
An Open Framework for CVS Repository
Querying, Analysis and Visualization

Lucian Voinea
Technische Universiteit Eindhoven
Postbus 513, 5600 MB Eindhoven

The Netherlands
Tel. +31402474344

l.voinea@tue.nl

Alexandru Telea
Technische Universiteit Eindhoven
Postbus 513, 5600 MB Eindhoven

The Netherlands
Tel. +31402474344

alext@win.tue.nl

ABSTRACT
We present an open framework for visual mining of CVS
software repositories. We address three aspects: data extraction,
analysis and visualization. We first discuss the challenges of CVS
data extraction and storage, and propose a flexible way to deal
with CVS implementation inconsistencies. We next present a new
technique to enrich the raw data with information about artifacts
showing similar evolution. Finally, we propose a visualization
backend and show its applicability on industry-size repositories.

Categories and Subject Descriptors
D.2.7 [Software engineering]: Distribution, Maintenance, and
Enhancement – documentation, reengineering; H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval – clustering, query formulation; I.3.8 [Computer
Graphics]: Applications

General Terms
Management, Measurement, Documentation

Keywords
Evolution visualization, software visualization, CVS repositories

1. INTRODUCTION
Software Configuration Management (SCM) systems are proven
instruments for managing large software development projects.
SCMs maintain a history of changes in the structure and contents
of the managed project. This information is very suitable for
empirical studies on software evolution.

Many SCM systems exist on the market, e.g. Subversion, Visual
SourceSafe, RCS, CMSynergy, ClearCase and CVS. The
Concurrent Versions System (CVS), available via the Open
Source community, is a very popular SCM system and has been
the preferred choice for SCM support in many Open Source

projects in the last decade. Many CVS repositories for long
evolution periods, e.g. 5-10 years, are freely available for
analysis, so CVS is an interesting option for research on software
evolution.

However, CVS is mainly designed for archiving data. CVS offers
only a basic querying interface for retrieving a given version of a
file or an attribute list with the file state evolution. CVS provides
no features to let users get data overviews easily. The user
feedback, i.e. state attributes list, is provided only in compiled
textual format, which makes it unhandy for quick browsing.

Another challenge of CVS-based software evolution research is
the data size and complexity. Raw repository information is too
large and provides directly just limited insight in the evolution of
a software project. Extra analysis is needed to process these data
and extract relevant evolution features.

In this paper we address the challenges of software evolution
assessment in CVS repositories. We propose an open framework
for CVS data extraction and analysis. We illustrate the
capabilities of this framework with a customized implementation.
The basic questions we try to answer are:

- How to deal with the large size of CVS data and various
limitations of textual feedback?

- How to extract logical coupling information from
evolution?

- How to efficiently present evolution data to users to enable
correlations across entire projects?

 2The structure of this paper is as follows. In section we review
existing CVS data extraction methods and software evolution
analysis techniques. Section 3 presents our flexible interface with
CVS repositories. Section 4 describes a new clustering technique
for detecting logical coupling of files based on evolution
similarity. Section 5 describes a visual back-end for evolution
assessment and shows it at work on large repositories. Section 6
summarizes our contribution and outlines open issues for future
research. Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2. BACKGROUND
The huge potential of the data stored in SCMs for empirical
studies on software evolution has been recently acknowledged.
The growth in popularity and use of SCM systems, e.g. the open
source CVS

MSR’06, May 22–23, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00. [5] [15] and Subversion , opened new ways for

project accounting, auditing and understanding. These efforts can
be grouped in two directions: data mining and data visualization.

Data mining focuses on processing and extracting relevant
information from SCM systems. SCM systems have not been
designed to support empirical studies, so they often lack direct
access to high-level, aggregated evolution information. Hence,
information is distilled from the “raw” stored data by data mining
tools, as follows. Fischer et al. [7] extend the SCM evolution data
with information on file merge points. Gall [9] and German [10]
use transaction recovery methods based on fixed time windows.
Zimmermann and Weißgerber [21] extended this work with
sliding windows and facts mined from commit e-mails. Ball
analyzes class-cohesion using a mined probability of classes
being modified together [1]. Bieman et al. [2] and Gall et al. [9]
also mine relations between classes based on change similarities.
Ying et al. [20] and Zimmermann et al. [21] [21] address
relations between finer-grained artifacts, e.g. functions. Lopez-
Fernandez et al. [13] apply general social network analysis
methods on SCM data to assess the similarity and development
process of large projects.

