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Efficient and Effective Automated Digital
Hair Removal from Dermoscopy Images
Abstract: We propose a method for digital hair removal from dermoscopic images, based on a threshold-
set model. For every threshold, we adapt a recent gap-detection algorithm to find hairs, and merge
results in a single mask image. We find hairs in this mask by combining morphological filters and medial
descriptors. We derive robust parameter values for our method from over 300 skin images. We detail a
GPU implementation of our method and show how it compares favorably with five existing hair removal
methods, in terms of removing both long and stubble hair of various colors, contrasts, and curvature. We
also discuss qualitative and quantitative validations of the produced hair-free images, and show how our
method effectively addresses the task of automatic skin-tumor segmentation for hair-occluded images.
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1 Introduction
Automatic analysis of pigmented skin lesions occluded by hair is a challenging task [8, 17]. Several digital
hair removal (DHR) methods aim to address this by finding hairs and replacing them by plausible colors
based on surrounding skin. However, DHR methods are challenged by thin, entangled, low-contrast, or
thick-and-short (stubble) hairs [2, 13, 16, 18, 24, 39].

To address the above problems, we regard DHR in the context of a threshold-set representation [19].
For this, we represent the input skin image as a set of binary images by thresholding its luminance
component. Next, we adapt a gap-detection technique to find potential hairs in each threshold layer.
Found gaps are merged into a single hair mask, where we find actual hairs by using 2D medial axes
or skeletons. Separately, to robustly detect and remove stubble hair, we propose a morphological filter
geared to detecting these structures while keeping remaining image details sharp. Finally, we remove
detected hairs by standard image inpainting. To implement our approach, we propose a CPU-GPU
pipeline that makes the usage of complex image analysis tools such as threshold sets and medial axes
practical and computationally efficient.

Previous work has introduced the use of threshold sets to address digital hair removal [19]. The
current paper presents three main contributions as compared to [19]:
1. We show how stubble hair can be effectively and efficiently removed, by an additional morphological

filter, without affecting surrounding image details and while keeping the removal of long hairs;
2. We demonstrate the added value of DHR for the task of robust skin-tumor segmentation for images

containing occluding hairs;
3. We present a detailed analysis of the scalability of the proposed method, showing how its performance

depends linearly on image size and number of threshold values, and not on the hair complexity.
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The structure of this paper is as follows. Section 2 reviews related work on digital hair removal. Section 3
details our method. Section 4 presents its implementation. Section 5 compares our results with five DHR
methods. Section 6 discusses our method. Section 7 concludes the paper.

2 Related Work
In the past decade, many DHR methods have been proposed. The most known ones are outlined next.
DullRazor, the first and arguably most famous, finds dark hairs on light skin by morphological closing
using three structuring elements that model three line orientations [24]. Different morphological operators
were similarly used in [26, 32]. Prewitt edge detection [18] and top-hat filtering [39] help finding low-
contrast or thin-and-curled hairs. Once detected, hairs can be removed by bilinear [24] or PDE-based
inpainting [38]. Huang et al. find hairs by multiscale matched filtering and hysteresis thresholding and
remove these by PDE-based inpainting [16]. However, this method is quite slow (minutes for a typical
dermoscopy image). Abbas et al. find hairs by a derivatives-of-Gaussian (DOG) filter [1, 2]. However,
this method has many parameters whose setting is complex.

While filters such as the above ones succeed in finding locally linear high-contrast structures, as-
sessing that such structures form together a long-and-thin object requires global analyses. Unless this
is done, many false-positives will be found, e.g. very short disconnected hair-like fragments of various
orientations. Their removal affects the skin texture, which may next adversely affect the use of such tex-
ture for image analysis and classification. To address this, VirtualShave finds hairs by top-hat filtering,
like [39], and uses three density, sphericity, and convex-hull-sphericity metrics to separate true positives
(hairs) from other high-contrast details (false positives) [13]. Finding other elongated objects such as
arterial vessels and fibers is also addressed by path opening methods [9] and grayscale skeletons [12].
The last method also permits filling thin gaps similar to our hairs. However, such approaches have not
been yet demonstrated for DHR aims.

Table 1 captures several aspects of the above DHR methods. As visible, there is little comparison
across methods. One salient aspect in this overview is that existing methods are validated on relatively
small image sets and/or do not have public implementations on which other researchers could test them
(except [16, 24]). As such, exhaustive comparison of existing DHR methods is hard. For our proposed
DHR method described next, extensive comparison with other methods and on large image sets will be
a main goal.
Table 1. Comparison of existing digital hair removal methods.

