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Abstract

Several visualisation methods have been recently proposed to aid a wide variety of users in the
exploration of geographical trajectory, or trail, datasets. Such datasets consist of thousands up to
millions of spatiotemporal trails that are also attributed by many additional data variables related
to the identity of the tracked items, type of motion being recorded, data provenance, and more. As
both data size and data dimensionality grow, finding efficient and effective ways to answer concrete
questions, as well as discover unknown insights, from such data become increasingly important. We
present an overview of recent information visualisation and visual analytics developments in this
direction, with the aim of bridging the gap between technical developments in this area and actual
users and use-cases that can benefit from them. In this overview, we discuss strengths, limitations,
assumptions, and other important characteristics of such visualisation methods, so as to help domain
experts find optimal methods for their given application contexts. We illustrate our discussion with
several examples of visualisation of large-scale, real-world, trajectory datasets related to migration
data and use-cases.

1 Introduction

The last decade has witnessed the rapid increase of data sources concerning many societal aspects, including
migration. Such data sources, e.g., RPC’s admissions and arrivals [Refugee Processing Center, 2020] or
the Migration Data Portal [MDP, 2020], provide increasingly rich and diverse data concerning the origins,
categories, amounts, and paths followed by migrating individuals and groups. As such portals collect
and aggregate data from a variety of sources and types, they provide an alternative, and important,
source for migration researchers, policymakers, and the grand public for studying and understanding
migration-related phenomena [Bilsborow, 2016].

However, data availability is only one of the necessary ingredients to support insight forming and
decision making. The other key ingredient is the availability of tools allowing stakeholders to clean,
analyse, and present data in ways that support answering their questions and completing their tasks.
Such tools include statistical analysis, data mining, and, last but not least, data visualisation.

Visualisation tools applicable to migration data cover a variety of approaches. As geographical
attributes, such as origin and destination of migration flows and paths taken in between are key to
migration data, many visualisation approaches use a map-based presentation to encode spatial information,
and overlay this with additional attributes on demand, such as types, sizes, and time of migratory
flows [Gapminder Org., 2020]. However, efficiently and effectively visualising large amounts of migration
data in this spatial metaphor is challenging. One of the key issues here is the relational nature of such
data, which relates origins to destinations by paths. Displaying large datasets containing thousands of
such paths or more, each one potentially annotated with multiple attributes, can easily create a high
amount of clutter, which makes analysis hard or even impossible.

This chapter provides a practical overview of visualisation methods, techniques, and workflows for the
exploration of large trajectory datasets such as present in migration data. The main aim is to provide
data scientists and, at a wider level, researchers interested in studying migration data who do not have
a visualisation background, with guidelines on how to choose and use existing visualisation tools and
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techniques to study their trajectory-centric data. When the practitioner involved with migration data has
a better understanding of the process of preparing and creating visualizations, he or she will be in a better
position to understand the shortcomings, biases, and ways of deceiving the viewer by these visualizations –
and thereby be able to avoid such issues.

This chapter is structured as follows. Section 2 introduces a generic model to store and manipulate
migration-related – or more generally, trajectory-based – data. Next, the same section introduces several
classes of visualisation methods for such data, outlining their advantages and limitations for specific
tasks. After having discussed data and tools, Section 3 details the typical workflow that the data scientist
follows from the moment when a new data source, or dataset, is made available up to and including the
iterative and interactive exploration of created visualisations that is used to answer actual questions on
the data. Section 4 unifies the discussion on data modelling, tools, and visual exploration outlining key
open challenges related to the study of trajectory-based data, and also sketching directions for further
reading and research.

2 Background

Designing and validating visualisations follows typically a so-called nested model [Munzner, 2009] consisting
of four steps: (1) The domain problem is characterised by eliciting the terms and high-level tasks that are
commonly used by specialists in the respective field (migration study, in our case). (2) The data that
describes these tasks and terms are abstracted into a so-called data model. (3) The data and tasks elicited
during the previous steps are mapped to visual encodings, i.e., mapping data to visual shapes that are to
be rendered on the screen, and interaction design, i.e., mapping tasks to interactive operations that one
can execute on the visual shapes. (4) The visual and interaction designs proposed in the previous step are
subsequently implemented in concrete software tools.

Constructing visualisations ideally follows all the steps (1-4), which are executed iteratively several
times so as to refine the understanding of the users’ needs and thereby the creation of visualisations
that optimally address these needs. Doing this, however, requires considerable amounts of effort and
specialised knowledge, both in the problem domain and in visualisation, computer graphics, and interaction
programming. Moreover, such paths require a concrete, specific problem with particular users and their
needs. Detailing the design of such specific visualisations is possible, but less interesting for the wider
public.

In this chapter, we aim to provide actionable knowledge to non-specialist users interested in under-
standing the types of visualisations that can help the study of migration data in general, as opposed to
the design of custom visualisations for a specific problem. Moreover, we focus here on migration data that
involves spatiotemporal trails. This data is the least supported by generic visualisation tools known to a
wider public, and thus where our discussion of more advanced visualisation tools is of greatest added value.
As such, we next only cover a subset of the entire four-step nested model, as follows. Section 2.1 outlines
the problem domain, listing generic questions and tasks that users of trail-centric migration data want to
address. Section 2.2 proposes a simple but generic model for representing trail-centric migration data
that covers most use-cases from the problem domain. Section 2.3 presents several types of visualisation
techniques that can handle the aforementioned data model, focusing mainly on techniques that are well
proven and battle-tested within the visualisation community and which are supported by open-source
implementations.

2.1 Problem domain

Characterising a problem domain for visualisation design starts by identifying the entities that are to
be analysed [Munzner, 2009]. For migration data, these include origins and destination locations, e.g.,
countries, migration time moments, gross migration amounts, and migrant population characteristics, e.g.,

2



profession, age group, or refugee status. Consequently, tasks imply answering questions revolving around
these entities.

