-of-Sample Deterministic Implementation

AE [66] nonlinear samples global O(iNw) yes no Keras
DM [67] nonlinear samples local O(N3) no yes Tapkee
FA [68] linear samples global O(n3) yes yes scikit-learn
F-ICA [69] linear samples global O(n3) yes yes scikit-learn
G-RP [32] nonlinear samples global O(Nn3) yes no scikit-learn
H-LLE [70] nonlinear samples local O(N3) yes no scikit-learn
I-PCA [71] linear samples global O(n3) yes no scikit-learn
ISO [57] nonlinear samples local O(N3) yes yes scikit-learn
K-PCA-P [72] nonlinear samples global O(N3) yes no scikit-learn
K-PCA-R [72] nonlinear samples global O(N3) yes no scikit-learn
K-PCA-S [72] nonlinear samples global O(N3) yes no scikit-learn
LE [73] nonlinear distances local O(N3) no no scikit-learn
LLE [74] nonlinear samples local O(N3) yes no scikit-learn
L-LTSA [75] linear samples local O(N3) no no Tapkee
L-MDS [76] nonlinear distances global O(N3) no no Tapkee
LPP [77] linear samples global O(N3) yes yes Tapkee
LTSA [78] nonlinear samples local O(N3) yes no scikit-learn
MDS [79] nonlinear distances global O(N3) no no scikit-learn
M-LLE [80] nonlinear samples local O(N3) yes no scikit-learn
N-MDS [81] nonlinear samples global O(iN2) no no scikit-learn
NMF [82] linear samples global O(n2) yes no scikit-learn
NPE [83] nonlinear samples local O(N3) yes no Tapkee
PCA [68] linear samples global O(n3) yes yes scikit-learn
S-PCA [84] linear samples global O(N3) yes yes scikit-learn
SPE [85] nonlinear samples global O(N2) no no Tapkee
S-RP [32] nonlinear samples global O(Nn3) yes no scikit-learn
T-SNE [12] nonlinear distances local O(iN2) no no Multicore TSNE
T-SVD [86] linear samples global O(N2) yes no scikit-learn
UMAP [87] nonlinear distances local O(iN2) yes no umap-learn

3.3. Metrics

Table 3 lists the projection quality metrics we used, which are the most common ones
used in the projection literature to gauge the quality of dimensionality reduction [11,15].
All metrics range in [0, 1] (0 = minimal quality, 1 = maximal quality). These metrics are
explained below.

Trustworthiness Mt: Measures the fraction of close points in D that are also close
in P(D) [88], being the inverse of the false neighbors metric in [53]. Mt tells how much
one can trust that clusters in a projection represent actual data patterns. In its definition
(Table 3), U(K)

i is the set of points that are among the K nearest neighbors of point i in Rq

but not among the K nearest neighbors of point i in Rn; and r(i, j) is the rank of the point j
in the ordered set of nearest neighbors of i in Rq. We use K = 7, in line with [11,15,89];

Continuity Mc: Measures the fraction of close points in P(D) that are also close in
D [88]. It is the inverse of the missing neighbors metric in [53]. In its definition (Table 3),
V(K)

i is the set of points that are among the K nearest neighbors of point i in Rn but not
among the K nearest neighbors in Rq; and r̂(i, j) is the rank of the Rn point j in the ordered
set of nearest neighbors of i in Rn. As for Mt, we chose K = 7.

Shepard diagram correlation MS: In a scatterplot of the point-pair distances in P(D)
vs. the corresponding distances in D – the Shepard diagram S – points close to a diagonal
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indicate good distance preservation [90]. Points below, respectively above, the diagonal
tell distance ranges for which false neighbors, respectively missing neighbors, occur. We
measured distance preservation by the Spearman rank correlation MS of the Shepard
diagram. A value of MS = 1 indicates a perfect (positive) distance correlation.

Table 3. Projection quality metrics used in our quantitative evaluation (Section 3.3).