Method Hair detector Inpainting by Compared with # test images Implementation

DullRazor [24] generalized bilinear – 5 available
morphological closing interpolation (binary)

Huang et al. [16] multiscale matched median DullRazor 20 available
filters filtering (binary)

Fiorese et al. [13] top-hat operator PDE-based [4] DullRazor 20 not available
Xie et al. [39] top-hat operator anisotropic DullRazor 40 not available

diffusion [28]
E-shaver [18] Prewitt color DullRazor 5 not available

edge detector averaging
Abbas et al. [2] derivative of Gaussian coherence DullRazor, 100 not available

transport [5] Xie et al. [39]
Our method long hair detection fast marching DullRazor, over 300 available

by multiscale skeletons; method [36] Xie et al. [39], (source code,
stubble detection by Huang et al. [16], binary)
morphological operators Fiorese et al. [13]

Abbas et al. [2]
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3 Proposed Method
Most DHR methods find hairs by local luminance analysis (see Tab. 1, column 2). Such methods often
cannot to find hairs that have variable color, contrast, thickness, or crispness across an image. Hence,
the main idea introduced in [19] is to perform a conservative hair detection at all possible luminance
values. For this, the following pipeline is proposed. First, we convert the input image into a luminance
threshold-set representation (Sec. 3.1). For each threshold layer, we find thin hair-like structures using
a morphological gap-detection algorithm (Sec. 3.2). Potential hairs found in all layers are merged in a
mask image, which we next analyze to remove false-positives (Sec. 3.3). True-positive hairs are next
removed by using a classical image inpainting algorithm (Sec. 3.4). Finally, in addition to [19], we detect
short and relatively thick hairs (stubble) by morphological analysis and remove these by the same image
inpainting method used for long hairs (Sec. 3.5). These steps are discussed next.

3.1 Threshold-set Decomposition

We reduce color images first to their luminance component in HSV space. Next, we compute a threshold-
set model of the image [40]: Given a luminance image I : R2 → R+ and a value v ∈ R+, the threshold-set
T (v) for v is defined as

T (v) = {x ∈ R2|I(x) ≥ v}. (1)

For n-bits-per-pixel images, Eqn. 1 yields 2n layers Ti = T (i), 0 ≤ i < 2n. We use n = 8 (256 luminances),
in line with the color resolution of typical dermoscopic images. Note that Tj ⊂ Ti,∀j > i, i.e. brighter
layers are ‘nested’ in darker ones. If I(x) 6= i,∀x ∈ R2, we find that Ti = Ti+1. In such cases, we simply
skip Ti from our threshold-set decomposition, as it does not add any information. Our decomposition
{Ti} will thus have at most 2n layers.

3.2 Potential Long Hair Detection

To find typical (long) hairs, we detect thin-and-long shapes in each layer Ti by adapting a recent
gap-detection method [34], as follows.

Original gap-detection: Given a binary shape Ω ⊂ R2 with boundary ∂Ω, we compute the open-close
image Ωoc = (Ω◦H)•H and close-open image Ωco = (Ω•H)◦H. In detail, given a so-called structuring
element H, which is a disk in our case, we consider the dilation of Ω by H, i.e., the union of copies of
Hx (H centered at all pixels x ∈ Ω), i.e.

Ω⊕H =
⋃
x∈Ω

Hx. (2)

Similarly, we define the erosion of Ω by H, which keeps only pixels x ∈ Ω where Hx fits inside Ω, as

Ω	H = {x ∈ Ω|Hx ⊆ Ω}. (3)

Next, we define the opening of Ω as erosion followed by dilation, i.e.

Ω ◦H = (Ω	H)⊕H, (4)

and, analogously, the closing of Ω as dilation followed by erosion, i.e.

Ω •H = (Ω⊕H)	H. (5)

In both Ωoc and Ωco, small gaps of the input image Ω get filled; yet, Ωco has more gaps filled than
Ωoc, but also fills shallow concavities (dents) along ∂Ω.
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Next, we compute the skeleton or medial axis SΩoc of the shape Ωoc. Considering the distance
transform DT∂Ω : R2 → R+ given by

DT∂Ω(x ∈ Ω) = min
y∈∂Ω

‖x− y‖, (6)

the skeleton SΩ of Ω is next defined as

SΩ = {x ∈ Ω|∃f1, f2 ∈ ∂Ω, f1 6= f2, ‖x− f1‖ = ‖x− f2‖ = DT∂Ω(x)} (7)

where f1 and f2 are the contact points with ∂Ω of the maximally inscribed disc in Ω centered at x. From
SΩoc , the algorithm removes branch fragments that overlap with Ω, yielding a set F = SΩoc \ Ω that
contains skeleton-fragments located in thin gaps that cut deeply inside Ω. To find all pixels in the gaps,
the proposed method convolve the pixels x ∈ F with disk kernels centered at the respective pixels and
of radius equal to DTco(x). As shown in [34], this produces an accurate identification of deep-and-thin
indentations, or gaps, in Ω, while ignoring pixels in shallow dents along ∂Ω.