As outlined in Sec. 1, one of the particularly challenging aspects of migration data is that it is
spatial and relational in nature – that is, it inherently consists of multiple spatial locations being linked
by multi-attribute migratory flows. As such, we next focus only on tasks that take into account this
relational nature. Other tasks, e.g., that consider the migration data as a set of tables listing the values of
entities to be analysed, are far simpler to address by using established charting tools for tabular data,
e.g., Tableau [Tableau Inc., 2020] or Google Charts [Google Inc., 2020], and are thus not discussed in this
chapter. Specific questions that visualisation addresses related to migration data are outlined below:

• Q1: Where (between which origins and destinations) are the strongest migration flows?

• Q1a: Which attributes, e.g., trail characteristics, contribute to the success of a migration trail?
And, how can migration flows be steered?

• Q2: Are there similar migration patterns over different space and/or time intervals?

• Q2a: Can we extrapolate root causes that lead to these migration flows at a specific point in time?

• Q3: Are there migration patterns having a specific structure, e.g., migration from a country to a
large set of neighbour countries?

• Q4: Is there a reversal of migration over specific geographical regions and, if so, during which time
periods?

• Q5: Which reasons exist for emigrating from a specific origin? Which reasons exist for immigrating
to a specific destination?

Figure 1 illustrates the above challenge of visualising trail-based data. We consider here a simple
dataset that records the number of refugees by origin (leaving a country) and by destination (entering a
country), for all countries, for the year 2000. Images (a) and (b) show these numbers, visualised using
GapMinder [Gapminder Org., 2020], colour-coded on a blue-to-red colormap. For reference, the country
populations are encoded by the disk sizes. The overall technique is known as a bubble chart. These images
allow us to see some patterns, e.g., that Europe and North America receive a significant share of refugees
(warm colours, image (b)); Afghanistan has the highest refugees leaving it (small red dot in the center of
image (a)); and Iran and Pakistan are the highest receivers of refugees (small red dots in the center of
image (b)). However, we cannot, for instance, see where to the Afghan refugees are going or where come
from the ones arriving in Iran and Pakistan. On a higher level, we cannot see any displacement patterns
indicating actual flows of refugees between different parts of the world. Image (c) shows actual refugee
flows: Origin-destination (OD) flows above a certain person count (selected by the user so as to diminish
visual clutter) are drawn as straight lines linking the respective countries’ centers, and coloured using
a red (origin) to green (destination) gradient [Boyandin et al., 2010]. Some additional patterns become
immediately visible, such as the net influx of refugees in Europe and North America (green lines ending
there). We also see that these lines originate mainly from Central and South America, respectively Africa,
the Middle East, and Central Asia. Image (d) further simplifies the visualisation by reducing visual clutter
by ‘bundling’ spatially-close trails. This creates a more schematic view of the migration flows which shows
more clearly the two main refugee streams arriving in North America and Canada, and also that the
majority of refugees that leave Africa arrive in Northwest Europe. While kept simple on purpose, Figure 1
already illustrates both the difficulty, but also the added-value, of visualising migration trails as opposed
to simple per-country aggregates.

From the above simple example, we see a few specific aspects of the questions that visualisation aims
to address. First and foremost, these are less of a quantitative nature, but more of a qualitative nature.
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b) Refugees by country of destinationa) Refugees by country of origin

c) Refugee origin-destination flows d) Refugees origin-destination bundles

≥2M

<10K

1M

Refugees

0 1.65B

Country

population

Migration direction

origin destination

Figure 1: Refugee movements between origin and destination (asylum) countries in 2000 visualised with
four methods. a,b) Refugee counts per origin, respectively destination countries shown in GapMin-
der [Gapminder Org., 2020]. c) Refugee flows depicted as straight lines (red=origin, green=destination)
in JFlowMap [Boyandin, 2010]. d) Same image as c) but with simplified by trail bundling. See Sec. 2.1.

Indeed, questions that relate strictly to attribute values, e.g., finding the range or average of a migration
flow, or the point in time where a migration flow has peaked, can be accomplished using standard database
tools, and benefit (far) less from visualisation. Simple visual depictions such as plain-text tables or bar
charts can already support answering such questions. Conversely, questions which involve multiple data
aspects (attributes), some of which are of spatiotemporal nature, and questions whose answers are not
single values, but rather spatiotemporal patterns, are naturally better served by visualisation. For example,
the easiest way to convey what a distribution looks like, is actually to draw it – especially in the case
that its nature cannot be easily captured by a simple mathematical model. The qualitative aspect of the
above questions – as opposed to quantitative aspects – is outlined by the presence of keywords such as
‘where’ (requires the description of potentially multiple locations), ‘similar’ (requires the description of
multiple aspects that make two phenomena alike), ‘patterns’ (requires the description of multiple data
aspects which, when occurring in a certain proportion, cause the appearance of what one calls a pattern),
and ‘structure’ (requires the description of relationships between specific parts of one or several patterns).
Other aspects that typically signal the qualitative aspect of questions – which, next, is best approached by
visualisation – are the presence of descriptive terms which cannot be measured precisely on a quantitative
scale, such as ‘strong’, ’scattered’, ’important’, or ‘salient’.

A second point common to all the questions listed above is that they all relate to so-called indicators
of mobility. Visualisation aims to answer questions concerning such indicators by encoding them into
the attributes of the visualisation. For instance, one can color-code two instances of a country map by
unemployment rates, respectively by with immigrant numbers, and thereby support answering questions
concerning the correlation of the two indicators. We further detail how visualisation relates to questions
concerning mobility indicators in the next two sections.
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2.2 Data model

Preliminaries: Migration scholars use various forms of representing their data, such as a wealth of
indicators to characterise migration and mobility, e.g. events, economic indicators, socio-cultural indicators,
and geographic and climate-related data. In visualisation, data is typically represented by means of
generic models that aim to capture its structure, typically in an as application-independent way as
possible (to foster reusability of the developed visualisation techniques). To ease the learning task of
the migration scholar or practitioner interested in (re)using visualisation techniques, we follow next the
visualisation terminology of data modeling, thereby introducing and explaining terms and notations that
such practitioners will likely encounter, and need to understand, when using visualisation tools.