Data visualization, the second research direction, takes a different
path, focusing on making the large mass of evolution information
effectively available to users. Visualization methods make few
assumptions on the data – the goal is to let users discover patterns
and trends rather than coding these in the mining process. SeeSoft
 [6], a line-based code visualization tool, uses color to show code
snippets matching given modification requests. Augur [8]
visually combines project artifact and activity data at a given
moment. Xia [19] uses treemap layouts for software structure,
colored to show evolution metrics, e.g. time and author of last
commit and number of changes. Such tools successfully show the
structure of software systems and the change dependencies at
given moments. Yet, they don’t give insight into code attributes
and structure changes made throughout an entire project. A first
step in this direction, UNIX’s gdiff and Windows’ WinDiff
display code differences between two versions of a file by
showing line insertions, deletions, and edits computed by the
diff tool. Still, such tools cannot show the evolution of
thousands of files and hundreds of versions. To overcome these
shortcomings, Collberg et al. [4] depicts the evolution of software
structures and mechanisms as a sequence of graphs, for medium-
size projects. Lanza [12] depicts the evolution of object-oriented
software systems at class level. Wu et al. [18] visualize the
evolution of entire projects at file level and emphasize the
evolution moments. Finally, our own work provided software
evolution visualizations at several granularity levels: CVSscan
 [16] for the line-level evolution of a few source code files and
CVSgrab [17] for file-level, project-wide evolution
investigations.

Data extraction is a less detailed aspect of software evolution
analysis. Many works extract data from CVS repositories, e.g
 [21], [7], [9], [11], [20], [13], [16], and [17]. Yet, a standard
framework for CVS data extraction still lacks. Two main
challenges exist here: data retrieval and CVS output parsing. The
huge amount of data in CVS repositories is usually available over
the Internet. On-the-fly retrieval is not suited for interactive
assessment, given the sheer data size. Storing data locally requires

long acquisition times, large storage space, and consistency
checks. Next, CVS output is ill suited for machine reading. Many
CVS systems use ambiguous or nonstandard output formats.
Attempts to address these problems exist, but are incomplete.
Libraries exist that offer an application interface (API) to CVS,
e.g. Java’s javacvs or Perl’s libcvs. However, javacvs is basically
undocumented. Libcvs handles only local repositories. The
Eclipse environment offers a CVS client implementation but not
an API. The Bonsai project [3] offers several tools to populate a
database with evolution data obtained from CVS repositories.
These tools are mainly meant as a web data access package and
are little documented. The best supported effort for CVS data
acquisition is the NetBeans javacvs package [14], a well-
documented API with allegedly full CVS client support that
parses CVS output into API-level data structures. SoftChange
 [11] was a first attempt for a coherent environment to support the
comparison of Open Source projects, targeting CVS, project
mailing lists, and bug report databases. It focuses mainly on data
extraction and analysis, aiming to be a generic foundation for
building evolution visualization tools.

Overall, several tools exist, each addressing different, though
overlapping, facets of software evolution analysis (see Table 1).

Table 1: Tools and methods overview

Tool Query Analysis
Visualization
Libcvs X

javacvs X

Bonsai [3] X

Eclipse CVS plugin X

NetBeans.javacvs [14] X

Release History Database [7] X X

Diff X

WinDiff X X

eRose [21] X X

QCR [9] X

Social Network Analysis
 [13]

 X

SeeSoft [6] X

Augur [8] X X

Gevol [4] X

CodeCrawler [12] X

Evolution Spectograph [18] X X

CVSscan [16] X X

CVSgrab [17] X X

Xia [19] X X

SoftChange [11] X X X

We propose a new approach towards an integrated framework for
CVS data extraction, analysis and visualization. Our goal is
twofold. First, we aim to provide users with a complete software
evolution analysis chain. Secondly, we aim at building an
experimenting foundation for research at all levels, i.e. extraction,
analysis, and visualization. Our approach is described next.

3. CVS QUERYING
CVS data extraction is a main problem for research on software
evolution. The CVS Internet protocol unfortunately covers only
the main CVS function, i.e. file archiving. The CVS navigation
commands do not have a machine-readable output. Navigation
feedback is given in a compiled text format that is not always
easy to decipher. Often, parse tools for this output fail to work on
some repositories due to awkward local conventions, e.g. “date
format is yyyy-mm-dd and not dd/mm/yyyy” or “file names may
contain spaces”. This makes uniform access to CVS data difficult.
In such cases, one usually searches a parser that copes with the
output format at hand and tries to add it to the experimental setup.
We propose an approach towards CVS data acquisition that
simplifies this process using a data acquisition mediator (see
Figure 1).