Metric Definition

Trustworthiness (Mt) 1− 2
NK(2n−3K−1) ∑N

i=1 ∑j∈U(K)
i

(r(i, j)− K)

Continuity (Mc) 1− 2
NK(2n−3K−1) ∑N

i=1 ∑j∈V(K)
i

(r̂(i, j)− K)

Shepard diagram (S) {(‖xi − xj‖, ‖P(xi)− P(xj)‖)}, 1 ≤ i ≤ N, i 6= j
Shepard goodness (MS) Spearman rank correlation of S

We did not consider additional projection quality metrics in the literature such as
metrics which cannot be (easily) aggregated to a single scalar value per scatterplot, e.g., the
projection precision score [52], stretching and compression [51,91], average local error [53],
and the co-ranking matrix [92], since we want next to compare hundreds of such scatterplots.
We also did not consider metrics which do not make sense for all types of projection, e.g.,
normalized stress [90]; and metrics which require labeled data, e.g., neighborhood hit [46]
and the Class Consistency Measure (CCM) [93,94].

3.4. Evaluation Results

We evaluated all 29 projection techniques, for their 2D and 3D variants on our 8
datasets using the 3 quality metrics in Section 3.3. Projection hyperparameters were set to
the optimal defaults found in [15]. We next analyzed the computed quality metrics from
several perspectives.

Figure 1 shows the three quality metrics (Section 3.3) per dataset, projection technique,
and 2D vs. 3D projection variant, sorted ascendingly on trustworthiness per technique,
for ease of examination. The metric values for City pollution (DM, SPE, MDS, N-MDS,
and LE projections), Air quality (NPE projection), and Defaultcc (DM, SPE, MDS, N-MDS,
and LE projections) are missing, as these techniques failed executing on the respective
datasets. Overall, from Figure 1, we see a globally small variation across techniques—
which is fully in line with the results of [15]. More interestingly, the 3D techniques scored
almost always better but only marginally compared to their 2D counterparts. All these
findings do not seem to depend on the dataset. These observations strongly suggest that
3D projections consistently bring some, but marginal, increase of quality vs. their 2D
counterparts, regardless of the technique, dataset, and metric being used.

Figure 2 refines these insights. Image (a) shows the averages trustworthiness, conti-
nuity, and Shepard correlation, for each 2D projection technique (circles), respectively 3D
technique (triangles). Continuity is slightly higher for 3D techniques—on average, 0.02
over all projection techniques. Trustworthiness shows the same trend—3D techniques
are 0.05 more trustworthy than 2D ones on average. While Shepard correlation varies
more per technique, 3D projections still score slightly better than 2D ones, 0.03 more on
average. Image (b) merges the trustworthiness and continuity plots in image (a) showing
a positive correlation of the two metrics over all projections. We placed the origin of this
plot at 0.5× 0.5, since none of the two metrics is below this value. Globally, we see that
N-MDS scores poorest, followed by LTSA. The best scoring techniques are t-SNE, UMAP,
and AE. For these, however, the quality gain given by 3D projections is negligible. The
technique showing the largest gain between 2D and 3D is H-LLE, where 3D adds about
12% in trustworthiness and 8% in continuity, respectively. The stacked bars for H-LLE in
Figure 1 show us that this gain is independent on the dataset. Hence, for H-LLE, the use of
a third dimension brings some significant added value.
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Figure 1. Quality metrics per projection technique (rows), dataset (colors), and projection dimension
(2D vs. 3D, second column), sorted ascendingly on technique trustworthiness.
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Figure 2. (a) Continuity, trustworthiness, and Shepard correlation, averaged for all datasets, for 2D
and 3D projections. (b) Correlation of trustworthiness vs. continuity, averaged per projection over all
datasets, for 2D and 3D projections.

Summarizing the above, we see that the use of a third dimension brings only minimal
increase of quality metrics for all projections being studied, over all studied datasets, except
H-LLE, whose 3D variant scores about 10% higher quality than its 2D variant.