Hair-detection: We observe that, in a binary image with hairs in foreground, hairs are gaps of sur-
rounding background. We next aim to find robustly hairs in all layers Ti. For this, several changes
to [34] are needed. First, we note that [34] uses DTΩco as disk-radius values for gap-filling as they argue
that Ωco closes more gaps than Ωoc, supported by the observation that DTΩco(x) ≥ DTΩoc(x),∀x ∈ F .
Yet, for our hair-removal context, using DT∂Ωco on every layer Ti, and next merging gaps into a single
hair-mask, results in too many areas being marked as hair. The resulting mask proves to be too dense
– thus, creates too many false-positive hairs for our next filtering step (Sec. 3.3). Using the smaller
DT∂Ωoc as disk radius prevents this problem, but fails to find many hair fragments – thus, creates too
many false-negatives. To overcome these issues, we propose to use a linear combination of DT∂Ωoc and
DT∂Ωco . For this, we define a set of pairs disk-centers x and corresponding disk-radii ρ as

Dλ = {(x, ρ = (1− λ)DT∂Ωco(x) + λDT∂Ωoc(x)) |x ∈ F} (8)

where λ ∈ [0, 1] gives the influences on the disk radius of DT∂Ωoc and DT∂Ωco respectively. A value
of λ = 0.2, found empirically (see Sec. 6), avoids finding too many gaps (false-positives), while also
preventing missing too many hairs (false-negatives).

Let D be the union of pixels in all disks described by Dλ. We next find the gaps G that potentially
describe hairs as the difference

G = D \ Ω. (9)

We apply Eqn. 9 to compute a gap Gi from every shape Ωi := Ti. Next, we merge all resulting gaps Gi
together into a single hair-mask image M =

⋃2n

i=0Gi.
Morphological closing finds only hairs darker than skin. To find hairs lighter than skin, we replace

closing by morphological opening. Having the dark-hair and light-hair masks Md and M l, we can next
either combine the two or select one mask to use further. We observed in virtually all our test images that
dark and light hairs do not occur together. So, we use next the mask M ∈ {Md,M l} that most likely
contains hairs, i.e., which maximizes the length of the longest skeleton-branch in S∂M . For example, for
the image in Fig. 1 a, which has mainly dark hairs, our method will select to use the mask M := Md

(Fig. 1 b).

3.3 False Positive Elimination
Since we search for gaps on every threshold-level, we find more gaps than traditional approaches,
e.g. [16, 18, 24, 39]. Filtering out ‘false positives’ (gaps unlikely to be hairs), is thus necessary. We
achieve this in four steps, outlined below.
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a) b)

c) d)

e) f)

Fig. 1. a) Input image. b) Full hair mask M . c) Simplified mask skeleton SτM . d) Filtered mask Mf . e) Mask created
by [16]. f) Inpainted hair using Mf .

Component detection: First, we extract from M all 8-connected foreground components Ci ⊂ M .
We skip components less than 1% of the size of image M , as these cannot possibly be elongated hairs.
Remaining components are analyzed next to see if they are hairs or not.

Hair skeletons: Hair fragments are long and thin. To measure such properties on our components Ci,
we use their skeletons S∂Ci . Yet, components Ci may have jagged borders, due to input-image noise,
shadows, or low resolution (Fig. 1 b), so S∂Ci have many short spurious branches. We discard these
and keep each component ‘core’ by pruning each S∂Ci as in [37]: From S∂Ω, we produce a skeleton Sτ∂Ω
which keeps only points in S∂Ω caused by details of ∂Ω longer than τ . By making τ proportional to
the component’s boundary length ‖∂Ci‖, we ensure that longer branches are pruned more than shorter
ones. We also impose a minimum τmin to discard tiny spurious fragments, and a maximum τmax to
preserve large branches. Hence, the pruning parameter τ for a component Ci is

τ = max(τmin,min(‖∂Ci‖ · µ, τmax)) (10)

where µ ∈ [0, 1] is used as a scaling parameter and ‖∂Ci‖ denotes the boundary length of Ci, in pixels.
Figure 1 c shows the simplified skeleton Sτ∂M obtained from the mask M in Fig. 1 b.

Hair detection: In classical DHR, finding if a component is thin-and-long is done by e.g. (a) fitting
lines in a finite number of orientations and checking the length of the longest such line [24]; (b) using
principal component analysis to find if the major-to-minor eigenvalue ratio exceeds a threshold [23]; and
(c) computing an elongation metric comparing a component’s skeleton-length with its area [39]. Xie et
al. argue that (a) and (b) are limited, as they favor mainly straight hairs and yield false-negatives for
curled hairs [39]. They alleviate this by an elongation metric equal to the ratio of the area ‖Ci‖ to the
squared length of the ‘central axis’ of Ci. However, they give no details on how this central-axis (and
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its length) are computed. In particular, for crossing hairs, i.e., when the skeleton of Ci has multiple
similar-length branches, multiple interpretations of the notion of a ‘central axis’ are possible. We also
found that (c) also yields many false-negatives, i.e., marks as hair shapes which do not visually resemble
a hair structure at all.