CVS
 client

CVS
Repository

CVS
format

converter

CVS
output parser

CVS
Data

Analysis

CVS
output parser

CVS
client proxy

(cached
standard output)

CVS data acquisition mediator

Existing CVS data acquisition system

Figure 1: CVS data extractor with output format mediator
The mediator is an easy-to-customize preprocessor between CVS
repositories and existing data acquisition tools. When format
inconsistencies occur between the CVS output and a parser, we
don’t need a new CVS data acquisition tool. Instead, we adapt the
mediator with a simple rule to transform the new format into the
one accepted by the tool. While this doesn’t completely remove
the problems of inconsistent output formatting, it is a flexible way
to solve problems without removing the preferred data acquisition
tool. We developed an open source, easy to customize mediator,
in a simple to use programming language: python. Secondly, the
mediator provides data access to CVS repositories and can also be
easily integrated in projects that lack a data acquisition tool. The
mediator offers selective access to CVS repositories, i.e. retrieves
only information about a desired folder or file, and also caches the
retrieved information locally. This design lets one control the
trade-off between latency, bandwidth and storage space in the
data acquisition step as desired.

4. DATA ANALYSIS
Raw CVS data is too large and low-level to provide insight in the
evolution of software projects. Extra analysis is needed to extract

relevant evolution aspects. An interesting analysis use-case is to
identify artifacts that have similar evolution. Several approaches
exist for this [2] [9] [21] [20], , , . They all use similarity measures
based on recovered CVS transactions, i.e. sets of files committed
by a user at some moment. The assumption is that related files
have a similar evolution pattern, and thus their revisions will often
share the same CVS transaction. This information about
correlated files is used to predict future changes in the analyzed
system, from the perspective of a given artifact.
We propose a more general approach. We argue that not
transactions, but pure commit moments, are important for finding
similar files. Transaction-based similarity measures fail to
correlate files developed by different authors and with different
comments attached, but which are still highly coupled. To handle
such cases, we propose a similarity measure using the time
distance between commit moments. If { }NitS i ..| 11 == are the
commit moments for a file F1 and { }MjtS j ..| 12 == the commit

moments for F2, we define the similarity between F1 and F2 as the
symmetric sum:

()
{ }

{ }∑

∑

=

=

+<−∈−

+
+<−∈−

=Φ

M

j ijiij

N

i jijji

kttSttt

kttSttt
FF

1 1

1 2

21

1

1

1

1

,|min

,|min
,

where k is a customizable neighborhood factor intended to reduce
the influence of completely unrelated events on the similarity
measure. The square root is meant to attenuate the influence of
the network latency on the CVS transaction. Intuitively, this
measure considers, for each commit moment of F1, the closest
commit moment from F2, weighted by the inverse time distance
between the two moments. We next use this measure in an
agglomerative clustering algorithm to group files that have a
similar evolution, yielding a logical system decomposition
following similar evolution patterns. We make the analysis data
available for any evolution assessment back-end by storing it in a
flat file database.

5. VISUALIZATION
Visualization tries to give insight in these large and complex CVS
data by delegating the pattern detection and correlation making to
the human visual system. Visualization can also present the
results of data analysis in an intuitive, ready-to-use, way.
Visualization is a main ingredient of our CVS repository mining
framework.

 3 4The data acquisition (Sec.) and analysis (Sec.) steps are
generic and can be used with any visualization back-end. We
present now a methodology for quick visual assessment of data
analysis results and illustrate its applicability with several use
cases. For this, we use the CVSgrab tool, detailed in [17].
CVSgrab visualizes project evolution at file level. It depicts each
project as a set of horizontal strips representing files along the
time axis (Figure 2).

