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Abstract: Medial descriptors are of significant interest for image simplification, representation,
manipulation, and compression. On the other hand, B-splines are well-known tools for specifying
smooth curves in computer graphics and geometric design. In this paper, we integrate the two by
modeling medial descriptors with stable and accurate B-splines for image compression. Representing
medial descriptors with B-splines can not only greatly improve compression but is also an effective
vector representation of raster images. A comprehensive evaluation shows that our Spline-based
Dense Medial Descriptors (SDMD) method achieves much higher compression ratios at similar or
even better quality to the well-known JPEG technique. We illustrate our approach with applications
in generating super-resolution images and salient feature preserving image compression.

Keywords: medial descriptors; image compression; B-splines; super-resolution

1. Introduction

With the development of the Internet and multimedia, people create and transmit
images of increasing resolution and size. As such, the demand for efficient image compression
is growing. Within the many methods for this task, a particular class focuses on encoding
images represented as threshold sets in luminance space [1] by using their medial axis
transforms (MATs), which are already well known for binary image analysis, matching,
and retrieval [2]. Recently, Wang et al. [3] exploited this encoding scheme and presented
Compressing Dense Medial Descriptors (CDMD) for lossy image compression. Qualitative
and quantitative evaluation has shown that CDMD achieves higher compression at similar
quality compared to the well-known JPEG technique for specific image types. However,
CDMD strongly depends on the image type, and the gains vs. JPEG are limited.

Separately from the above, the recent Spline Medial Axis Transform (SMAT) method
has proposed a compact and accurate representation of MATs [4]. In this paper, we join the
strengths of the CDMD representation of images using MATs with the SMAT representation
of MATs to propose Spline-based Dense Medial Descriptors (SDMD), a method for efficient
and accurate encoding of grayscale and color images. The contributions of our work are
as follows:

• Novelty: Our method is, to our knowledge, the first approach to encode color images
with B-spline-based MATs;

• Generality: SDMD can directly handle any raster image of any resolution;
• Scalability: End-to-end, our method can encode (and decode) megapixel images in a

few seconds on a commodity PC featuring a modern graphics processing unit (GPU);
• Evaluation: We show that SDMD has good performance (compression ratio and quality)

on a wide set of natural and synthetic color images of different sizes;
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• Applications: We show that SDMD enables additional applications besides compres-
sion, such as generating super-resolution images and compression that preserves
salient features.

The rest of the paper is organized as follows. Section 2 outlines related work regarding
the CDMD method, the SMAT representation, and image compression. Section 3 details our
SDMD method. Section 4 presents and evaluates the obtained results. Section 5 presents
applications of SDMD. Section 6 discusses our proposal. Finally, Section 7 concludes
the paper.

2. Related Work

The proposed SDMD method (Figure 1) combines the strengths of two separate
methods: the CDMD method for image representation by MATs of threshold sets (Figure 1,
steps 1, 2, 5) and the SMAT method for representing MATs by B-splines (Figure 1, steps 3
and 4). We next detail the CDMD and SMAT methods in Sections 2.1 and 2.2, respectively.
We position our SDMD method vs. other compression methods in Section 2.3.

Input image

island threshold ε

layer selection L

1.T
hr

es
ho

ldi
ng

2. 
Sk

ele
ton

iza
tio

n

4. 
Re

co
ns

tru
cti

on

5. 
Int

er
po

lat
ion

Selected layers

saliency threshold σ

MAT Reconstructed
layers

Reconstructed
image

data operations parameters

3. 
Sp

lin
e F

itt
ing

Spline MAT

Fitting threshold

Figure 1. Spline-based Dense Medial Descriptors (SDMD) pipeline with free (user controlled) parameters in red.

2.1. CDMD Method

Given an input image I : R2 → [0, 255], the CDMD method [3] first divides it into n
(256 for 8-bit images) threshold sets or layers Ti =

{
x ∈ R2 | I(x) ≥ i

}
, 0 ≤ i < n (Figure 1,

step 1). During thresholding, small-size islands can appear in the layers Ti due to local
intensity variations (noise). CDMD removes the islands whose size is smaller than a
fraction ε of |Ti|, i.e., those which contribute little to the image I. Next, CDMD selects a
desired number of layers L < 255 to represent I, based on the observation that many layers
contribute little to the description of I. For details on how this is done, we refer to the
CDMD paper [3].

For the selected L layers Ti, CDMD next computes their medial axis transforms
(STi , DTTi ), where

DTTi (x) = min
y∈∂Ti

‖x− y‖ (1)

is the distance transform DT : Ti → R+ [5] of the boundary ∂Ti of the (binary) image of
layer Ti, and

STi = {x ∈ Ti|∃f1 ∈ ∂Ti, f2 ∈ ∂Ti, ‖x− f1‖ = ‖x− f1‖ = DTTi (x)} (2)

is the medial axis, or skeleton, of Ti.
MAT computation is a well-studied technique [6–11]. CDMD uses the GPU implemen-

tation in [12] for this, which is pixel-exact and linear in the number of pixels in Ti [13,14].
However, the generated skeletons STi can contain many so-called spurious branches, which
take significant space but contribute little to encoding Ti. Hence, CDMD regularizes the



J. Imaging 2021, 7, 153 3 of 26

skeletons STi by removing all their pixels x ∈ STi which have a so-called saliency value [15]
below a user-specified threshold σ > 0. Saliency is defined as

σ(x) =
ρ(x)

DTTi (x)
, (3)

where ρ(x) denotes the fraction of the boundary ∂Ti that the skeletal pixel x encodes [16].
Saliency-based regularization removes spurious skeleton branches corresponding to small-
scale boundary perturbation but keeps intact branches that correspond to important bound-
ary features such as large-scale corners, as shown in related work [3,15].

From the regularized (simplified) MAT (STi , DTTi ), one can reconstruct a simplified
version T̃i of each layer Ti as the union ∪x∈STi

B(x, DTTi (x)) of discs B centered at pixels
x of the simplified skeletons STi and with radii given by the distance transform DTTi (x).
An approximation of the original image I can then be obtained by drawing all recon-
structed layers T̃i atop each other in increasing order of luminance i. To further reduce
banding artifacts between two consecutive layers T̃i and T̃i+1, CDMD performs an interpo-
lation operation based on blending with weights determined by distance transforms DTT̃i
and DTT̃i+1

.
CDMD’s main value was in showing that a grayscale or color image can be faithfully

encoded by a set of per-layer MATs. However, CDMD’s storage costs are prohibitive: if
we want a very high-quality reconstruction, storing the pixel-representations MATs for L
layers is barely more efficient than storing the original image encoded by these.