4. Qualitative Study

The analysis in Section 3 showed that 3D projections do not come with significant
higher quality metrics than their 2D counterparts. However, we cannot say, based solely on
this, that they do not have added value. Indeed, the quality metrics used in Section 3 capture
only a fraction of the expressive nature of a projection. Many other quality metrics exist, for
example those used to capture the visual separation of clusters in projections [18,95,96]. For
labeled data, the so-called Class Consistency Measure (CCM) [93,94] was shown to model
well the way humans visually separate same-label clusters in a projection [97]. However,
computing such cluster-separation metrics assumes one to project labeled data and also that
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the respective data contains well-separated same-label point groups. This is not always the
case for datasets which are explored using projections, as also noted in [15]. Moreover, the
actual way users would perceive the added value (or lack thereof) of 3D projections cannot
be fully captured by metrics such as the ones mentioned above.

We further gathered insight in how 2D and 3D projections differ, by a three-part
qualitative study, in a bottom-up fashion—starting from an easy task and proceeding with
more complex ones—as follows.

4.1. Identifying Visual Structure

We first considered the task of using the projection to find any apparent data structure
depicted therein. For this, we looked at whether the projection is separated into distinct clusters,
since this is one of the main use-cases behind visual exploration of projections [9,16,18]. Note
that we did not consider labels in this task, but rather only whether the projection captures
the ‘modes’ of the underlying data distribution. More precisely, we aimed to see whether
3D projections reveal better such existing separation—if present in the data—than their 2D
counterparts. For this, we created scatterplots of all the 8 datasets in Table 1 projected in
2D and 3D by all the 29 projection techniques in Table 2. Next, we visually compared the
corresponding 2D and 3D projection plots. In all plots, we colored points based on the
ID of the corresponding high-dimensional points using a heat colormap. This allowed us
to see whether different plots place points close to each other in similar ways—if so, they
will exhibit similar color gradients. Note that this should not be confused with the typical
color-by-attribute-value mode used in exploring projections, whose aim is different, i.e., to
explain patterns in a projection by data values. Next, we interactively rotated the 3D plots
aiming to find the view which best conveys separated clusters. Finally, we aligned this view
(by means of manual rotation around the view axis and viewport scaling) to best match the
corresponding 2D projection, for visual comparison purposes.

Figure 3 shows the results of this evaluation for the Wine dataset, with 2D projections
always to the left of their 3D counterparts for the same technique. Results for H-LLE, LTSA,
and M-LLE are omitted since these projections create a very large amount of point overlap,
making their visual exploration useless (both in 2D and 3D). Similar results to Figure 3
for all studied datasets are in the Section 5 Availability, including videos showing the 3D
projections from multiple viewpoints. These images convey us several interesting insights,
as follows.

Data patterns: The vast majority of projections show that the Wine dataset is roughly
split into two clusters (red-purple, respectively yellow points in Figure 3. This is in line
with other works that studied this dataset [17,22,23]. As a baseline, this tells us that our
study is properly set up to next explore the other projections.

2D vs. 3D projections: In almost all the cases, the 3D projections show the same
patterns as their 2D counterparts. The exceptions are I-PCA, NMF, and (partly) T-SVD.
For these techniques, the 2D plots do not show any data structure, whereas the 3D plots
show a clear separation of the two underlying data clusters. Separately, we see that ‘good’
projection techniques work equally well in 2D and 3D to create visual structure—or equally
poorly. For the latter case, we have N-MDS, L-LTSA, LLE, LPP, NPE, and S-RP. These
techniques are not able to identify any visually salient patterns in the data, neither in the
2D nor in the 3D case.