 Time

Files

V1 V2 V3 V4 F1
F2

F3
F4

Color encodes version
based file metrics

Figure 2: CVSgrab visualization of project evolution
The file layout along the vertical axis is interactively constructed
to suit specific analysis needs. Plateau cushions are used to
highlight groups of files that have a similar evolution [17].
CVSgrab uses a generic mechanism to map file-level attributes to
colors. We next discuss the use of CVSgrab as visualization back-
end in our proposed open framework by assessing the evolution of
several file metrics on real-life, industry-size CVS repositories.
Error! Reference source not found. shows the evolution of
ArgoUML, an object-oriented design tool with a 6-year evolution
of 4452 files developed by 37 authors. To analyze the evolution
of ArgoUML using the framework described in this paper, we
coupled the CVS data acquisition mediator to the CVSgrab back-
end and used the standard CVS client to access the ArgoUML

repository over the Internet. Data acquisition took 31 minutes
over a T1 Internet connection: 8 minutes for the initial setup (i.e.
one-time retrieval of the last version of 56MB) and 23 minutes to
retrieve the evolution data to be visualized (29MB).
In Error! Reference source not found., a 12-snapshot matrix
shows ArgoUML’s evolution. Each column shows the evolution
of one metric:
- Column 1 shows the development team evolution. Each file

version color shows the ID of the user who committed it.
- Column 2 shows the size evolution of contributions as number

of lines. Files that are first committed are colored gray. Blue
shows file size increase, red is decrease, and yellow is a
commit that affects several lines but does not modify the file
size. While hue encodes the type of change in size, brightness
encodes the change size: lighter colors denote smaller
changes, darker colors denote more modifications.

- Column 3 shows the file type: red for java source files, green
for images, and yellow for HTML files.

- Column 4 highlights versions that contain given strings in
their associated commit comment: green for versions that
contain the word “fix”, blue for versions that contain the word
“error”.

A

B

C

1: team evolution 2: size evolution 3: file type evolution 4: search evolution
Figure 3: ArgoUML metrics evolution visualization with CVSgrab

Each row in Error! Reference source not found. uses another
layout offered by CVSgrab. In row A, files are sorted
alphabetically on their full path, and thus show the folder

structure. In row B, files are sorted from top to bottom in
decreasing order of number of versions, i.e. file activity. Files that
have the same number of versions are further sorted in decreasing

order of creation time. In row C, files are sorted in decreasing
order of creation time. Files created in the beginning of the
project are at the bottom, while ‘young’ files are at the top.
By assessing the project evolution shown in Error! Reference
source not found., one can discover several interesting aspects of
the process and organization of ArgoUML. Cell C3 shows that the
project started with a documentation base (i.e. green and yellow)
that probably contained the system specification. This was
contributed by one user (jrobbins = brown in C1) and remained
unchanged for the entire project duration except for a large
addition (dark blue in C2) done by another user two years later
(dennyd = red in C1). The added code concerned seemingly an
underspecified issue as it was extend again two years later (dark
blue in C2) by another author (mvw = cyan in C1). The real
implementation first appeared 6 months after the specification
was committed (java source files = red in C3) and was contributed
by one author (1sturm = blue in C1). Two years from the project
start, another big documentation chunk was added (yellow and
green in C3) by one user (jeremybennett = yellow in C1).
Although both the specification, implementation, and
documentation parts appear to be the work of one author each, it
is intriguing the fact they were all committed at one time (i.e. not
incrementally), by one author, and contained many files, i.e.
approx. 400. It is thus possible that these represent the work of
more people, which was first checked in by one single person. For
the rest of the project, one user has a significant contribution
(linus = green in C1), with one exception in the fifth project year
(mvw = cyan in C1). The large oval in A1 shows that mvw (cyan
in A1) made a significant contribution (dark blue, large oval in

A2) to the implementation (red in A3). The same pattern can be
recognized following the large ovals in B1 and B2. A3 shows that
the project has a very clean organization. The major color groups
correspond to the folders documentation (green at the top),
src_new (red at the middle) and www (yellow and green at the
bottom). From B3, one can see that most activity during the
project was related, as expected, to changes in the implementation
files (red at the top) followed by changes in the documentation
(yellow in the middle) and in the documentation images (green at
the bottom). B2 shows that almost one-third of the files added
during the project did not change during all six years (since they
are grey). Most such files contain documentation (i.e. yellow and
green in B3). To this group belongs also the largest part of the
previously identified system specification (i.e. brown in B1, by
correlation with C1 and C3). Another interesting aspect is shown
in the small ovals in A1 and A4. It seems that in the fourth project
year linus made a significant contribution, not in terms of size
(i.e. no significant size change pattern detected in A2) but in
terms of code cleaning. Many implementation files (red in A3)
containing the words “fix” and “error” in their revision comment
have been committed by linus to the repository. The same pattern
can be seen in row B. The large green (i.e. “fix”) horizontal
pattern that can be seen in column 4 corresponds to an initial
checkout of documentation files. It suggests that previous work
has been done in that area without being committed. Error!
Reference source not found. shows also that almost no
significant decrease took place in the project size. One exception,
highlighted in C2, shows a size drop for documentation files
(yellow in C3) that occurred at the end of the fourth project year.

