
A V I S U A L T O O L - B A S E D A P P R O A C H T O P O RT I N G C + +
C O D E .

bertjan broeksema

Master thesis

Rijksuniversiteit Groningen
Faculty of mathematics and natural sciences

Department Computing Science

Supervisor:
Prof. dr. A. C. Telea
KDAB Supervisors:

T. Adam
V. Krause

Bertjan Broeksema: A Visual Tool-Based Approach to porting C++
Code., Master thesis, © June 2010

A B S T R A C T

The sheer number of changes needed to port a code base when
one of more of its dependencies need to be replaced by either a
new version or another framework make it viable to develop tools
that perform all or most of the required changes automatically in
a reliable way. The purpose of this thesis was to research ways
to support developers in the process of automated refactoring of
large code bases.

To this extent the type of refactoring activities involved was
studied. Furthermore, a semi-automated code refactoring system
based on queries and rules was developed. Transformations work
directly on the source by means of insert and replace actions but
are still correct due to the semantic understanding of the code by
the framework.

Additionally, new visualization techniques are proposed to sup-
port the process of iterative refactoring. The results of these are
implemented in a tool for the C/C++ language, developed as an
extension of the KDevelop Integrated Development Environment
(IDE). Finally, the effectiveness and usefulness of the tool was
demonstrated on a large industrial code base and concrete refac-
toring operations involved in the process of porting C++ code.

The tool is able to deal with large and complex code bases.
It was tested with a subset of the queries and transformations
needed for a Qt3 to Qt4 port on kdelibs 3.5 which contains about
750K lines of code. The project overview visualization gives a
clear overview of the results for the queries on the project and can
easily show results for up to hundreds of files. The file impact
visualization gives a space efficient overview of the structure
of a source file and at the same time it gives clear visual hints
of potential conflicting changes. Finally, transformations were
specified for about fifteen of the more complex changes in a Qt
port.

The approach taken for transformations worked particularly
well when changes are localized. For more structural changes
to the code transformations on the Abstract Syntax Tree (AST)
and AST pretty printing would be required. The project overview
visualization is really helpful in estimating porting effort. Finally,
the file impact visualization extended the infrastructure by en-
abling code complexity analysis in addition to the main task of
automated refactoring.

iii

A C K N O W L E D G M E N T S

First I’d like to thank prof. dr. Alex Telea who supervised the
work done for this thesis. His expertise in the field of C++ fact
extraction as well as his support during the writing phase made
the project a very interesting and pleasant ride.

I also want to thank KDAB for offering the opportunity to work
on this highly interesting topic in a very nice environment. Special
thanks go to Till Adam and Volker Krause who supervised my
work and who were nice enough to review several versions of
this thesis.

Next I want to thank the KDevelop developers for the devel-
opment of a feature rich and extensible IDE. In particular I’d like
to thank Milian Wolff, who picked up my initial implementation
and performed numerous stability enhancements.

Finally, I’d like to thank my beloved wife Agnes who was a
great support during the whole project, even though she was in
the process of writing her own thesis. Your support was invalu-
able.

v

C O N T E N T S

1 introduction 1

1.1 Motivation 2

1.2 Estimation 3

1.3 Porting 4

1.3.1 Learning 4

1.3.2 Analysis of the code base 4

1.3.3 Automated porting 5

1.3.4 Bug fixing 5

1.3.5 Requirements for a porting system 6

1.4 The Qt3 to Qt4 porting process 7

1.4.1 Scripts 8

1.4.2 The qt3toqt4 porting tool 8

1.4.3 IDEs 9

1.5 Proposed solution 9

1.6 Road map 10

i Related Work 11

2 fact extraction 13

2.1 Fact extraction from C++ code bases 13

2.2 Requirements 14

2.3 AspectC++ 17

2.4 Columbus CAN 18

2.5 DMS 19

2.6 KDevelop 19

2.7 SolidFX 20

3 transformation systems 23

3.1 Requirements 23

3.2 ASF+SDF 24

3.3 Stratego/XT 24

3.4 Transformers 25

3.5 DMS 25

3.6 Software understanding and refactoring support
in IDEs 26

3.6.1 Program understanding 26

3.6.2 Refactoring 27

3.6.3 Querying 27

ii Design and implementation 29

4 framework design 31

4.1 Architecture 31

4.2 KDevelop 33

4.2.1 Project handling 33

4.2.2 Fact extraction 34

vii

viii contents

5 querying 37

5.1 Method 38

5.2 Query engine design 38

5.3 Query types and result classes 39

5.3.1 Function queries 40

5.3.2 Method queries 42

5.3.3 Class queries 43

6 transforming code 45

6.1 Method 45

6.1.1 Procedural transforms 46

6.1.2 Source-to-source transforms 46

6.1.3 Range based approach 46

6.2 Transform engine design 47

7 use cases and limitations 49

7.1 Enumerations 49

7.2 Classes 51

7.3 Global functions 52

7.4 Methods 53

7.4.1 QString 54

7.4.2 QPtrList 56

7.4.3 QObject 57

7.5 Limitations 60

7.5.1 Structural limitations 60

7.5.2 Minor limitations 63

8 visual support for estimation and porting 65

8.1 Use case: Estimation of a porting process 66

8.1.1 Initial setup 67

8.1.2 Project overview 68

8.1.3 Interpreting the results 69

8.1.4 Configuration of data presentation 72

8.2 Use case: Performing a port 73

8.2.1 File oriented view 73

8.2.2 File impact view rendering 74

8.2.3 Editor interaction and performing transfor-
mations 76

8.2.4 File impact view zooming 78

8.3 Use case: API feedback and refactoring estima-
tion 81

8.4 Use case: deprecated API tracking 81

8.5 Use case: Identify which parts of a class are af-
fected 83

8.6 Use case: Affected code complexity 84

iii Evaluation and conclusion 87

9 conclusions 89

9.1 Fact extraction 89

9.2 Querying 90

contents ix

9.3 Code transformation 91

9.4 Visual support 92

9.5 Future work 93

9.5.1 Scripting support 93

9.5.2 Defining queries and transformations 94

9.5.3 Visual improvements 94

iv Appendix 97

a Qt3 to Qt4 porting example file 99

b Porting file XML dtd 107

bibliography 113

L I S T O F F I G U R E S

Figure 1 General porting work flow. 4

Figure 2 The Qt3 to Qt4 porting work flow. 7

Figure 3 Architectural overview 32

Figure 4 Query and QueryHits class hierarchy 39

Figure 5 Transform engine class hierarchy 48

Figure 6 Overview of KDevelop with our plugin en-
abled. 67

Figure 7 Query selection tab. 68

Figure 8 Project overview for kdelibs. 69

Figure 9 Project overview for kdelibs zoomed out. 70

Figure 10 Header coloring by scale. 71

Figure 11 Data presentation control panel. 71

Figure 12 Detail of the project overview with rows
and columns swapped. 72

Figure 13 File oriented result browsing. 73

Figure 14 kdeui/kactionclasses.cpp results. 76

Figure 15 kdeui/kactionclasses.cpp selected query hit. 77

Figure 16 File impact view before and after transfor-
mation. 78

Figure 17 Detail of file impact view showing possible
conflict. 79

Figure 18 Detail of file impact view showing possible
conflict. 80

Figure 19 Usage of deprecated kdepimlibs API in kde-
pim. 82

Figure 20 The block color configuration. 84

Figure 21 File impact view configured to show less
detail. 84

Figure 22 Identifying complex pieces of code. 85

L I S T I N G S

Listing 1 A simple signal/slot example 17

Listing 2 Method call range and items 42

x

Listing 3 Type use due to constructor call 44

Listing 4 Enum queries 50

Listing 5 Enum transforms 50

Listing 6 Class renaming 51

Listing 7 Qt3 qt_cast signature 52

Listing 8 qt_cast query 53

Listing 9 Global function transformation 53

Listing 10 QString place markers 54

Listing 11 QString constructor queries 54

Listing 12 Restricted QString constructor query 55

Listing 13 QString::operator query 55

Listing 14 QString creation from std::string in Qt3 55

Listing 15 QString std::string transformations 56

Listing 16 QPtrList<T>::containsRef 56

Listing 17 String based comparison in Qt3 57

Listing 18 QString std::string transformations 57

Listing 19 QObject::child signature 58

Listing 20 QObject::child recursive variant 58

Listing 21 QObject::child non-recursive variant 60

Listing 22 Overlapping query ranges 61

Listing 23 Changed return value 61

Listing 24 Changed return value ported 61

Listing 25 QMainWindow flags in Qt3 62

Listing 26 QMainWindow ported to Qt4 62

Listing 27 Queries and transforms for Qt3 to Qt4 99

Listing 28 DTD for porting XML files 107

A C R O N Y M S

AOP Aspect Oriented Programming

API Application Programming Interface

AST Abstract Syntax Tree

ASG Annotated Syntax Graph

CAN C++ Analyzer

CANPP C++ Analyzer Preprocessor

DUChain Definition Use Chain

GUI Graphical User Interface

xi

xii acronyms

GLR Generalized Left-to-right Rightmost

IDE Integrated Development Environment

KDE SC KDE Software Compilation

MFC Microsoft Foundation Classes

moc meta object compiler

ODR One Definition Rule

Qid Qualified Identifier

SDF Syntaxt Definition Formalism

1
I N T R O D U C T I O N

In the typical life cycle of industrial software projects, software
maintenance takes up to eighty percent of the overall project costs.
Forty percent of these costs are spent on program understanding.
Therefore it is desirable to have tools that make the maintenance
process more efficient and effective at several levels Lanza et al.
[26], Diehl [22].

An important aspect of software maintenance is keeping the
code base up to date with respect to a changing environment.
Changes in the Application Programming Interface (API) of the
projects dependencies can have a large impact on the code base.
Porting a code base to a new version of one or more of the de-
pendencies might, depending on the project size, become a huge
effort. The actual activity of porting looks related to refactoring.
In his book on refactoring, Martin Fowler describes it as the pro-
cess of changing a software system in such a way that it does not
alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes
the chances of introducing new bugs Fowler [25].

For porting on the other hand, the short term result is often a
code base that needs a lot of manual work. Another difference
is that when porting a code base, many of the needed changes
to the code base can be formalized in such a way that makes
them suitable for automated tools. In addition to that, the vast
amount of changes needed on industry sized code bases makes
it economically interesting to develop tools that help to automate
the porting Akers et al. [16].

This is a well known fact at KDAB [6] where the work for this
thesis was performed. KDAB is a middle size software company
that is specialized in Qt [11] development and consulting. Qt is
a cross platform application and user interface framework for
the C++ programming language. A major part of the engineering
work at KDAB consists of porting C++ code bases. Several kinds
of ports are done, the most common ones being:

• Microsoft Foundation Classes (MFC) to Qt

• Motif to Qt

• QtX to QtY (with X < Y).

Toolkits like MFC [8] and Motif [9] are similar to Qt in that they
are application development frameworks providing tools such as
generic containers, Graphical User Interface (GUI) widgets, XML

1

2 introduction

handling, etc. The way that these concepts are expressed in actual
API differs between the various toolkits. In contrast, two major
versions of the same framework are in many cases very similar.
This results in the fact that many of the changes needed in a
Qt3 to Qt4 port are local to one method. MFC ports however,
also require a lot of changes to the logic of the code. For Motif
ports it is even more complex due to some missing concepts in
the Motif API which are required in Qt based code. In practice,
KDAB discovered that this results in a three times larger effort
time wise for MFC to Qt ports in comparison to Qt3 to Qt4 ports
for projects which are similar in size and complexity. Motif ports
even result in a six times larger effort time wise compared to Qt3
to Qt4 ports.

The API of Qt is guaranteed to be stable between minor releases
but not between major releases. A public example of the effort
needed to port a code base to a new major version of Qt is the
port of the KDE [1] code base from Qt version 3 to Qt version
4. At the start of the port the code base contained about 3.8
million lines of code, calculated using David Wheelers sloccount
[13]. The KDE community started working on this port in early
2005, while the first non beta release of KDE, which is based
on Qt4 was only in January 2008. Most of this work was done
by community members in their spare time. However, several
engineers currently working at KDAB were involved in this effort
too. The knowledge gained and tools developed during this effort
are still of great value during Qt-to-Qt porting projects.

We consider the Qt3 to Qt4 porting use case in this thesis to
illustrate the improvements and solutions proposed. This use
case is relevant in terms of the size of the API, size of code bases
using the API, complexity of the code, and the type of users to
be reasonably considered as illustrative for the challenges and
advantages of the solutions presented in this thesis. Nevertheless,
the solution presented here can be applied with limited modifica-
tions to porting other C++ software systems, or, in the presence
of a suitable static analyzer, porting software written in other
languages like Java.

In the next sections we will describe the estimation and porting
processes, followed by the general requirements to which our
work should comply. We will than have a closer look at the Qt3 to
Qt4 porting process and describe the shortcomings with respect
to the stated requirements.

1.1 motivation

Over time knowledge about porting projects and the risks of
specific ports is built up. For KDAB, an important aspect is the
ability to retain this knowledge and encode it a maintainable way.

1.2 estimation 3

Additionally, it should be stored in such a way which enables
automation of the ports as much as possible. Currently, a large
part of the knowledge is encoded in Perl[10] scripts and Emacs[4]
macros. However, both resources become hard to maintain and
use over time. A new way of encoding the knowledge is therefore
required which can be used in tools that help with the estimation
and automation of porting projects.

1.2 estimation

An important task at the start of a porting project is estimating
the budget risks for the project. These risks can be in two areas.
Firstly there might be code which is known to take a lot of time
when being ported. Secondly there might be code which needs
special knowledge which means that specific engineers have to be
assigned to those parts. For an estimation of these risks various
facts about the code base and the port are important:

• The source API - The API which is used in the code base
before the port is performed.

• The target API - The API to which the code base has to be
ported.

• API usage information - Detailed information about where
in the code base the source API is used.

Porting is the transition of a code base using a source API to a
code base using a target API. Detailed information about how the
source API is used in the code to be ported is needed to make a
correct estimation of the required effort and possible risks. Tools
that understand the language can provide help in the following
estimation tasks:

• Estimation of the overall complexity of the port.

• Estimation of the distribution of required changes over the
source files of the code base.

• Estimation of the needed resources to be allocated for the
project.

• Estimation of how to allocate resources needed for the
project.

Currently scripts are run over the code base to get information
about which parts of the source API are used. These are Perl
scripts and have therefore no real understanding of the code.
This information is therefore necessarily an approximation and
partly unreliable.

4 introduction

1.3 porting

Porting a code base to a new API is a complex and time con-
suming process. The process consist of several steps and while
performing these steps the engineers use a multitude of resources.
Figure 1 gives an overview of the typical porting process. Boxes
represent the various steps in the process and ellipses represent
the resources used. In this section we first give an overview of
the various steps in of the generic process and how the process
influences and is influenced by the resources. Next we will ap-
ply this generic description to a specific instance of this process,
namely Qt 3 to Qt4 porting.

Figure 1.: General porting work flow.

1.3.1 Learning

A port starts by learning the APIs that are involved in the porting
project. This involves gaining general knowledge such as the
functionality the APIs offer and similarities between the APIs.
More important however is in-depth knowledge about the APIs
such as how particular constructs of an API should be used, the
consequences of using these constructs in the wrong way and how
to translate particular usage to the new API. The duration of this
step typically reduces over time especially when the port involves
an API which is well known by the engineers performing the port.
Sources for learning are the documentation of the involved APIs
and if available documentation specifically aimed at porting.
Learning often results in additional documentation and tools for
analysis and automated porting.

1.3.2 Analysis of the code base

Analysis of the code base serves two goals. Firstly, before a project
starts analysis is done to estimate the duration and costs of
the project. Secondly, during the port analysis is done to find
recurring patterns in the code base. For these it can be more
efficient to write new tools or adapt the current tools instead of
doing the changes manually. The results of this step are typically
new or adapted documentation, analysis tools and porting tools.

1.3 porting 5

1.3.3 Automated porting

Porting a software system to a new API often has a sweeping
impact on the system. The changes needed for a port may in-
dividually be easy. However, making all these changes by hand
is very time consuming, boring and error prone work. Porting
efforts can be described for a large part as a series of mechanical
source transformations. Automated source code transformation
systems offer a solution here. These systems can vary from simple
grep like tools to systems which have a full understanding of
the semantic complexities of the source language. The former
are often easy to construct but limited in what they can achieve.
The latter can be used for complex and precise transformations
but are expensive to develop. However, the sheer number of
changes needed for a typical port makes it economically viable
to automate as much of the changes as possible, thus spend part
of the budget on developing tools for automated transformations.
When budget and resources are limited a trade off must be made
between the level of correctness of these tools and the overhead
of creating and using such tools.

Even when using state of the art source transformation systems,
manual work is often required to finish the port. Manual porting
starts with fixing compile errors resulting from the automated
step. This includes adaptation of the build system to the new API,
correcting parts of the code that were not transformed correctly
and porting the parts of the code that were not changed by the
transformation system.

In some cases, such as when porting a Qt3 code base to Qt4,
there might be an intermediate API available for backwards com-
patibility. This reduces the initial amount of work needed to get
rid of the dependency of the old API. When the initial port is
finished, the port is completed by porting away from the inter-
mediate API if needed and fixing known changes in run time
behavior. During this step often new special cases are detected
resulting in updated documentation and tools.

1.3.4 Bug fixing

Finally the project enters a loop in which the customer tests the
ported software and reports bugs. Similar to manual porting, this
step often leads to detection of new special cases. This step takes
a large part of the projects time budget due to the fact that it can
take quite some time when the problematic code paths are hit
during run time. An additional problem is that these kind of run
time errors are not always easy to reproduce.

6 introduction

1.3.5 Requirements for a porting system

Now we have outlined the porting process we can formulate the
following general requirements (GR) for a porting system.

GR1. Scalability: The porting system should be able to handle
real-world code bases containing millions of lines of code.

GR2. Language: A porting system requires a static analyzer to be
able to reason about the code at hand and to provide the
information needed for automatic porting. A static analyzer
understanding only a limited subset of the language will
thus definitely not work for large, complex, industrial code
bases. Since the porting limitations caused by the limitations
of such a static analyzer are very subtle and hard to grasp
by actual programmers, we require our static analyzer used
in porting to have a (nearly) complete understanding of the
language, in our case C++.