Projection quality: As explained in the beginning of this section, quality metrics are
not to be used as a sole mean to assess whether a projection is useful in conveying data
patterns. Figure 3 confirms that: We see a large variation in the ability of projections to find
data patterns, ranging from very strong cluster separation (T-SNE and UMAP) to almost
no structure (N-MDS, NPE). This is only partly reflected by the metric values (Figure 1):
While the techniques that score poorly in finding visual structure (N-MDS, L-LTSA, LLE,
LPP, NPE, and S-RP) also have some of the lowest quality metrics, AE scores third-highest
metric-wise, but arguably shows a poorer visual separation of data structures than MDS
which has the 7th lowest metric values.
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Summarizing the above, we found that 3D projections produce roughly the same
visual patterns as their 2D counterparts, these patterns depending far more on the projection
technique being used than on the dimensionality of the output scatterplot (2D or 3D). Also,
producing the same informative views cost more time for the 3D projections, since a suitable
viewpoint must be found by interactive rotation, whereas the 2D projections required no
user interaction.

AEAAEA

DMDDMDD FAFFA

F-ICAFF-ICA G-RPG--RPG-

I-PCAI PCAPI PCA

ISOIS K-PCA-PPCK PCAPCA-P K-PCA-RK-PCPCA-RCA-R

K-PCA-SK PCA-S-S L-LTSASALTSAL L L-MDSLL MMDSL M
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MDSMDSM S N-MDSNN MDSN MN MDS NMFNNMFNNNMF

NPEN PCAP S-PCASS PCA

S-RPS RP SPES T-SVD

T-SNESNESNE UMAPMAPUM

2D 2D3D 3D
color maps point ID

2D 3D

Figure 3. Visual comparison of 2D vs. 3D projections for the task of identifying separated data
clusters, Wine dataset (Section 4).

4.2. Explaining Visual Structure

Our first evaluation (Section 4.1) showed that 3D projections seem, overall, to be
able to generate similar amounts of visual structure to their 2D counterparts. However,
by itself, this does not directly tell us that 3D and 2D projections are equally effective in
understanding data structure. Indeed, visual structures in a projection need explanations
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to be further understood and interpreted by users (Section 2.4). Without these, a ‘raw’
projection, even when showing some visual structure, is of little use. We next studied
how the variance-based explanation of projections of Da Silva et al. [22,23] augments the
added-value of 3D vs. 2D projections. This explanation colors projected points P(xi) by
the identity of the dimension xj which has the least variance over a small neighborhood
around P(xi). Color brightness encodes the explanation confidence, i.e., how much of the
total variance (over all n dimensions) in a neighborhood in P(D) is explained by the color-
coded dimension there. Among other projection explanations (Section 2.4), we selected
this one since it works generically for any projection technique, acts locally per projection
neighborhood (so, can handle both local and global projection techniques), is fast and
simple to compute, and is easy to introduce to users. We implemented this explanation
for 3D projections by extending the earlier work [22] that considered 2D projections only.
We next applied the explanation to all our 2D and 3D projections computed as outlined in
Section 3.

Figure 4 shows a selected subset of 2D and 3D projections for the Wine dataset (for
space reasons; all results are in the Section 5 Availability) color-coded by the Da Silva
explanation. Points are rendered with blended splats, following [22]. Legends indicate the
data dimensions color-coded in the explanations. Since we wanted to test how the Da Silva
explanation helps understanding visual structure, we separated projections in those found
(Section 4.1) to exhibit a clear visual structure in 2D (Figure 4 top half), respectively those
which showed such structure far less clearly (Figure 4 bottom half).
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Figure 4. Comparison of 2D and 3D projections explained by dimension variance, Wine dataset.
Dimension-to-color mapping is computed per individual projection (Section 4.2).
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A first analysis of Figure 4 shows that, for the top projections, the patterns visible in
the 3D projections are quite similar to those shown by their 2D counterparts. For instance,
UMAP (2D) separates the data into two clusters. The color-based explanation further
splits the larger left cluster into wines that are similar mainly because of chlorides (pink),
respectively alcohol (red). The smaller right cluster is nearly completely explained as wines
having similar sugar content, apart from a few points at the bottom which are wines having
similar alcohol percentages. The 3D projection created by UMAP tells us essentially the
same story. The same situation occurs for FA, where the 2D and 3D projections are both
split into essentially three zones explained by alcohol (pink), sugar (yellow), and chlorides
(red). This suggests that 3D projections do not help gaining more, or different, insights as
compared to their 2D counterparts.