2.2. SMAT Method

The MATs extracted by CDMD (Section 2.1) provide an accurate way to encode an
image I. However, they are quite expensive, as one has to store L MATs, each represented as
a set of pixels with 2D locations and DT values. The issue of compactly encoding MATs has
received attention in areas outside image representation, most notably for encoding MATs
for binary shapes. In particular, representing MATs with splines was found to be good for
data compression as storing spline control points is less costly than storing all MAT points.
Yushkevich et al. [17] first proposed to fit the MAT with cubic B-splines for statistical
shape analysis. Zhu et al. improved this by automatically computing a compact spline
representation of the MAT of a 2D binary shape [18]. However, this approach handles only
vector shape representations, i.e., only works with the Voronoi-based MAT method of [19].
In contrast, the SMAT method of Wang et al. [4] used raster representations for Ti, STi , and
DTTi , fitting STi and DTTi with B-splines. SMAT is directly applicable to any binary image
Ti and also can use the computationally efficient methods for extracting the MAT [12]. As
such, we further adopt SMAT in our pipeline.

SMAT applies a least-squares algorithm [20] to fit every MAT branch in the 3D space
(STi × DTTi ) with a B-spline. For a user-provided approximation error γ between the MAT
and the B-splines, SMAT finds the fitting scheme with the minimal number of B-spline
control points required. Each control point cj = (pj, DTTi (pj)) ∈ R3 consists of a 2D
position pj and its corresponding DT value. Hence, instead of storing all MAT pixels (as
CDMD does), SMAT stores only a smaller set of control points. From these, SMAT rasterizes
the B-splines using de Casteljau’s algorithm [21]. Thus, the rasterized B-splines give a pixel-
based representation of the MAT. From this representation, a layer T̃i is reconstructed by
the disc-union method described earlier in Section 2.1. For full implementation details, we
refer to [4].

Summarizing: The CDMD method faithfully (but not compactly) represents a grayscale
or color image using pixel-based MATs for several layers. The SMAT method compactly
and faithfully encodes a MAT for a single layer using B-splines. Our SDMD proposal next
combines the two to faithfully and compactly represent a grayscale or color image.
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2.3. Image Compression Methods

Obviously, representing and compressing images can be done with many other meth-
ods than medial ones such as CDMD and SMAT. Many image compression methods have
been proposed in the literature, which can be divided into two main classes: lossless and
lossy ones. Lossy compression has seen great interest due to its particularly high compres-
sion ratio (CR) while maintaining visual quality. In the past few decades, countless lossy
compression approaches have been proposed. In the early days, transform domain coding
dominated, which includes the well-known discrete cosine transform, discrete wavelet
transform, and discrete Fourier transforms [22–25]. However, all these methods divide
the image into non-overlapping blocks for processing. When a high compression rate is
desired, the results tend to show specific artifacts such as blocking or banding.

In recent years, Deep Neural Network (DNN) methods have attracted increasing
interest due to their high compression rate and good quality. Important methods in
this area use Recurrent Neural Networks (RNNs) [26–28] and also autoencoders [29,30].
Generative Adversarial Network (GAN) methods [31,32] have also been developed recently.
However, all such approaches expose issues with the distortion metric that was used to train
the networks [32]. Besides, DNN methods require significant training data and training
computational effort.

Given the above, it is important to position our contribution—the SDMD method—
as follows.

• We do not aim quality wise or compression ratio wise to compete with the compression
effect of DNN techniques.

• We reduce significantly the blocking and banding artifacts of transform domain
coding methods.

• We do not need any training data or expensive training procedures.
• We offer full control on how the compression works by the exposed free parameter of

our method.
• Conceptually, we show that spline-based MATs are an efficient and effective tool for

color image compression, which is, to our knowledge, the first result in this area.

3. SDMD Method

Our SDMD method (Figure 1) combines the advantages of CDMD (Section 2.1), which
encodes color images with those of SMAT (Section 2.2), which compactly encodes MATs
for binary images using B-splines. Moreover, besides simply integrating CDMD and
SMAT, we propose three improvements that increase compression and quality: adaptively
encoding upper vs. lower threshold-sets (Section 3.1); separately treating chrominance and
luminance (Section 3.2); and removing Y-structures from the skeletons (Section 3.3).

3.1. Adaptive Layer Encoding

By definition, MATs require as input a binary image (Equations (1) and (2)). Hence, to
encode a grayscale image I this way, we need first to decompose it in a set of threshold
sets Ti. For this, CDMD proposed upper thresholding Ti = {x ∈ I | I(x) ≥ i}, 0 ≤ i < n.
Applying this thresholding for all selected layers L is however not good for compression.
Figure 2a explores this by showing a cushion treemap image—a well-known visualization
for hierarchical information [33]. Figure 2b shows one of its upper threshold sets Ti (for
i = 83). Here, the black area is the region Ti to be skeletonized. If we do so, the obtained
skeleton STi is quite complicated (Figure 2c), meaning, it requires many B-spline control
points to store via SMAT. However, if we chose instead to encode the white areas (regions
in I outside Ti) from Figure 2b, i.e., if we use a lower thresholding for this layer Ti =
{x ∈ I | I(x) ≤ i}, the resulting skeletons STi will be significantly simpler, see Figure 2d,
leading to fewer B-spline control points needed to encode them. Hence, instead of using
upper thresholding for all selected layers, we adaptively encode upper or lower threshold-
sets as follows. Let T↑i =

{
x ∈ R2 | I(x) ≥ i

}
, 0 ≤ i < n and Ti

↓ =
{

x ∈ R2 | I(x) ≤ i
}

, 0 ≤



J. Imaging 2021, 7, 153 5 of 26

i < n be the upper and lower thresholding operation [34], respectively. We choose between
the two to compute Ti by greedy optimization, i.e.,

Ti =

{
Ti
↓, if NTi

↓
< NT↑i

T↑i , otherwise
(4)

where NTi
↓

is the number of B-spline control points needed to encode Ti
↓, and similarly, NT↑i

for Ti
↑. Simply put: We evaluate how expensive it is to encode Ti

↓ vs. T↑i for each selected
layer and choose the cheaper encoding of the two.

(d)

(b)(a)

(c)

Figure 2. Adaptively encoding upper vs. lower threshold-sets. (a) Input image. (b) One threshold-set
of the luminance channel in (a) for intensity i = 83. (c) The generated medial axis of T↑83. (d) The
generated medial axis of T83

↓ , which is far less complex than, and thus preferred to, T↑83.