GR3. Simplicity of use: The porting system proposed should be
simple and quick to use by the typical engineer involved
with the porting process. As such the solution should inte-
grate tightly with the knowledge level and tool set used e.g.
compiler, code editor and build system or IDE.

GR4. Customizeability: Different projects have different porting is-
sues e.g. the types of constructs subject to porting, the actual
porting rules and different styles of API usage. The users of
the porting system should therefore be able to customize
the system to cope with different porting scenarios.

GR5. Predictable minimal impact: Automation often results in a
massive number of changes to the code base. It is near to
impossible for an engineer to overview the actual impact
and side effects of these changes. The changes made to a
code base should therefore be minimal and have predictable
effects.

GR6. Transparency: The porting solution proposed should allow
developers to examine the impact caused by a porting ac-
tion, or a set of actions, both before and after executing the
porting. This is a crucial requirement when one assumes
that the porting system in use does not work absolutely
automatically and is not fully complete, that is, may need
even the smallest amount of manual fixes to be done. More-
over, even if we assume a ’perfect’ porting system which
transforms the code always fully automatically from one
working state to the next working state, users may want
to see the impact that such a system will actually have on
their code. This will help them to reason about various

1.4 the qt3 to qt4 porting process 7

related effects, such as build time increases, difficulties in
learning the new code or changes to part of the code which
are maintained by other developers.

In this thesis we are advocating a semi automated approach to
C++ code porting as an efficient and effective solution for code
porting tasks. For this solution to be efficient and effective, it
should comply with the above mentioned requirements. In the
following chapters, we will describe our proposal and also outline
how this proposal complies with the above stated requirements.

Figure 2.: The Qt3 to Qt4 porting work flow.

1.4 the qt3 to qt4 porting process

In this section we particularize the above discussion on code
porting to the the specific Qt3 to Qt4 porting process. This process
was the original motivation and carrier project for our work.
Figure 2 shows the Qt3 to Qt4 instantiation of the general porting
process depicted in Figure 1. The actual changes in the Qt4
API with respect to the Qt3 API vary from simple renaming of
various language constructs to more complex changes such as
changes in function signatures, change of semantic meaning of
existing functions and replacement of constructs by completely
new concepts. The more dangerous changes in the API are those
due to which the run time behavior of the application changes.
This can for example happen due to changed implementation of a
function or due to changed meaning of function arguments. The
problem with these kind of changes is twofold. The first problem
is that during a port these changes do not expose themselves in
the form of compile errors. Secondly, it is very hard to find the
locations in the code where these particular problematic spots
occur.

Practice has shown that performing the automated step in
Qt3 to Qt4 porting process takes only about two percent of the
time spent on the project while touching up to 80 percent of the
code base in lines of code. Fixing the resulting errors is clearly
less work than making all these changes by hand. Some of the
resulting ninety eight percent of the time is spent on fixing build
errors as result of the automated work. The larger part of it is

8 introduction

spent on fixing run time behavior regressions and new bugs
introduced during the porting work.

We next give a brief overview of the current state-of-the-art
used in Qt3 to Qt4 porting at KDAB and highlight the limitations
of this solution with respect to the general requirements stated
in Section 1.3.5.

1.4.1 Scripts

For estimation as well as for automated porting the current pro-
cess heavily relies on scripts. These are mainly perl scripts1 which
make use of regular expression to find various language con-
structs. Although the approach is not purely based on regular
expressions and in some cases not even context-free, it is clear
that the scripts do not have a real understanding of the semantics
of C++. This therefore clearly violates GR2.

Another problem is that different engineers tend to have slightly
different approaches in solving similar problems when using
scripts. This results in a collection of scripts which becomes hard
to use and maintain over time which is a violation of GR3.

Scripts also come with the problem that one cannot know
beforehand which parts of the sources will be touched by scripts.
This may be actual code but even likely code that is commented
out or just plain comments. Because of this it is hard to tell what
the actual side effects of the changes made by scripts will be and
therefore this approach also violates GR5.

Finally, scripts by themselves provide no transparency at all.
At best they can output data in a specified format which can be
used for further processing. Hence, this approach violates GR6.

1.4.2 The qt3toqt4 porting tool

The Qt4 framework comes with a tool which tries to automate the
most tedious part of the porting effort. It reads an XML file con-
taining porting rules. These rules can be used to rename classes,
prefix or rename enumeration values and add or modify include
directives. Although this tool does make use of a C++ parser,
it seems to do only a partly semantic analysis. This results in
incorrect transformations for simple cases such as renaming of
enumeration values. More advanced cases such as changed signa-
tures of functions are not handled. This limited understanding of
the language is a violation of GR2. Moreover, just renaming con-
structs may lead to unpredictable run time behavior and therefore
this approach violates GR5 as well.

1 The scripts can be found in the KDE svn repository:
http://websvn.kde.org/trunk/KDE/kdesdk/scripts/qt4/

http://websvn.kde.org/trunk/KDE/kdesdk/scripts/qt4/

1.5 proposed solution 9

1.4.3 IDEs

For manual development editors, ranging from plain text edi-
tors to complete IDEs are used. IDEs such as KDevelop [7] and
QtCreator [12] become more and more powerful nowadays. They
offer features like integration of the build system with the edi-
tor to allow the engineer to quickly jump to the location in the
source code that causes the compilation error. IDEs also help the
engineer in understanding the code by providing context aware
highlighting and links between code and documentation. Some
IDEs even provide refactoring support [2] [14] but for C++ this is
in most cases limited and constrained to a fixed set of refactor-
ings. Currently we do not know of an IDE which directly tries to
meet our stated requirements. However, an IDE with good under-
standing of the semantics of C++ would enable the development
of a framework that meets the stated requirements.

1.5 proposed solution

In this thesis we present a tool-based approach to improve the
efficiency and the effectiveness of estimating the effort and per-
forming the actual port of a C++ code base from Qt3 to Qt4. To
this extent we integrated automated analysis and transforma-
tion capabilities into an IDE. These capabilities are supported by
additional visualizations which support the user on the task of
estimation as well as with the actual porting. Our solution tries
to meet the requirements as stated in Section 1.3.5.

We implemented a prototype as a plugin for the KDevelop [7]
IDE. Making use of its enabling technologies like parsing and
semantic analysis of C++ code and editor integration. The plugin
consist of three components. The first component is a query
engine which uses the results from the parsing and semantic
analysis to find affected code constructs in the analyzed project. It
is specifically aimed at finding uses of a specified API. The second
component is a transformation engine. This engine takes results
from the query engine and transformation descriptions to apply
changes to the source files. The last component provides two
visualizations. One visualization gives an overview of the project
that has to be ported and is aimed at helping the engineer to
estimate the effort and difficulty of a porting project. The second
visualization is aimed at guiding the actual porting process by
giving an overview of where changes will be applied by the
porting engine in a particular file.

10 introduction

1.6 road map

This thesis is structured as follows. Chapter 2 gives a short in-
troduction on the topic of fact extraction from C++ code bases,
next the requirements for a fact extraction framework suitable
for porting will be discussed. Finally, a review based on these
requirements of various fact extractors will be done.

Chapter 3 discusses the requirements for a C++ code trans-
formation system, followed by a review of various C++ trans-
formation systems. It concludes with a brief discussion on fact
extraction and transformation support of C++ IDEs.

Chapter 4 gives an overview of the architecture of our porting
framework. In addition it discusses some of the internals of
the KDevelop IDE which are of importance for our query and
transformation engine.

Making changes in a reliable way to code bases requires an
engine that can find the code that is subject to change in a precise
way. Chapter 5 discusses the design of our light weight query
engine, built as extension of the KDevelop C++ analyzer.

Chapter 6 discusses the design of our transformation engine.
Chapter 7 illustrates the use of both the query and the trans-

formation engine. We do this by taking various transformation
use cases from the Qt3 to Qt4 porting process.

Chapter 8 presents and discusses the visualization techniques,
added to our plugin to support various use cases related to
porting.

Finally, Chapter 9 reflects on the previous chapters and dis-
cusses to what extent we were able to achieve the goals we stated
in the introduction.

Part i.

Related Work

11

2
FA C T E X T R A C T I O N

Compiler technology is a set of techniques and tool implementa-
tions which deal with the processing of source code for different
purposes. The most well known application of compiler technol-
ogy is probably in compilers, generating executable programs
out of source code. However, as pointed out in Aho et al. [15],
there are many more applications of compiler technology, the
most important in our context being static analysis and program
translations. In this chapter and in the next chapter we will have
a closer look at compiler techniques and integration with IDEs
and argue why we chose specific techniques and tools.

Program translations are normally thought of as translations
of a high level language to machine language. However, the same
technique can be used for transformations between two different
high level languages or for transformations within the same
language. This topic is discussed in more detail in Chapter 3.

Static analysis serves the extraction of various facts from a
code base without actually executing the code. These facts in
turn are used for various tasks related to the code at hand. They
can be used for example to assess the quality of the code, to
construct simplified visual representation which support tasks
such as program comprehension or to perform transformations
on the code. The facts delivered by static analysis are quite broad,
ranging from basic raw facts to more refined facts. Raw facts
include lexical information of the source files, abstract syntax
trees which describes purely the syntax of the code and abstract
syntax graphs which describe the syntax and semantics of the
code with respect to the rules of a given programming language.
The more refined facts include quality metrics such as cohesion,
coupling and complexity but also design patterns, architectural
patterns, call graphs, inheritance graphs and control graphs. An
extensive overview of quality metrics and their use can be found
in Lanza et al. [26].

2.1 fact extraction from c++ code bases

Given our requirements (Section 1.3.5), we need to perform static
analysis of large, complex C++ code bases. The analysis should
deliver us enough facts, to be able to efficiently and effectively
implement our required program transformation goals for code
refactoring and porting. Given the open scope of our automated
porting challenge, we have to be able to define porting rules on a

13

14 fact extraction

wide range of C++ constructs. Moreover, the porting rules need
to have full access to lexical, syntactic and semantic information
on the code to be ported. Hence, we need a C++ analyzer which
is able to efficiently and effectively provide such information1. In
the next section we will first discuss the specific requirements for
a C++ fact extraction framework. We will use these requirements
to evaluate various fact extraction frameworks.

2.2 requirements

Boerboom and Janssen [20] give an overview of the general re-
quirements for C++ fact extraction frameworks. In this section we
reiterate over these requirements and adjust them too the specific
needs of this project where needed.

FX1. Fault Tolerance. Fact extraction from code that that does
not compile must be possible. Porting projects can happen
on code bases that require a complex build configuration
which might not always be completely reproducible when
working off-site. Also, the code might become partly invalid
when changes are applied to individual files as result of
transforms or manual editing during the porting process.

FX2. Completeness and correctness. All parseable, syntactical con-
structs should be extracted correctly. This is especially im-
portant in case of porting because the Qt API can be used
anywhere in the code base.

FX3. Compliance. The parser should at least understand the C++
standard which is required by the Qt3 API. However special
knowledge of different dialects like g++, Borland C++ and
Visual C++ is not of particular importance. Lack of such
knowledge should have a minimal impact on finding facts
of interests (i.e. use of Qt3 API). This is due to the fact that
most software using Qt, was based on Qt to make it cross
platform. Meaning, the code is often compiled with various
compilers and therefore contains very little compiler specific
code. In addition, Qt contains many convenience classes
which hide platform specific issues from the engineers.

FX4. Cross References. Cross references in the source should be
resolved correctly and complete enough to support the task

1 We make a clear distinction between a parser and an analyzer. Whereas a
parser delivers AST information, which is in principle sufficient to determine
the nesting of syntactic constructs in the source code, a semantic analyzer goes
much beyond that. An analyzer delivers relations between code elements such
as dependencies, uses, inheritance, scoping, type compatibility, type subsuming
and type equivalence between classes. All this information is essential for
implementing a truly effective system for code transformations, which is our
aim.

2.2 requirements 15

of finding and porting Qt3 API. This means that uses of
classes, class member functions and public class and names-
pace members are resolved by the framework. Because the
Qt3 API makes use of templates, though in general not in
very complex way, there should be at least rudimentary
support for templates too.

FX5. Preprocessing. The preprocessor should be able to process
source code of arbitrary complexity. It is especially impor-
tant that line and column information of tokens in the
original source file are kept and available for later use. The
preprocessor should therefor deal correctly with macro ex-
pansion. Especially in this context, because we want to
touch as little code as possible when performing transfor-
mations.

FX6. Coverage. Because of the fact that the C++ grammar is not
fully context independent, possible ambiguities may occur.
The framework should be able to deal with this to a rea-
sonable extent. The main area of interest is Qt3 API and the
experience is that such areas need extra work either during
or after the initial port anyway.

FX7. Output completeness. The output of the framework should be
complete with respect to the correctly parsed and analyzed
input. This includes but is not limited to line and column
information of syntax constructs and type system informa-
tion. If an analyzers output is severely limited, then its use
as a building block in a program transformation framework
will be limited to the type and extent of information that it
provides to the designers of the transformation framework.

FX8. Performance and Scalability. The time to extract facts from
code bases should be similar to compilation times of the
same code. In addition, support for incremental updating
of a particular source file is preferred as source files will
change often during the port.

FX9. Portability. The framework should be available on the ma-
jor platforms used by the principal, which are Linux and
Windows.

FX10. Availability. The framework should be available in one of
the open source variants. Which means that at least for the
prototype commercial products are not a candidate.

In addition to these requirements there are some more specific
requirements for this project.

FX11. Integration with IDE. Because our usability requirement GR3
the framework should integrate well with an IDE. This

16 fact extraction

makes sure that the automated porting tasks integrate nicely
into the work flow of the developer during the porting
project. In Section 3.6 we will discuss the IDEs that we
evaluated for our purposes.

FX12. Ease of use - Build system support. The framework should not
require a lot of effort to set up. Build information needed
to parse the files of a project should preferably be extracted
from the build system of the project.

FX13. Generality - Build system support. As the expected result is
a prototype, it is not needed that it has support for all
possible build systems. The prototype should at least be
able to handle Makefile managed and CMake managed
projects.

FX14. Coverage - Query engine. The query engine is not required to
return results which are in parts of the source files that are
disabled due to preprocessor definitions.

FX15. Additional Qt language extension support. The framework
should understand the Qt Signals and Slots mechanism.
The signals and slots mechanism is one of the core tech-
nologies of Qt used for communication between objects. It
is a runtime mechanism, meaning that normal compilers
cannot give useful warnings when using this technology in
the wrong way. We therefore give a short overview of how
the mechanism works.

Signals are emitted after particular events and other objects
can connect one or more slots to a signal. A slot is called as
soon as the signal to which it is connected is emitted. To un-
derstand the signals and slot mechanism, the preprocessor
must be extended because the signal and slot mechanism is
implemented by means of special macros. However, some
of these macros actually do not expand to real C++ syntax
but are used as a markers.

Listing 1 shows a slightly simplified use of the signal and
slot mechanism as provided by Qt. In a normal build pro-
cess a separate tool, called the meta object compiler (moc) is
run before the actual compilation of a file. This tool parses
the file and looks for the signal and slot mechanism macros
(i.e. Q_OBJECT, slots, signals, SIGNAL, SLOT). It than gen-
erates a header which should be included by the processed
file.

The SIGNAL and SLOT macros expand their argument to
character array. So after preprocessing, without storing spe-
cial knowledge it is not possible to say where these macros

2.3 aspectc++ 17

were used. This information is important for checking sig-
nals and slot connection correctness and also for renaming
signals and slots.

Listing 1: A simple signal/slot example

class MyObject : public QObject

{

Q_OBJECT

public slots:

void slotA(int a);

protected slots:

void slotB(const MyObject &);

signals:

void mySignal(int a);

};

...

// Connect is a method of QObject.

connect(someObject, SIGNAL(mySignal(int)),

this, SLOT(slotA(int)));

... �
In the next sections we will review various C++ fact extrac-

tion frameworks with a focus on the requirements discussed in
Section 2.2. We will briefly describe the used techniques and
applications of these frameworks. We do not consider compilers
which support extensions such as GCC 4.4 because these frame-
works fail to meet requirements FX1 and FX5. Where applicable
we will also clearly indicate when a given framework fails to
meet one of our requirements.

2.3 aspectc++

AspectC++ Spinczyk et al. [32] is an extension of the C++ lan-
guage to implement support for Aspect Oriented Programming
(AOP) with C++. This extension consist of about ten grammar
rules in addition to the original C++ grammar as presented in
Stroustrup [33]. These additional rules introduce the AOP con-
cepts like so called “point cuts“, ”advices“ and aspects. These
language constructs can be used by the programmer as if they
where part of the language and a special tool called the aspect
weaver inserts code fragments at the appropriate locations at
compile time. The generated code is passed to the real compiler.

The aspect weaver is based on a fact extraction framework
called PUMA [31]. This framework contains the whole set of

18 fact extraction

tools needed for fact extraction. It provides a lexical scanner, an
integrated preprocessor, a parser and a semantic analyzer.

Although the framework seems to support a reasonable sub-
set of C++, it does not support C++ templates according to the
aspectc.org website which is a violation of requirement FX4.
Another drawback is that no active development seem to have re-
cently happened on this project. The latest release of the complete
AspectC++ framework dates from 2006.

2.4 columbus can

Columbus Ferenc et al. [24] is a reverse engineering framework
for C++ projects. It is designed to analyze large C++ software
systems and presents the information in a common specification
called Columbus Schema for C++. Projects are processed in three
stages. First an extractor parses the source files of the project. Next
a custom linker is used to extract information with respect to
the modularity of the project. Finally the gathered information is
passed to an exporter which has plugins to export the information
into different kinds of formats. In addition to these steps the
framework also offers filtering of the information to reduce the
size of the output information.

The actual extraction from source files is done by two tools
called C++ Analyzer (CAN) and C++ Analyzer Preprocessor
(CANPP) Arp et al. [18]. These tools are called during the normal
build process by means of compiler wrapping. Meaning that
instead of the actual compiler, these tools are called which than
forward the command to the real compiler. This ensures easy
integration with existing projects. The parser meets the ISO/IEC
standard of 1998 and the grammar has been extended to support
various commonly used dialects.