Let oi ∈ R2 and di ∈ R2 be pairs of points denoting the origin (start), respectively destination (end)
points of a journey. By journey, we mean here the displacement, over a geographical map, of an entity
(person, vehicle, or other object carrying information). Let pi ⊂ R2 denote the path being followed by
this entity from origin to destination. Such paths are also called Origin-Destination (OD) paths. We
distinguish two path types: Straight-line paths record only the tuple (oi,di), i.e., provide no information
on how and where the actual motion occurred. Trails record the actual position of the entity over time
over its journey as a sequence x(t0i ), . . . ,x(tNi ) of points x ∈ R2 recorded at consecutive time instants tji .
Besides spatial information, OD paths typically also include other data attributes: Per-path attributes
a(pi) are values associated to an entire path pi, e.g., identity of the vehicle, type of vehicle, or cargo
weight. Trail-based attributes a(xj

i ) are values associated to actual sample points xj
i = x(tji ) along a

trail, e.g., speed and flying altitude of an aircraft. Attributes are most conveniently stored as (key, value)
pairs, which allows different items (trails, sample points) to have different sets of attributes. Putting
it all together, let OD = {oi,di} be the set of OD pairs under consideration; and let P be the set of
straight-line paths or trails. An entire migration dataset is, thus, the tuple D = (OD,P ).

Figure 2a shows a simple schema (using UML-like notation) that allows storing migration data. Such
a schema can be easily implemented using relational databases [Hoffman, 2003] or even plain-text file
formats [Hurter et al., 2012].

OD location

2D coordinate x x y

attributes a key value

Straight-line path

origin o

destination d

attributes a key value

Trail

t j

x j

time moment

sample point

ordered sequence ofLegend

refers to

extends

Straight-line

path set
Graph

Graph

drawing

dataset

clustering

layout

vertices V

edges E

a) b)

Figure 2: a) Schema for storing migration data. b) Relation of path-sets, graphs, and graph drawings.

Paths vs trails: Straight-line paths and trails typically co-exist in migration data visualisation and
serve different purposes. Straight-line paths are necessary when one does not avail of actual location
measurements along a trail, but only knows the O and D data; or when one wants to perform the
analysis at a higher, more abstract, or more aggregated level. In contrast, trails allow finer-grained
analyses, and are necessary when the underlying questions target actual motion patterns. Figure 3
shows examples of these two data types. Image (a) shows straight-line paths for a dataset of US migra-
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tions [Holten and van Wijk, 2009]. Every path (9780 in total) shows the migration (relocation) of one
person from one city (O) to another city (D) in the US. Paths are colour-coded by their length, to help
understanding the visualisation. Image (b) shows a trail dataset containing 5255 civil-aircraft trajectories
recorded by Air Traffic Control (ATC) over the French airspace during one week, also colour-coded by
trail length [Hurter et al., 2014]. Trails have between 50 and 200 sample points. Image (c) shows the
actual O and D points for these trails (green) and their sample points (red).

a) straight-line paths (US migrations) b) trails (French air traffic) c) O, D, and sample points 

    (French air traffic)

path length path length O, D points
sample points

Figure 3: Examples of straight-line path data (a) and trail data (b,c) 2. Figures generated with the
open-source CUBu software [van der Zwan et al., 2016].

Modelling time: The data model presented so far can integrate time in two different ways. Sequence
models store consecutive snapshots Di of the dataset D, recorded at different time instants i. Sequence
models are used when one only avails of the recording time i of an entire dataset Di – for example, we
have several datasets as the one in Figure 3b recorded for several weeks over a year. They only allow
comparing global movement patterns between two or more time moments. Streaming models store a single
dataset D, in which the OD points of each path or trail pi ∈ P have a time attribute. The lifetime of
path pi is thus the time interval [t0i , t

N
i ]. Streaming models are used when one avails of specific recording

times for each individual path or trail. When available, they allow finer-grained comparison of motion
over different space and/or time ranges. In the following we will cover both time-independent data and
streaming and sequence models, outlining visualisation techniques suitable for each of these data types. For
a more detailed discussion on visualising temporal multivariate data, we refer to [Archambault et al., 2013].

Graphs, networks, trails: Migration data, and more generally trajectory data, is interchangeably
referred to in different sources in the visualisation literature using the terms graphs, networks, and
trails [von Landesberger et al., 2011, Archambault et al., 2013, Lhuillier et al., 2017]. Clarifying these
terms and how they relate to each other is important, since some visualisation techniques (discussed next)
are applicable to only certain data types (see also Figure 2b):

• Trail data has been described in the ‘Paths vs trails’ comparison. It models trajectories, or paths,
of entities over (typically) two-dimensional Euclidean space; Straight-line OD paths are particular
instances of trails containing only two points – the origin (O) and destination (D);

• Graph data models abstract relations (also called edges) between node pairs. Formally, G = (V,E),
with V being a vertex set and E ⊂ V × V being an edge set. Graphs are visualised by graph
drawings, which are created by a so-called graph layout process. Graph drawings are also called

2The figures in this chapter are best viewed in full color.
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node-link visualisations. A graph drawing can be using straight lines or curves, which corresponds
to straight-line OD path sets, respectively trail sets;

• Graphs can be constructed from OD sets by clustering spatially close O, respectively, D points. Each
point cluster c creates a vertex v ∈ V . Paths linking two clusters c1 and c2 create an edge e ∈ E
linking the clusters’ respective vertices v1 and v2 from V ;

• Networks are, in visualisation, typically used as a synonym for the more theoretical term graphs.