Adaptively encoding upper vs. lower threshold-sets is a simple idea, but it can greatly
improve the compression rate. Furthermore, it can even get better quality. Figure 3 shows
an example. For a heart anatomy image (400× 460 pixels, Figure 3a), images (b) and (c)
are reconstructions by the CDMD method (using only upper threshold sets) and our new
adaptive scheme, respectively. Compared with (c), (b) misses several thin curve structures
in the image, which are marked with red arrows in (a). This can be explained on one of the
selected layers T90 (d). As said, CDMD only uses upper threshold-sets (T↑90) in which the
shape to be encoded corresponds to the white areas in (d). Since the curves marked by the
red arrows are one or two pixels thick, CDMD fails to generate skeletons for these curves
(see image (e)), resulting in these curves missing in the reconstruction (b). In contrast, our
adaptive method considers both T↑90 and T90

↓ . Since NT90
↓

obtained by (f) is less than NT↑90
,

SDMD encodes T90
↓ , i.e., the black areas in (d). Since those black areas are thick enough to

generate accurate skeletons, the white curves are preserved.
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(a) (b) (c)

(d) (e) (f)

Figure 3. A comparison between reconstructions using the CDMD method (b) and our adaptive
scheme (c) for a heart anatomy image (a). (d) The threshold-set (layer) 90 of (a). (e) The skeleton
generated for T↑90. (f) The skeleton generated for T90

↓ .

3.2. Per-Channel Encoding

Figure 1 shows the SDMD method only for a grayscale image. For color images, the
CDMD method uses the RGB color space, handling each of the the channels independently,
as in Figure 1. This has a high redundancy, preventing high compression. Later, saliency-
based CDMD [35] improved this by using the YCbCr color space given that YCbCr can give
better subjective quality than RGB due to its perceptual similarities to human vision [36,37].
However, this method used the same compression parameters for the three channels. We
further take advantage of the human visual system’s lower acuity for chromatic differences
(Cb and Cr components) than for achromatic difference (Y component) [38,39] to treat the
three channels separately. We select fewer layers L for the two chrominance components
(Cb and Cr) than for the luminance one (Y), and also compress Cb and Cr more than Y,
using larger ε, σ, and/or γ. Concretely, given a user-selected parameter set (L, ε, σ, γ)
for the Y-channel, we use the set (n1L, n2ε, n3σ, n4γ) for the Cb and Cr channels. To find
good values for n1, . . . , n4, we fix three of the four coefficients to the value of one, in turn,
and vary the fourth coefficient over its allowable range and evaluate the result. This led
to n1 = 0.5, n2 = 5, n3 = 2, n4 = 1 as good values for producing high-quality results
(see Figure 4).

Input image Reconstructed image

SDMD

SDMD

SDMD

Y

Cb

Cr

Reconstructed Y

Reconstructed Cb

Reconstructed Cr

Figure 4. SDMD computation framework for color images. The red parameters indicate SDMD treats
chrominance (Cb and Cr components) and luminance (Y component) separately.
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Treating the three channels separately to compress chromatic components more than
the luminance one allows greater overall compression without a significant effect on image
quality. Figure 5 shows this by a sample image, in which (b) and (c) are the results when
setting the same and different parameters for different channels, respectively. In this figure,
SSIM is short for the Structural SIMilarity index [40], which measures how perceptually
close Ĩ is to I, where 1 indicates the two input images are identical, while 0 means the
two are completely different. We see that using different parameters for different channels
(Figure 5c) takes up about 30% less storage, while yielding results that are almost identical
to (b) both visually and SSIM-wise.

(a) Input image, 7500 kB (b) SSIM: 0.9953, Size: 3.44 kB (c) SSIM: 0.9952, Size: 2.43 kB 

Figure 5. Benefits of compressing the three Y, Cb, and Cr channels separately. (a) Input image.
(b) Using the same compression parameters for all three channels, i.e., n1 = n2 = n3 = n4 = 1.
(c) Using different parameters for the three channels, i.e., n1 = 0.5, n2 = 5, n3 = 2, n4 = 1 (see
Figure 4).

3.3. Boundary Y-Structure Elimination

In contrast to Figures 1 and 3, real-world images do not always have a background
that fully surrounds the foreground image structures. Hence, their threshold-sets to be
skeletonized will yield Y-like skeleton branches when the foreground structures reach
the image boundary. Figure 6 shows this where the black (foreground) spirals reach the
image boundary. The image is on purpose simple, for illustration aims. Encoding these
Y-branches costs additional B-spline control points, thus lowering the compression rate.
To get more compact skeletons, we present a Y-branch removal scheme, detailed next in
Figure 7. For any layer Ti, let AjBj be the boundary segments corresponding to Ti (black in
Figures 6 and 7) that touch the image boundary; see Figure 7b. Each such segment causes a
Y-structure in the skeleton. To remove these Y-structures, we extend the size of the binary
image Ti to be skeletonized by adding a semi-disc to each boundary segment, centered at
(Aj + Bj)/2 and of radius ‖Aj − Bj‖/2 (see Algorithm 1).

(a) (b)

Figure 6. (a) Spiral shape image. (b) One of its threshold-sets T↑128 (black) and its corresponding
skeleton ST↑128

(white). A Y-like structure (bold white) and the medial circle (in red) of a Y-junction are
also shown in (b).

Due to this extension (Figure 7b), the computed skeletons (and their corresponding
MATs) will reach out beyond the borders of the input image (Figure 7c). We next clip these
MATs by the input image and fit the remaining structure with B-splines using SMAT (see
Section 2.2). This gets rid of the unwanted Y-structures (see Figure 7d). When reconstructing
these B-spline representations, we need to prolong the MATs where they touch the image
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border. If not, sharp corners, i.e., acute angles between the image boundary and the semi-
disc diameter will be rounded-off, as shown by the red dashed curves in Figure 7f. This
can be explained by the medial circle of an endpoint in Figure 7d. A bit larger medial circle
of an extended point in Figure 7e, however, can totally cover the sharp corner. We extend
the MATs by linear interpolation and then stop when the 3D MAT curves just reach the
45-degree outer planes of the image as this is where the generated medial circle is tangent
to one of the image boundary edges, i.e., the medial circle is just about to leave the image,
as shown in Figure 7g.

Algorithm 1: Semi-disc extension algorithm
Input: Threshold-set Ti
Output: Extended Ti to be skeletonized

1 Scan the pixel border of Ti to detect the boundary segments AjBj.
2 Enlarge Ti by a band of thickness maxj ‖Aj − Bj‖/2 in all four directions.
3 Draw a semi-disc atop each segment AjBj with diameter ‖Aj − Bi‖ and centered

at (Aj + Bj)/2.