Large projects can be parsed with the Columbus framework,
which suggests a high quality parser. It also performs a semantic
analysis, however the parts of the Annotated Syntax Graph (ASG)
for statements and expressions is not created. This will make it
hard to find uses of symbols and information needed for refac-
toring and therefore requirement FX4 is not met. Furthermore
the schema does not store lexical information which violates re-
quirement FX7. Finally, the extracted information is not directly
accessible via an API. Meaning, that extracting information would
need an engine which understands one of the output formats
and on top of that an engine which enables searching for the
required information.

2.5 dms 19

2.5 dms

DMS Baxter et al. [19] is a commercial program analysis and
transformation system from Semantic Design. It is designed for
analysis and transformations on complete systems. DMS is there-
fore able to not only handle C++ code but also other widely used
languages (or domains) in industry such as Java and COBOL.
One of the foundations with respect to fact extracting are the
so called hyper graphs, a generalization of graphs. This repre-
sentation makes it possible to capture any arbitrary graph like
language. AST are encoded on top of the hyper graph structure.

Parsers for a domain are generated using a domain specifi-
cation and the present parsers are implemented with support
for integrated lexing, preprocessing and parsing. An interest-
ing feature is the general strategy to avoid macro expansion.
The thought behind this is that DMS should process what the
programmer sees. DMS uses GLR parsing which eases the detec-
tion of ambiguities that may arise due to the nature of the C++
grammar.

DMS also provides a general symbol table management system.
This system is used for storing and providing access to name
and type information and their associated symbol spaces (i.e.
namespaces in C++). On top of this generic symbol system a
domain specific API is constructed which enables looking up
symbols in a specific context. The C++ name and type resolver is
extended to have support for preprocessor directives Akers et al.
[16]. This means that name lookup can be done for any context
in which the code is used.

DMS is a state-of-the-art tool for static analysis and has been
used in numerous industrial projects for program analysis and
transformation, including C++ programs. It will however never
be an open system in terms of API and therefore fails to meet
the availability requirement FX10. Also, being a fact extraction
and fully automated transformation engine might make it harder
to integrate it with a rapid development process. Furthermore
it is highly likely that given the complexity of the system it has
a steep learning curve and cannot be easily integrated into the
current work flow of the developers and therefore violates GR3.

2.6 kdevelop

KDevelop [7] is a powerful IDE built upon the KDE platform.
The latest stable version is available for all major platforms. KDe-
velop is based on a set of libraries which implement functionality
for IDE like programs called KDevPlatform. Among the func-
tionality in KDevPlatform is project management and program-
ming language independent language support. The language

20 fact extraction

support offers features like a generic ASG, called the Definition
Use Chain (DUChain) internally, editor integration and background
parsing. The language support is highly adapted to rapidly chang-
ing documents.

KDevelop integrates these functionalities in one IDE by means
of plugins and implements on top of the language library support
for PHP and C++. The C++ fact extractor makes use of an internal
preprocessor which retrieves the environment information from
the project management module. As a natural side effect of being
based on KDE platform and therefore based on the Qt toolkit
too, the C++ fact extractor can deal very well with Qt based C++
source code. The preprocessor is adapted to not expand signals
and slots macros. These are kept in the preprocessed source and
the parser is adapted to handle them. This is a similar technique
as described in [19]. The parser is able to successfully parse
large and complex code bases in a fault tolerant way. The latter is
especially important to support incremental updating of extracted
facts during editing of documents. Due to the integration with
the editor, low level information like positions of tokens and
macro related information is stored too. The semantic analysis is
rather complete. It has substantial support for the more complex
steps like template instantiation and function overload resolution.
Extracted information is stored in a repository and is accessible
via API.

KDevelop is available under the GPL license and there is a
LGPL library included which enables extension of KDevelop by
either open source or proprietary plugins. The API for querying
the extracted facts is aimed at use through an editor. This can be
overcome relatively easy by extending the API to meet our needs.
We did not find obvious limitations with respect to the stated
requirements for fact extraction.

2.7 solidfx

SolidFX Telea and Byelas [35] is an integrated environment for
industrial code analysis. It is based on the fact extractor presented
in Boerboom and Janssen [20]. This is a tolerant, heavyweight
extractor. It is tolerant in the sense that it will try to recover
from lexical errors as much as possible. In contrast to lightweight
parsers, which do only partial parsing and type checking of the
source code, the SolidFX fact extractor does preprocessing, pars-
ing and full semantic analysis of the source files. All information
extracted from a translation unit is filtered for unneeded symbols
and than stored in a so called fact database. On top of the fact
database a query engine is built which enables querying the
extracted facts by means of different kinds of queries like AST

visitor queries, preprocessor queries, type queries and location

2.7 solidfx 21

queries. Queries can be composed into query trees which make it
possible to extract complex information from any fact database.
The queries can be described in XML files which are read by
the engine. It is also possible to use the C++ API to query the
extracted facts.

The above described properties make the fact extractor of
SolidFX a good candidate for our work. However, the frame-
work was built with fact extraction and visualization as major
goal. It therefore has no integration with an IDE. Also, it is meant
to be a general fact extractor, so we expect no special knowledge
available with respect to the signals and slot mechanism provided
by Qt.

In this chapter we discussed the topic of C++ fact extraction.
We enumerated the requirements for a fact extractor that is suit-
able for use in an automated porting system. These requirements
were used to assess various freely available and commercial fact
extractors. From this assessment we conclude that the KDevelop
fact extractor is a suitable choice for our further work.

3
T R A N S F O R M AT I O N S Y S T E M S

After fact extraction (Chapter 2), the facts are available in some
intermediate representation which can be used for further pro-
cessing. In our case we will use these facts in combination with
transformation descriptions to apply transformations to the code
in a semi automated way.

In the literature we find several forms of program transfor-
mations. Procedural transformations, being arbitrary functions
applied on AST’s are, most commonly known for their use in com-
pilers. Software refactoring frameworks are starting to use this
technique too. In this context we briefly discuss the Stratego/XT
(Section 3.3) and the Transformers (Section 3.4) frameworks. Both
frameworks use the procedural transformation technique and are
used in the context of transforming C++ code bases, which is our
area of interest.

Another form of transformations found in the literature is the
so called source-to-source transformation, being a mapping be-
tween the concrete syntax forms of the code. In its simplest form
this is a simple search and replace as using grep like tools. A
more advanced framework which enables source-to-source trans-
formations is the ASF+SDF (Section 3.2) framework. Finally, there
is also a hybrid solution described in DMS (Section 3.5) which
combines compiler techniques with source-to-source transforma-
tion.

The form of transformation is important with respect to the
resulting code one can expect from the framework. As most of
the porting projects at KDAB are done on code bases which are
intended too be human readable it is important that all syntactical
information is kept intact as much as possible.

In the following sections we will first outline the requirements
for our transformation engine. Next we will describe various
transformation systems. Some of them, such as Transformers,
are specifically created for C++ source code, others are general
transformation systems which are described to illustrate the
techniques used for transformations.

3.1 requirements

As with the fact extractor, the transformation engine has to ad-
here to some requirements in the context of our problem. In
this section we describe the requirements for the transformation
engine.

23

24 transformation systems

TF1. Preprocessor. All preprocessor information should be kept
intact when it is not part of code that is affected by a
transformation.

TF2. Source code layout. The code layout should be kept intact for
all code that is not affected by a transformation.

TF3. Transformation correctness. The framework is aimed at sup-
porting engineers with experience in porting software to
Qt4, therefore there will be no support for checking correct-
ness of defined transformations.

TF4. Minimal impact. No changes, other than specified by the
transformations should be made on the code.

In the following, we briefly review existing program transfor-
mation tools with a focus on C++ and outline their advantages
and limitations with respect to the above listed requirements.

3.2 asf+sdf

The ASF+SDF Deursen et al. [21] framework is a generic frame-
work to define languages and generate tools for these languages.
The formalism allows the specification of arbitrary syntax us-
ing the Syntaxt Definition Formalism (SDF). From these defini-
tions parsers are generated which use Generalized Left-to-right
Rightmost (GLR) parsing techniques for the defined languages.
Additionally, tools such as type checkers and pretty printers can
be generated for the specified languages. The system also sup-
ports transformations which are described in terms of concrete
syntax. The fact that the framework is language independent
enables an approach similar to DMS (Section 3.5). Using the pure
ASF+SDF framework would require a lot more work than can be
done within the time frame of this project. The major problem is
that ASF+SDF does not integrate a semantic system, but just a
syntactical one. Moreover, it does not integrate a C++ front-end
with semantic information. Hence, while ASF+SDF may be an
interesting academic development, it is not applicable to analysis
and transformations of large and complex C++ code bases.

3.3 stratego/xt

Stratego/XT Visser [38] is a framework to develop transformation
tools. It aims to have support for a wide range of program trans-
formations. The framework consists of two main components.
The first component being Stratego, a language to describe the
transformations. The language consists of transformation rules
and a transformation strategy. Unlike ASF+SDF, the Stratego

3.4 transformers 25

transformation rules describe basic transformation steps on an
AST in stead of on concrete syntax. The rules are combined in a
transformation strategy to form a complete transformation. The
second component of Stratego/XT is XT, a set of tools providing
facilities for the infrastructure needed for transformation sys-
tems. Besides parsing and pretty printing tools it also contains a
transformation tool and a transformation system. The transfor-
mation tool is a wrapper around a set of transformation rules
and strategies which can be called from the command-line. A
transformation system is in turn a composition of these tools
together with other facilities like a parser and a pretty printer,
able to perform a complete transformation. Like ASF+SDF (Sec-
tion 3.2), Stratego/XT uses SDF for specifying language syntax
and generating parsers. Being based upon ASF+SDF, Stratego/XT
suffers from the same limitations.

3.4 transformers

Transformers Anisko et al. [17] is a transformation framework
specifically for C++. The main motivation for transformers is to
simplify generic programming. This is done by means of trans-
forming code written in the usual C++ style into code that more
extensively uses the generic programming concepts. It uses a
parser generated with ASF+SDF framework and the Stratego
language for specifying the transformations. Although promising
due to the tools it is based upon, Transformers has some limita-
tions which make it unsuitable for our goals. First of all, the parser
for the C++ language is not yet complete, especially the miss-
ing support for template based constructs makes it unsuitable.
Furthermore, Transformers works on preprocessed documents.
This results in code that is pretty printed in a way that might
be completely different from the original code and has lost all
comments from the original code too. Even worse, the code will
be polluted by everything that the preprocessor has pulled in.

3.5 dms

In Section 2.5 we already gave an overview of the fact extraction
part of DMS. The DMS system also incorporates a transformation
engine Baxter et al. [19]. This engine offers interfaces for proce-
dural manipulation of general hyper graphs and ASTs. It also
has an AST-to-AST rewriting engine. Besides those procedural ma-
nipulation methods it is also possible to define source-to-source
transformations based on the language syntax. DMS is designed
to cope with systems with tens of thousands of source files and
millions of lines of code. For this reason a parallel language,
called PARLANSE, was developed to support parallelism for

26 transformation systems

symbolic manipulation. One of the unique features of the DMS
system is that it is possible to mix procedural transformations
with source-to-source transformations. An example of this is us-
ing so called attribute evaluators to verify the applicability of a
transformation at a specific point in the AST. Besides extensive
APIs to implement transformations there is also the possibility to
specify the transformations in the domain notation of interest.
This saves the engineer the burden of getting known with the
details of the language at tree representation level.

3.6 software understanding and refactoring support

in ides

As outlined in Chapter 1, one of our main requirements is to
have a program transformation solution for porting code which
is easy to use. Our targeted developers mainly work with IDEs,
which is also the case in our carrier project at KDAB. Hence,
getting insight in the state-of-the-art support of IDEs for program
understanding and refactoring, both being requirements for code
transformation, is necessary. The following sections provide this
insight with a focus on several mainstream IDEs.

Various IDEs supporting C++ development exist nowadays. In
this section we give an overview of some freely available IDEs
which we have found to be able to at least partly support our
needs. The IDEs we tested are Eclipse [3], QtCreator [12] and
KDevelop [7]. Eclipse started as a Java IDE but gained advanced
C++ support due to the CDT plugin [2]. It was chosen because it
has some advanced refactoring features for C++ which we did
not find in other IDEs. QtCreator and KDevelop where chosen
for their close relation to and good support for Qt based projects.
We will now briefly describe the offered functionality available
in these IDEs with respect to program understanding, refactoring
and querying.

3.6.1 Program understanding

All three IDEs support the task of program understanding by
making the code discoverable using several techniques. The first
technique we found in all IDEs is context aware highlighting. Al-
though the implementations vary slightly between the IDEs it is
clear that the code highlighting is not just simple highlighting by
keyword but makes use of semantic knowledge about the code.
E.g. type names have different colors than variable names, local
variables different colors than global variables, etc. A second tech-
nique is a small pop up window which appears when hovering
over a symbol. This window shows at least the definition of the
symbol and when available documentation or a link which opens

3.6 software understanding and refactoring support in ides 27

the documentation in another part of the IDE. Another technique
used is the so called “follow symbol under cursor”. This enables
the engineer to switch between definition and declaration of a
symbol by clicking the symbol in the editor while simultaneously
pressing a modifier key such as ctrl. QtCreator in addition pro-
vides a dense pixel technique for understanding the structure
of a source file similar to the shaded cushions as described in
Lommerse et al. [27]. The QtCreator implementation does not
make use of cushions but uses different shades of gray to give a
hint about the level of nesting.

3.6.2 Refactoring

The only kind of refactoring supported by all three IDEs is re-
naming of symbols. Eclipse offers the possibility to rename oc-
currences in comments and macros too, while the other IDEs
only rename symbols in code. All of them show the impact of
the rename action in a similar way at first. A tree like structure
is shown containing files and affected lines. Eclipse and QtCre-
ator offer the possibility to exclude lines from the rename action.
Eclipse in addition has a preview step in which a diff viewer is
used to show the differences between the affected files before
and after the action. The diff viewer shows only one file at a time.
Both KDevelop and Eclipse support creating the implementation
of a declared method. Eclipse in additions supports slightly more
advanced refactoring actions such as generation of get and set
methods for class members, extracting part of a function body
into a separate function, extracting constants and extracting local
variables. The approach to present the impact of these refactoring
actions is similar to the approach for presenting the impact of
renaming a symbol.

3.6.3 Querying

None of the IDEs offer querying of the code base as a separate
function. However, all of them support the so called “uses” func-
tionality. This enables the user to find the uses of a symbol such
as a function or a class. Eclipse is the only IDE which offers the
possibility to reduce the scope of the results to include only re-
sults in a selected project. In all three IDEs only one symbol at a
time can be queried for uses and the results are presented in a
tree widget.

In this chapter we discussed the topic of program transforma-
tion. First, we enumerated the requirements for a transformation
engine that will become part of our porting system. These re-
quirements where used to assess various approaches to program

28 transformation systems

transformation found in the literature. The approaches can be
devided in procedural transformations, i.e. functions operating
on an AST and source-to-source transformations, i.e. transforma-
tions based on the language syntax. Given the problems with
most of the procedural approaches we decided to use source-
to-source transformations but enhance these by making use of
the semantic knowledge provided by the fact extractor. We also
discussed the current state of the art for querying and transfor-
mation support in modern IDEs and pointed out several areas
that need improvement with respect to our use case.

Part ii.

Design and

implementation

29

4
F R A M E W O R K D E S I G N

In this chapter we describe the design of our semi automated
porting framework for C++ code bases. To ensure tight integration
with the normal development process we based our solution on
the KDevPlatform framework and implemented it as a plugin for
the KDevelop IDE. KDevelop was chosen because of its robust
C++ parsing and analysis framework. This framework is not
only able to parse and analyze large and complex code bases,
but also can handle code containing errors very well. Therefore
the choice for KDevelop covers most of the requirements for the
fact extractor as stated in Section 2.2. In addition, KDevPlatform
offers facilities needed in our context such as editor integration
and project management. These properties together form a firm
foundation to build a framework that meets the requirements we
stated in Section 1.3.5. Finally, some of the engineers at KDAB
also use KDevelop as their primary IDE, meaning that a plugin
for KDevelop will seamless integrate in their daily work flow. A
more detailed overview of KDevelop and how its facilities are
used will follow.

The aim of our framework is twofold. Firstly, it should offer a
query functionality and visualizations that helps estimating the
effort of a porting project. Secondly, we want a framework that
transforms code that is queried for. An engineer thus needs to be
able to specify which API is subject to transformation. We there-
fore need a framework that is able to read query specifications
and use that to query a code base. In addition it must enable the
engineer to specify transformations that can be performed on
locations in the source code found by the query mechanism.

In this chapter, we describe the global architecture of our frame-
work. We will also detail the way in which we used and extended
the static analysis capabilities of the KDevelop IDE which we
chose as a basis to build upon. The query engine used to identify
source code fragments subject to transformation is outlined in
Chapter 5. The actual code transformation engine is described in
Chapter 6.

4.1 architecture

Figure 3 shows an overview of the architecture for our framework.
The yellow colored components are coming from the KDevelop
framework. The fact extractor resembles the typical compiler
pipeline and will be detailed in Section 4.2.2.

31

32 framework design

Query and transformation descriptions are stored in XML
files which are read by the framework. These can be edited and
reloaded while the framework is running. This ensures a low
usage overhead and addresses GR3 as well as GR4.

The query engine performs the queries by using the symbol
table and the AST representation of the source code. Results of
a query execution, so called hits, are passed on to the transfor-
mation engine. This engine uses the properties of a hit and a
transformation description to perform transformations. These
are performed directly on source code. The results of the query
engine can in addition be passed to two different views we de-
signed to support the estimation and porting tasks in a visual
way.

Figure 3.: Architectural overview

Our transformation system works in three phases:

1. The parsing and analysis framework of KDevelop processes
a source file.

2. The resulting information is passed onto the query engine.
Query specifications from an XML file are read by the query
engine and it performs the specified queries.

3. Either the user examines the results of the queries for a
complete project or he examines the results for a specific
file and performs the available transformations.

These phases and visualizations will be detailed in the next sec-
tions and chapters. In Section 4.2 we will describe the KDevelop
components that are involved with project handling, parsing and
analysis of source code as these components cover some of our
stated general as well as fact extraction requirements. Next we
will describe the query engine in more detail in Chapter 5, fol-
lowed by a detailed description of the transformation engine in
Chapter 6. Finally, we will discuss the visualizations we added to
support estimating and porting in Chapter 8.