However, comparing the 2D and 3D projections in Figure 4 has a problem: Different
colormaps are used to encode the same dimensions for the same dataset. For example, the
2D Isomap projection of the Wine dataset in Figure 4 (top left) uses pink, yellow, red, and
green to encode alcohol, chlorides, sugar, and volatile acidity, respectively. The 3D Isomap
projection of the same dataset uses pink, yellow, and green for the same dimensions, but
allocates green to sulfur. This is inherent to how the Da Silva algorithm [22] works: Each
projected point is assigned a dimension that best explains the neighborhood around it;
next, for each dimension 1 ≤ j ≤ n of the dataset, the number of projected points ej that
choose dimension j as best is computed. Finally, the values ej are sorted descendingly and
the first C dimensions that emerge from this sort are mapped to a categorical colormap
of C = 8 colors. This way, colors are allocated to those dimensions which can explain the
most projected points. Since 2D and 3D projections (of the same dataset) have different
structures, their top-voted C dimensions can differ, leading to the same dimension being
mapped to different colors and/or the same color allocated to different dimensions.

To remove this confusion, we redid in Figure 5 the plots in Figure 4 using the same
dimension-to-color mapping for each pair of 2D and 3D projections created by the same
technique. For this, we ran the Da Silva algorithm once, e.g., when explaining the 2D
projection, and saved the dimension-to-color mapping it produces. Then, we ran the
algorithm for the 3D projection. If this run selected dimensions already assigned to colors
in the first run, then we used the colors assigned the first time; if new dimensions are
mapped to colors (by the second run), then we allocated colors not used by the first run.

Looking at Figure 5, the difference between the top projections (found earlier to exhibit
visible structure in 2D) and the bottom ones (found earlier to have less visible 2D structure)
becomes now clearer: For the top projections, we see nearly the same explanations for the
2D and 3D variants of the same technique; there is little added value apparent in using a
3D projection instead of a 2D one, the structures shown by the 3D variant were already
visible in the 2D variant. For the bottom projections, the situation is slightly more nuanced.
2D and 3D projections often show the same main explanation patterns, see e.g., the yellow
(left) and pink (right) clusters present in both the 2D and 3D I-PCA variants (Figure 5,
bottom). The 3D projections often introduce additional explanations which were not easily
visible in the 2D variants, see e.g., the blue fixed acidity cluster for L-LTSA (3D) or the
green and red clusters for alcohol and sugar respectively for S-RP (3D). In the extreme case
of N-MDS, which had an extremely poor explanation in 2D, using a 3D projection does not
improve the situation at all. To conclude, this analysis tells that 3D projections, even when
explained (by the Da Silva method), do not bring significant extra value as compared to
their 2D counterparts.
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Figure 5. Comparison of 2D and 3D projections, Wine dataset. Same as Figure 4, but using the same
dimension-to-color mapping for 2D and 3D projections created by the same technique.

4.3. Expert Evaluation

To gain more insights in how explained 3D projections compare to their 2D counter-
parts, we performed an user evaluation, detailed next.

Participants: We asked four data scientists to take part in our study. All were familiar
with dimensionality reduction, and with the Da Silva technique, and worked in information
visualization for 2, 3, 9, and 13 years, respectively. They were instructed first in how to
use a visualization tool that allows examining the 2D or 3D projections via zoom, pan,
rotation, and brushing points to see their attributes. They were also offered videos showing
the respective projections visualized in the tool, for convenience. We precomputed all
projections ourselves so that all users would see the same results and would not be bothered
with tweaking projection-algorithm parameters.