(a) (b)

(f)

distance
transform DT

H

R

45-degree outer plane

3D splines linear extension
of one 3D spline

image plane

(c)

(e) (d)

Aj Bj

(g)
Medial circle

Figure 7. The pipeline of Y-structures elimination. (a) Layer T↑128 of the image in Figure 6. (b) Semi-
disc extension of (a) with diameters in red. (c) The contour of (b) (in red) and the generated MATs
(in black). (d) The cropped MATs of (c). A medial circle (in red) of an endpoint of the skeletons is
also drawn in (d). (e) Extending MATs that touch the image boundary. A medial circle (in red) of
an extended point is also shown in (e). (f) Reconstructed layer T̃↑128. Red dashed curves show the
sharp corner results when directly using the cropped MATs in (d). (g) A schematic diagram of the
extension (black line segment) of one border point of the 3D MAT curves. The 45-degree outer plane
of the spiral image and the generated medial circle (black dotted line) of the extended endpoint are
also shown in (g).

Figure 8 compares SDMD with (a2–e2) and without (a1–e1) Y-structure removal on
five images that all have objects touching the image border. Additional examples also using
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more parameter settings are available in the supplementary material [41]. For each image,
we also list its SSIM value (similarity to the uncompressed original, see Section 3.2) and its
compression ratio CR, defined as the size of the original image divided by the size of the
SDMD encoding (for details, see Section 4.1). Green and red numbers in Figure 8 indicate
better and worse, respectively, SSIM and CR values for the Y-removal scheme as compared
to using plain SDMD. From these values, we see that the Y-removal scheme increases the
CR (from 3.5% to 31.4%), with negligible quality loss (around 0.002 SSIM decrease). The
CR gain depends on how many objects in the image touch its borders. For instance, image
(d) has only one object—the right green sphere—touching a small part of the border, so
the Y-removal scheme boosts CR by only 3.5%. In contrast, image (b) has 8 color bands
touching the image border along its entire extent, so the Y-removal scheme boosts CR by
31.4%.

（ ）

_ _ _ _ _

Figure 8. A comparison of the SDMD method for five images without Y-structures removal (a1–e1) and with this scheme
used (a2–e2). For each image, we show the SSIM quality and compression ratio CR. We also indicate what we lost (in red)
and what we gained (in green) in CR and SSIM when using the Y-removal design.

4. Results

We comprehensively evaluate the proposed SDMD method from various angles,
as follows.

• First, we build an evaluation benchmark (Section 4.1);
• We study how SDMD depends on its free parameters (Section 4.2);
• We quantitatively assess the adaptive layer and per-channel encoding extensions

proposed earlier (Section 4.3);
• We compare our method with the original CDMD method, the well-known JPEG

technique, and the recently developed JPEG 2000 and BPG. (Section 4.4);
• Finally, we show how SDMD performs on images of different resolutions (Section 4.5).

4.1. Benchmark

The SDMD encoding consists of a tuple (w, h, {li}), i.e., the width w and height h, in
pixels, of the input image I, and the L selected layers li. Each layer li = (i, f , {bk

i }) encodes
the layer number or intensity value i, a flag bit f that tells whether this layer needs to be
flipped or not (see Section 3.1) and a set of B-splines {bk

i } encoding the layer’s MAT. Each
B-spline bk

i = (dk
i , {cj}) consists of a degree dk

i ∈ N and a set of control points cj ∈ R3

(see Section 2.2).
SDMD is evaluated based on two factors: Quality Q of the reconstruction Ĩ of the

input image I, which is measured by the SSIM difference of the two images (see Section 3.2)
and the Compression ratio CR, defined as CR = |I|/|SDMD( Ĩ)|, i.e., the byte-size of the
original image I divided by the byte-size of the SDMD encoding of Ĩ, which has been
described above.



J. Imaging 2021, 7, 153 10 of 26

To evaluate the SDMD method comprehensively, we need to create a benchmark
involving multiple image types. Indeed, as earlier work using CDMD to represent images
has shown [3,35], MAT-based image representations work best for images consisting of
relatively large shapes overlaid on a smooth background. This is not surprising given that
MATs were also originally found to be most effective for the analysis (and representation)
of shapes [7]. As such, we also target our method to represent color imagery of a similar
type. We found several classes of imagery that fall within this typology, namely scientific
visualizations of continuous data (scalar and vector fields), medical images (from, e.g., CT,
X-ray, and MRI scans), synthesized images using graphics rendering and vectorization
methods [42], graphics art (logos, graphics design), and cartoon images. High-quality, low-
size representations of these image types are needed for many applications such as remote
browsing of specialized content (SciVis, medical) or general-purpose content (webpages)
when, e.g., using low-speed connections. For our evaluation, we consider a benchmark
with the above-mentioned five image types, each type having at least 10 images. Table 1
shows a summary of the benchmark.

Table 1. The benchmark of five image types (available at [41]) used throughout this work for
evaluating SDMD.

Type Description Quantity

SciVis data Scientific visualizations (scalar and vector fields) 15
Medical images Images generated by CT, X-ray and MRI scans 10
Computer graphics Images generated by rendering and vectorization 10
Graphics art images Simple shapes such as clip art, logos, and graphics design 20
Cartoon images Animated cartoons and comic strips 10

4.2. Parameters Effect

As Figure 1 shows, SDMD depends on four parameters: the number of selected layers
L, the size of removed islands ε, the saliency threshold σ, and the spline fitting tolerance γ.
To find a good trade-off between Q and CR, we fix, in turn, three of the four free parameters
L, ε, σ, and γ to empirically-determined values and vary the fourth parameter over its
allowable range via uniform sampling. This method is also applied in [3] and [35] and is
much simpler and faster than the usual hyper-parameter grid-search used, e.g., in machine
learning [43].

Figure 9 shows the results of this parameter search for five images, one of each type in
the benchmark. The actual images are shown to the left. The subsequent four plots (b1–b4)
show how Q and CR are related when varying each of the L, ε, σ, and γ parameters, while
keeping the other three fixed to their default values. The colored line plots indicate the
Q vs. CR graphs for each image, with dot sizes along these lines indicating the varying
parameter’s values (see the legends). Overall, the plots in Figure 9b1–b4 show a negative
correlation between CR and Q for all images and parameter variation experiments, which
is expected. Indeed, higher quality leads to a lower compression ratio.

Figure 9b1 shows the trade-off between Q and CR as a function of the number of
layers L. We sample L from 10 to 45 with a step of 5, following observations in [3] stating
that Q and CR hardly change for L > 40. This is also visible from (b1): when the number of
layers L increases to around 40, the points along a line almost overlap. This is most salient
for the blue curve (graphics art images), where Q and CR do not change at all when L > 10.
In addition to L, the other three parameters are set to ε = 0.01, σ = 1.0, and γ = 0.002.
Chart (b1) also shows that except graphics art images (a1), the other four curves have a
‘tail’ pointing downward, indicating a notable drop of SSIM for low L values for a minimal
increase in CR. As such, we deem that a value L of 10 to 15 for graphics art images and
15 to 20 for the other four types are good preset values. Figure 9b2–b4 show quite similar
trends for σ, γ, and ε, as discussed above for L. Lower parameter values yield lower CR
and higher SSIM, and conversely.
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Figure 9. Trade-off between Q (SSIM) and CR for five image types (a1–a5) as a function of parameters
L (b1), ε (b2), σ (b3), and γ (b4), respectively. The box colors in (a1–a5) corresponds to the five colors
of scatterplots in (b1–b4).