4.2 kdevelop 33

4.2 kdevelop

KDevelop is a means to meet some of our requirements in the first
place. However, it also influenced the design of our query engine
and transformation engine due to its internals. In the next sections
we give a brief overview of KDevelop and which requirements
are met by the functionality it offers. We will especially give an
overview of its parsing and analyzing capabilities.

KDevelop itself is a powerful IDE that is built out of several
components which are provided by KDevPlaform. Both KDe-
velop and KDevPlatform are based on the KDE platform which
in turn is based on Qt. The major use case supported by the
KDevelop IDE is Qt and KDE software development. This was
a main consideration for choosing this IDE as foundation for
our porting framework. Being based on Qt/KDE means that it
makes use of API which already known and therefore it is easier
to extend and maintain if necessary. It was also expected that
KDevelop has additional support for Qt specific C++ use such
as the signal and slot mechanism which we briefly described as
part of requirement FX15.

KDevPlatform is a bundled set of components which provide
the functionality which one needs in general to build an IDE.
They are built up as generic components providing interfaces
which can be implemented for specific needs. For example, there
is a generic project manager and there are implementations for
Makefile based projects and CMake based projects.

4.2.1 Project handling

Fact extractors, or static analyzers, in general operate on sin-
gle translation units, i.e. source files and subsequently included
header files. Information required to perform a correct parse
and analysis of a source file such as include paths and defined
preprocessor macros are passed to the extractor in various ways
such as via command line or configuration files. Extracting this
kind of information for each file in large projects is a cumbersome
task which should be dealt with automatically in line with our
scalability requirement GR1 and our usability requirement GR3.

KDevPlatform provides various interfaces and plugins which
make it easy to deal with this problem. First of all there is the
IProject interface, which defines the project concept for KDe-
velop. This interface can be used to retrieve all files of a project.
Next there is the ILanguageController interface. KDevelop of-
fers among other languages support for the C++ language. This
interface deals with getting the right language support imple-
mentation for a given language. The interface also provides the
possibility to determine the language of a given file. Together

34 framework design

with the IProject interface a simple filter can be build which
retrieves all C++ files from a given project.

Each IProject in KDevelop also has a so called IBuildSystem-

Manager. This interface deals with build related topics such as
the build directory, include directories, defines and targets. There
are two implementations of this interface, one to manage CMake
projects and one to manage plain Makefile projects. Both builders
parse the relevant files of the project (e.g. CMakeLists.txt files
for CMake based projects) and extract the information needed
to parse the files correctly. This all happens automatically when
opening a project in KDevelop and therefore ensures seamless
integration with the normal work flow of an engineer.

4.2.2 Fact extraction

The KDevelop C++ fact extractor resembles the typical compiler
pipeline. It consists of a custom preprocessor, a parser and an
analyzer, the so called DUChain builder. The whole parsing stack
is wrapped in the BackgroundParser, which is a multithreaded
parse job scheduler. Parse jobs can be started simply by passing
the URL of a source file to the scheduler. The parsing is per-
formed asynchronously and a callback function is called when
results are available. The fact extracting stack has error recovery
methods implemented at various levels to deal with invalid code
and other things that might go wrong during parsing such as
missing include paths or invalid syntax constructs (req. FX1).

preprocessing For our transformation engine we need a
preprocessor that is able to deal with arbitrary complex code,
moreover it should correctly report token locations. The pre-
processor of KDevelop is a custom written preprocessor which
creates a token stream of a source file and its includes. The exact
token positions are stored for later use (req. FX5). Tokens that are
the result of macro expansion get an invalid location assigned.
An interesting feature of this preprocessor is that it puts custom
tokens in the stream for the Qt signal and slot macros (req. FX15).

parsing The parser is a hand written LL(k) parser which can
parse practically all C++ syntax constructs (req. FX6). It constructs
the AST which consist of about 80 different node types. A default
visitor class for the AST is provided and can be subclassed for
custom actions on the AST such as building the type system. The
number of AST node types is quite low in comparison to other
fact extractors such as the ELSA based extractors. Boerboom and
Janssen [20] report 300 node types in the ASG. One reason for the

4.2 kdevelop 35

difference between the number of node types is that semantic
type nodes in KDevelop are stored in the DUChain and are not
combined in one ASG as done in ELSA based parsers.

Another, reason is the fact that the AST of the KDevelop parser
is highly simplified, meaning that syntactically similar, but seman-
tically differing code constructs get the same AST representation.
Other parsers such as the Eclipse CDT C++ parser and the QtDe-
signer C++ parser use a similar lightweight AST description. This
simplifies the parser design, as fine-grained distinctions between
syntactically similar, but semantically different constructs do not
have to be made at parse time. Such distinctions are sometimes
hard to make for C++ in the parse phase and without a full se-
mantic analysis. For example, without semantic analysis it is hard
to make a distinction between C-style casts and normal function
calls. We discovered that this actually is a disadvantage because
one ends up with a lot of special cases when visiting a particular
node of the AST looking for specific information.

analyzing KDevPlatform has a so call DUChain 1, which is a
language independent representation of source code. The DUChain

is built up in two phases. In the first phase a visitor is used to
construct a sequence of scopes, so called DUContext, in a source
file. Each context has a parent context except the TopDUContext

of a file, which represents the global scope. For each context the
associated definitions are stored too in the first phase. In the
second phase the uses of declarations are constructed. A use in
KDevPlatform is actually the combination of a declaration and a
range in a document where the declaration is used. This is quite
a different approach than we see in other frameworks such as
ELSA, where the complete representation is stored in one ASG.
Some convenient API to get from a specific range to an use ex-
ists though. With respect to the resulting cross references we did
not find limitations in the context of Qt3 to Qt4 porting (req. FX4).

One major short coming of the the DUChain is its API, which
is highly focused on the editor use case. This use case can be
simply described as, given a location in a document return the
declaration. Practical implementations of this can be found in
code navigation and context information when hovering over
certain code parts. Also, only returning the location of an use is
not very helpful when different uses of the same constructs can
have different properties which may influence the transformation.

1 More detailed design information can be found at http://api.kde.org/extragear-
api/sdk-apidocs/kdevplatform/language/duchain/html/duchain-
design.html

http://api.kde.org/extragear-api/sdk-apidocs/kdevplatform/language/duchain/html/duchain-design.html
http://api.kde.org/extragear-api/sdk-apidocs/kdevplatform/language/duchain/html/duchain-design.html
http://api.kde.org/extragear-api/sdk-apidocs/kdevplatform/language/duchain/html/duchain-design.html

36 framework design

In this chapter we gave a brief overview of the overal archi-
tecture of our automated porting system. Because the porting
system is based on the KDevelop IDE, we described the compo-
nents of KDevelop which are of importance for our work. We
described the strong points of the IDE as well as the weak points
that require extension to fit the needs of the porting system.

5
Q U E RY I N G

Source code contains many relationships between various ele-
ments of the source code which cannot be found without tools
that understand these relationships. When looking for uses of
functions that part of the API that needs to be replaced, one could
use tools like Perl, AWK and grep. Regular expressions would
be used to specify the name of the function and typical usage
patterns, but this approach would fail to ensure in the first place
that all uses are found and in the second place that the found
uses are really uses of the function of interest and not one that
happened to be defined in another scope.

Another issue in the context of transformations is that different
uses of the same function might need different ways of porting.
This happens when functions have default values for their argu-
ments, resulting in uses of a function with a differing number of
arguments between the uses. It also happens when the transfor-
mation depends on the value of an argument passed to a function
call.

In this chapter we will describe the method used by the query
engine which is build on top of the KDevelop framework. This
query engine overcomes the deficiencies described in Section 4.2.
We will start with general requirements specific for the query
engine and than go into more detail on the various query types
and the data structures representing the results of a query.

Querying is an essential component of a porting system, as it
enables users to specify what they want to transform. Refining
the requirements for the entire porting solution outlined in Chap-
ter 1 to Chapter 3, we distill the following requirements for our
transformation system:

QR1. Ease of use : the query system should allow users to easily
specify which part of an API, used in their code, they actu-
ally want to transform. Such a specification should take a
minimal effort.

QR2. Genericity : the query system should allow the user to spec-
ify a wide range of programming constructs as targets for
their transformations. For example, users should be able to
select only certain classes or methods of classes that comply
with a specified signature.

QR3. Customizability : the query system should allow the users
to specify constraints on the constructs they want to select
for transformation. For example, a certain construct like the

37

38 querying

call of a given method should only be selected if the value
of one of the parameters adheres to a given constraint.

5.1 method

We need a query mechanism which is adapted to the specific
task of porting an API. Therefore it is designed in such a way
that queries can be expressed in terms close to how an engineer
looks at software in general and APIs in particular. An important
issue influencing the design was that the query engine should
have as little usage overhead as possible. Powerful tools are often
laid aside by developers because the overhead of using them is
just too high for the particular task at hand. As a well-known
example, print statements are still often used for debugging while
powerful, yet harder to learn, debuggers already exist for some
time. What can be expressed in the language will therefore be
limited, though enough to find the information needed for the
task at hand.

A query can be formulated as a function Q accepting a Top-

DUContext T and an API specification S, returning a list containing
hits H where the specified API is used:

Q(T, S)→ {H∗} (5.1)

The query system works by retrieving the TopDUContext from
a given source file. It uses the DUChain API to find the construct
(e.g. type or function) that is specified in the specification. Next it
iterates over all the uses and filters out those which are not in the
physical source file that is queried. The filtered uses are than used
to find the corresponding places in the AST. The query engine
than extracts further information needed for the transformation.

5.2 query engine design

The aim of our query engine is to find usages of specified ele-
ments of an API. This means that we do not want to construct
an engine that can find any possible code pattern at any level
of detail. Such engines exist, see e.g. the generic query engine
implemented by Boerboom and Janssen [20] or SolidFX Telea and
Byelas [35]. However, designing and implementing such an en-
gine is highly complex and costly as outlined in by the previous
two references. In our case we can reach our goal with less effort.
Hence, we designed a lightweight wrapper around the KDevelop
components which operates in terms related to API. I.e. the user
can specify queries to find class uses, global function uses and
method uses. This is reflected in the class diagram as shown in
Figure 4.

5.3 query types and result classes 39

Figure 4.: Query and QueryHits class hierarchy

One or more queries can be performed on a source file result-
ing in zero or more hits. The query engine internally uses the
translation unit, but only hits occurring in the queried source file
are returned.

A hit is a data object which contains the actual location of one
code pattern matching the query as well as various properties for
that code pattern. Moreover, a hit provides access to particular
parts (items) of the code pattern which are specific to the type
of code element being queried. For example, a FunctionCall hit
contains the items describing the locations of the hit’s function
name and parameters. Different types of hits have different types
of items, loosely matching the structure of the AST.

The location or range of a hit is delimited by the first, respec-
tively last, token of the code selected by a QueryHit in a source
file. Ranges of the items of a hit are always subranges of the hit’s
range. The hit range and item ranges serve two goals:

1. They enable partial replacement of a hit. This ensures mini-
mal impact and reduces the change of interfering transfor-
mations.

2. They enable partial reuse of the original code pattern, en-
suring customizability of transformations.

In addition to items each hit type extracts specific informa-
tion, i.e. the properties of a hit, from the AST that is relevant for
the type. For example, for function and method calls the num-
ber of passed arguments is stored and for calls to constructors
the hit stores whether or not it is an implicit constructor call.
These properties form the base for conditional transformations,
i.e. do different transformations for hits of the same type but
with different property values.

5.3 query types and result classes

Now we have outlined our general approach in the query engine
we will go into more detail in the next sections on the currently
supported queries. The Query class in itself is not usable, it only
contains the unique identifier of a query which is used for pre-
sentation purposes mainly. The real queries are implemented as

40 querying

subclasses of Query. We will outline the specific properties of and
the results that are returned by each query type. In addition we
will elaborate on the actual implementation details of the query
engine here and special cases we encountered due to specifics of
the DUChain.

The EnumQuery and its counter part EnumUse, depicted in Fig-
ure 4 will not be discussed separately. Both are straightforward,
the query finds uses of the specified enum type or enum value
and the hit only provides access to the range and does not have
additional items or properties.

5.3.1 Function queries

A FunctionQuery lets the user search for calls to free functions,
that is functions which are not class methods. A FunctionQuery

is constructed with a Qualified Identifier (Qid), identifying the
name of the function. In addition argument types must be speci-
fied for functions with one or more arguments. The return type
of a function does not have to be specified as it is not part of
the function signature according the C++ language definition.
The query engine first looks up all function declaration for a
given Qid. This returns either zero or more declarations, more
than one in case of function overloading. Next the query engine
compares the argument types of the query with the arguments of
the found declarations. When a declaration is found, the query
engine filters out all uses of the function that occur in the queried
document. For each use an instance of FunctionCall is returned.

free template functions In addition to normal free func-
tions we also added support for free template functions. To search
for template functions, so called template restrictions must be
set on the query. This can be an empty restriction, meaning that
all instantiations for the template function with as many tem-
plate arguments as restrictions are used to find uses. Template
restrictions can also be non-empty which results in reported uses
only for instantiations that have types as template arguments that
match with the restriction set for the given template argument.

argument-based restrictions An important feature of
the query engine in the context of porting is the ability to restrict
queries for free functions and methods on the values of the
arguments passed to function calls. For example, find only calls
of function X where the first boolean argument has the value true.
For this purpose we added two kinds of possible restrictions to
the FunctionQuery class.

5.3 query types and result classes 41

1. Literal restrictions: When a restriction of this kind is set
on a FunctionQuery the literal value of the argument is
matched against a regular expression. This works for all
types of literals, e.g. string, boolean, integer and floating
point, though all will be converted to a string internally and
matched against the regular expression set as restriction.
For numeric literals one can define a restriction like 1.23,
which will return calls with exactly this value. However,
arithmetic restrictions, such as restricting numbers greater
than some specified value, are not supported.

2. Qid restrictions: These were in the first placed introduced
to restrict function and method calls on enum value usage.
However, they can be used to restrict arguments on any
name representing third-party or user-defined symbols.

Each argument in a FunctionQuery can have at most one re-
striction of each kind. When both a literal restriction and a Qid

restriction are set for the same argument, the restrictions will be
evaluated or-wise. One application for setting both restrictions
can be found in boolean arguments. Often there are multiple
ways to specify a boolean value, e.g. true, 1 and TRUE where the
latter is some global type definition. To find all, or at least most,
cases where true was passed one can set the literal restriction to
"1|true" and the Qid restriction to "TRUE".

There are some limitations to restrictions, however. First, no
data flow analysis is done. Meaning, the restrictions are only
applied to the actual text of the argument, where the text is either
treated as a literal or as a symbol name. Second, it is currently not
possible to restrict on macros. That is, restricting calls to functions
or methods where a specified argument is some macro, is not
possible.

function call The result of a FunctionQuery is a FunctionCall.
This class provides access to the ranges in the document of the
various items of a hit. Items in case of FunctionCalls are the
function identifier, template arguments if needed and function
arguments. Ranges of individual items and the range of the com-
plete use are stored in this class. It also provides access to the
arguments of a function call by means of the Variable class. This
class in turn provides some extra information to the user such as
the type of the argument and the declaration of the type.

42 querying

5.3.2 Method queries

Method queries are similar to the free function queries. However,
as the name suggests, method queries only return calls to class
methods. The reason for this distinction is that method calls are
made on objects which requires different treatment when porting
these kind of calls.

constructor calls A special case in our context are con-
structor calls. A limitation of the DUChain which we did not solve
yet is that it does not always report hits of ClassFunctionQuery
in cases of constructor calls in contexts where conversions occur.
When doing a look up of a function definition at a function call,
KDevelop builds up the full chain of conversion steps for the
arguments as needed. The problem however, is that this chain is
not stored and therefore not accessible after the semantic analysis.
This results in many unreported calls to constructors. This was
left out for performance reasons and due to the limited useful-
ness in the main use case, i.e. editor support. This is an important
drawback which should be kept in mind when using the frame-
work for transformations while this problem is not solved.

class function call The ClassFunctionCall class provides
some extra information in addition to the information provided
by the FunctionCall class. In the first place it provides access
to items that only make sense for method calls. For example,
when a method is called explicitly on an object there are items
for the object on which the method was called and the accessor,
i.e. the token between the object and the call. This only returns a
valid range when the call was explicitly on an object. Some more
explicit examples of method calls and the items are shown in
Listing 2. Second, in the case a method was called implicitly on
this a flag is set to notify the user. Third, in case of constructor
queries, it can tell if the constructor was called explicit or not.

Listing 2: Method call range and items

anObject->func("someArg", 0)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ // Range

^^^^^^^^ // Object item

^^ // Accessor item

^^^^ // FunctionId item

^^^^^^^^^ // Arg[0] item

^ // Arg[1] item

anotherObject.func()

^^^^^^^^^^^^^^^^^^^^ // Range

5.3 query types and result classes 43

^^^^^^^^^^^^^ // Object item

^ // Accessor item

^^^^ // FunctionId item

// Call from method body of another method of the

// class. The range of accessor item is invalid.

// The property ImplicitOnThis is set to true.

func()

^^^^^^ // Range

SomeType::staticFunc()

^^^^^^^^^^^^^^^^^^^^^^ // Range

^^^^^^^^ // Object item

^^ // Accessor item

^^^^^^^^^^ // FunctionId item �
5.3.3 Class queries

A common use case when porting code between two versions
of the same API is that classes get renamed. To support this case
we added the ClassQuery. The ClassQuery only returns uses of
classes and structs. To construct a ClassQuery it needs at least
a Qid. The query engine first looks up the available declarations
for the given Qid in the TopDUContext for the source file that is
queried. In case of classes without a template this should be ei-
ther one or no definition because of the so-called One Definition
Rule (ODR) of C++ Stroustrup [33]. When a definition is found the
query engine will request the uses for the definition and filters
out all uses that are located in the queried source file. Finally, for
each use found the engine creates an instance of ClassUse.

template classes Template classes are quite common in
many APIs. The ClassQuery therefore also has support for tem-
plate classes. To search for template classes the same approach is
taken as in the case of template functions. Template restrictions
must be added to find uses of template classes with the same
number of template arguments as restrictions set on the query.

class use The result of a ClassQuery is a so called ClassUse.
A ClassUse is reported for each case where a type can be used.
Usages of a class type are, for example, in base class declarations
as types of function arguments as types of variable declarations
or as part of qualifiers.