To address such issues, we propose a new metric to find if a thin-and-long shape is likely a hair. Let
Ji = {x ∈ Sτ∂Ci

} be the set of junctions of Sτ∂Ci
, i.e., pixels where at least three Sτ∂Ci

branches meet. If the
maximum distance dmax = maxx∈Ji,y∈Ji,x 6=y ‖x− y‖ between any two junctions is small, then Ci is too
irregular to be a hair. We also consider the average branch-length between junctions davg = ‖S∂Ci‖/‖Ji‖,
i.e., the number of skeleton-pixels divided by the junction count. If either dmax < δmax or davg < δavg,
then Ci has too many branches to be a thin elongated hair (or a few crossing hairs), so we erase Sτ∂Ci

from the skeleton image. Good preset values for δmax and δavg are discussed in Sec. 6.

Mask construction: We construct the final mask Mf that captures hairs by convolving the filtered
skeleton-image (in which false-positives have been removed) with disks centered at each skeleton-pixel
x and of radius equal to DT∂M (x). Figure 1 d shows the mask Mf corresponding to the skeleton image
in Fig. 1 c. Comparing it with the hair-mask produced by [16] (Fig. 1 e), we see that our mask succeeds
in capturing the same amount of elongated hairs, but contains fewer small isolated line-fragments (thus,
has fewer false-positives).

3.4 Long Hair Removal

We remove the detected thin-and-long hairs by using classical inpainting [36] on the hair-mask Mf .
To overcome penumbras (pixels just outside Mf are slightly darker due to hair shadows), which get
smudged by inpainting into Mf , we first dilate Mf isotropically by a 3× 3 square structuring element.
This tells why hairs in Mf in Fig. 1 d are slightly thicker than those in Fig. 1 b. Figure 1 f shows our final
DHR result.

3.5 Stubble Detection and Removal

While the above four steps effectively find and remove thin-and-long hairs, they can easily miss thick-
and-short hairs (stubble). Such hairs appear in dermoscopy images, e.g. in situations where the lesion
area was shaved for a better image acquisition. To remove stubble, we propose a post-processing filter
on the images generated by the inpainting step (Sec. 3.4), as follows.

Let Iinp be the output of the long-and-thin hair inpainting step (note that this is a color image). We
compute IOC and ICO by applying open-close and close-open operators respectively to the red, green,
and blue channels of Iinp. We next compute the absolute difference (grayscale) images IdOC,I and IdCO,I
of IOC and ICO respectively with the input image Iinp. This is related, but not identical to, the top-hat
and bottom-hat transforms, where the difference between an image and its opening, respectively closing,
is taken. As shown in [34], using the open-close and close-open images instead of basic openings and
closings yields better results for gap detection scenarios like our DHR context.

Similarly to the mask construction for long hair detection in the presence of hairs darker, respectively
lighter, than skin, we next choose to use the difference image Id ∈ {IdOC,I , IdCO,I} which has the largest
intensity value summed over its pixels. This selects Id := IdOC,I for images having predominantly dark
stubble, and IdCO,I for images having predominantly light-colored stubble.

We next threshold Id into a binary stubble mask Ms by using a threshold value defined as

t = maxx∈Id Id(x)
γ

, (11)

where γ is a scaling factor. Setting γ = 2 reliably selected stubble hair in all out test images. After
thresholding, we normalize the resulting image to [0, 255]. This has the effect of a contrast enhancement
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Input image DullRazor Our methodHuang et al.

a)

c)

e)

f)

b)

d)

h)

g)

Fig. 2. Comparison of our method with DullRazor [23] and Huang et al. [16]. Insets show details.
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operation, which makes low-contrast hairs more visible and thus selects them more reliably in the mask
Ms. We finally dilate Ms isotropically by a 3× 3 square structuring element, and remove stubble from
Iinp by inpainting it over Ms, analogously to the long-and-thin hair removal (Sec. 3.4).

Figure 3 shows the effects of our stubble removal filter. As visible, stubble is still present in the
output of the long-and-thin DHR algorithm pass (Figs. 3 a,c), while it is well detected and removed
by our stubble removal filter (Figs. 3 b,d). The stubble filter also removes other small-scale line-like
details, such as the ruler annotations introduced by the dermatoscope (Figs. 3 a,c top-row). The two
filters (long-and-thin and stubble removal) assist each other, as follows. If an image contains only thin-
and-long hair, or only stubble, only one of the filters will actively change the image, while the other one
will act as a pass-through. If, however, an image contains both hair types, applying the thin-and-long
hair filter before stubble removal has the desirable effect of making stubble detection much easier, as
complicated structures of entangled hair are already removed.

a) after long hair removal b) after stubble removal c) after long hair removal d) after stubble removal

ruler annotations

isolated hairruler annotations

Fig. 3. Stubble removal filter (b,d) filters out stubble from the output of the long-hair removal pass (a,b).