Data: We computed 2D and 3D projections for the first 7 datasets in Table 1 using
all 29 techniques in Table 2. We did not use the Reuters dataset since this is very high
dimensional (1000 dimensions) and thus not suitable for the Da Silva explanatory technique.
Also, 11 dataset-technique combinations failed to compute (see Section 3.4). Hence, a total
of 7× 29− 11 = 192 projection-pairs were offered for investigation to the users.
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Tasks: As outlined earlier, the main use-case behind the Da Silva explanatory tech-
nique and its variants is to allow users to visually ‘partition’ a projection into different
zones, each being explained by a different dimension. Note that such zones need not be
separated by whitespace, i.e., they can be different, and usually are a superset of, the visual
clusters that projections are typically used to find. For example, the UMAP (2D or 3D)
projections in Figure 5 show, each, two visual clusters (red-pink and yellow), but three
zones (red, pink, and yellow). Given this use-case, we next asked the users to study the
provided 2D-3D projection pairs by comparing them side by side, and to note down how
they would rank the variants, using four classes:

1. the 2D and 3D variants are equally good and informative;
2. the 2D variant is clearly preferred;
3. the 3D variant is clearly preferred;
4. both variants are equally poor (hard to understand, thus useless).

For classes 2 and 3 above, we also asked the users to note down why they preferred
one variant against the other and save screenshots of the respective variants. We also asked
the users to write down, at the end of the study, any global comments they had concerning
the use of 2D vs. 3D explained projections. There was no hard time limit imposed for the
study—the users could stop when they wanted.

Results: From the projection-pairs offered to study, 43 were marked in class 4, i.e.,
hard to understand and further useless. From the remaining ones, about 80% were marked
in class 1 (2D and 3D variants address the task equally well). The remaining 20% was
roughly evenly split into class 2 (2D variant clearly preferred) and class 3 (3D variant
clearly preferred). We did not find correlations between these classes and the projection
methods and/or the datasets. We found, however, more interesting facts when reading the
comments given by the users to their rankings. We list the most salient findings next—see
also Figure 6 for user-made screenshots supporting these findings.
Perceived advantages of 3D projections

• 3D projections spread the points over a larger space, so can show more complex
patterns. Figure 6a shows an example: the 2D T-SVD projection essentially creates
two narrow bands along which little structure is visible. The 3D variant creates two
plane-like structures that can show more explanation details. The 3D dimension also
increases the chance that more variables will be involved in the explanation, which
is good, since the explanation becomes more fine-grained. Figure 6b,c show this for
CityPollution projected with UMAP and K-PCA-S: In both cases, the 2D projection
cannot really show the orange cluster (points similar due to the SO2 dimension). This
is because points are too tightly packed in 2D, so there is no room to ‘spread out’ this
dimension. In 3D, the projections yield a similar (triangular-shape) surface to the 2D
case. Yet, the additional spatial dimension allows spreading out points above the
surface, so the orange cluster becomes visible. Also, the third dimension gives more
chance for visual cluster separation as compared to 2D projections.

• 3D projections were found to give the user a sense of control in terms of selecting
which are interesting views. While no ideal viewpoint can be found in general,
different viewpoints could be used to show different parts of the data in turn, one by
one. This allows further finding and exploring structures (one by one) which would
otherwise be occluded, and have no chance to show up, in a 2D projection—see e.g.,
the three viewpoints for Figure 6b,c; only in two of these is the orange cluster visible.
Overall, 3D projections were found more versatile than 2D ones, being able to tell
different stories about the data, depending on the chosen viewpoint.
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Figure 6. Selected examples from user evaluation showing how variance-explained 3D projections
can be better than, similar to, or worse than, 2D projections (Section 4.3).

Perceived advantages of 2D projections

• One user remarked that the key advantage of 2D projections was their ease of use.
No interaction is required to examine them, while one can get lost or frustrated in
the process of zooming, panning, and viewpoint rotation for 3D projections. As such,
this user noted that, in about 80% of the class-1 cases (2D found similar to 3D), this
ignored the interaction effort. If this effort were to be considered, then those cases
should be marked as class 2 (the 2D variant is preferred). Quoting from this user:
“Both 2D and 3D are fine. Yet, I prefer 2D because it gives very clear results without
further interaction needed”. Figure 6d,e show two such cases. The visible clusters and
their explanations are very similar in 2D and 3D, so, for these cases, the 3D variant
does not add any perceived value.