Given all the above, we settle to the preset values (or ranges) L ∈ [10, 20], ε = 0.01,
σ ∈ [0.6, 1.4] and γ = 0.002 that give a good SSIM vs. CR tradeoff. We next use SDMD
with parameters in these ranges to evaluate the method on more images and also compare
its results with other compression methods.

4.3. Quantitative Evaluation of Adaptive Layer and Per-Channel Encoding

Section 3 details three improvements to the original CDMD method: adaptively
encoding upper or lower level-sets, separately treating chrominance and achrominance
channels, and eliminating Y-terminations in the MAT. We have discussed the added value
of Y-termination removal already in Section 3.3, showing that it produces a significant
CR boost for basically no SSIM decrease. As such, we next focus on the evaluation of the
adaptive layer and per-channel encoding schemes.

Figure 10 shows the average SSIM vs. CR for our five image types for three SDMD
schemes, i.e., the basic SDMD method (blue dots), SDMD with adaptive layer encoding
on (red dots), and SDMD with both adaptive layer encoding and per-channel encoding
on (green dots). Each of the five charts corresponds to one image type. Each polyline in a
chart corresponds to a different parameter setting, as indicated in the legend, following
the parameter-setting discussion in Section 4.2. Finally, each colored dot in a polyline
corresponds to one of the three SDMD schemes mentioned above. For graphics art images,
as Figure 9 showed, fewer layers L and slightly larger island thresholds ε can produce
good results, so we chose for these the parameter combination L ∈ {10, 15}, ε = 0.03, σ ∈
{0.6, 1.4}, γ = 0.002. For all the other image types, more layers L and a slightly smaller ε
are used, as indicated in the legend in Figure 10.
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Figure 10. The average SSIM vs. CR for basic SDMD (blue dots), SDMD with adaptive layer encoding (ALE, red dots) and
SDMD with both an adaptive layer and per-channel encoding (ALE + PCE, green dots) for graphics art images (a1), cartoon
images (a2), computer graphics (a3), medical images (a4), and SciVis images (a5). (b) Summarization of the first five plots,
with colors indicating image types.

For ease of reading, Table 2 aggregates the results detailed in Figure 10, showing the
loss (↓) and gain (↑) in SSIM and CR, respectively, when using the adaptive layer encoding
(ALE) and ALE plus the per-channel encoding (PCE). From this table and Figure 10, we see
that the quality loss is very little (from 0.0002 to 0.0032) for all image types, regardless of
whether we use only ALE or both ALE and PCE. We also see that, for medical imagery, the
gain in CR of both ALE and PCE is the smallest, 18% on average. This is mainly because
most such images are grayscale. Hence, the effect of per-channel encoding (PCE) is almost
zero. In contrast, for cartoon images, ALE + PCE yields an increase of CR of 128%, that
is, the two enhancements more than double the compression ratio as compared to plain
SDMD. This can be explained by the fact that most cartoon characters have a thin black
outline. When lower thresholding such images, we obtain threshold sets that have very
thin components, similar to the one shown in Figure 2b. Hence, as in that example, ALE
will greatly simplify the MATs to be encoded for cartoon images, yielding higher CR values.

Table 2. Decrease in SSIM (↓) and increase in CR (↑) for the adaptive layer encoding (ALE) and
ALE plus the per-channel encoding (PCE) as compared to the original SDMD method, averaged per
image type.

Type SDMD + ALE SDMD + ALE + PCE

(a1) Graphics art images 0.0002↓ / 29%↑ 0.0010↓ / 74%↑
(a2) Cartoon images 0.0006↓ / 38%↑ 0.0007↓ / 128%↑
(a3) Computer graphics 0.0015↓ / 7%↑ 0.0019↓ / 45%↑
(a4) Medical images 0.0025↓ / 7%↑ 0.0032↓ / 18%↑
(a5) SciVis data 0.0024↓ / 9%↑ 0.0032↓ / 79%↑

Finally, Figure 10b shows all the results from the previous five charts in the same
figure but in a single image. Note that the ranges of both the CR and SSIM axes of all charts
are different, chosen so that we ‘zoom in’ in each case on the range in which the actual
data varies. Figure 10b lets us compare how SDMD (with the ALE and PCE adaptations)
performs across different image types. We see here, in more detail than Table 2, that SDMD
works particularly well for graphics art images (red dots). We also see that the ALE and PCE
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adaptations yield only small CR gains for the medical images (black dots are distributed
along almost vertical lines). For the cartoon images, scientific visualizations, and computer
graphics images, the two adaptations perform in-between medical images and graphics
arts images, that is, increase CR for a limited SSIM decrease. Given these results, we
conclude that both adaptations are of added value, as they create a negligible SSIM loss for
a significant increase in CR for all image types and all parameter combinations.

4.4. Comparison with CDMD and JPEG

In this section, we compare the improved SDMD method—using the adaptive layer
and per-channel encoding which showed added-value in the evaluation in Section 4.3—
with the CDMD method and JPEG for all our benchmark images.

4.4.1. Comparison with the Original CDMD Method

Figure 11 compares the results of SDMD (red dots) and the original CDMD method
(blue dots) under the same parameter settings. Each plot in the figure represents images of a
different type. Similar to SDMD, we define compression ratio (CR) as CR = |I|/|MAT( Ĩ)|,
where MAT is the size (in bytes) needed to store STi with the delta-encoding scheme
proposed by CDMD, rather than the B-spline scheme used by SDMD. The large dots in
the plot show the CR and SSIM averages over all the benchmark images for one parameter
setting. Hence, different large dots correspond to different parameter settings. To show
more details, we also display a star plot for one of the parameter settings, i.e., connect the
large dot (average over all images) with small dots that indicate the CR and SSIM values
for every individual image. Hence, small stars indicate little deviation in CR and SSIM
from the average over the image benchmark; large stars indicate more variability of these
metrics as a function of the actual image.