2.3 Visualisation techniques

Arguably the key challenge when visualising geographic movement data is caused by the size of the
dataset D. When this is too large – roughly, over a few hundred elements – clutter occurs due to the
many overlapping and/or intersecting paths, as already visible in Figure 3a,b. Clutter further impedes
accomplishing even basic tasks using the visualisation. As such, visualisation methods aim to reduce such
clutter by various mechanisms, as follows.

Aggregating methods: These methods do not attempt to directly draw a dataset D. Rather, they
simplify D into a dataset D′ containing (far) fewer OD pairs and paths. When D′ is under a certain size –
typically a few tens or hundreds of items – it can be directly drawn with limited clutter, for example using
straight-line drawing techniques (discussed next). Note that using straight-line drawing is not mandatory:
When D′ is small, custom techniques can be used to further reduce clutter, by routing (bending) the drawn
paths to minimise overlap and/or intersection. Historically, this has been first done by hand-drawing the
paths in the simplified path-set P ′ of D′. Figure 4a-d shows four examples of such visualisations created
by the French cartographer Minard [Minard, 2020]. This design, where the width of the curved paths is
used to encode a path attribute, is also known under the name flow maps or Sankey diagrams. Image (a)
shows a single-trail flow map depicting Hannibal’s advance into Gaul and Italy, with path width encoding
Hannibal’s army size. Image (b) refines this design to show Napoleon’s campaign in Russia3.

As no accurate location data is available, consecutive OD points are linked now by straight-line
segments. colour encodes the advance (brown) vs retreat (black) paths. Image (c) generalises this design
to show the single-origin, multiple-destination map of French wine exports, with export volume encoded
in path width. In contrast to designs (a) and (b), paths are now curved to minimize overdraw – so the
actual path shapes do not actually encode geographical information, a design we will encounter further on.
Finally, image (d) shows a multiple-origin, multiple-destination dataset of people migration in 1858, with
path width mapping the number of migrants, and colour encoding the continent of origin. Figure 4e shows
a recent hand-drawn flow map depicting the intra-European migrations of 2006 [Hossmann et al., 2008].
Compared to the earlier Minard maps (Figure 4a-d), this design is simpler, as it uses so-called orthogonal
(vertical and/or horizontal) path directions only. This follows studies in map visualisation that showed
that reading such orthogonal layouts, also called ‘metro map layouts’, is easier than following layouts
using paths drawn at arbitrary angles and/or using variable-angle bends [Wolff, 2007, Nöllenburg, 2014].

Several automatic aggregation methods for a path or trail dataset D exist. The most widespread,
and easiest to use, aggregate O and D locations based on spatial proximity, thereby replacing clusters
of densely located O or D points by single points, typically the cluster centroids. The aggregation
radius determines the simplification degree. Alternative techniques use generic clustering methods such
as k means [Luo et al., 2017]. After obtaining the simplified dataset D′, this can be depicted using
standard graph drawing algorithms, which can carefully optimise the curving of paths to minimise clut-
ter [Tamassia, 2013]. Several standard libraries and tools exist that allow non-specialists to create such

3While Minard’s visualisation is technically impressive, the insights it conveys are doubtable. Minard created this
visualisation in a period when Napoleon’s rule was politically questionable in France, using data sources which highly
exaggerated Napoleon’s losses in Russia [Tufte, 2002]. For a historically more accurate rendition, see [de Caulaincourt, 1933].
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high-quality graph drawings [Gansner, 2020, Auber, 2004, Auber, 2020].

a) b)

c) d) e)

Figure 4: Aggregate visualisations of geographical movement data. Flow maps of a) Campaign of Hannibal
(Minard, 1869). b) Campaign of Napoleon in Russia (Minard, 1869). c) French wine exports (Minard, 1864).
d) Word migration map (Minard, 1862). e) Intra-European migrations in 2006 [Hossmann et al., 2008].

Density maps: These methods – also called heat maps – are motivated by the typical clutter created by di-
rectly drawing trails (Figure 3a). In contrast to the aggregating methods discussed above, they address this
by aggregating the drawing of the dataset D rather than the actual data (trails). This is done by convolving
the drawing of D with a Gaussian or Epanechnikov (parabolic) filter [van Liere and de Leeuw, 2003], a
process known in image processing as Kernel Density Estimation (KDE) [Comaniciu and Meer, 2002]. The
result is a density map that effectively merges trails closer than the width k of the filter, thereby simplifying
the visualisation. Figure 5 shows this for the US migrations dataset in Figure 3a. Image (a) shows a naive
computation of trail density, done by drawing the trails half-transparent. While dark regions indicate
zones populated by more trails, close (but not exactly same-position) trails are not grouped together.
Image (b) shows the same drawing as in (a), this time convolved (blurred) by a Gaussian filter. We see
how close trails get visually merged into high-density zones. This effectively simplifies the visualisation
in image space, the simplification level being given by the blurring filter radius. Image (c) shows the
same density map as in (b), with density mapped to both colour and height. The dense group of trails
that connects the Southwest to the Northeast of the US now becomes even more salient. Summarising,
density maps address well Q1 (Sec. 2.1) and also remove small-scale clutter to create a simplified visu-
alisation. For a formal discussion of KDE for trail visualisation, we further refer the reader to [Hurter, 2015].

Bundling methods: These methods share their motivation with the density maps described above,
aiming to group similar trails to simplify the visualisation. In contrast to density maps, they however
deform the trails to accomplish this. Given a trail set D = (OD,P ), bundling (1) finds trails pi ∈ P
that are similar to each other, and (2) deforms these so they become even closer spatially. Trail
similarity is typically computed using both the trail positions xj

i and trail attributes a(pi) and/or a(xj
i ).