A special case is explicit constructor calls, i.e. constructor calls
including the type name. These are considered as uses of a type
to by the DUChain. Meaning that the snippet shown in Listing 3

44 querying

will return three ClassUse instances when querying for class Test.
It is important to keep this in mind when there are also queries
defined for constructor calls. The type identifier item of both
results will overlap, which is a potential cause for problems when
defining transformations.

Listing 3: Type use due to constructor call

Test x = Test(...); // Two uses of Test

Test y(...); // One use of Test �
In this chapter we discussed the design of the query engine

which is part of the automated porting system. We first listed
the requirements specific to the query engine, followed by a
description of the method used in the query engine. Next, we
described the various query types and query result types. An
important feature of the engine presented in this chapter is the
possibility to specify restrictions on arguments in function and
method queries.

6
T R A N S F O R M I N G C O D E

Minimal modification of the code is a highly desired property
of the transformation engine. Each change made to code comes
with the risk of breaking either the build or the run time behavior
of the application. Moreover, too many changes make the code
hard to understand by human readers, and recall, forty percent
of the maintenance effort is spend on program understanding.
In an ideal situation transformation tools would morph the code
from one working state into the next working state. In practice
however, this seems a goal which is hard to reach. Even small
changes for which the transformations look straight forward can
have surprising and unwanted side effects.

The aforementioned considerations lead to the following re-
quirements for our transformation engine:

TR1. Exact localization of affected places. The engine should only
change code that is contained in the results of the supplied
queries Chapter 5, that is, not change any code which is not
indicated as such.

TR2. Minimal changes. When keeping the changes as small as
possible with a higher certainty of the correctness of the
location, the actual consequences of the change will be
better understandable.

In the remaining of this chapter we will briefly reiterate over
the two major approaches for program transformation, discussed
before in Chapter 3. Next we will present our source-to-source
approach based on ranges of syntactical elements. Finally, we
will give an overview of the design of the transformation engine.

6.1 method

For the design of the transformation engine we have been inspired
by the DMS system. In Baxter et al. [19] an approach is advocated
that combines procedural transforms with with source-to-source
rewrite rules. We will first discuss the approaches presented in
Chapter 3 in relation to the stated requirements for the transfor-
mation engine. Next we will present our own approach.

45

46 transforming code

6.1.1 Procedural transforms

The classical approach for transforming source is to do procedu-
ral transformations on ASTs which is also the case in Anisko et al.
[17]. The first problem with Transformers is that the implosion of
the parse trees into an AST strips out all layout information. Addi-
tionally all comments in the code are lost too because Transform-
ers only works on preprocessed source. Another major problem
of imploding the AST this way is that it brings the code in a state
which is barely maintainable for human engineers due to the fact
that it brings in the code of all included headers. Transformers
therefore clearly violates our second requirement.

The approach of DMS to this problem is to adapt the prepro-
cessor and parser in such a way that preprocessor symbols are
passed to the parser first. The grammar of the parser is extended
to expect preprocessor directives at statistically common places.
Only when the directive could not be handled it is passed to the
preprocessor and gets fully expanded. Procedural transforma-
tions can now be done while keeping the source in a clean state.
It is noted in Baxter et al. [19] however, that this approach has its
limitations due to the explosion of possible semantic meanings
as result of macro expansion. A clean up step for macro uses
before starting actual transformations, eventually making use of
automated tools too is suggested.

6.1.2 Source-to-source transforms

Providing source-to-source rewrite rules in addition to procedu-
ral transforms has the advantage that the engineer does not have
to get acquainted with the language at the level of a tree repre-
sentation. This has a high practical engineering value because a
lot of cases in Qt3 to Qt4 porting can be described in a relatively
easy way when using source-to-source rewrite rules. This lowers
the barrier for using the tool. We therefore decided to use source-
to-source rewrite rules as the basis for our transformation engine.
We did not provide procedural transform. This would require a
similar approach as in DMS. However, this is not documented in
a way such that it would be reproducible within the scope of this
thesis work.

6.1.3 Range based approach

We need a transformation engine that only transforms source
code at queried places and in addition does minimal changes to
the source code. Therefore we designed a transformation engine
that operates on query hits and only changes the (sub)range of
a QueryHit. Our transformation engine directly works on the

6.2 transform engine design 47

source code of a program. In general transformations can be
described as follows:

TX : S→ S′ (6.1)

That is, a transformation operates on a source representation
S and returns a modified representation S’. To meet the first
requirement stated in the intro of this chapter we use the results
of the query engine described in Chapter 5. Furthermore, a trans-
formation on source S for hit H results in a modified source S’

where the modified range r is a subrange of or equal to the range
of hit H.

We therefore define transformation TX as follows:

TX(S, H)→ {S′ = {r}|range(r) ∈ range(H)} (6.2)

where range() denotes the lexical range of a code element.
The transform engine works by creating an internal represen-

tation of the source file. For each hit in the file for which also
a transformation is defined it tries to apply the transformation,
making use of the information about the hit. It also does inter-
nal bookkeeping to cope with changed offsets due to performed
transformations for hits later in the document.

6.2 transform engine design

As defined in Equation 6.2 a transformation uses a hit as guide
for the range that should be transformed. The hits come from
a query, which lead to the restriction that a transformation is
always bound to one specific query.

A transformation is build up from one or more rules. A rule is
either unconditional, the default, meaning that it is performed
for each hit, or conditional, meaning that it is only performed if a
given hit adheres to the condition of the rule. Each rule performs
one or more specified actions. Currently we added support for
insert actions and replacement actions.

Insert actions insert text, specified in the transform before or
after the range that the transform is operating on. The kind of
ranges a transformation can operate on is partly depending on
the query kind. Replace actions replace the (sub)range of a hit on
which the transform is operating with a text set in the transform.
The text specified in the transform can also contain placeholders
which refer to parts of the original text of the hit. This way
transformations can be specified which replace (parts of a) hit
while reusing some the original texts (e.g. a particular argument
of a function call). The relations between the above described
concepts are depicted in Figure 5.

48 transforming code

Figure 5.: Transform engine class hierarchy

This design gives quite some flexibility when specifying trans-
formations. Especially when a hit has multiple items on which
the transformation can operate. In those cases a transformation
can be defined which either replaces the whole range or only
specified items. Parts of the original text can be reused by means
of placeholders. Another possibility is to define actions only for
each item that needs to be replaced. This flexibility helps the tran-
sition of existing porting rules as it is more likely that the rules
for our system can be defined in similar terms as the ones used
before. To meet our customizability requirement we provided an
XML format which can be used to specify transformations.

Although our transform engine purely operates on source
files, we did not completely discard the option of procedural
transformations (Chapter 3). The actions currently implemented
directly change the actual text of the source, but actions that
would do transformations in a procedural way could be added
in future versions of the transformation engine. However, such
transformations are more likely to break requirement TR2.

In this chapter we discussed the procedural and source-to-
source approaches to program transformation. Next we discussed
our range based approach to program transformation which was
designed to meet the minimal impact requirement. Finally, we
gave an overview of the design of our transformation engine
that implements the range based approach for program trans-
formation. In our design we have two main actions, insertion
and replacement. Future versions can implement more complex
actions to extend the possibilities of the engine.

7
U S E C A S E S A N D L I M I TAT I O N S

Now that we have discussed the method and design of our
query and transformation engines (Chapter 5 and Chapter 6),
we will illustrate the usage of both with Qt3 to Qt4 use cases.
This particular porting process was the original motivation for
development of the porting framework. For each of the query
types we will present one or more use cases, discuss the problems
for these use cases with the current methods and discuss the
limitations of our design where appropriate. In this chapter we
use a simplified representation for clarity. The full XML format
can be found in Appendix A and Appendix B. The presented
examples are not meant to give an extensive overview of the
rules needed for porting a Qt3 code base. They illustrate the
most common rules needed for such a port though. For a more
complete overview of the rules needed for a complete port of
a Qt3 code base see http://doc.qt.nokia.com/4.6/porting4.

html. We will conclude the chapter with a discussion on the
limitations of our porting framework.

7.1 enumerations

Even for enumeration renames it is necessary to have semantic
understanding of the code. This is easily illustrated by a simple
example. The official Qt3 to Qt4 porting tool does naive renaming
of tokens in some cases when it is not run in strict mode. This
results in transformations like:

mycolor.red() -> mycolor.Qt::red(),

enum { Top, Bottom } -> enum { Qt::DockTop, Qt::DockBottom }

Just because these code constructs happen to have the same
name in some local scope as Qt constructs that where renamed, it
did not mean that they had to be transformed too. Alternatively,
the tool can be ran in strict mode, resulting in less code constructs
being ported, however, including the ones that should have been
ported e.g. like the Qt::Red enum value. With this tool a trade-off
must be made between the number of missed transformations in
strict mode and the possible number of faulty transformations
otherwise. In practice it is easier to fix the missed transformations
by hand using the compiler errors than letting the tool do the job
plain wrong at many places.

The faulty results of the porting tool, obviously is an unwanted
side effect. Moreover, the engineer cannot know on forehand

49

http://doc.qt.nokia.com/4.6/porting4.html
http://doc.qt.nokia.com/4.6/porting4.html

50 use cases and limitations

what the precise side effects of the transformation will be and
where these will occur. This means that additional time must
be spend either on porting these specific constructs manually or
on fixing the build afterward, without being able to know how
much work that will be.

This problem becomes even worse when due to this approach
the code still compiles but has undefined run time behavior for
certain code paths. Unwanted implicit conversions are an often
seen cause for such errors. One of the approaches to cope with
these specific problems is commenting out the definition in the
header of the source API. This clearly points out the problematic
locations because the code will no longer compile. However, this
directly shows a drawback of this approach, the code must be in
a compilable state. Otherwise other compile errors may precede
the ones that the engineer is actually looking for. Secondly, it
requires the engineer to change all these places by hand which is
definitely undesired for often used constructs in large projects.

For this reason we added support to find enum declaration and
enum value declaration uses. Basically, both constructs can be
found by their Qid. Queries to find enum uses can be specified as
follows. This listing and the following show a simplified variant
of the XML-based syntax for our query system. The complete syn-
tax definition and concrete examples can be found in Appendix A
and Appendix B.

Listing 4: Enum queries

// Query for enum declaration

enum-query

uid="QButton : : ToggleState"
qid="QButton : : ToggleState"

// Queries for enum values

enum-query

uid="QButton : :On"
qid="QButton : :On"

enum-query

uid="QButton : : Off"
qid="QButton : : Off" �
Porting enum values in Qt3 is rather straight forward. In gen-

eral either the class name, the enum name or a value has changed.
The EnumUse class does not provide additional items. Meaning,
an enum transformation always replaces the full range of the
hit. Transformations for enumerators are like the queries fairly
simple as shown in Listing 5.

Listing 5: Enum transforms

7.2 classes 51

transform

queryId="QButton : : ToggleState"
rule // Unconditional

replace-action item="All "
replacement-text="QCheckBox: : ToggleState"

transform

queryId="QButton : :On"
rule // Unconditional

replace-action item="All "
replacement-text="QCheckBox: :On"

transform

queryId="QButton : : Off"
rule // Unconditional

replace-action item="All "
replacement-text="QCheckBox: : Off" �

7.2 classes

Qt3 contained various classes that where either renamed or re-
placed by other classes in Qt4. The class query is meant to deal
with these changes. It does so in a generic way. The class query
finds all uses of a class as a type, including inheritance specifica-
tions, class member specification, function argument specification
and local variable declarations. Examples of these are the Qt3
classes QIconSet, QWMatrix, QGuardedPtr<T> and QPtrList<T>.
Queries and transformations for these cases can be defined as
shown in Listing 6.

Listing 6: Class renaming

class-query

uid="QIconSet"
qid="QIconSet"

class-query

uid="QWMatrix"
qid="QWMatrix"

class-query

uid="QGuardedPtr<T>"
qid="QGuardedPtr"
template-argument

class-query

uid="QPtrList<T>"
qid="QPtrList"
template-argument

transform

52 use cases and limitations

queryId="QIconSet"
rule // Unconditional

replace-action

item="All "
replacement-text="QIcon"

transform

queryId="QWMatrix"
rule // Unconditional

replace-action

item="All "
replacement-text="QMatrix"

transform

queryId="QGuardedPtr<T>"
rule // Unconditional

// Only replace the type id not the

// template spec of the hit

replace-action item="TypeId"
replacement-text="QPointer"

transform

queryId="QPtrList<T>"
rule

replace-action

item="All "
replacement-text="QList<${TypeTemplateArg[0] } *> �

Especially the two last transformations are interesting. They
show to important functions of the transformation engine. The
QGuardedPtr case demonstrates how to replace only part of a hit,
i.e. the type identifier in this case. The QPtrList case demonstrates
how to replace the complete range of the hit but reuse parts of
the original code, e.g. a template argument, in the new code.

7.3 global functions

The global function queries and transformations deal with all
free, i.e. non-class functions. These functions can be either in the
global name space or in another name space and can be both
template functions and plain functions. Qt3 contains a global
template function named qt_cast. Its precise signature is shown
in Listing 7. From the documentation:

“...use the qt_cast() function to determine whether instances
of QObject subclasses could be safely cast to derived types of
those subclasses...”

Listing 7: Qt3 qt_cast signature

T *qt_cast<T *>(QObject *) �

7.4 methods 53

In Qt4 this function was renamed to qobject_cast. There are
no special cases when porting this function so no restrictions are
needed. The query for this function is shown in Listing 8. The
qt_cast method is defined in the global name space so the qid
of the method is simply equal to the function name. Argument
types must be valid type expressions. These expressions will
be validated in the context of the document that is queried to
retrieve the node representing the type from the DUChain. Finally,
we add an empty template-argument tag, as we want to find all
uses of this function.

Listing 8: qt_cast query

global-function-query

uid="qt_cast<T>(QObject *) "
qid=" qt_cast "
template-argument

argument

type="QObject * " �
Transforming qt_cast means that we only have to replace the

function identifier of an use. In general, the FunctionCall class
provide access to the ranges of the following items:

• FunctionId - The range of the function name in the hit.

• TemplateArg[i] - The range of the ith template argument.
(Only for template functions.)

• Arg[j] - The range of the jth function argument.

We define the transformation for qt_cast query hits as shown
in Listing 9.

Listing 9: Global function transformation

transform

queryId="qt_cast<T>(QObject *) "
rule // Unconditional

replace-action item="FunctionId"
replacement-text=" qobject_cast " �

7.4 methods

A large portion of the Qt3 to Qt4 porting work consists of porting
changed function signatures. Mainly in this area we had to deal
with more complex features such as restrictions on function ar-
guments and conditional transforms. We will therefore elaborate
a bit more on this type of queries. First we will present some
examples related to porting of the QString class. These include

54 use cases and limitations

constructor call and operator porting. Next we will present some
examples from QObject porting. Some QObject methods require
different porting based on the arguments passed to the call.

7.4.1 QString

When porting a Qt3 code base to Qt4 there are two main prob-
lems related to the QString class. The first being that in Qt3 there
where multiple ways to construct a QString from a std::string.
There was a QString constructor and an overloaded operator=.
Meaning that QString objects could be implicitly created from or
implicitly assigned to from std::strings. In Qt4 this is no longer
possible, QString objects can only be created from std::string

by explicitly calling the static QString::fromStdString() method.
The second problem is related to place markers in a char literal.
Consider the following code snippet:

Listing 10: QString place markers

QString str("Hello , %1, i t ’ s %1 today")

.arg(name).arg(day); �
In Qt3 this would have been valid code, in Qt4 however it

is required that the place markers in the literal are consecutive
numbers. The problem with this piece of code is that it does
not result in a compile time error, so the run time behavior is
silently changed without the engineer noticing it. Depending
on the defined preprocessor symbols the latter can occur for the
QString(const char *) as well as for the QString(const std::string &)

constructor. Queries for both constructors can be defined as
shown in Listing 11.

Listing 11: QString constructor queries

class-function-query

uid="QString(const char*) "
qid="QString : : QString"
argument

type="const char* "

class-function-query

uid="QString(const std : : string &)"
qid="QString : : QString"
argument

type="const std : : string &" �
We did not implement support for replacing the faulty place-

holders in a QString constructor call. However, the process of
finding such calls can be speed up by using restrictions to make
the query engine only find calls that have this faulty behavior.
The query engine has support for literal restrictions. When a

7.4 methods 55

literal restriction is set for a specific argument of a function, the
query will only return a hit for a function call when its argument
matches the restrictions.

Listing 12: Restricted QString constructor query

class-function-query

uid="QString(const char*) "
qid="QString : : QString"
argument

type="const char * "
restriction

kind=" LiteralRestriction "
value="%(\\S+).*\\1" �

Listing 12 shows the restricted query for QString(const char *)

constructor. The query engine iterates all hits for the constructor
and checks if the hit has a literal as argument. If so, the engine
checks whether or not the lexical value of the argument matches
the regular expression set in the restriction. Only those hits are
returned where the lexical value matches the regular expression.
This concept works for all literals (i.e. not only character literals
but also boolean values and numbers).

To port the QString cases related to std::string we also need
to find the overloaded operator=(const std::string&) of the
QString class. Finding calls to overloaded operators classes works
the same as finding normal functions as shown in Listing 13.

Listing 13: QString::operator query

class-function-query

uid="QString : : operator=(const std : : string&)"
qid="QString : : operator="
argument

type="const std : : string&" �
Now the queries for the std::string cases are in place we

define the transformations. For transforming the constructor hits
we need two cases because a constructor can be called implicit or
explicit as shown in Listing 14.

Listing 14: QString creation from std::string in Qt3

std::string stdStr;

...

QString qs1 = QString(stdStr); // Explicit call

QString qs2(stdStr); // Implicit call

QString s2 = stdStr; // operator= �
We can now define the transformation for all cases as show in

Listing 15. The transformation is conditional on the ImplicitCtor
call property which is one of the properties provided by the

56 use cases and limitations

ClassFunctionCall class. In the implicit case text is inserted after
the ObjectId item, e.g. qs2 in the previous code snippet. In the
explicit case text is inserted after the MemberId, e.g. the second
QString occurrence in the previous snippet.