A

B

C

1: team evolution 2: size evolution 3: file type evolution 4: search evolution
Figure 4: PostgreSQL metrics evolution visualization with CVSgrab

Figure 4 gives another example of CVS evolution visualization
done using our proposed framework. It shows the evolution of
PostgreSQL, an object-relational database management system
project with a history of 10 years, 2829 files, and 27 authors. We
used the same framework setup as in the previous example. The
data acquisition step took 28 minutes: 7 minutes for the initial
setup (i.e. one time retrieval of the last project version = 56MB)
and 21 minutes for retrieving the evolution information to be
visualized (29MB). The evolution retrieving time was in this case
smaller than in the first example, even if more data was retrieved.
This is explained by the connection overhead. When retrieving
evolution data, the connection has to be established for each file.
In this case the number of files was less than in the first example,
which significantly improved the overall connection latency.
Figure 4 shows 12-snapshot matrix illustrating the evolution of
PostgreSQL, structured similarly to Figure 3. Columns show the
development team (1), size evolution (2), file type (3) and string
search (4) encoded by colors, just as in example 1, except for file
type and string search. In column 3, C source files are blue, light
C headers are light green, SGML documentation files are normal
green, SQL files are pink, and test support files are red. In column
4, green shows versions that contain the word “fix” in their
associated commit comment, and red versions that contain the
word “bug”. As in the first example, the matrix rows use different

sortings for arranging files on the vertical axis: alphabetical order
(A), number of revisions (B) and creation time (C).
Assessing the evolution information depicted in Figure 4 one can
compare the evolution of PostgreSQL with the one of ArgoUML
presented in the first example, as follows. Cell C3 shows that the
project started with a source code base (i.e. blue at the bottom)
and not with a specification, as for ArgoUML. Even the header
files containing interfaces were not fixed until a couple of months
later (light green). As for ArgoUML, the initial contribution to
the repository (C source and headers) was performed by one
person (scrappy = red in C1) and incorporated many files (approx.
400). This suggests that previous developments existed that were
not recorded in CVS. The rest of the evolution appears to be
mainly the contribution of a few authors: momjian (light green),
tgl (dark blue), pgsql (magenta), petere (cyan), thomas (yellow-
greenish). The contributions of momjian and tgl are interleaved at
periods of around 6-8 months (column 1) and address the most
active parts of the system (B1). These parts correspond to the
implementation files (i.e. C source code and headers), by
correlation via A1 and A3. These parts are also targeted by pgsql
in the last two project years. A detailed look at B1 and B2 reveals
the contribution patterns of momjian and tgl. The versions
committed by momjian do not usually bring changes in files sizes
(i.e. they are yellow in B2) and are relatively done at large
intervals. In contrast to this, the contributions of tgl are done at

smaller intervals and cause often changes in the file size.
Moreover, the contributions of momjian “interrupt” abruptly the
ones of tgl but not conversely. This suggests the real work might
be done by tgl while momjian has more the role of a code
standard manager. A more in-depth investigation of the evolution
using the details-on-demand mechanism of CVSgrab showed that
the modifications done by momjian addressed mainly changes in
indentation and copyright texts. A similar pattern holds for pqsql.
Finally, petere and thomas appeared to have mainly contributed to
the system documentation (by correlating A1 and A3). As for
ArgoUML, PostgreSQL seems to have a clean organization (A3):
Source, header, documentation, and test files are well separated.
Most of the activity takes place in the implementation files. Not
only C files are modified but also headers and documentation
files, which could suggest frequent architectural changes. No
significant size modifications are registered throughout the
project. The only exceptions, highlighted in A2, address the
documentation part of the project. Finally, column 4 in Figure 4

shows the distribution of the words “fix” and “bug” along the
project evolution. The green patterns highlighted in the image
correspond to versions containing the word “fix”. By correlating
C3, C4 and C1, it seems that these patterns match header files in
versions committed by momjian. Hence, it is possible they do not
address important changes for the system functionality. Indeed, a
more detailed analysis revealed that the word “fix” refers actually
to a version of an indentation program used to format the text and
not to the system code itself! Other occurrences of the word “fix”
are evenly distributed largely over the evolution of C source files
(A4). The red patterns highlighted in A4 and C4 correspond to
versions containing the word “bug”. They correspond to test files
and appear towards the file creation moment. This, together with
the fact that test files are created relatively early in the project,
suggests an active test policy. The rest of the occurrences of the
word “bug” are evenly distributed, mostly along the evolution of
C source files.