Spatial trail similarity, i.e., the term using the positions xj , is typically computed using Hausdorff
distance [Rockafellar and Wetts, 2005, Lhuillier et al., 2017]. Attribute similarity is typically computed
using Euclidean distance between the a(pi) values of different trails pi. The two terms (spatial and
attribute) are typically merged by weighting [Telea and Ersoy, 2010].
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a) b) c)) ) )

d) e) f)

Figure 5: Visualisation of US migration dataset by several methods. From simple to involved: a) Blending
of straight-line trails. b) colour-coded density map. c) Height and colour coded density map. d) Bundled
trails using path-length colouring. e) Directional bundling. f) Pseudo-shading of bundles. Figures
generated with the open-source CUBu software [van der Zwan et al., 2016].

Formally put, bundling is nothing but applying the mean shift aggregation principle, well known
in image analysis [Comaniciu and Meer, 2002], to the drawing of trails. Intuitively put, bundling ‘pulls’
similar trails in the visualisation towards their local common centre, so that they emerge as compact
groups separated by whitespace. This way, one can easily see the main flow patterns present in a trail
dataset.

Tens of bundling methods exist in visualisation literature – for a recent survey, we refer to [Lhuillier et al., 2017].
From a practical end-user perspective, these differ mainly in terms of ease of use, computational speed,
and ease of implementation. As such, we next highlight only those that we consider to be the most
interesting for data scientists involved in migration studies (who are not experts in visualisation, and
require easy-to-use, scalable, readily available, and predictable methods). From this perspective, two
methods stand out: The Kernel Density Estimation Edge Bundling (KDEEB) method [Hurter et al., 2012]
pioneered scalable and easy-to-use trail bundling. KDEEB is simple to explain: It computes a KDE
density map of the trail set, and next advects (moves) trail sample points xj upwards in the density
gradient, until reaching its maximum, following the mean shift principle [Comaniciu and Meer, 2002]. The
CUDA Universal Bundling (CUBu) method [van der Zwan et al., 2016] refines and generalises KDEEB
to efficiently use graphics hardware (NVIDIA CUDA GPUs) to bundle millions of trails in under one
second on modern computers, and also provides different bundling styles (subsuming most results of earlier
methods) in a single implementation.

Figures 5d-f show three examples of trail bundling for the US migrations dataset created with CUBu
(which subsumes KDEEB and earlier bundling methods). Image (d) colours trails by their length, similar to
Figure 3a. We see here more clearly than in the unbundled image (Figure 3a) where the longest migration
trails are located – Southwest to Northeast, coloured red. Also, spatial migration patterns become clearer
than in Figure 3a – we see that most migrations happen on the horizontal East-West axis, except for the US
coast, where salient North-South patterns exist. Image (b) shows the bundled trails separated by migration
direction. That is, migration flows between the same O and D areas yield distinct, parallel, bundles. From
this image, we see that migrations in both directions are balanced. Finally, image (f) shows the bundled mi-
gration trail-set with pseudo-shading, colour coded again by trail length. Bundles appear here as 3D tubes
seen from above, thereby reducing interpretation problems when they cross (compare with Figure 5a). For
instance, the Southwest-Northeast migration bundle appears more saliently in this image than in Figure 5a.

Techniques for time-dependent data: For visualising time-dependent migration data (either sequence
or streaming, see Sec. 2.2, two main techniques classes exist. First, small multiples show separate visuali-
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a) Six small-multiple snapshots from a visualization of US flights over a week.

b) Snapshot of a particle visualization of flights over Paris

Figure 6: Visualisation of dynamic motion data using (a) small multiples [Hurter et al., 2013] and (b)
animation [Hurter et al., 2014]. Images generated by open source software (a) [Hurter et al., 2013] and
(b) [van der Zwan et al., 2016].

sations of the snapshots Di recorded at different time instants, side by side, using the same visualisation
parameters, a design known in visualisation as small multiples. This way, users can compare the resulting
images to spot (salient) differences and therefore infer (salient) changes. Figure 6(a) shows an example,
where six snapshots Di, 1 ≤ i ≤ 6 from a time-dependent dataset showing the travel of people using
airlines in the US over six days is depicted using KDEEB bundling [Hurter et al., 2013] Comparing the
snapshots shows how travel patterns change over time – for instance, we see mainly East-coast travel in
the morning, travel over the entire map at noon, and mainly long-haul East-West flights during night,
respectively. The key problem of small multiples is that it does not scale to more than a few time instants
i. The alternative is to use animation, i.e., depict how imaginary travellers ‘flow’ over the paths pi ∈ P
over time. This can be done by seeding all pi with particles (points) and next animate these over the
trajectories of pi, while at the same time show only paths whose lifetime [t0i , t

N
i ] encompasses the current

(animation) time. Figure 6(b) shows a snapshot of such a particle visualisation depicting the air traffic
over Paris at a given time moment in a streaming dataset [Hurter et al., 2014]. Animation demands less
space than small multiples, but poses a higher burden on the user’s memory to remember, and compare,
spatial patterns occurring at different time moments. So far, the visualisation community advocates both
small multiples and animation for showing time-dependent data, with no decisive arguments in favor, or
against, one of these techniques. More examples of such techniques are given in [Scheepens et al., 2015].
Implementations of animation techniques are given in [Hurter, 2020].

Other visual encodings: So far, we have discussed visualisations based on the node-link metaphor. In
this metaphor, several visual mappings are predefined: The coordinates of physical locations are mapped
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to O and D points in the screen space oi ∈ R2, respectively di ∈ R2, while the migration flow data
attributes are mapped to one more multiple visual encodings applied to the paths or trails. Typical choices
for these edge encodings are colour, thickness or transparency. Hence, node-link visualisations implicitly
emphasise location relationships, making them an effective choice for contextualised displays, e.g., maps.