Figure 11 shows that the star plot shapes of CDMD and SDMD are quite similar. In
other words, CDMD and SDMD exhibit a similar dependency on the image type. This is
due to the fact that SDMD inherits the thresholding and skeletonization method of CDMD.
More importantly, the points plotted for SDMD (red) are always at the bottom right of those
of CDMD. That is, SDMD always gets a significantly higher CR for only a small decrease in
quality. Quantitatively, on average, compared with CDMD, SDMD reduces SSIM by 0.003
(art graphics images (a)), 0.008 (cartoon images (b)), 0.008 (computer graphics images (c)),
0.01 (medical images (d)), and 0.008 (SciVis images (e)). On average, compared to CDMD,
SDMD increases compression by a factor of 3.4 (a), 3.7 (b), 3.2 (c), 2.5 (d), and 3.8 (e), which
we deem to be a very substantial improvement.

4.4.2. Comparison with JPEG

Figure 11 also allows comparing SDMD with JPEG, the latter run under five quality
settings, i.e., 10%, 30%, 50%, 70%, and 90%. For each such quality setting, we plot the
average CR and SSIM of JPEG as a single green dot in each chart in Figure 11. Green
dots are sorted right-to-left by increasing quality setting values—that is, the higher the
JPEG quality setting, the lower the obtained CR. If we compare SDMD with JPEG, we
see that SDMD cannot reach the same SSIM values as when JPEG uses its 90% quality
setting—the topmost green dots in each plot are above the topmost red dots. However, the
difference in quality (SSIM) is quite small, if we look at the vertical spread of the green
vs. red dots—about 2% on average. Separately, we see that SDMD always gets higher
compression rates than JPEG for all situations—red dots are always (significantly) to the
right of the green dots. We also see that the green dots are spread far more along the
vertical (SSIM) axis than the horizontal one, indicating that JPEG’s quality setting can
influence SSIM far more than CR. In contrast, the red dots are spread far more along the
horizontal (CR) axis than the vertical ones, indicating that SDMD’s settings can influence
compression significantly for only a small drop of quality. In particular, if we are after
strong compression, SDMD performs better than JPEG: Compared to JPEG with a quality
of 10% (the rightmost green dot in each plot), SDMD always gets both higher CR and better
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quality, except for the cartoon images. When fewer layers and larger saliency thresholds
are used (rightmost red point in each plot), SDMD not only gets better quality but yields a
compression that is 12 (a), 3.3 (c), 2.5 (d), and 2.9 (e) times higher than that of JPEG with a
quality setting of 10%.

(a)

SSIM
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CDMD

JPEG

SDMD

CDMD

JPEG
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CDMD

JPEG

SDMD

CDMD

JPEG

SDMD

CDMD
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CR CR CR

CR CR

(b) (c)

(d) (e)

Figure 11. Comparison of CDMD (blue dots), JPEG (green dots), and SDMD (red dots) for graphics art images (a), cartoon
images (b), computer graphics (c), medical images (d), and SciVis data (e). The actual image data (smaller dots) are
connected to the corresponding average value (larger dots) for one parameter setting of each method.

Figures 12 and 13 further refine the above insights by showing 20 images, spanning the
five types of our benchmark (Table 1), compressed by JPEG (with a quality of 10%) and with
SDMD. The results for the entire benchmark are available in the supplementary material [41].
From the zoomed-in areas of specific blocks on the right, we observe that JPEG with a low-
quality setting generates obvious artifacts such as checkerboarding (Figure 12b1,b7), banding
(Figure 13b2–b4, b8 and b13), background color changing (Figure 13b2,b9), and object details
missing (Figure 13b9). In contrast, SDMD yields better quality (SSIM) and does not exhibit
the aforementioned artifacts, leading to images which, we argue, are almost indistinguishable
from the originals. Separately, SDMD also achieves much higher compression rates than JPEG,
especially for the scientific visualization (Figure 13c1,c2), vector graphics (Figure 13c4), ab-
stract shapes (Figure 13c7), and illustration (Figure 13c9) image types. The good performance
of SDMD on medical images (Figure 12c1–c5) suggests that SDMD could be very well suited
and superior to JPEG in the context of remote/online viewing of medical image databases.

4.4.3. Additional Comparisons

As stated in Section 2.3, tens of image compression methods exist. We did not perform
an evaluation against these since, as already outlined in Section 1, our main research
question was to explore the potential of spline-based MATs as an alternative tool to im-
age representation, which includes image compression applications (Section 4) but also
other applications such as super-resolution images generating (Section 5.1) and salient
feature-preserving simplification (Section 5.2). Therefore, for image compression, we only
evaluated SDMD in Section 4 against the arguably most widely used compression method,
i.e., JPEG. Given the positive results outlined by the comparison with plain JPEG, next,
we explored how SDMD compares with newer variants proposed in the literature as re-
placements for JPEG that increase compression ratios while preserving image quality, i.e.,
BPG [44] and JPEG 2000 [23].
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Figure 12. Left pane: Comparison of JPEG for quality set to 10% (b1–b7) with SDMD (c1–c7) for 7 input images (a1–a7) of
medical type. For each result, we show the SSIM quality Q and the compression ratio CR. Right pane: Zoomed-in areas,
marked in green in the images in the left pane, show subtle differences between the original, JPEG, and SDMD.
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(a10) Cartoon images (b10) Q = 0.951, CR = 288 (c10) Q = 0.956, CR = 346

Zoom in
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Figure 13. Left pane: Comparison of JPEG for quality set 10% (b1–b13) with SDMD (c1–c13) for 13 input images (a1–a13)
which span four types in Table 1. For each result, we show the SSIM quality Q and compression ratio CR. Right pane: For
each row, we selected an area of one image to zoom in for detailed comparison.

Figure 14 compares SDMD, BPG, and JPEG 2000 for five images, one of each type in
our benchmark. The actual images are shown in Figure 15. For each image, we run SDMD
(solid line) under four parameter settings, JPEG 2000 (dotted line) under five compression
settings, and BPG (star markers) under its default setting. As visible, for the graphics art
image (blue dots), SDMD produces both higher quality and compression than JPEG 2000.
For the other four types, JPEG 2000 generates better quality and/or higher CR than ours.
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For all these five types, BPG generates higher SSIM than SDMD when the CRs of the two
are similar. However, for all above cases, the differences, both in Q and CR, are quite small.
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Figure 14. A comparison of SDMD (dots), JPEG 2000 (squares), and BPG (stars) for a graphics art
image (blue), a cartoon image (red), a computer graphic (yellow), a medical image (cyan), and a
SciVis image (green).