• Some projection techniques, in particular t-SNE, were consistently found to create
clearer explanations in 2D than in 3D—something already visible in Figures 4 and 5.
This is an important observation, since t-SNE is known as a very high-quality pro-
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jection. Such quality would, thus, be lost if using the 3D variant. Figure 6f shows
this. The 3D t-SNE projection actually spreads points on a ball-like surface, with some
points also being placed inside. It is very hard, even with interaction, to find out
which points are close together on the same ‘side’ of the surface.

• 2D projections were definitely preferred in the cases where the nature of the data
would create densely-packed clusters. These would map to close groups of points in
the 2D projection (which are fine). In 3D, however, this would create a densely packed
‘hairball’ of regions explained by the different variables (Figure 6h). Occlusion would
then prevent the user from discovering interesting structures and/or explanations
inside such a 3D structure.

• Outliers were also found easier to spot with 2D projections. They would appear as
points separated by large amounts of whitespace from the high-density ‘core’ of the
projection. In 3D, however, outliers could appear in front or behind the high-density
core, and thus be hard to spot (Figure 6h).

5. Discussion

We discuss several points concerning our findings and methodology, as follows.
Quantitative results: The comparison of 2D vs. 3D projection quality metrics dis-

cussed in Section 3 are, to our knowledge, the first study of its kind in projection literature.
Overall, our results show that t-SNE, UMAP, AE reach the best metric values for 3D projec-
tions, similar to the results found earlier for projections [15]. Our main novelty is to show
that, metric-wise, 3D projections are only marginally better than their 2D counterparts—a
fact which, to our knowledge, was never quantified by quality metrics.

Pattern identification: Our first qualitative study (Section 4.1) showed that 3D projec-
tions do not bring significant added value over their 2D counterparts in terms of finding
data structures. 3D projections either show the same structure type, or otherwise do not
show any structure at all, similar to their 2D counterparts. Our findings match those
in [18]—but generalize them, since we explored 29, as opposed to just 4, projection tech-
niques (PCA, Robust PCA, MDS, and t-SNE) used in [18]; also, we used optimal parameter
presets for the studied techniques, something not considered in [18]. Our subsequent
qualitative study (Sections 4.2 and 4.3) showed that, when augmented with the Da Silva
explanation, 3D projections can, in some cases, show more insights in the data than their
2D counterparts, e.g., they partition the dataset into more zones explained by more data
dimensions. However, in most cases, the patterns shown by 3D projections are very similar
to the 2D ones; and 3D projections introduce additional challenges such as occlusion and
additional user effort for exploration.

Choice of projection techniques: An important point must be made concerning the
choice of studied projection techniques and the presented findings. Clearly, not all tech-
niques are equally good for projecting any dataset. Espadoto et al. [15] have extensively
documented this, by benchmarking 44 such techniques against 19 datasets for 2D projec-
tions. Their results showed only small variations of the projection quality, measured by
7 quality metrics. As such, the question of why certain projection techniques are better
than others cannot be gauged simply by quality metrics, as already argued in Section 4. A
separate question is how projection techniques perform with respect to other dataset traits,
beyond intrinsic dimensionality and sparsity (see Section 3.1). For instance, the distribution
of samples in a dataset can be an important trait that characterizes the quality of a projection
technique. We do not examine this aspect in this paper for the following reasons:

• The question “which projection technique is the best for a given dataset type” is not
in our scope. Rather, as explained in Section 1 and next in the paper, our research
question is how can visual explanations and/or 3D projections bring added value.
These questions do not focus on comparing projection techniques against each other,
but the same techniques against their instances with or without visual explanations,
and with or without a third dimension;
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• Comparing ‘raw’ projection techniques against each other has been done in detail
in [15]. As said earlier, we aim here not to compare raw techniques, but techniques
with (or without) the additions of a third dimension and/or visual explanations;