However, also other visualisations for migration data exist, see Figure 7. Historically, these visu-
alisations were designed to address some of the shortcomings of node-link metaphors. Ghoniem et
al. [Ghoniem et al., 2004], for example, demonstrated that matrix representations outperform node-link
ones for large or dense relational datasets on several graph analysis tasks. In our context, an (adjacency)
matrix of a migration flow graph G = (V,E) is a square matrix M where the cell mij captures information
describing all edges ek ∈ E between vertices vi ∈ V and vj ∈ V . Hence, a matrix row or column depicts a
node, while a matrix cell depicts edges between two given nodes. At the simplest level, mij = 1 indicates
that at least such an edge exist, whereas mij = 0 tells that vi and vj are not directly connected in G.
Figure 7a shows a simple (directed) graph and its equivalent matrix representation. Note that undirected
graphs correspond to symmetric matrices. At a more refined level, mij can aggregate one, or even multiple,
attributes a(ek) defined over all edges ek. Adjacency matrices shift the emphasis away from the spatial
contextualisation of the nodes and paths – that is, one cannot use them to reason about the spatial
location or relative position of nodes and edges. In contrast, matrices scale visually very well, as every
edge-set ek requires, in the limit, a single pixel to be shown. This allows graphs with thousands of nodes
and millions of edges to be displayed on a typical computer screen. Also, matrices do not have any of the
clutter and overdraw issues of node-link metaphors.

However, for path-related tasks, such as finding how any two vertices are connected (via paths formed
by multiple edges), finding shortest routes, and also for contextualising the findings, matrix metaphors are
significantly more demanding than node-link ones. Several visual extensions to the basic matrix metaphor
aid this. Figure 7b shows one of these: Here, apart from showing edges in the matrix cells, these are drawn
as curved arcs connecting the respective nodes both along rows and columns [Henry and Fekete, 2007].
The user can visually ‘follow’ a sequence of arcs to find paths that indirectly connect nodes. The MapTrix
tool [Yang et al., 2017] re-embeds the geographic (spatial) context of migration flows into matrix displays
(Figure 7c). This is done by connecting a matrix display (right on the figure) with a classical flow map
display [Rae, 2009] (left in the figure). The connecting lines (gray in Figure 7c) link each row and column
(node in the matrix display) with its geographic location on a map, and can also show additional path
attributes. OD maps [Wood et al., 2010] (Figure 7d) show another way to preserve spatial context. In this
visualisation, the map is subdivided by a grid. For each grid cell, a heat map shows the density of origins
(O) of all flows ending in that cell. This way, users can compare patterns of incoming flows between the
grid cells. The heat maps are displayed into their respective cells, thereby conveying information on the
destinations (D).

Other methods target depicting additional, potentially time-dependent, attributes of flows. For
example, Space-cuts [Buchmüller et al., 2016] (Figure 7e) distorts the geographic maps by artificially
introducing cuts along spatial landmarks, such as streets, rail tracks, or rivers. Flow attributes are shown
by rendering them in the space created by the cuts. Contextualised glyph designs [Sun et al., 2017] and
interactive lenses [Krüger et al., 2013] are additional solutions to the data scalability problem. However,
these solutions are technically more complex to implement and learn to use.

3 Creating visualisations

Key questions related to the techniques outlined in Sec. 2.3 are: How easy is it to create such visualisations
for the non-technical user, and how should she proceed to do this? We aim to answer these questions next
by detailing the steps of creating an end-to-end visualisation pipeline, from having a data source up to
the visual exploration design.
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Figure 7: Other visualisation types for migration data. (a) Matrix metaphor. (b) MatLink
[Yang et al., 2017]. (c) MapTrix [Yang et al., 2017]. (d) OD Maps [Wood et al., 2010]. (e) Space-
Cuts [Buchmüller et al., 2016].

3.1 Data collection and curing

The first step, and arguably one of the most laborious, in constructing good visualisations is obtaining
good data. By this, we mean a dataset D that strictly follows a variant of the schema in Figure 2.
Obtaining such a D poses several challenges. Some major ones – including solutions for them – are as
follows.

Attributes: The general schema discussed in Sec. 2.2 (Figure 2) poses no constraints on path attributes:
Every path pi, and even every trail point xj

i , can have a variable number of attributes a)(pi), respectively

a(xj
i ). To handle such attributes, a regularisation pass is needed: First, for all attribute values for the

same key, the types of all attribute-values a are found, scanning all their values over D, by examining their
actual values. Based on their frequency, attributes a are typically classified as quantitative (real-valued
numbers), integral (integer values), ordinal (values that allow ordering but whose absolute values do not
capture extra semantics), and categorical (values which indicate different classes of objects). These types
can be further refined, e.g., categorical values can be split into plain text or URLs. This step is key to the
subsequent aggregation and visualisation of attributes. After this step, every value a for a path or sample
point (Figure 2) will have an associated type.

Normalisation: Comparing attributes of different types (determined in the previous step), e.g., to
compute path or trail similarity further needed for simplification (Sec. 2.2) requires normalising them. For
numerical attributes, this is typically done by standardisation, i.e., replacing every value a by (a−a)/σ(a),
where a is the attribute’s average, and σ(a) is the attribute’s standard deviation, over all its values in D.
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Separately, handling trails pi typically requires resampling these so that the spatial density of points xj
i is

roughly uniform over D. This is typically done by linear resampling pi, which involves also (typically
linear) interpolation of the attributes a(xj

i ).

Values: Real-world datasets often come with missing or incorrect values for the attributes a. These need
sorting out, since virtually all visualisation methods require consistent attribute-sets for all their samples
pi and/or xj

i . When such values are missing, they are usually replaced – in a process known as value
imputation – by averages over the entire set of attribute values {a(x)|x ∈ D} or by special ‘undefined’
values, if the attribute-type of a allows this. Incorrect values are treated similarly, i.e., detected based on
comparison with the expected range of a, and replaced by averages or defaults if non conforming.

Normalisation and value imputation are two important sources of bias in interpreting migration and
mobility data. When these operations are used – prior to creating visualisations – they should, next, be
reported in the actual visualisation, e.g., by means of suitable legends or captions.