Listing 15: QString std::string transformations

transform

queryId="QString(const std : : string&) ">
rule

if

condition

property=" ImplicitCtorCall "
expected-value=" true"

insert-action

item="ObjectId"
location="After"
text="= QString : : fromStdString"

else

insert-action

item="MemberId"
location="After"
text=" : : fromStdString"

transform

queryId="QString : : operator=(const std : : string&)">
rule

replace-action item="Arg[0] "
text=QString::fromStdString(${Arg[0]}) �

7.4.2 QPtrList

We already introduced the template class called QPtrList, which
stores a list of pointers to objects of the type passed as template
parameters. In Qt4 this class is replaced by the more generic
QList class. Although the API is somewhat similar there are some
differences which needs porting. In order to find functions of
template classes we needed a way to specify the type of a func-
tions argument which is the same as the template type specified
for the class. This is done by means of a place holder as shown in
Listing 16. In addition it is possible to specify a real type which
limits the result to hits of instantiations for that specific type.

Listing 16: QPtrList<T>::containsRef

class-function-query

uid="QPtrList<T>: : containsRef"
qid="QPtrList : : containsRef"
const=" true"
template-argument

argument type="const ${templateArg[0] } * "

7.4 methods 57

transform

queryId="QPtrList<T>: : containsRef"
rule

replace-action

item="FunctionId"
replacement-text="count" �

7.4.3 QObject

The QObject class is an important part of Qt because it is essen-
tially the basis for the object framework of Qt. QObjects organize
themselves in trees and provide features such as object commu-
nication through the signal/slot mechanism, events and event
filtering and automatic deletion of child objects. One of the rea-
sons for changed run time behavior after a Qt3 to Qt4 ports is
related to string comparisons. An example of this is that in Qt3
meta information could be used on QObject based objects to
check for inheritance information:

Listing 17: String based comparison in Qt3

// bool QObject::inherits(const char *clname) const

QTimer *t = new QTimer; // QTimer inherits QObject

t->inherits("QTimer"); // returns true

t->inherits("QObject"); // returns true

t->inherits("QScrollView"); // returns false �
A particular problem that raises due to string comparisons

is that name changes do not result in compile errors but do
change the run time behavior. In Qt4 for example, QScrollView
was renamed to Q3ScrollView. So code relying on calls like
QObject::inherits("QScrollView") returning true, will now
silently fail. When transforming these kind of API calls the engi-
neer will clearly take the string passed to call in account.

Listing 18: QString std::string transformations

class-function-query

uid="QObject : : inherits (QScrollView) "
qid="QObject : : inherits "
const=" true"
argument type="const char * "
restriction

kind=" LiteralRestriction "
value="QScrollView"

transform

queryId="QObject : : inherits (QScrollView) ">
rule>

replace-action

58 use cases and limitations

item="Arg[0] "
replacement-text="\"Q3ScrollView\"" �

The final use case we present here comes from porting QObject::child

for which the signature is shown in Listing 19. In the Qt3 this
method searches for children of the object on which it is called
which have the given object name. Optionally the search can be
limited to objects that inherit from a given class. By default the
search is recursive which means that a depth first search in the
object tree is done. In Qt4 the child method does not exist any
more and depending on the argument values the hits have to be
ported in different ways.

Listing 19: QObject::child signature

QObject *QObject::child(const char *objName,

const char *inheritsClass = 0,

bool recursiveSearch = true); �
The recursive search variant of calls to this function have either

one or two arguments. It can be that the call has three arguments
with the value of third argument set to true. In practice however,
this variant of recursive search is hardly used. We therefore do
not cover the case but similar queries could be defined to handle
this case as well. In the cases where child is called with a non
constant third argument, data flow analysis would be needed to
actually discover whether the call is recursive or not. Data flow
analysis is not covered by the requirements and therefore not
implemented.

Listing 20: QObject::child recursive variant

class-function-query

uid="QObject::child"

qid="QObject::child">

argument

type="const char *"

argument

type="const char *"

argument

type="bool"

transform

queryId="QObject::child"

rule // foo->child("objName")

// becomes

// qFindChild<QObject *>(foo, "objName")

if

condition

property="ArgCount"

expected-value="1"

replace-action

7.4 methods 59

item="All"

replacement-text=

"qFindChild<QObject *>"

"(${ObjectId}, ${Arg[0]})"

rule // foo->child("objName", "Class")

// becomes

// qFindChild<Class *>(foo, "objName")

if

condition

property="ArgCount"

expected-value="2"

replace-action

item="All"

replacement-text=

"qFindChild<${literalVal(Arg[1])} *>"

"(${ObjectId}, ${Arg[0]})" �
There is no need for a special query for the recursive vari-

ant. We assume particular usage of the API and define separate
rules for the one and two argument cases in the transformation.
Because the calls of the non-recursive variant will always have
three arguments, these will not be changed by the transformation
specified in Listing 20 even though these cases are part of the
query result.

For the recursive searches the complete hit must be replaced
with a call to the global Qt4 template function qFindChild. When
no second argument is given the template parameter should
default to QObject * and in the case that the second argument is
given the template parameter should be set to that value.

To support these transformations we added a property to
FunctionCall called ArgCount. Additionally, support for func-
tions in the placeholders was added. The function needed here
was one to retrieve the unquoted argument value in cases where
the second argument was set. Listing 21 shows the query and
transformation for the non-recursive change. Two features of the
transformation language shown here are accessing items that
have an offset and the literalVal function. The latter will try to
remove quotes from the beginning and the end of the range of the
item passed to it or pass the lexical value unchanged otherwise.

For the non-recursive variant a query is used which has re-
strictions on the third argument as shown in Listing 21. These
restrictions work or-wise, meaning that either calls with the qual-
ified identifier FALSE, which is a type definition in one of the
Qt3 headers, or calls with a literal false passed as third argu-
ment are found. The non-recursive variant is also special in the
sense that there is no replacement in the Qt4 API for doing non-
recursive searches in object trees. The general approach in porting

60 use cases and limitations

projects is that a custom global function is provided which has
this particular behavior.

Listing 21: QObject::child non-recursive variant

class-function-query

uid="QObject::child (non recursive)"

qid="QObject::child">

argument

type="const char *"

argument

type="const char *"

argument

type="bool"

restriction

kind="QidRestriction"

value="FALSE"

restriction

kind="LiteralRestriction"

value="false|0"

transform

queryId="QObject::child (non-recursive)"

rule

action

type="replace"

item="All"

text="Util::findDirectChild"

"<${literalVal(Arg[1])} *>"

"(${ObjectId}, ${Arg[0]})" �
7.5 limitations

While building up the transformations for Qt3 to Qt4 porting
we discovered some limitations that our porting framework has.
Some of these limitations are structural and inherent to the ap-
proach we took. Others are minor limitions and would either
require some more implementation effort to get it right or could
be left as is as a trade off. We will elaborate on the structural
limitations in this section and briefly mention some of the less
severe limitations.

7.5.1 Structural limitations

Due to the fact that we take single API elements as base for our
porting framework it can occur that two queries have hits with
ranges that overlap. A trivial example is shown in Listing 22.
When the defined transformations for both queries, both trans-
form the complete range of the hits, clearly a conflict occurs. In
this particular case, careful specification of the transformation

7.5 limitations 61

can avoid the conflict. In general however it cannot be guaran-
teed that such a workaround exists. In addition, even if such
a workaround exists, it cannot be assumed that the user of the
porting framework is aware of all possible conflicts that might
occur for the queries and transformation he specifies.

Listing 22: Overlapping query ranges

QGuardedPointer<QScrollArea> qsap;

^^^^^^^^^^^^^^^^^^^^^^^^^^^^ // QGuardedPointer range

^^^^^^^^^^^ // QScrollArea range �
A limitation related to this can be experienced when having a

chain reaction of changes. One example we found was the return
type of a method. The particular type the method returned accord-
ing to the declaration was QObjectList*. The body of the method
returning this type had a return statement which returned the
value of QObject::queryList() as shown in Listing 23.

Listing 23: Changed return value

class SomeClass : public QObject

{ ... };

QObjectList *SomeClass::someMethod()

{

...

// QObject::queryList

return queryList(...);

} �
With our approach a hit would be found for QObjectList in

the line four. Note, the pointer specifier * is not part of the
range in our query engine. This means that when the trans-
formation for QObjectList is performed, the return value is a
QList<QObject *> *. Next, the engine will find a hit for QObject::queryList
in line eight. This call will be replaced with a call to the free func-
tion qFindChildren. The resulting code would look something
like Listing 24.

Listing 24: Changed return value ported

class SomeClass : public QObject

{ ... };

QList<QObject *> *SomeClass::someMethod()

{

...

// QObject::queryList

return qFindChildren<...>(...);

} �

62 use cases and limitations

The problem now is that the qFindChildren does not return a
pointer to a QList<QObject *> but returns it by value. There is
currently no way to express these kind of chain reactions in our
framework and will need manual correction afterward.

In general we can say that changed return types are not han-
dled very well by the porting system. If we take the previous
QObjectList example one step further we encounter another
problem. Lets assume that the system is able to handle this chain
reaction, thus it can change the return type to be by value. The
next problem is that for every location where the return type is
assigned to a variable, the engine would need to support change
of access to the variable too. The best case is when the return type
only changed from return by pointer to return by value. Worst
case scenario is a complete different return type. In the latter
case not only the types of the variables, to which the result of the
calls to this particular function are assigned, must be changed
but also all calls on these variables might have become invalid at
this point.

Finally, we discovered that our porting framework works really
well for local changes but cannot handle more structural changes
of code. Meaning, changes that require more than just replacing
or modifications of a hit cannot be performed in a clean and
generic way. We encountered cases in Qt3 to Qt4 porting that
require for some parts more structural changes. We will discuss
the structural changes required for QMainWindow constructor calls.

In Qt3 the QMainWindow constructor had a bit flag argument
to control various properties of the window. These bits can be
set using enum values. A typical example of this is shown in
Listing 25.

Listing 25: QMainWindow flags in Qt3

class MyWindow : public QMainWindow {

MyWindow()

: QMainWindow(..., Qt::WDestructiveClose)

{ }

};

...

QMainWindow *w = new QMainWindow(... ,

Qt::WDestructiveClose); �
In Qt4 some of these values where split out or removed and

setter methods on QMainWindow must be called to get similar
behavior as shown in Listing 26. It is clear that not only the text
ranges containing the constructor call are changed, but additional
text is inserted at specific locations depending on the context.

Listing 26: QMainWindow ported to Qt4

class MyWindow : public QMainWindow {

7.5 limitations 63

MyWindow() : QMainWindow(...)

{

setAttribute(Qt::WA_DeleteOnClose);

}

};

...

QMainWindow *w = new QMainWindow(...);

w->setAttribute(Qt::WA_DeleteOnClose); �
7.5.2 Minor limitations

Besides the more structural limitations as discussed in the previ-
ous section, there are also some less severe limitations which we
will briefly mention here. The first thing is that XML is not a very
convenient way to express queries and moreover transformations.
However, we made a trade off here on purpose between ease of
use and ease of processing. There exists various frameworks for
parsing XML on top of which special purpose parsers can be
build quite easily. Also, there exists various tools for validating
XML files. To partially overcome this problem we added XML
extraction support in the context menu. The developer can right
click a class or method to extract the query for that particular API

element.
Another limitation is that currently the porting framework has

no support for preprocessor symbols. Obviously this is something
that is of particular interest in a porting framework, e.g. changed
header names or macro definitions. However, the fact extraction
engine of KDevelop does provide access to this kind of informa-
tion, we therefore think that adding support for preprocessor
queries and transformations is relative easy.

For performance reasons KDevelop does not re-parse all in-
cluded headers but reuses information stored in the DUChain. This
does not always work correctly as we found out in the case of
QString and the QT_NO_CAST_ASCII preprocessor symbol. When
this macro is defined during build, the QString(const char*)

constructor will be disabled. This means that there will be an im-
plicit conversion to std::string and thus calls to QString(const

std::string &). If the first document parsed contains this macro,
the header for QString will be parsed and stored this way in the
DUChain and might therefore contain incorrect information for
other source files which do not have this macro defined. The
workaround is to tell the parsing framework to always parse
everything which comes with a performance penalty which is, at
least in the case of Qt3 to Qt4 porting, not always required.

In this chapter we demonstrated the usage of our automated
porting framework by presenting various examples from the Qt3

64 use cases and limitations

to Qt4 porting use case. We showed queries and transforma-
tion descriptions for enumerations, classes, global functions and
methods. The examples included demonstration of important
functionality such as function queries with restrictions on argu-
ments and different transformations for the same query based
on the hit properties. Finally, we discussed the limitations of the
porting system, the most important ones being the risk of inter-
ference between two or more transformations, the lack of being
able to deal properly with changed return types of functions and
the fact that the engine cannot do transformations that require
changes to the context of a query hit very well.

8
V I S U A L S U P P O RT F O R E S T I M AT I O N A N D
P O RT I N G

An important aspect of software maintenance is program under-
standing. In our specific context the main task in the understand-
ing process is twofold. At a coarse level the engineer wants to
gain insight which parts of an API are used in a project. This
information is important when making project estimations as
well as for keeping track of the porting progress over time.

On the other hand at a fine grained level the task is to gain
insight in where a particular file is affected by the specified trans-
formations. This is in particular important due to the limitations
of the transformation engine. Transformations might interfere
with each other as mentioned in Section 7.5.1. Therefore the
engineer needs a way to identify these conflicts before the trans-
formations are actually performed. Besides gaining insight in how
transformations interact with each other it is also important to get
an idea how the actual code is affected by the transformations.

For these two tasks we need several levels of detail showing
information about the project that is to be ported. The first task
requires an aggregated view showing how the source API is used
within a project. The second task needs a more detailed view on
file level showing structure of the code. First of all the source code
itself must be visible. Next to that an overview of the available
transformations for a specific source file is needed. The last view
needed is one showing where the transformations will modify
the file and if there are transformations that interfere with each
other. These views must support the engineer in a simple and
intuitive way which integrates tightly with his workflow.

Hence, we propose to add software visualization techniques
to our plugin for the KDevelop IDE. We need visualizations that
are scalable for large amounts of data. Furthermore we are not
so much interested in relational visualizations such as graphs
because our focus not on relations between code constructs but
between code and transformations. Therefore we reused and
adapted dense pixel techniques.

As outlined in Chapter 1, the most important motivation for
this project was Qt3 to Qt4 porting. Various use cases can be
identified related to porting projects:

• Estimation of a porting process.

• Performing a port.

• API feedback and refactoring estimation.

65

66 visual support for estimation and porting

• Deprecated API tracking.

• Identify which parts of a class are affected.

• Get insight in the complexity of code that will be affected
by a transform.

In the remaining of this chapter we will use these use cases
as a guide to present the visual features we added to the plugin
in order to support the user while performing these tasks. In
addition, videos demonstrating the features presented in this
chapter can be found at:

• http://www.youtube.com/watch?v=_j0-PTe04ow

• http://www.youtube.com/watch?v=9CxXiQ30ghY

8.1 use case: estimation of a porting process

Before a Qt3 porting project starts an overview of Qt3 API usage
in the code base that is subject to porting is needed to estimate
the amount of work needed for the port. Especially important
is to get an overview of how the work is distributed over the
files. When many files are equally affected, the workload will be
higher than when only some files are affected. Moreover, it will
become harder to predict the side effects of a port.

To illustrate the usage of our plugin we used the porting file
as found in Appendix B on the code base of the latest Qt3 based
release of kdelibs package from the KDE Software Compilation
(KDE SC)1. This package contains about 750 KLOC, uses a wide
range of the Qt3 API and is therefore an interesting show case for
our framework. To this extend we

• describe the initial setup when using our tool (Section 8.1.1),

• introduce and describe the project overview (Section 8.1.2),

• desribe how to interpret the resultes presented by the
project overview (Section 8.1.3),

• describe how the project over view can be configured to
present data in different ways (Section 8.1.4).

1 The used version is 3.5.10 and can be downloaded from http://www.kde.org/

info/3.5.10.php

http://www.youtube.com/watch?v=_j0-PTe04ow
http://www.youtube.com/watch?v=9CxXiQ30ghY
http://www.kde.org/info/3.5.10.php
http://www.kde.org/info/3.5.10.php

8.1 use case : estimation of a porting process 67

Figure 6.: Overview of KDevelop with our plugin enabled.

8.1.1 Initial setup

Initially the user opens the project he wants to work on, i.e.
kdelibs in our case. KDevelop mostly resembles the typical IDE

as can be seen in Figure 6. On the left the project tree is enabled,
furthermore there are a class browser, open document browser
and a file system browser. The center contains the source editor
and in the bottom we placed our plugin. The first tab of the
plugin, of which a detailed view is shown in Figure 7, offers
the possibility to open a porting file containing the queries and
transformations (Figure 7 - 1). Additionally, the user can configure
the query selection once a porting file is opened.

This selection determines which queries are executed when
a document or project is queried. First, he can choose to select
either only queries without a transform, queries that have a trans-
form or both (Figure 7 - 4). Being able to perform only queries
supports the case of estimating the work for constructs that are
known to have partial transformations, e.g. due to changed return
types as described in Section 7.5.1, or no transformation at all.
Second, he can choose if all queries (Figure 7 - 3) of the current
selection or only the currently selected query (Figure 7 - 2) must
be performed when a document or project is queried. When the
selection is configured a query can be started for the currently
selected project, or if a source file is open, a query for the current
source file.

68 visual support for estimation and porting

Figure 7.: Query selection tab.

8.1.2 Project overview

Finding uses of symbols using typical IDE built-in search func-
tions (see Section 3.6.3) is a start for a solution for the estimation
task. Assuming that the IDE implements this query using se-
mantic information, more precisely scoping and correct symbol
lookup, the results are more precise than when using grep like
tools. However, for estimation purposes this would require a lot
of manual work because the IDEs only support one query for uses
at a time. For estimation purposes an aggregation of this data is
needed. This aggregated data should in addition be presented
to the user in such a way that it is easy to understand and helps
estimating the porting effort.

For this use case we selected all queries, i.e. queries with and
without transforms, and started the query for the whole project.
While the query is being performed in the background, the user
can switch to the project overview tab which is shown in Figure 8.
For an even better overview, the plugin window is maximized.
This view is updated every time a file is parsed and queried until
all project files are processed.

The results shown in Figure 8 give an overview for all queries
as described in the porting file in Appendix A performed on the
kdelibs code base. There where in total about 2177 hits for 15

different queries in 569 different files. On the left side controls
are available to manipulate which data is shown and how it is
shown in a panel that can be hidden. Figure 9 shows the project
overview with the control panel visible. On the right side the
data is presented in a view based on the table lens as described in
Pirolli and Rao [29] and Rao and Card [30] and on the extended
table lens as presented in Telea [36].