4 Implementation
The most expensive part of our method is computing M , which requires distance transforms and skele-
tons from up to 256 binary images (Sec. 3.2). As these images can be over 10242 pixels for modern
dermoscopes [15], processing a single image must be done within milliseconds to yield an acceptable
speed. For this, we use the Parallel Banding Algorithm (PBA) for exact Euclidean distance transforms
(EDTs) in [6]. A simple modification of this method allows us to compute dilations and erosions (by
thresholding the distance transform with the radius of the disk structuring element) and simplified
skeletons (by implementing the boundary-collapse in [37]). Computing the skeleton of a shape Ω by [37]
only requires the identity of the closest point of ∂Ω for any point in Ω, or the so-called feature transform
of ∂Ω. This information is directly provided by the PBA method, so computing skeletons has virtually
no additional cost atop of the distance computation.

Hair masks M (Sec. 3.2) are also computed on the GPU. First, the grayscale image is copied from
CPU memory to VRAM, after which each threshold is processed sequentially on the GPU. For each
threshold i, the open-close and close-open images are computed from the binary shape Ωi. Erosions and
dilations are computed by thresholding the distance transforms DT∂Ωi and DT∂Ω̄i

with the radius of the
desired disk structuring element. Open-close images are computed by optimizing Ω⊕H 	H 	H ⊕H
into Ω⊕H	H ′⊕H, where H ′ has double the radius of H. Similar optimizations are done for close-open.
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The distance transforms DT∂Ωi and DT∂Ω̄i
are subsequently used to compute the radii ρ of the disks

Dλ (Eqn. 8). Next, for each skeleton pixel x located in a gap (set F in Sec. 3.2), we launch a thread to
draw a disk of radius ρ centered at x, which yields the image D. As F does not contain many pixels
(hundreds at most), computing D by disk drawing is efficient. The final step in processing a layer is to
compute the gap mask Gi by finding all disk pixels outside Ωi and marking their locations directly in
the hair mask M .

After all layers have been processed, the hair mask M is copied from VRAM back to CPU memory.
The latter steps of the algorithm – connected component detection, done with union-find [29]; skeleton-
based filtering; stubble filtering; and hair inpainting [36] – are implemented in C++ on the CPU, as
they are only performed once and thus not performance-critical as the per-layer computations are.

We also ran our method on multi-GPU machines by starting k MPI processes for k GPUs. Each
process p ∈ {0, . . . , k} does gap-detection on a subset of the threshold-set by launching CUDA threads
to parallelize gap-detection at image block level [6]. The k separate masks Mp, 1 ≤ p ≤ k are merged by
process 0 into a single mask M , after which the algorithm continues on the CPU like outlined above.

Memory-wise, our entire implementation requires only 12 floating-point buffers of the size of the
input image I, seven by PBA [6] to compute EDTs and skeletons, and five for the remaining algorithm
steps. This allows processing megapixel-size images on even the lowest-range CUDA-capable GPUs hav-
ing 128 MB VRAM. Feature-wise, we only use CUDA 1.1 capabilities, which makes our implementation
run on virtually all existing Nvidia cards, including low-end ones. C++ source code of our full method
is available openly for download at [20]. Additional details regarding computational speed are given in
Sec. 6.

5 Results and Comparison
Material: We have tested our method on over 300 skin images. These cover a wide range of skin
lesions; hair thickness, color, length, and density; image resolution (between 4002 and 2448×3264 pixels
i.e. full Handyscope resolution [15]); and skin pigmentation. Images were acquired by several types of
dermoscopes, by three unrelated research groups. Additionally, we tested our DHR method on the skin
images reported in the papers of [2, 13, 16]. Some of our test images contain no hair (see e.g. Fig. 6c
discussed further in this section); they let us see how well can we avoid false positives. This is important,
as removing non-hair details may affect subsequent analyses [2, 16].

Methods: We compared our results with five DHR methods, as follows: Where an implementation of
the method to compare with was available [16, 24], we ran our full image-set through it. For the other
methods [2, 13, 39], we processed images from the respective papers by our method and compared our
results with the ones in the respective papers.

Input Xie et al. Huang
et al.

Our
method

DullRazor

Fig. 4. Comparison between Xie et al. [39], Huang et al. [16], DullRazor, and our method. Input image from Xie et al.

Results: Compared to DullRazor and Huang et al. [16] (Fig. 2), we see that DullRazor cannot remove
low-contrast hairs (a,d); and both methods create undesired ‘halos’ around removed hairs (c,f;e,f). Images
(g,h) show two complex lesions, with hair of variable tints, opacity, thickness, and density. For (g), we
create less halos around removed hairs than both DullRazor and Huang et al. For (h), our method
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Input Abbas
et al.