Figure 15 refines this insight by showing the reconstruction results under the quality
setting indicated in Figure 14 with the dashed box. Overall, the three methods perform
visually very similarly, as already indicated by the similar SSIM values in Figure 14. The
zoomed-in areas show a few subtle differences: For strong-contrast images, such as the
first two in Figure 15, JPEG 2000 tends to create some small-scale blur artifacts. This is
also seen in the fact that, for the first image in Figure 15 , SDMD yields both higher SSIM
and CR than JPEG 2000. Compared to BPG, SDMD’s results are very similar. For the third
image, which exhibits a smooth luminance gradient in the shadow area, SDMD captures
this gradient quite well. In contrast, JPEG 2000 and BPG cause a slight amount of blocking
artifacts. For the fourth image, JPEG 2000 and BPG create a small amount of blocking and
false colors (purple) in the near-constant-luminance, dark blue, area. In contrast, SDMD
does not have such problems but suffers from loss of small-scale, faint, details—due to
its selection of threshold-sets to be encoded (Section 4.2). Finally, for the fifth image, all
methods produce basically visually identical results.

Summarizing the above observations, we conclude that SDMD can create images that
are visually very similar to those produced by modern variants of JPEG, with a slight loss
in quality and compression ratio.

4.5. SDMD Performance on Images of Different Resolutions

All images in our benchmark have quite high resolutions (20002 to 30002 pixels). We
next test how SDMD performs on images of different resolutions. For this, we start with a
high-resolution image and generate m downscaled images from it using ImageMagick [45].
Next, we run SDMD on the total m + 1 images and study how SSIM and CR vary as a
function of the image size.
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Figure 15. A comparison of SDMD (a1–e1) with JPEG 2000 (a2–e2) and BPG (a3–e3) for 5 input images, one of each type in
Table 1. For each result, we show the SSIM quality Q and compression ratio CR. The right three columns show selected
areas zoomed in on the three images in the same row to the left, for detailed comparison.

Figure 16 shows this analysis for two graphics art images of m = 8 different resolutions
each, from 320× 200 to 2560× 1600 pixels. For additional insights, we also compare SDMD
with CDMD and JPEG on these images. The charts show the CR vs. SSIM plots as we
vary the image resolution. That is, for a given method, we plot a polyline of m = 8 points,
indicating the respective CR and SSIM values for all the resolutions. We also show the
actual images for the lowest and highest, respectively, resolutions for both SDMD and
JPEG.

Several insights can be obtained as follows. First, we see that SDMD dominates
CDMD in CR values, with no quality loss whatsoever (green background image) and a
minimal quality loss of about 2% (spiral shape image). We also see that quality increases
with input image size. For example, for the spiral shape image at the lowest resolution
(320× 200 pixels), both JPEG and SDMD yield a quite low quality, with SDMD being about
5% better than JPEG. The loss of quality is also visible in the actual image snapshots (shown
on the left of the chart) that exhibit fuzzy effects. However, the reasons for fuzziness are
different: For JPEG, this is caused by blocking artifacts; for SDMD, the fuzziness is caused
by the inaccurate reconstruction of threshold-sets due to the spline fitting error. Still, the
SDMD reconstruction looks overall smoother and sharper, as also reflected by its higher
SSIM score. For the largest resolution image (2500× 1600 pixels), both JPEG and SDMD
produce visually good reconstructions and have similar (high) SSIM scores. However,
SDMD compresses about 16 times more than JPEG. Interestingly, for the second image
example (green background image), SDMD produces a quite smooth reconstruction both
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at the minimal and maximal resolution. In contrast, JPEG shows a pixelated reconstruction
for the lowest resolution and strong banding artifacts for the highest resolution. Here,
again, SDMD compresses better than JPEG: about 4 times more for the highest resolution.

JPEG (2560 X 1600)

SDMD (320 X 200)
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Figure 16. A comparison of SSIM vs. CR for the SDMD (red), CDMD (blue), and JPEG (green)
methods for two graphics art images of 8 different resolutions each, from 320× 200 to 2560× 1600
pixels. Note that the image sizes shown in the figure are not proportional to their actual sizes, for
space reasons.

From Figure 16, we also observe that SSDMD > SCDMD > SJPEG, where SSDMD
indicates the slope of the curve of SDMD, and similar for CDMD and JPEG. This means that
as the input image becomes larger, the compression rate of the SDMD method increases
the fastest, followed by CDMD, and finally by JPEG. The reason for this is determined
by the compression principle of the three methods. JPEG compresses images by splitting
them into 8× 8 blocks; CDMD captures shapes in the image using MATs; and SDMD
further encodes skeletons with B-splines. Intuitively, we can say that the ‘compression unit’
is two-dimensional (block) for JPEG, one-dimensional (skeleton branch pixel-chain) for
CDMD, and zero-dimensional (B-spline control point) for SDMD, respectively. Figure 17
further illustrates this by showing (a) one of the threshold-sets for the spiral image in
Figure 16 and (b) its corresponding spline representation. As already explained, SDMD
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only stores the locations of the control points shown in Figure 17b. Hence, if we uniformly
scale the input image by any arbitrary factor, the control points will stay the same in terms
of relative positions and number, or only change very little due to small-scale sampling
issues related to the fixed pixel-grid. Hence, SDMD will compress a larger version of the
spiral image as efficiently as a smaller version.

(a) (b)

Figure 17. One of the level-sets for the geometric image in Figure 16 (a) and its corresponding
B-spline MAT representation (b).

5. Applications

Besides image compression, SDMD provides ways to create super-resolution images and
selective encoding of salient features, as discussed next in Sections 5.1 and 5.2, respectively.

5.1. Super-Resolution Images

Image super-resolution (SR) is a popular technique for constructing higher-resolution
images from low-resolution ones. Recently, AI researchers have used powerful deep
learning algorithms for SR tasks and achieved high quality [46–48]. However, as pointed
out recently in [49], deviations in the characteristics of the training data and test images
can cause significant performance degradations. Besides, such approaches also require
considerable training data. In comparison to deep-learning methods, SDMD is fully generic
and does not need training data or special interpolation tricks [50]. To perform SR, SDMD
simply rasterizes the reconstructed splines at the desired target resolution during step 4 in
Figure 1. As this occurs during reconstruction, generating the SR result does not incur any
extra storage. Figure 18a2,b2 show a text image and a graphic generated by gradient meshes,
both at a relatively low 500× 500 pixels resolution. Images (a4) and (b4) show the SDMD
reconstructions of these two images at a six-times higher resolution, i.e., 3000× 3000 pixels.
Any other target resolution can be used directly given a computed SDMD encoding of an
image. As seen from the enlarged areas in Figure 18, the SR reconstruction improves the
discretization artifacts of the original images while keeping the reconstructed boundary
clear and smooth.