By default the data is ordered and filtered to support porting
estimation. The file names are set as row labels and the query
identifiers as column names. Only files that are actually pro-

8.1 use case : estimation of a porting process 69

Figure 8.: Project overview for kdelibs.

cessed, i.e. C++ files and headers, are shown. Other files like
documentation and sources in other languages are ignored by the
plugin. The first column of the table contains the total number of
hits for the files. All consecutive columns contain the number of
hits for the query represented by the particular column.

The length of the bars for the hits of specific queries is propor-
tional to the total number of hits for the file represented by the
row. For the color of the bars we used a rainbow color map, im-
plemented as a function which calculates the value when needed,
applied to the normalized values of the column. A zero value
maps to blue and one to red.

Empty rows, i.e. files for which none of the queries returned
results, are filtered out. Empty columns, i.e. queries for which no
hits where returned in any of the files, are filtered out too. The
table can be sorted by column by clicking on the column header
and is sorted on total by default. When the user hovers over the
colored bars, a tool tip is shown with the specific data for that
cell, e.g. file name, query id, hits for the query and total hits in
the file.

8.1.3 Interpreting the results

Given that all queries relevant for porting are specified, which is
not the case in our examples as we only specified a subset of the
queries needed for a complete Qt3 to Qt4 port, this view can help
answering the questions related to estimation as follows. First
the table is sorted on the total column. The distribution of the

70 visual support for estimation and porting

total column now tells something about how the porting work
is distributed over the files of a project. In Figure 8 we see for
example a positive skew. This is interpreted as that most of the
porting work is located in approx. five percent of the files in the
project. If the distribution were normal or even worse it would
mean that for the porting, a larger percentage of the project files,
would need about the same amount of changes and recall that
a large number of changes makes the resulting code harder to
understand.

Next we look at the distribution of the individual queries. The
results are interpreted in the same way, however an extra dimen-
sion is added when taking in account that the developer has
knowledge on what the queries represent. Some queries might
represent API that only requires minimal effort, e.g. renaming of
an enumeration value. Other queries however might indicate that
concepts are used which are deprecated and must be ported to
the new concept. Qt4 introduced a new model/view framework
which requires a lot of effort when a Qt3 code base must be
ported to the new concepts of that framework. The distributions
of the individual queries can therefore be used to allocate the
developers with the required knowledge for the specific task.

Figure 9.: Project overview for kdelibs zoomed out.

In a last step the distribution in the total column and the
distribution of an individual query can be combined to estimate
the amount of time a developer must be allocated with respect
to the total time available for the project. In Figure 9 we see the
same overview as in Figure 8, but zoomed out to get an overview
for all files in the project. We see that most of the work in the

8.1 use case : estimation of a porting process 71

top five percent of the files is the sum of the first four queries.
We know that the first three queries have transformations which
can be performed without causing additional work. The fourth
one, a query for QPtrList, however, is known to result in manual
work afterward. It can be seen that this query effects quite some
files in the project and will therefore have a higher impact on the
needed time than the three queries before.

Figure 10.: Header coloring by scale.

To support the user even more with this kind of reasoning
he can specify a scale to a query, where the scale is one of easy,
medium, hard. When queries have a scale assigned the color of
the header text in the table lens is set to green for easy, dark
yellow for medium and red for hard. This way the user gets a
visual hint on the difficulty of the queries and is therefore able to
reason in a more insight full manner about the effort and risks of
a port. This concept is demonstrated in Figure 10. When no scale
is defined the headers text color defaults to the color defined in
the system palette.

Figure 11.: Data presentation control panel.

72 visual support for estimation and porting

8.1.4 Configuration of data presentation

Besides the default representation of results in the project overview
tab there is a panel left of the table lens, shown in Figure 11, con-
taining controls to adjust the way the data is presented. This
panel can be hidden to maximize the area for the table lens, as
is the case in Figure 8. The filter combo box enables the user to
make empty rows and empty columns visible. By default, the
bars in the columns for the queries are scaled to the total col-
umn. However, to get a better view of the distribution of specific
queries the bars can also be scaled to the columns maximum.
Some users might prefer to have a visible grid, therefore the grid
can be enabled. When the row height is large enough, the counts
are shown in the middle of the bar. These can be disabled in
case only a global overview is needed. The zoom slider can be
used to adjust the tables row heights. This is particular important
for projects that have a large number of files. When zooming
out visibility of the grid and show count will get disabled in the
table view when the used font with a size of 6pt does not fit
anymore. They will get enabled again when zooming in to a size
that allows to fit the font again.

Figure 12.: Detail of the project overview with rows and columns
swapped.

The last option is the possibility to swap rows and columns, of
which a detail is shown in Figure 12. This option interchange the
row headers and the column headers. This changes the meaning
of the table as follows. Before the exchange each cell (i,j) rep-
resents the number of hits for query j in file i, except the cells
in the first column which represent the total number of hits for
file i. After the exchange each cell still represents the number of
hits for a query in file, with i and j flipped. The total column
however, now represents the total number of hits for query i.

The total column, now gives an indication of the distribution
of the usage of the queried API in a project. This information can
be used in several ways. First it gives insight in how the queried
API is used in the project. For porting projects this gives a quick
overview of the possible pitfalls during a port, i.e. it quickly

8.2 use case : performing a port 73

shows how much API that is hard to port is used in the project.
Second, from an API designing perspective, this view can be used
as a guide to reconsider the grouping of the API into libraries. I.e.
queries for which a high count is reported might point to classes
and functions that might have a logical relation. It might make
sense to group them in a single library or component when this
is not already the case. A third use case of this view is related to
optimization. When having different projects available the use
the queried API an aggregation of the total distribution for these
projects can be used to prioritize the areas in the API for which
optimization would have the highest impact. Having one slow
function that is only used sparely in projects might not be worth
the effort and risk of changing it. However, having a function
that is used very often might be worth the effort of optimizing it.

8.2 use case: performing a port

Besides supporting the task of porting effort estimation the plugin
also aims to support the actual porting task. In general the task
of porting consist of navigating through the projects source files,
finding the locations that need porting and performing the actual
change. In some cases it might be possible to do this automatically
in other cases not. Some parts of the code can be so complex that it
is preferred to do no automatic changes at all. A limitation of our
transformation engine is that two or more different queries might
have hits at ranges that interfere with each other as described
in Section 7.5.1. In this section we present a new technique that
helps the developer to quickly identify where queries have hits in
a file. In addition the used visualization helps to identify possible
interference between queries.

Figure 13.: File oriented result browsing.

8.2.1 File oriented view

Figure 13 shows the file oriented view of the plugin while a
query is still running on the kdelibs code base. On the left side a
tree view is shown which gives a coarse overview of the result.

74 visual support for estimation and porting

For each file that has hits for one or more queries an item is
shown in the tree. Next to the file name the total number of hits
in the file is shown. The tree is sorted descending on count by
default, resulting in the files which have most hits and thus most
work appearing at the top of the list. For each query that has
hits in a particular file a leaf is added to the item in the tree for
that file. Next to the query identifier the number of hits for that
particular query is shown. This organization makes it easy to get
a quick overview on how the work is distributed within the file
the developer is working on with respect to the queries that have
hits in that file. The tree view is tightly integrated with the rest of
the IDE. Single clicking items, either the file items as well as the
query items, directly updates the widget right of the tree view.
Double clicking items will also make the editor opening the file
related to item that was clicked.

Right of the tree is a widget which we call the file impact view.
It is a new technique to visualize where queries have hits in a
particular file within limited space. The view shows the results for
the file selected in the tree. Each colored bar represents the results
of a different query for the same file. The places where queries
have hits in the file are marked by a red patch. For example,
Figure 13 shows that there are hits for the three queries QIconSet,
QWMatrix and qt_cast in the file kstyles/plastik/plastik.cpp.

8.2.2 File impact view rendering

The colored bars shown for each query, depict a simplified repre-
sentation of the source code in the queried file. The main idea for
this representation is loosely based on the well-known SeeSoft
tool Eick et al. [23] and the visual code navigator Lommerse et al.
[27], both using a dense pixel technique for representing source
code. The AST, representing the syntactic structure of the source
file, as produced by KDevelop’s C++ parser serves as model for
the colored bars. We render the simplified representation of the
syntactic structure of the code in a colored as follows. First a color
mapping is loaded from a stored configuration, which contains a
mapping between AST nodes and colors. Next, we visit the AST in
depth first order using a visitor implemented for this particular
purpose. Each AST node is rendered as a distinct colored block.
AST nodes that appear on the same level in the tree result in
blocks of the same height, ordered from left to right, as the nodes
they represent come in the source file scanned from beginning
to end. The width of each block is proportional to the number
of characters of the syntactic construct it represents in the actual
source. Nested code constructs get a height assigned which is a
fixed amount smaller than the height of the parent, and are cen-
tered vertically in the parent. Space separating consecutive blocks

8.2 use case : performing a port 75

ast node enabled color

ClassSpecifierAST yes Green

CastExpressionAST no -

CatchStatementAST no -

DoStatementAST yes Brown

ForStatementAST yes Brown

FunctionCallAST no -

FunctionDefinitionAST

- public method yes light green

- protected method yes light orange

- private method yes light red

- free function yes cyan

IfStatementAST yes Purple

SwitchStatementAST yes Purple

SignalSlotExpressionAST no -

StringLiteralAST no -

TryBlockStatementAST no -

WhileStatementAST yes Brown

Table 1.: Default AST nodes configuration

at the same level of nesting is proportional with the amount of
code present between the code in those blocks and located in
constructs which are not selected for visualization. Each block is
colored in a hue which indicates the type of its AST node taken
from the color mapping. Blocks for AST nodes that have no color
mapping and blocks that have a height or width smaller than
a fixed limit are not selected for visualization. Finally, for each
hit of the query a red patch is rendered as follows. The height
of each patch is always the full height of the bar, regardless the
level of nesting where the code construct of the hit occurs. The
length of the patch is proportional to the number of characters
represented by the code construct, unless it gets smaller than a
fixed width to prevent the red patches to become invisible for
large source files.

The color mapping is stored in an user specific configuration
file, i.e. the same configuration will be used for all projects the
user works on. When no configuration exists, e.g. on first use,
a default configuration is created. Table 1 shows the default
configuration for the supported AST nodes. The configuration can
be changed at any time by the user, this is described in more
detail in Section 8.5.

76 visual support for estimation and porting

Additionally, FunctionDefinitionAST nodes are enabled. KDe-
velop however has the same node for free functions and methods.
Therefore four colors are assigned to this node, light green for
public methods, light orange for protected methods, pink for
private methods and light blue for free functions. The user can
not only easily change the color of a construct, but he also can
control which structures will actually show up in the view. This
is described in more detail in Section 8.5.

As presented in Table 1 several kinds of AST nodes have the
same color. By default we configured control structures, i.e. if
statements and switch statements, to have the same colors. Simi-
lar, loop structures, i.e. for statements, do statements and while
statements have the same color too.

Figure 14.: kdeui/kactionclasses.cpp results.

8.2.3 Editor interaction and performing transformations

Once the developer has selected a file in the tree, the file impact
view will render the colored bars for the queries that have hits
in the file. Clicking files in the tree does not open the files for
editing. This way the developer can quickly examine the impact
on the file and go the next file without being distracted by the
low level details of the actual code. As an example we take the
file kdeui/kactionclasses.cpp from kdelibs, for which the file
impact view is shown in Figure 14.

From this picture we can make the following observations. First
of all this seems to be a source file with quite some functions,
indicated by the many small light green blocks (public methods)
which occur on the whole range, some pink blocks near the
middle (private methods) and some orange blocks (protected
functions) left from the middle. Most of them are relative small
functions, taking in account the width. The white spaces near the
beginning and the middle seem to indicate even more code as we
also see query hits in those areas. Furthermore there are some
bigger functions which contain consecutive and nested control
structures (purple blocks) and loop structures (brown blocks).
Finally we also see that there is a class defined in this file (green
block left from the middle).

8.2 use case : performing a port 77

Figure 15.: kdeui/kactionclasses.cpp selected query hit.

To start the actual porting for a specific file the developer clicks
either on a location of interest to him in one of the colored bars
or he clicks on one of the red patches. Both actions will open
an editor for the source file and set the cursor at the position
matching with location where the developer has clicked. In the
latter case however, i.e. when the developer clicks a red patch, the
editor will select the range in text which corresponds with the
range of the hit that was clicked by the developer. For example,
Figure 15 shows the selected text after clicking on the first red
patch for the qt_cast query. Additionally, a thin blue marker in
the colored bars indicates the current cursor position in the file.
This marker is updated both when the user clicks in the colored
bar and when he navigates through the source file in the editor.

Once the developer has clicked a red patch, he can directly
start editing the code which will result in replacement of the
selected text, which is as we showed the range of a query hit.
However, in many cases a transformation will be defined for the
query and performing the transformations automatically is the
preferred way of doing the port. To this means the user can right
click on the colored bar which will pop up a context menu giving
him two options. When the right click was on a red patch he can
choose to perform the transformation only for the particular hit.
The second choice he has is to perform the transformation for all

78 visual support for estimation and porting

hits of the query represented by the bar on which he clicked. Both
actions will result in the editor being updated with the changes
applied to the document.

(a) Before trasnformation.

(b) After transformation.

Figure 16.: File impact view before and after transformation.

When transformations are applied or when the source file was
modified manually, the user can update the file impact view for
the current source file. Figure 16 shows the impact view before
(16a) the user choose to perform all QuardedPointer transfor-
mations and afterward (16b). In the latter we see that the hits
for the QuardedPointer query have vanished from the view. The
user can iterate this process of applying transformations and
additionally doing manual modifications to the source file until
it is completely ported.

8.2.4 File impact view zooming

On the one hand, conflicts between queries and thus transforma-
tions can occur as discussed in Section 7.5.1, on the other hand
the horizontal space is limited, meaning that for large files it
can happen that the red blocs of two hits for different queries
interfere, while this is not really the case. An example of two
possible interfering hits can be seen in Figure 17 which shows the
result for the file kdeui/kdockwidgets.cpp from kdelibs. For this

8.2 use case : performing a port 79

Figure 17.: Detail of file impact view showing possible conflict.

reason we added zooming functionality to the file impact view.
The user can zoom the file impact view by holding the control
key and rotating the scroll wheel of the mouse at the same time.
Scrolling the mouse wheel up will zoom in, scrolling the mouse
wheel down will zoom out.

80 visual support for estimation and porting

Figure 18.: Detail of file impact view showing possible conflict.

Zooming in has several effects. This is visible in Figure 18

which shows the default view, i.e. a representation of the full
content of the file, in the upper half and a zoomed in view of
the same file in the lower half. The black lines indicates the
corresponding areas in the source files in both views. The first
effect is that rows will increase in height, up to a fixed maximum,
when zooming in. This creates more space for nested constructs
that might become visible due to zooming. The second effect
is that, due to the fact that more space becomes available for a
smaller amount of code, more details of the code appear in the
view. For example, we see the white space between pink and
purple block in the upper half of the image filled with various
blocks in the corresponding area in the lower half of the image.
Also, nested blocks, such as the brown block (loop structure) in
the pink block (private method) become visible. Finally, it has
become clear that the two hits, at the second and the third row,
do not interfere with each other.

We implemented the zooming functionality as follows. The
starting point for the algorithm is the mouse location in the
colored bar. This is taken as the center point for the zooming
action to prevent that the user has to move the mouse during
zooming to keep track of the location of interest. Given the mouse
position and the new zoom level, we calculate which part of the
bar for the complete file is visible. Next, the block ranges are
calculated on a normalized range for the complete document
as described in Section 8.2.2. The normalized blocks are than
translated to the visible rectangle. Blocks that fall outside the
range result in invalid rectangles, ignored by the paint method
and blocks that partly fall inside the visible rectangle result
in blocks that are cut off appropriately. When zooming in, the
colored bar represents only a part of the source file, meaning that
more space is available for that part of the source. This, in turn

8.3 use case : api feedback and refactoring estimation 81

results in less blocks being filtered out due to the minimum size
criterion.

8.3 use case : api feedback and refactoring estimation

Our plugin was also used for an upcoming refactoring in KDe-
velop, which reuses the Kate[5] libraries for its advanced editor
features. After the release of KDE SC 4.4 it was decided by the Kate
developers to deprecate the library for SmartRanges. This library
offered the functionality to keep track of text snippets in a doc-
ument, even when the location of these snippets change due to
modification elsewhere in the document. A similar functionality
will be offered by the new API. Because this functionality is quite
widely used in KDevelop, the new design is of importance for
the KDevelop developers. For this reason they used the plugin to
answer the following questions:

• How to get an overview of which API is required.

• How to estimate the amount of work to port KDevelop to
the new API.

The first question was of importance to be able to give feedback
to the Kate developers. A query file was made, containing about
190 queries for the classes and functions of the SmartRanges li-
brary. Next the KDevPlatform and KDevelop code bases, together
containing about 190 KLOC, where queried using this file. From
the results a list of often used functions, therefore representing
the most important functionality for KDevelop, was compiled
and send to the Kate developers for adjustment of the new API.

Additionally, the developer compiled a list of functions which
he expects to be complicated to port, such as functions which are
no longer available in the new API. This specified list of functions
was used to query the code base and the results where used in a
similar way as described in Section 8.1.3 to estimate the porting
effort.

8.4 use case: deprecated api tracking

Another use case, somewhat related to the Qt3 to Qt4 estimation
and porting use case, is keeping track of deprecated API used
in a project. Marking API as deprecated, using specific macros
which will generate compiler warnings, is a common way in to
notify users of a library that those specific classes or functions
will get removed in a future version of the library. This same
strategy is used in the kdepimlibs library, part of the KDE SC. The
kdepimlibs library contains the core functionality for personal
information management applications. The kdepim module of

82 visual support for estimation and porting

Figure 19.: Usage of deprecated kdepimlibs API in kdepim.

8.5 use case : identify which parts of a class are affected 83

the KDE SC contains such applications and therefore depends on
kdepimlibs.

For this use case we created a query file which contains queries
for all methods that are marked as deprecated. This resulted in a
file containing 47 queries for deprecated functions in 15 different
classes2. This file was used to query the kdepim code base. We
used trunk versions for both kdepimlibs and kdepim, i.e. the
code bases which will be released with KDE SC 4.5.