Huang
et al.

a)

b)

c)

DullRazor

d)

Our
method

Fig. 5. Comparison between Abbas et al. [2], Huang et al. [16], DullRazor, and our method. Input images from Abbas et al.

removes considerably more hair than both methods. Figure 6 shows supplementary comparisons for four
complex images. Image (a) contains several crossing and very low-contrast hairs. We see that DullRazor
can remove several, but not all, such hairs. Also, both DullRazor and Huang et al. create high-contrast
edges from small non-hair pigmentation details, such as the ones shown in the insets, an effect of their
use of local edge-detection filters. In contrast, our method removes most such hairs and also correctly
preserves pigmentation details. Image (b) contains a few hair-like details (dermoscope markers in top-left
corner), but no hairs. The markers are successfully removed by all methods, including ours. Image (c)
shows a few crossing very low-contrast hairs. DullRazor cannot remove these. Huang et al. remove them,
but also significantly blurs the skin line-like pattern. Our method removes the hairs and keeps the skin
pattern, since its line-like structures are not sufficiently long to be seen as hairs by our skeleton-based
analysis (Sec. 3.3). Finally, image (d) contains no hairs, but a number of bubbles formed by contact
gel placed between the dermoscope lens and the skin for better contact (see inset). Like hairs, such
artifacts are not part of the tumor texture proper, and can confuse subsequent image analyses, and as
such should be removed, if possible. We see that both DullRazor and Huang et al. cannot remove these
structures. In contrast, our method detects the thin-and-curly bubble structure and removes most of it.

Figure 4 compares our results with Xie et al. [39] and Huang et al. We remove more hairs than Xie
et al., but also remove a small fraction of the skin. Huang et al. removes all hairs but also massively
blurs out the skin. This is undesirable, since such patterns are key to lesion analysis.

Figure 5 compares our method with Abbas et al. [2], Huang et al., and DullRazor, on a set of images
from Abbas et al. These images cover a wide gamut of skin and lesion pigmentations and hair thicknesses
and contrasts. Our method shows comparable results to Abbas et al. Huang et al. has issues with thick
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Input image Our methodDullRazor Huang et al.

a)

b)

c)

d)

Fig. 6. Comparison of our method with DullRazor [23] and Huang et al. [16] for several complex skin images.

hairs (a); creates undesired hair halos (c); and also blurs the fine-grained typical network texture present
in image (d). This last effect is highly undesired, since typical network texture is, among other image
features, an important indicator for the malignancy assessment of skin tumors [22]. Separately, we see
that DullRazor cannot remove most of the low-contrast hairs for the dark lesion (d).

Compared to Fiorese et al. [13], we show a similar ability in removing both stubble and elongated
hairs (Fig. 7). For images (a,b), Fiorese et al. strikingly changes the hue of the input image, which
is undesired, as this can affect both manual and automatic lesion assessment. Our method correctly
preserves the hue of the image. For the same images, showing both stubble hair (Fig. 7 a) and long curly
hair (Fig. 7 b,c), our method performs very similarly to DullRazor and Huang et al., and also creates
less halos around removed hairs (see insets).

6 Discussion
Parameters: To obtain full automation, we ran our method on several tens of skin images (at resolu-
tion 10242), varying all its parameters, and selected those values which visually yielded the best results
(most true-positive and least false-positive hairs). Next, we computed final parameters by averaging,
and tested that these values give good results on our full image test-set. Table 2 presents the final
parameter values, used to produce all images in this paper.
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Input image Fiorese et al. Our method

a)

b)

DullRazor Huang et al.

c)

Fig. 7. Comparison of Fiorese et al. [13], Huang et al. [16], DullRazor, and our method. Input images from Fiorese et al.

Table 2. Empirically established parameter values.

Description Definition Value

H Structuring element radius Section 3.2 5.0 pixels
λ Gap detection parameter Equation 8 0.2
µ Skeleton simplification parameter Equation 10 0.05
τmin Minimum skeleton pruning Equation 10 3.0 pixels
τmax Maximum skeleton pruning Equation 10 40.0 pixels
δmax Hair detection parameter Section 3.3 20.0 pixels
δavg Hair detection parameter Section 3.3 10.0 pixels

Robustness: We reliably remove hairs regardless of thickness, curvature, length, color, or underlying
skin pattern. Very thin and low-contrast hairs may not get (fully) removed, as they are either not found
in Mf or do not meet the elongation criteria (Sec. 3.3). Yet, the fact that such hairs are not detected
(and thus not removed) does not affect further usage of the skin images, since they are almost invisible
in the first place.