5.2. Salient Detail Encoding

As explained in Section 2.1, SDMD simplifies an image globally, e.g., removing islands
smaller than a global threshold ε or pruning skeletal branches with a saliency below a
global threshold σ. This is not desirable in practice for certain images that contain different
levels of detail. Figure 19 gives an example. For the input image (a), (b) shows the SDMD
reconstruction using the default global island threshold ε = 0.001. As visible from the
enlarged area on the right, SDMD loses some small but important details of the cat’s face.
Further reducing ε can alleviate this, but this also allocates more information to encode
the (less important) background, thereby reducing compression. To address this, we allow
users to define salient areas based on manually drawn maps, as shown in Figure 19c. Based
on these maps, we use a low threshold for salient areas (ε = 0.0005 in this example) and a
larger threshold for regions outside the important areas (ε = 0.0015 in this example). This
way, we obtain an identical CR as when using the global ε setting. However, the quality



J. Imaging 2021, 7, 153 21 of 26

slightly increases since we now preserve more details in the salient area (d). Apart from
manually designed maps, automatically computed saliency-maps generated by supervised
methods [51] or unsupervised methods [52–54] can also be used out-of-the-box with SDMD.

(a1) (a3)(a2) (a4)

(b1) (b3)(b2) (b4)

Figure 18. The super-resolution effect on a text image (a) and a graphic generated by gradient meshes (b). (a1,b1) Enlarged
areas of the input images (5002 pixels) (a2,b2). (a3,b3) Enlarged areas of SDMD reconstructions (30002 pixels) (a4,b4).

(a)

(c)

(b) Q = 0.9676, CR = 20.4

(d) Q = 0.9683, CR = 20.4
Figure 19. The benefits of handling salient information. (a) Input image. (512× 337) (b) The SDMD reconstruction with the
enlarged area of the face on the right. (c) The manually set salient area. (d) The SDMD reconstruction considering salient
information.



J. Imaging 2021, 7, 153 22 of 26

6. Discussion

We next discuss several aspects of our SDMD image compression method.
Speed: SDMD is linear in the number of pixels of the input image. To gain more in-

sights, we measured the time SDMD needed for a color image at eight different resolutions
on a Linux PC with an Nvidia RTX 2060 GPU. Table 3 lists the timings of the four key
steps of SDMD (skeletonization, spline fitting, reconstruction, and interpolation). Each
step shows the time needed to process all three channels (YCbCr). Skeletonization and
reconstruction are relatively less expensive operations as they are very efficiently imple-
mented on the GPU. Interpolation is a bit more expensive since it needs to compute distance
transforms for all the selected layers and use them to perform a per-pixel interpolation
(Section 2.1). Spline fitting executes the least-squares optimization and the adaptive-degree
fit-and-split algorithm in [4], which dominates the running time.

Table 3. Running time of four SDMD steps on images of different resolutions, in milliseconds.

Operation 320 × 200 640 × 400 960 × 600 1280 × 800 1600 × 1000 1920 × 1200 2240 × 1400 2560 × 2000

Skeletonization 48 182 294 729 1119 1559 3501 4168
Spline fitting 1648 1236 2136 2098 2812 3849 4650 5592

Reconstruction 62 118 292 561 951 1583 2502 3618
Interpolation 28 260 345 1004 1479 2105 3904 4960

Ease of use: SDMD has four free parameters that affect the trade-off between the
compression ratio and image quality, as discussed in detail in Section 4.2. The meaning of
these parameters is quite straightforward: L determines how many layers (image intensities
for a grayscale image) are used for the reconstruction; ε controls the maximum size of
small-scale details that are removed; σ controls how much to smooth isophote or isochrome
contours in an image; and γ tells how accurately B-splines fit the MAT, i.e., how precisely
we want to encode the position and shape of objects in an image. More importantly,
Section 4.2 provides good defaults for all these parameters and also shows that the method
is predictable and robust when these are varied away from their presets.

Replicability: We implemented the entire SDMD method in C++. We compute MAT
and reconstruct the threshold-sets from a rasterized spline using the public CUDA code
provided at [55]. We provide the full source code of SDMD, as well as the image benchmark
used in this paper, for replication purposes [41].

Limitations: While SDMD can handle any image type and resolution, it exhibits
limited performance for small images (see Figure 16). Figure 3 shows an additional result
in this sense for an image of 4002 pixels. Furthermore, SDMD cannot get better compression
and quality than JPEG for all image types even for large resolution images: Like CDMD,
SDMD is not good at handling images with many fine details (high spatial frequencies).
Figure 20 illustrates this by showing three such images. Their SSIM scores are quite low due
to the fact that SDMD cannot encode and reconstruct very thin image details. Additional
insights shown in Section 4.4.3 show a similar positioning of SDMD vs. more modern
variants of JPEG, specifically BPG and JPEG 2000. However, we argue that, for any practical
purpose, the SDMD representations actually look visually very similar to the input images
and are largely free of obvious artifacts, such as color banding, checkerboarding, or false
hues. This may suggest that the SSIM metric used to compare images is too strongly
penalizing such small details and opens the broader question on which metrics should be
further considered to compare lossy-compressed images in practice. This is an important
question that, albeit out of our current scope, deserves further research.
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(b1) Input image (b2) SDMD result. SSIM = 0.83, CR = 10

(a1) Input image (a2) SDMD result. SSIM = 0.70, CR = 30

(c1) Input image (c2) SDMD result. SSIM = 0.80, CR = 25

Figure 20. Poor performance (both in SSIM and CR) for SDMD when dealing with images with many
fine details, such as animal furs (a), trivial objects (b), and greenery (c). The sizes of the three input
images are all 2560× 1600.

7. Conclusions

We have presented SDMD, a method for compressing color and grayscale images by
encoding dense medial descriptors obtained from the images’ threshold sets with accurate
B-splines. SDMD adapts the existing CDMD method—proposed for encoding images
with medial descriptors— in four directions, namely (a) replacing the expensive pixel-
chain coding of medial descriptors by B-splines, (b) adaptively encoding upper or lower
threshold-sets to minimize the amount of storage space, (c) separately treating chrominance
and achrominance, and (d) eliminating medial Y-structures that touch the image boundary.
To study the effectiveness of our method, we considered a benchmark of five different
image types, each type having at least 10 images. The quantitative evaluation showed
that our adaptations of CDMD greatly improve compression at only a small quality loss.
Furthermore, the proposed SDMD delivers superior compression to the well-known JPEG
method at similar or even better quality, especially for large images. Finally, we show
how SDMD can be used out-of-the-box to generate super-resolution images and also can
be adapted to perform local salience-based compression. SDMD is implemented on the
GPU, making its application take only a few seconds on a modern PC for images up
to 20002 pixels.

Several future work directions are possible. First, more extensive evaluations are
of added value, considering more compression methods, e.g., deep neural network ap-
proaches. Secondly, extending SDMD beyond grayscale or color image representations to
encode 2D and 3D scalar fields for scientific visualization is an interesting avenue to follow.
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Finally, we aim to explore the potential of dense medial descriptors for more applications,
e.g., salient corner detection in general images.
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