3.2 Data simplification and filtering

Simplification and filtering are interchangeable terms for two operations: (1) Given a dataset D, how to
reduce its amount of sample points x (size reduction); and (2) how to reduce its amount of attributes a
(attribute reduction). These two simplification directions are orthogonal, and treated as follows.

Size reduction: This speeds up the creation and execution of visualisations, since fewer data items need
to be drawn. Also, for node-link displays, it reduces clutter. More generally, size reduction allows the user
to focus on the main, coarse-scale, patterns present in the data. Size reduction can be done by two main
mechanisms. Selection picks a subset D′ ⊂ D of the data elements to be explored, based e.g. on specific
values of attributes of interest, e.g., migration flows starting from a given country, connecting two given
areas, or taking place in a specific time period. Selection works well when one knows in advance which are
the subsets of interest D′ and is extremely easy to implement. Figure 6a is an example of selection, as it
shows six subsets D′ of the entire time-dependent dataset D, selected based on time ranges. Aggregation,
in contrast, replaces D by a new dataset D by replacing elements (paths, origins, destinations) of D that
are deemed similar to aggregate versions thereof. The simplest form of aggregation is averaging. For
example, the hand-drawn visualisations in Figure 4 are obtained this way. Here, the designer has manually
grouped all flows between locations of interest. Aggregation can be also done automatically for graph
data with tools such as LGC [Fountoulakis et al., 2018] and Tulip [Auber, 2020] and for table-based data
with tools such as Tableau [Tableau Inc., 2020]. Aggregation does not require the user to select a spe-
cific subset of the data. However, it requires selecting a suitable level of simplification for the entire dataset.

Attribute reduction: This simplifies the visualisation creation, since less data-per-item needs to be
drawn. As for size reduction, this can be done by selection or aggregation. Selection picks a few attributes
a from the entire available set, typically based on their keys (Sec. 2.2), and encodes these into different
visual channels, such as size, colour, transparency, and position. For example, Figure 5d shows the
US migration dataset with colour encoding trail length, and position encoding O and D coordinates,
respectively. Since such visual channels are not independent, typically no more than three up to four
different attributes a can be visualised simultaneously. Aggregation replaces subsets of attributes a by a
single attribute, again using suitable methods, such as averaging. This is more challenging to do than
aggregation for size reduction, since now the attributes to be aggregated can be of different types having
also different ranges. It is hard to come up with generic guidelines on how to do attribute aggregation.
However, a good starting point for practitioners is examining standardisation and one-hot-encoding
techniques that are used since long in multidimensional data analysis. A good introductory textbook on
this topic is [Jolliffe, 2002].
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Figure 8: Visual analytics workflow for exploring commuter flow in the greater São Paulo
area [Martins et al., 2020] constructed using the CUBu open-source tool [van der Zwan et al., 2016].

3.3 Designing the visual exploration

Having the suitably cleaned and selected data, the final step is to choose a suitable set of visual exploration
techniques. By set, we mean here the fact that an effective visualisation never consists of a single, static,
image that depicts data. Rather, several techniques are combined, via user interaction, to allow one
to explore the data and answer specific questions or complete specific tasks. Designing an effective
visualisation is a complex process. Nevertheless, several general and well-tested guidelines can be given
for this, as follows.

Overview, zoom and filter, then details on demand: This concept, known also under the name
of ‘Shneiderman’s visual exploration mantra’ [Shneiderman, 1996], is almost invariably used by all vi-
sualisation tools. Since users typically do not know where to start their exploration, the visualisation
starts by presenting a global overview of the entire dataset, computed e.g. using aggregation techniques
(Sec. 3.2). This helps showing interesting spatial patterns, into which the user zooms; alternatively, one can
filter out uninteresting data aspects from the overview to simplify its exploration. Next, the user selects
the patterns of interest, and examines these in more detail. The process is typically iterated until the
questions of interest are answered. Technically, this requires designing visualisations which (a) are tightly
coupled with data selection and aggregation mechanisms; and (b) which allow spatial zooming-and-panning.

Visual analytics loop: At a higher level, Shneiderman’s design enables the creation of so-called visual
analytics (VA) solutions for exploring data. Simply put, these are visualisation-and-data-processing tools
whose user interaction options (GUIs, direct manipulation) are designed so as to best reflect the user’s
typical workflow. That is, rather than offering all options to the user in a ‘flat’ GUI (which is confusing,
since one does not know then which options to use and in which order), options are grouped in wizard-like
GUI designs that address specific tasks. The user then selects one such wizard to start the data exploration.
The obtained insights allow her to form a hypothesis related to the data. Next, other wizards are used to
examine the (subsets of the) data in detail to confirm, infirm, or refine the hypothesis. The process loops
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until one arrives at a confirmed hypothesis, or simpler put, answers to one’s original questions.
Figure 8 shows the workflow of such a VA tool designed to explore the urban mobility data from the

greater São Paulo (SP) area in Brazil [Martins et al., 2020]. The input dataset D contains over 42 million
trips of commuting people in SP over a single day in 2017. Every trip is an OD path annotated with hour
of travel, means of transportation (e.g., by foot, bus, train, bike, car, or others), and trip reason (work,
school, shopping, seek jobs, and others). Full details of this dataset, collected since 1967 by surveys, are
given in [Metrô SP, 2018].

Mobility researchers in SP, including municipalities, want to understand the travel patterns to optimise
transport. This implies answering a (wide) set of questions. VA can help here, as follows. The analyst loads
the dataset D and first produces a number of aggregated charts showing the distributions or attributes a
of D over the dataset. These simple, attribute-centric, questions can be readily answered by histogram
bar charts, like those shown in Figure 8(top). There, three basic questions are answered: How are trips
spread over the day (Q1); Which transport types are mostly used (Q2); and Why do people travel? The
respective three histograms show that the answers to these questions are, respectively, ‘around 6AM,
12AM, and 12AM-6PM’ (which would confirm the standard hypothesis related to work start, lunch break,
and work end in Brazil); “people mostly walk, then go by bus, then by car” (which is good to know since
public transportation scores second-high, above private cars); and “people travel most to go home, go to
work, and go to school” (which can provide hints as to how one can help improving overall transportation).