Speed: We compute an open-close, a close-open, a skeletonization, and a skeleton-to-shape reconstruc-
tion step for all threshold layers Ti found in an image. For a 10242 pixel image densely populated by
hairs, this takes 28 seconds on a MacBook Pro Core i7 with a GT 750M GPU, and 18 seconds on a
comparable desktop PC with a GTX 690. For the same image and desktop PC, DullRazor needs 4
seconds, Fiorese et al. 7 seconds, Abbas et al. 40 seconds, Xie et al. 150 seconds, and Huang et al. about
10 minutes. As such, our method is the third-fastest from the set of methods we compared against.

The complexity of our method is O(‖T‖ · ‖I‖), i.e., it is linear in the size of the input image I and
the number of threshold layers that we decompose I into (Sec. 3.1). This is due to the fact that all core
operations in our pipeline (morphological filters, inpainting, distance transforms, and skeletonization)
are linear in the number of processed pixels, and we process ‖T‖ such images, one for each threshold
layer. We next analyze how our implementation scales with respect to the number of threshold layers
‖T‖, as this is the parameter that dominates the processing time. For this, we fix the input image
resolution at 1024 × 768, and run our DHR method on 100 images which have a wide variation of the
remaining parameters (type and density of hairs and skin color). Figure 8 (left) shows the measured
execution timings vs the number of different threshold images ‖T‖ found in each input image. We notice
a good linear correlation of the execution time with number of thresholds. Note that a maximum of
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512 threshold images are being processed, as we compute two masks M l and Md, and each mask is
determined by maximally 28 = 256 thresholds.
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Fig. 8. Left: Total processing time as a function of ‖T‖. Right: Relative cost of computation stages, sorted on total time.

Figure 8 (right) shows the distribution of relative costs of the various stages of our pipeline, for the
same set of images as in Fig. 8 (left). Several points can be made here, as follows. First, we note that
the relative costs of all stages are largely independent on the number of processed thresholds – or, in
other words, that the total cost is indeed dominated by the number ‖T‖ of processed threshold images.
Secondly, we note that total cost is dominated by morphological operations (opening and closing) and
the gap-detection (computation of image D by disk drawing, see Sec. 4). Interestingly, computing exact
Euclidean skeletons, which is often perceived as an expensive operation, accounts for only 10 up to 15%
of the total processing time. Inpainting also has a very low cost, which justifies our implementation
thereof on the CPU. Overall, this analysis tells that significant speed-ups can be obtained by optimizing
our implementation of the morphological operations and disk-drawing used to detect the hair gaps.

Per image threshold, we obtained an average processing time τ̄ ∈ [60, 90] milliseconds, following
a distribution with mean 73.8 and standard deviation of 31.7 respectively. Furthermore, we tested for
correlation of τ̄ with various image features such as the amount of hair pixels detected in an image,
amount of hair crossings, and average hair length. No significant correlations were found. This strength-
ens the earlier observation that our method’s throughput is dominated by number of processed image
thresholds (for a given image resolution) and not by the type and/or amount of hair to remove. In
turn, this indicates that, if our current morphological operations and gap detection implementations
were further optimized, significant performance can be consistently gained. Separately, this tells that
our method can be trivially accelerated by using newer GPUs that offer more processing cores.

Tumor segmentation use-case: A practical way to measure the quality (and usefulness) of our DHR
method is to see how different the results of tumor segmentation are for images with hair and with hairs
removed by our method. Tumor segmentation is a crucial step in the computation of image descriptors
used for skin lesion classification, since such descriptors need to be assessed only over the lesion area
and not over surrounding healthy skin [7, 22, 27, 33].

To assess this difference, we considered several skin images having high-contrast hairs. Such hairs
adversely influence most automatic segmentation methods that try to separate the tumor from sur-
rounding skin (see e.g. [35], Sec. 9.4.2, Fig. 9.9). We considered next two segmentation methods which
are applicable to skin tumors: superpixel graphs based on the image foresting transform [31] and the
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more specific normalized-cut method in [14], which claims to be robust for skin lesions occluded by
hairs. We also tried other known segmentation methods, such as the active contour approach used in
skin tumor segmentation in [27], the mean shift method [10], and the level-set approach in [25]. However,
these additional methods showed much larger sensitivity to input image characteristics, including hairs
but also lesion details, as compared to [31] and [14]. As such, we deemed them less suitable candidates
for skin segmentation in general, and eliminated them from further detailed inspection.

Focusing on the two most robust segmentation methods of hair-occluded tumors [14, 31], we see
that both methods still have significant problems for images containing long high-contrast hairs. These
problems manifest themselves in terms of creating segments which either contain large parts of skin
outside the lesion or have boundaries that follow hairs that intersect the lesion (Fig. 9 b,c, red mark-
ers). Such suboptimal segmentations create major problems for e.g. the computation of reliable image
descriptors that should characterize the precisely delimited tumor area, to be used in automatic lesion
classification [7, 33]. After removing hairs by our DHR method (Fig. 9 d), both considered segmentation
methods achieve a very good segmentation result that closely follows the apparent skin tumor boundary
without being distracted by crossing hairs (Fig. 9 e,f). This shows that our DHR method can be used
as an automatic preprocessing filter for robust skin-tumor segmentation in tumor classification pipelines.

a) input images with hairs d) input images (after DHR)b) segmentation Rauber et al. c) segmentation Flores et al. e) segmentation Rauber et al. f) segmentation Flores et al.