M
ain clusters

a

b

c

d

e

1: word distribution 2: size evolution 3: file author 4: file type
Figure 5: PostgreSQL evolution clusters visualization with CVSgrab

Error! Reference source not found. visualizes PostgreSQL
evolution enriched with data analysis about clusters of files with
common evolution. Four CVSgrab snapshots are presented.
Clusters are encoded using plateau cushions. In each cluster, files
are sorted in decreasing order of their creation time, from top to
bottom. Color shows different file metrics: word distribution (1),
size evolution (2), file author (3) and file type (4), as in Figure 4.
There are mainly five important evolution groups. In column 4,
one can see three main groups: source files (a,b,c), documentation
(d), and test scenario files (e). We can easily see that source files
introduced in the beginning of the project have a similar evolution
(b). Hence, they may refer to a part of the system that has a high
logical coupling and can be seen as a building block. The same
holds for the other two clusters containing source code (a, c). All
building blocks share the same developer network (3) and size
evolution patterns (2). The block corresponding to the early

introduced source code (b) has, however, a higher density of
versions with comments containing the word “bug” (highlighted
in 1). Hence, this block may contain a problematic
implementation. Documentation forms a separate cluster (d),
leading to the conclusion that it mainly targets the functionality of
the system and not its detailed design, as it doesn’t change in sync
with the headers. Finally, the large cluster at the bottom of the
images (e) corresponds to a miscellaneous collection of files
including test scenarios. This cluster may thus refer to files
intended to support the development process, rather than
implementing real functionality.
Changing the cluster granularity level, one can further split the
clusters presented above for a finer analysis of the system. This
can be useful not only for performing a logical decomposition, but
also for predicting future changes with different levels of
confidence.

6. CONCLUSIONS
In this paper we propose a new framework for visual data mining
of CVS software repositories. Our goal is twofold. On the one
hand we aim to provide the research community with a base for
experimentation of new techniques in data acquisition, analysis
and visualization. On the other hand, we want to increase the
framework acceptance by making it immediately available to the
end users for CVS repository mining.

To achieve the first goal we propose a mediator module for CVS
data acquisition that can easily integrate with current data
extraction systems. The role of this module is to facilitate the
resolution of CVS format incompatibility problems without
requiring the modification / replacement of the data acquisition
module. Secondly, we propose a new approach for quick
visualization of data analysis results using the generic metric
visualization mechanism of CVSgrab [17].

To make the framework immediately available to end users, we
integrate the CVS mediator with a reference implementation of a
data extraction tool. Additionally, we propose a new technique for
identifying clusters of files with similar evolution. This could help
users both to perform a logical decomposition of the system, and
to predict future changes in the system from the perspective of
select files. We integrate this technique as a data analysis module
in the proposed framework, and we use CVSgrab [17] as
visualization backend. Finally we illustrate the functionality of
the integrated framework by visually mining the evolution of two
industry-size Open Source projects: ArgoUML and PostgreSQL.
The two cases demonstrate the framework has affordable time,
bandwidth, and storage requirements for data acquisition.
Additionally, it enables users to easily make complex evolution
assessments by correlating evolution of multiple file metrics.

As a future direction of research we would like to improve the
similarity measure of the evolution clustering mechanism by
using additional attributes, e.g. file type, author. The challenge in
this direction is to find the best similarity description that matches
a given user requirement. Additionally, we would like to extend
the framework with other generic visualization mechanisms, for
easy assessment of data analysis techniques.