Apart from these attribute-centric questions, one can also do spatial questions. A key one is: How are
trips spread over the SP area? Figure 8(bottom-right) shows this by using trail bundling [van der Zwan et al., 2016].
Here, trips are coloured by length, and opacity encodes bundled-trip density. We see a red outlier in the
middle, signifying many long trips that go from West SP to East SP or conversely. Since opacity encodes
trip density, the fact that a large part of the SP area is empty (gray) means that there are very few trips
spanning peripheral regions. The ‘core’ of travel is within SP central, and the highest outlier (bottleneck)
is the aforementioned West-vs-East trajectory. Hence, if planners want to improve the situation, they
should focus on this trajectory.

Given these global insights, users can next select subsets of the data, e.g., hours of the day, or particular
trails. These are marked in Figure 8 in red. After selection, the VA process loops, but now only on the
selected data, allowing users to pose more questions to understand why these events occur. Questions –
thus, the creation of specific visualisations – are done by the GUI wizards (Figure 8 bottom-left). The
entire VA lop (queries, marked green, followed by selections, marked red in Figure 8, followed by inspecting
the newly created visualisations) repeats until one is satisfied with the obtained answers.

This VA example is, obviously, a simple one; for space constraints, we cannot refer to all existing
options [van der Zwan et al., 2016, Martins et al., 2020]. Still, it captures the essence of designing VA
solutions for mobility exploration – visualisations, ranging from simple/aggregated, to detailed ones, driven
by user selection of data based on visualisation insights: The VA loop.

3.4 Putting it all together

A key challenge in implementing (interactive) visualisation systems is the availability of software tools.
Visualisation tools are notoriously hard to replicate and/or implement, as underlying technology spans
fields as diverse as algorithms and data structures, data mining and querying, computer graphics, image
processing, computer vision, interactive techniques, and user interface design [Childs et al., 2013]. To
assist the reader, Table 1 gives a few pointers to established freely available software tools that implement
techniques discussed earlier in this chapter, indicating also how the software is available (open source or
licence-based model). The rightmost column indicates the skill-set expected to use the software, i.e., if it
targets any (A) users or users with programming (P) skills.

4Tableau offers a free academic licence model.
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Table 1: Software for processing and visualising (multivariate) motion data.
Name Reference (including URL) Functionality Availability Skills
GraphViz [Gansner, 2020] Small graph layout and rendering open source A
Tulip [Auber, 2020] large graph interactive visualisation open source A
KDEEB [Hurter et al., 2012] Bundling spatial trails (basic) open source P
CUBu [van der Zwan et al., 2016] Bundling spatial trails (extended) open source P
Particles [Hurter et al., 2014] Animating particles along spatial trails open source P
Local Graph Clustering [Fountoulakis et al., 2018] Graph simplification open source P
Sankey Diagrams [Open Source, 2020] Drawing Sankey diagrams open source A
Tableau [Tableau Inc., 2020] Data cleaning, selection, aggregation commercial4 A

4 Discussion and Conclusion

We have presented a roadmap for selecting and implementing visualisation solutions for exploring
multidimensional trail data, such as describing the motion of persons over space and time. We have
outlined how to represent such data, which are the main types of visualisation methods, and how to
design the assembly of an end-to-end visual exploration pipeline for such data. This provides, we believe,
practical guidelines for researchers in different fields (especially those not close to Computer Science) to
select, instantiate, and combine such methods to answer their questions.

Still, it is important to pinpoint several open questions regarding the state-of-the-art, or more precisely,
what current tools can offer, in this respect:

Scalability: How to visually explore large trail-sets at interactive rates (millions of trails, hundreds
of sample points, tens of attributes)? Bundling and data aggregation methods cover the first two
points (number of trails and sample points). Aggregating multiple attributes is still an open question,
given the fundamentally different types, and ranges, thereof. Given also the mentioned hard limit of vi-
sualising only a few attributes at a time (Sec. 3.2), this is, we believe, one of the key open issues in the field.

Interpretability: A visualisation conveys, by construction, a simplified view of the data D it receives.
Hence, it makes needed simplifications. The question is: How do these simplifications affect the inter-
pretation of the data, i.e., the conclusions users will draw from it? A point-in-case is done by bundling:
Whereas reducing occlusion in visualisations, it also deforms actual trails, thereby potentially misleading
users who expect to see accurate spatial locations. Conveying the fact that (bundled) visualisations are
necessary simplifications of the actual data is also an open challenge.

Quality: Given all inherent limitations of visualisation design discussed in this chapter, it is obvious that
one cannot design the ‘perfect’ visualisation. Hence, ways (metrics) to gauge the quality of a visualisation
are needed. For attributed trail data, these are quite scarce. For instance, we do not still have a theory,
let alone metrics, to gauge the quality of a bundling [Lhuillier et al., 2017]. Hence, visualisations are most
often evaluated by means of controlled studies. However, when deploying them to explore migration data,
which is inherently sensitive and open to controversies, ground truth (required by controlled studies) is
typically missing.

Replicability: The last but definitely not smallest issue in visualisation is replicability. Using a visu-
alisation proposal presented in academic research (papers) implies being able to exactly replicate the
setup presented by the authors. This is increasingly hard to do, even for visualisation professionals. The
key reason is the increasing complexity of visualisation algorithms and methods, most of which are not
available as open-source software. As such, the optimal solution for the interested practitioner is to reply
on potentially less cutting-edge methods which are openly available (see e.g. Table 1).

Nevertheless, considering all these challenges, we believe that the current chapter has presented a
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convincing set of use-cases, with supporting methodology and tooling, that will help migration scientists
to explore, experiment with, adopt, and use visualisation methods for trail data, thereby enhancing their
understanding and obtained insights from their respective datasets.
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