Fig. 9. Tumor segmentation: (a) Input images with hairs, and corresponding segmentations using the methods of (b)
Rauber et al. [31] and (c) Flores et al. [14]. Segmentation artifacts are marked in red. (d-f) Results of segmenting the same
images with the same methods after hair removal.

Qualitative validation: We have shown all our input images, and obtained DHR results, to two
dermatologists having over 11 years of clinical experience, in blind mode – that is, the two specialists
did not know of each other’s assessment results, nor did they know about the aims of the evaluation or
specifics of the DHR method being used to remove hairs. We asked whether the raw vs DHR-processed
images would lead them to different interpretations, diagnoses, or insights. For all images, the answer
was negative. While a more formal measurement would bring additional insights, this test already
tells that our DHR method does not change the images in undesirable ways from the perspective of
specialist users who assess them. Separately, hair removal is obviously desirable, e.g. when using images
in automated image analysis and classification procedures [2, 16, 27, 30], such as the tumor segmentation
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use-case discussed above.
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Quantitative validation: To quantitatively assess the effect of hair removal, we performed the fol-
lowing experiment. We created three image databases, each having 10 different images (within each
database and across databases), all images having the same resolution. Database 1 contains skin-tumor
images without occluding hairs. Database 2 contains images with significant amounts of occluding
hairs. Database 3 contains images created by our DHR method by removing hairs from a set of images
with occluding hairs (not present in database 2). For each image in the three databases, we next
computed the gradient magnitude at each pixel and its standard deviation over each image. Separately,
we computed the standard deviation of the per-image gradients over all images in each database. These
metrics give an overall characterization of image features relevant for a wide range of tasks such as
image classification [3, 11, 21], since most image descriptors such as color histograms, tumor boundaries,
edge histograms, and texture descriptors used by such techniques strongly depend on local image gradi-
ents [22, 33]. Plotting the gradient standard deviation for images in all three databases, we see that the
DHR images are very similar to the different hair-free images, while the hair-occluded images clearly
stand apart (Fig. 10). This supports the hypothesis that our DHR method creates, on average, images
which have the same statistical characteristics as hair-free images, i.e. images which could be used with
the same success as hair-free images in various automatic analyses. While more accurate comparisons
of the actual image features extracted from the raw vs DHR-processed images could be performed, such
as considering texture descriptors, this simple test already indicates a good statistical match between
our results and typical naturally hair-free images.

Limitations: For very dense hairs of varying color on high-contrast skin (e.g. Fig. 2 h), we cannot fully
remove all hairs. Yet, this image type is extremely atypical – it actually is a skin lesion of a Labrador
canine subject, which has massively more hairs than typical humans; whose hairs are significantly thicker
than human hair, half-transparent, and hollow; and whose underlying skin texture shows complex high-
contrast striations. Also, other methods [16, 24] remove significantly less hairs in such cases. Separately,
while our method’s speed is around the average of the tested competitors, faster (albeit lower-quality)
methods exist [13, 24]. Using a more conservative method to select a subset of layers from the entire
threshold set of 256 binary images to further process to detect hairs, in line with similar layer-selection
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procedures used for image compression [40], would accelerate our method up to one order of magnitude.
Indeed, as discussed earlier in this section, our speed is chiefly influenced by the number of processed
layers. This would make our approach (compete with) the fastest DHR method published so far.

7 Conclusions
We have proposed a new approach for digital hair removal (DHR) by detecting gaps in all layers of an
image threshold-set decomposition. We find false-positives by using medial descriptors to find thin and
elongated shapes. We compared our method against five known DHR methods on a set of over 300 skin
images – to our knowledge, is the broadest DHR method comparison published so far. In this respect,
our method can better remove long curly hair and short stubble hair than its competitors. We show
how our method effectively improves skin tumor segmentation in the case of hair-occluded tumors, an
important asset for automatic skin lesion processing. Performance analysis of our method show its linear
dependence on the input image size and number of threshold sets identified in the image. Qualitative
and quantitative validations support the claim that our method produces images which are perceptually
and also quantitatively very similar to the original hair-occluded images.

Future work can target several directions. Machine learning techniques [3, 11, 21] could be used
to improve false-positive filtering. Further false-negative avoidance can be improved by extending our
method to use additional input dimensions besides luminance, such as hue and texture. Application-wise,
our method can be straightforwardly incorporated into skin tumor classifiers for melanoma detection in
order to make such techniques directly applicable to hair-occluded images too.
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