7. REFERENCES
[1] Ball, T., Kim, J.-M., Porter, A.A., and Siy, H.P. If your version

control system could talk. ICSE’97 Workshop on Process Modelling
and Empirical Studies of Software Engineering, May 1997.
http://research.microsoft.com/~tball/papers/icse97-decay.pdf

[2] Bieman, J. M., Andrews, A. A., and Yang, H. J. Understanding
change-proneness in OO software through visualization. Proc. Intl.
Workshop on Program Comprehension, IEEE Press, 2003, pp. 44–
53

[3] Bonsai online: http://www.mozilla.org/projects/bonsai/
[4] Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, K. A

System for Graph-Based Visualization of the Evolution of Software.
Proc. ACM SoftVis‘03, ACM Press, 2003, pp. 77–86

[5] CVS online: http://www.nongnu.org/cvs/
[6] Eick, S.G., Steffen, J.L., and Sumner, E.E. Seesoft - A Tool For

Visualizing Line Oriented Software Statistics. IEEE Trans. on
Software Engineering, 18:11, IEEE Press, 1992, pp. 957– 968

[7] Fischer, M., Pinzger, M., and Gall, H. Populating a Release History
Database from version control and bug tracking systems. Proc. Intl.
Conf. on Software Maintenance, IEEE Press, 2003, pp. 23–32

[8] Froehlich, J., and Dourish, P., Unifying Artifacts and Activities in a
Visual Tool for Distributed Software Development Teams. Proc.
ICSE‘04, IEEE Press, 2004, pp.387–396

[9] Gall, H., Jazayeri, M., and Krajewski, J. CVS release history data for
detecting logical couplings. Proc. IWPSE’03, IEEE Press, 2003, pp.
13–23

[10] German, D., and Mockus, A. Automating the measurement of open
source projects. ICSE '03 Workshop on Open Source Software
Engineering, Automating the Measurement of Open Source Projects,
http://www.research.avayalabs.com/user/audris/papers/oose03.pdf

[11] German, D., Hindle, A., and Jordan, N. Visualizing the evolution of
software using softchange. In Proc. Intl .Conference on Software
Engineering and Knowledge Engineering (SEKE’04), pp. 336–341

[12] Lanza, M. The evolution matix: Recovering software evolution using
software visualization techniques. In Proc. Intl. Workshop on
Principles of Software Evolution, ACM Press, 2001, pp. 37–42

[13] Lopez-Fernandez, L., Robles, G., and Gonzalez-Barahona, J.M.
Applying Social Network Analysis to the Information in CVS

Repositories. Intl. Workshop on Mining Software Repositories
(MSR), 2004, http://opensource.mit.edu/papers/llopez-sna-short.pdf

[14] NetBeans.javacvs online: http://javacvs.netbeans.org/
[15] Subversion online: http://subversion.tigris.org/
[16] Voinea, L., Telea, A., and van Wijk, J.J. CVSscan: Visualization of

code evolution. Proc. ACM SoftVis, ACM Press, 2005, pp. 47 – 56
[17] Voinea, L., and Telea, A. CVSgrab: Mining the History of Large

Software Projects. Proc. EuroVis’06, IEEE Press, 2006.
[18] Wu, K., Spitzer, C.W., Hassan, A.E., and Holt, R.C. Evolution

Spectrographs: Visualizing Punctuated Change in Software
Evolution. In Proc. Intl. Workshop on Principles of Software
Evolution (IWPSE'04), IEEE Press, 2004, pp. 57-66

[19] Wu, X. Visualization of version control information. Master’s thesis,
University of Victoria, 2003.

[20] Ying, A.T.T., Murphy, G.C., Ng, R., Chu-Carroll, M.C., Predicting
Source Code Changes by Mining Revision History. IEEE Trans. on
Software Engineering, 30:9, IEEE Press, 2004, pp. 574-586

[21] Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A., Mining
version histories to guide software changes. Proc. Intl. Conference
on Software Engineering (ICSE), IEEE Press, 2004, pp. 429–445

[22] Zimmermann, T., Weißgerber, P., Preprocessing CVS Data for Fine-
grained Analysis. Intl. Workshop on Mining Software Repositories
(MSR), May 2004,
http://www.st.cs.uni-sb.de/papers/msr2004/msr2004.pdf

http://msr.uwaterloo.ca/msr2004/
http://msr.uwaterloo.ca/msr2004/
http://msr.uwaterloo.ca/msr2004/
http://msr.uwaterloo.ca/msr2004/

	1. INTRODUCTION
	2. BACKGROUND
	3. CVS QUERYING
	4. DATA ANALYSIS
	5. VISUALIZATION
	6. CONCLUSIONS
	7. REFERENCES