• It is inherently hard to link the performance of projection techniques to the ‘nature’
of a given dataset. We did this by using the so-called dataset traits (dimensionality,
intrinsic dimensionality, and sparsity) outlined in Section 3.1. Of course, additional
traits can be defined, such as the nature of the distribution that characterizes the
samples in a dataset. However, doing this is far from trivial: There are, to our
knowledge, no established ‘classes’ of cannonical distributions for nD datasets. The
goal of characterizing how projection techniques cope with various such distributions
is definitely an interesting topic to study, but one out of the scope of our paper which
focuses on comparing 2D vs. 3D projections, with vs. without visual explanations.

Availability: All our experimental results, including snapshots of the 2D projections,
videos of exploring the 3D projections, are available online [98]. The source code of the
visualization tool that implements the variance-based projection explanations, written in
Rust using OpenGL, is publicly available at [99].

Limitations: As any evaluation work in visualization, ours has several limitations. We
only explored 8 (real-world) datasets, and considered only relatively simple tasks such as
cluster separation identification. However, we argue that, if even for such simple datasets
and tasks 3D projections cannot show a clear added-value vs. their 2D counterparts, then
this becomes even harder for more complex situations. We believe that refining our findings
with more specific (types of) datasets and tasks is a promising direction for future work,
which would either highlight use-cases where 3D projections are really superior to 2D
ones, or conclude even more firmly that the addition of a third dimension does not bring
added value.

A more important limitation regards our expert evaluation (Section 4.3), which in-
volved only four experts and a general task of ranking projections in terms of being more
or less informative. It can be certainly argued that defining more precise tasks, e.g., finding
a specific subset of data points which are similar due to a given condition on the data
attributes, and measuring the task accuracy and completion time, is needed to refine our in-
sights. However, we also argue that our preliminary evaluation presented here is valuable
in a formative sense. Indeed, it allowed us to discover several specific cases where certain 3D
projection techniques produce more visual structures of interest than their 2D counterparts
(see Figure 6). We aim to further refine these insights by a formal evaluation which involves
techniques and tasks that can exploit the perceived advantage of 3D projections.

6. Conclusions

We presented a multi-faceted comparison of 2D and 3D dimensionality-reduction
methods, or projections, for the purpose of finding patterns in high-dimensional data, with
the aim of finding added-value (or the lack thereof) for using the third dimension in the
scatterplots used to explore such data. As a benchmark, we used 29 projection algorithms
and 8 datasets. Our first facet—a quantitative study of three quality metrics—showed
consistent, but marginal, added value of the 3D projections. Our second facet—a study
in finding visual patterns depicted in the projection—showed that 2D and 3D projections
fare almost identically. Our third facet added visual explanations (in terms of attribute
variance) to the compared 2D and 3D projections, and showed that both have roughly the
same ability in showing very similar patterns. Finally, we executed a user evaluation to
elicit additional findings on how 2D and 3D projections compare. We found that, overall,
both projection types are found equally insightful, but the 3D ones generate additional
challenges and effort.

Summarizing the above, there is little consistent evidence that 3D projections would
structurally add value to high-dimensional data exploration atop what 2D projections can
do. Still, our study also highlighted several cases where the third dimension does make
a difference—in showing more visual structure, more detailed explanations, or engaging
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users in the data exploration. We aim to refine these findings in several directions. First,
we want to test more explanatory tools on both 2D and 3D projections to see whether
some of them can further leverage the third dimension. Secondly, we want to refine the
analysis of the cases where 3D projections were found to be better than 2D ones, and
thereby develop specialized projection-and-exploration methods that can bring extra value
atop what standard 2D projections can deliver. Finally, and in support of both these future
work directions, we aim to design more fine-grained controlled experiments where more
users than in the current study are given specific quantifiable tasks to execute using 2D
and 3D projections in order to compare more precisely their advantages and limitations.
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