Looking at the results, shown in Figure 19, a first observation
is the surprisingly low number of total hits, given that kdepim
has about 500 KLOC. As a reference we queried kdepim for uses
of the Akonadi::Collection class. This resulted in 2043 uses
in 373 different files. Given the high number of this class uses
and the particular low number of uses of deprecated methods
from this class, we can conclude that at least the code related to
this is class is particular well maintained. In general, the code in
kdepim seems to be well on track with its dependency kdepimlibs.
This result can, to a large extend, be explained by the fact that
kdepimlibs is mostly developed by a group of developers which
also does a major part of the development in kdepim.

8.5 use case : identify which parts of a class are af-
fected

In order to estimate the impact of certain changes it is interesting
to see where the code in a source file is affected. For example,
changes in class definitions have a bigger impact than changes in
the declaration of a private function of that same class, because
the former will most likely also effect the “users” of that class.
In order to different kinds of impact analysis, such as the one
just described, we added a color configuration dialog, shown in
Figure 20, which enables the user to enable or disable selection
of AST nodes for visualization. For the enabled nodes he can
configure the color which the blocks for the selected nodes will
have. Changes in the configuration are directly applied to the
view, so there is no need to query the file again.

For this particular use case we disable all AST nodes except the
ClassSpecifierAST and the four FunctionDefinitionAST nodes.
With this configuration the user gets a good overview of the
structure of a source file. Figure 21 for example, shows the file
kdeui/kdockwidget.cpp, which we saw in more detail in Fig-
ure 17. With the new configuration the global structure of the file
becomes immediately clear. There are some small public meth-
ods (light green) in the beginning, followed by a class definition
(green) a free function (blue) and some protected (orange) and

2 A copy of the file can be found at http://bertjan.broeksemaatjes.nl/files/
kdepimlibs-deprecated.pd

http://bertjan.broeksemaatjes.nl/files/kdepimlibs-deprecated.pd
http://bertjan.broeksemaatjes.nl/files/kdepimlibs-deprecated.pd

84 visual support for estimation and porting

Figure 20.: The block color configuration.

private (red) methods. In the middle and more towards the end
we see some bigger public methods. Looking at the distribution
of red blocks, we can conclude that most of the changes occur in
public method bodies.

Figure 21.: File impact view configured to show less detail.

8.6 use case: affected code complexity

The final use case we present here is somewhat opposite to the
previous use case. Another way to look at the complexity of the
impact is by looking at code directly surrounding the hit for
a particular query. More generally, developers want to have a
quick idea of the complexity of a certain piece of code. Either
because they need to modify it as part of a bug fix or feature
implementation, or because they want to refactor certain parts
of a source file to reduce the overall complexity. Deeply nested
control structures and loops are often a cause that make code
hard to understand for developers. Another code construct that

8.6 use case : affected code complexity 85

makes C++ code harder to understand is the c-style cast Sutter
and Alexandrescu [34].

Figure 22.: Identifying complex pieces of code.

We adjust the configuration of the colors as follows. All coarse
structures, i.e. class definitions and functions get a light tint to
keep overview of the global structure of the file. Loop struc-
tures are configured to have different tints of purple and control
structures are given different tints of green. Additionally we con-
figured c-style casts to have a light blue color. Figure 22 shows the
result when using this configuration for three files of kdelibs. The
first file is a header in which only some classes are defined and
therefore has no complexity. Next there are two files shown, both
with a full file view and view zoomed in on a possibly complex
piece of code.

In this chapter we discussed and demonstrated the visualiza-
tions that were added to the porting framework in order to sup-
port the users workflow. We demonstrated the project overview
which shows the results of queries in a compact way using the
table lens. It gives the user a quick overview on how the work
is spread over a project with respect to the queries. Furthermore
we demonstrated the file impact view which helps the user to
quickly identify where a source file will be changed due to the
porting. Finally, we demonstrated that the framework can be used
for other tasks too by presenting the use case of code complexity
analysis using the file impact view.

Part iii.

Evaluation and

conclusion

87

9
C O N C L U S I O N S

Our main goal was to design and implement a general-purpose
porting system. For proving its actual usefulness in practice,
we implemented specific porting mechanisms, like queries and
transformations, for porting C++ code from Qt3 to Qt4. The
system should be able to handle real world code bases in terms
of size and complexity of code. Other important requirements
were ease of use, i.e. the framework should integrate well with
the normal workflow of its users and customizability as different
porting projects require different queries and transformations.
Transformations should have as less impact as possible on the
code. Finally, the porting system should provide means to the
user to gain insight on the impact of the transformations on the
source code before the changes where applied.

This is accomplished to a great extent with our extension for
the KDevelop IDE. The extension gives the user the ability to
specify queries for API that is subject to porting and perform
these queries on a code base. Results of a query on a code base
are presented on project level and on file level with visualizations
that help estimating porting effort and impact of transformations
on a file. In addition, transformations can be specified which
enable the user to perform a large part of the porting work semi-
automatically in a reliable way.

9.1 fact extraction

To build our porting framework we needed a fact extraction
front end for C++ for which we outlined the requirements in
Section 2.2. The C++ front end that comes with KDevelop was
able to meet most of these requirements. Being one of the main
components in an IDE it necessarily is fault tolerant, i.e. it must
be able to deal with code that is subject of constant changes.
It parses large and complex code bases practically without any
problems.

The main problem we have with this front end are the follow-
ing. KDevelops C++ front end does not have an elaboration phase.
This phase, which we find for example in the ELSA based fron-
tends, makes explicit in the AST what is implicitly there according
to the semantics of the language such as implicit casts and stack
based destructor calls. Not only does this frontend lack an elab-
oration phase, the AST is highly simplified to make processing
of it for the common tasks easier. In our opinion this has the

89

90 conclusions

opposite effect on the tools depending on it such as the DUChain

and our own tools. Unifying syntactical similar constructs results
at various levels in checks for semantic differences which make
the resulting code hard to understand and error prone. These are
serious limitations which are not easy to solve as discussed in
Boerboom and Janssen [20].

On the other hand, the DUChain is largely language independent.
Currently there is a good frontend for PHP and frontends for
Java and Ruby are under development. As discussed in Baxter
et al. [19], language independence is an important criterion to
build long term usable and scalable language tools. Although we
build our tools for our specific needs, i.e. C++ porting, we believe
that the properties of the KDevelop framework make it relative
easy to extract major parts and reuse these for other language.
Additionally, the C++ frontend has good support for Qt specific
concepts such as the signal and slot mechanisms and properties.
This makes the frontend and our tools an interesting platform
to build new tools which check for problems related to these
concepts.

9.2 querying

For our porting framework we designed and implemented a
lightweight C++ query engine on top of KDevelop’s C++ front
end, which we described in Chapter 5. This chapter also out-
lined the requirements for this query engine, ease of use (QR1),
genericity (QR2) and customizeability (QR3).

ease of use The query engine has a fairly simple and straight
forward API which enables easy usage for custom use cases. How-
ever, for defining large amounts of queries, e.g. in the case of
porting an API, this approach is not scalable. Ideally one would
take a syntax which is as close to the source language as possible,
such as proposed in Paul and Prakash [28]. This approach how-
ever, requires a complex processing stack for the query language
alone and was therefore discarded. We wrapped the API in an
XML format which is described in Appendix B. This has the
advantage of being able to express the same queries as supported
by the API without the need of recompiling in a language which
is relatively easily to process. The drawback we found is that
XML is not always that convenient to work with for the user.
We therefore added a functionality to generate the correct XML
snippets from the supported code constructs. Once the needed
queries are specified they can be used on any C++ code base.

genericity Although lightweight, our query engine still sup-
ports a wide range of programming constructs. The user can

9.3 code transformation 91

query for uses of enumerations, classes, methods and free func-
tions. In addition the engine has support for finding uses of
template classes, uses of methods that take template arguments
of the class it is member of and free template functions. This
functionality is generic enough in practice to build up a set of
queries for a Qt3 to Qt4 port which was the driving use case for
our work.

customizability Our goal was to provide means to specify
restrictions on uses to be able to port different uses of the same
construct in different ways. We added support for restrictions
in two main areas. First, template based uses can be restricted
on the template argument. Second, method and free function
calls can be restricted by the values of the arguments. Especially
the latter shows the power that is gained when using compiler
techniques in comparison to scripts and regular expression based
approaches. In Chapter 7 we demonstrated use cases that are
supported by this functionality. These are only some of the many
supported that require argument based porting.

performance The performance of the query engine is for
the largest part determined by KDevelop’s C++ front end. Al-
though the query engine does some additional processing after it
retrieved the results from the DUChain we did not notice signifi-
cant difference in speed between performing one query or fifty
queries. Performing twenty queries on the kdelibs 3.5 code base
takes about thirthysix minutes on a 1.8 GHz dual core machine
with 2 GB of ram. This is slightly faster than a compilation of the
code base on the same machine. The problem with KDevelop’s
front end is that it does not store the AST. This has no effect
when the user selected multpile queries, the source is parsed
and then the same AST is used to perform all selected queries.
However, when the same set of queries or a different query is
performed after the previous run, all files need to be parsed and
analyzed again. We believe that optimizations in various areas
can be made to improve the performance of consecutive query
runs on a project. Currently we worked around this problem by
also offering the ability to update query results on a file basis,
which can be done real time.

9.3 code transformation

Our goal was to design and implement a transformation engine
that only changes affected code (TR1) and keeps the amount
of changed code as small as possible (TR2). The transformation
engine we designed reach both these goals by operating only on
the results of the query engine and giving the freedom to the

92 conclusions

user to change the whole range of the result or only specified
parts. Because the transformation engine directly operates on
ranges in the source text, i.e. there is no pretty printing of the
complete source file involved in the process, white space changes
and comment changes are reduced to the bare minimum. This
approach makes the transformation also very fast, and enable the
user to do the transformation real time.

The transformation engine is well suited for its driving use
case Qt3 to Qt4 porting or in general, for porting between two
similar APIs. A common property of these kind of ports is that the
majority of the changes is local to the uses of affected API. This
means that the majority of the transformations is fairly simple.
The weak point of our approach is therefore that it does not work
for transformations that need to change code around an use or
need to make more structural changes to code. The latter would
also require extension of the query engine to support finding
code constructs not directly related to an use (e.g. loop structures
and control structures). Another problem we did not solve is the
problem of chained transformations which for example happen
when the return type of a method changes.

9.4 visual support

As stated in GR6, our goal was to provide means to examine the
impact of a port. The extension offers two visual components
which implement this requirement on a project wide level and
on a source file level. Use cases of both views are described in
Chapter 8.

project overview The project overview presents the results
of queries in a table lens view. This way results in many files can
be presented in a clarifying way. The default configuration of the
view gives a clear overview on how the results of the queries,
thus the amount of work, is distributed over the files in a code
base. In addition the view supports various other use cases such
as keeping track of progress during long porting projects and
finding the distribution of API usage in a particular code base.

file impact view The file impact view uses dense pixel tech-
niques to visualize code structure in a horizontal way in limited
space. Blocks with different colors are used to represent various
constructs. Nested constructs result in nested blocks. Blocks that
have width or height under a certain limit are not painted to
avoid clutter. Red patches with a width that is proportional to
the range of the query hit, represented by the patch, in the source
file. We use a smooth zooming mechanism to navigate between a
full file overview and a more detailed view of specific parts of

9.5 future work 93

the file, showing more details of the source file around the zoom
location. Finally, we made this view interactive by linking it to
the editor in three ways. Firstly, it allows the user to move the
cursor of the editor to a specific place by clicking on a location in
the file impact view. Secondly, a blue marker on the file impact
view shows the current location of the cursor in the document
and is updated when the cursor is moved in the editor. Lastly,
clicking the red patches in the file impact result in a selection
of the corresponding range in the editor, which allows quick
modification of a query result by the user.

9.5 future work

In this final section we present some ideas for future improve-
ments of the porting extension we developed for the KDevelop
IDE. The first improvement we suggest is to extend our tool
with scripting support at specified extension points. A second
improvement we suggest is a GUI for specifying queries and
transformations. Finally we suggest various improvements to the
visual support of our tool.

9.5.1 Scripting support

The query engine as well as the transformation engine where
designed with a particular aim at finding and transforming API.
As we have seen, this works quite well for finding all uses of
a specified API item and transformations locally to these uses.
However, for ports where the changes are less local in comparison
to changes required for Qt3 to Qt4 ports, more context when
specifying queries and changes to this context are required.

Due to the nature of our target language, C++, which is highly
flexible in the programming styles it supports, we think it is
interesting to extend our plugin with scripting support. The
approach could be to define one or more extension points in both
the query engine and the transformation engine which will enable
the user to plugin a script which gets access to a specified point
in the AST. Examples of these extension points are the moment
when the query engine finds a hit for a query and the moment
of transformation as an alternative for insert and replacement
actions.

Adding such an extension point to the query engine would
allow the user the define project specific scripts for the more
generic queries. Such script could for example check if the use
reported by the query engine is located in a specific context, e.g.
in a constructor or in the body of a for loop. Using scripting in
the transformation engine will give the user the power to make
changes to the context of an use.

94 conclusions

Although adding scripting support might look counter in-
tuitive given our initial arguments against scripting stated in
Section 1.4.1 there are some good reasons to add this function-
ality. First of all, because the scripts are called at well defined
points, there is much more control over what the scripts actually
do, i.e. the user knows that the script will only be executed for
well defined locations in the code. This is in contrast with plain
usage of scripts for which the user never can know exactly what
code will trigger the script. Secondly, creating query engines
and transformation engines that are able to handle with the full
complexity of porting projects are very expensive to build as
pointed out by Boerboom and Janssen [20] and Akers et al. [16].
This pays off on the long term only and is therefore a high barrier
for small and middle sized companies. Scripting support enables
adding complexity as needed while the initial implementation is
relatively easy given the available scripting framework provided
by Qt on which our plugin is based.

9.5.2 Defining queries and transformations

Because our query language is particularly aimed at API it is fairly
easy for users to specify basic queries for a given API. In addition,
the added functionality of extracting query XML snippets from
code, gives the tool a relative low barrier to get started. However,
working with XML can be quite cumbersome especially when the
XML file gets very big. We also have no support for extracting
or defining transformations other than writing the needed XML
code.

For this reasons it would improve the usability of the tool
when a GUI would be developed that helps the user specifying
and managing the queries and related transformations for a given
API or project. Such a GUI can help improve the usability in two
ways. Firstly, it can help the user to get a better overview for
which parts of the API which is subject to porting he already
has specified queries and transformations by providing space
efficient and sortable views on the XML document. Second, it
can help the user by improving the discoverability of the query
and transformation language by providing the possible options
supported by the language based on the context while the user
specifies a query or transformation.

9.5.3 Visual improvements

Although our visualizations are already quite helpful while exam-
ining impact of API changes on a code base, we found that various
improvements could be made both on the project overview and
the file impact view.

9.5 future work 95

project overview A first improvement on the project view
would be the addition of filtering. Currently it shows all results
of all queries in all files. To support more fine grained analysis
it would be needed to add the ability to filter out either parts
of the project (i.e. certain directories or files) or the results of
particular queries. The latter can be partly achieved currently
but not without the need of requerying the code base. Another
improvement would be to take in account extra information in
table lens color calculation such as the number of conflicts in
the file for the query, a user configured weight for each query or
build and impact cost of a source file as described in Telea and
Voinea [37]. This would enable even more precise estimation of
the porting effort for a given code base.

file impact view Currently, the limited space approach for
the file impact view results in some cases that red patches for
different queries, indicating query result ranges in the file, are
aligned even when the ranges do not overlap. This especially
happens when the file represented by the view is very large. This
problem is partially solved by adding the possibility to zoom in
the view. However, for a quick indication of conflicts additional
user interaction should not be needed. The view could therefore
be improved to mark conflicting results in a different way than
non-conflicting results.

As described in Chapter 8, one of the use cases of this view is
identifying complex code parts in source files. This use case could
be enhanced by adding the possibility to only visualize parts that
adhere to specified conditions. Currently, displaying of code
constructs depends on enabled syntax constructs and available
space. However, in most cases this results in visualizations for
complex as well as non complex parts of a source file. This could
be enhanced by adding support for certain additional conditions
such as minimum nesting depth and a required hit for a specified
query. This would result in significant less constructs that get
visualized and therefore it would become very easy to identify
complex parts in a source file.

As a final remark we point out that all code that was written
to implement the ideas presented in this thesis is available on a
public git repository at:

http://www.gitorious.org/kdevcpptools/kdevcpptools

http://www.gitorious.org/kdevcpptools/kdevcpptools

Part iv.

Appendix

97

A
Q T 3 T O Q T 4 P O RT I N G E X A M P L E F I L E

Listing 27: Queries and transforms for Qt3 to Qt4

<?xml version=" 1.0 " encoding="UTF−8"?>

<!DOCTYPE porting-description SYSTEM

"portingdatabase .dtd">
<porting-description>

<queries>

<!-- Function Queries -->

<global-function-query

uid=" qt_cast&l t ;T> ; (const QObject*) "
qid=" qt_cast ">
<template-argument />

<argument type="const QObject * " />

</global-function-query>

<!-- Enum Queries -->

<enum-query uid="QButton::ToggleState"
qid="QButton::ToggleState" />

<enum-query uid="QIODevice::Offset"
qid="QIODevice::Offset" />

<!-- We can do enum values too -->

<enum-query uid="QButton::Off"
qid="QButton::Off" />

<!-- Class function queries -->

<!-- QString queries -->

<class-function-query

uid="QString(const std: :string&) "
qid="QString::QString">
<argument type="const std: :string& " />

</class-function-query>

<class-function-query

uid="QString::operator=(const std: :string&) "
qid="QString::operator=">
<argument type="const std: :string& " />

</class-function-query>

<class-function-query

uid=" QString::ascii () const"
qid=" QString::ascii " const=" true" />

<class-function-query

uid=" QString::latin1 () const"
qid=" QString::latin1 " const=" true" />

99

100 qt3 to qt4 porting example file

<!-- QObject queries -->

<!-- QObject::child(const char *objName,

const char *inheritsClass,

bool recursiveSearch)

-->

<class-function-query

uid="QObject::child (a l l) "
qid="QObject::child">
<argument type="const char * " />

<argument type="const char * " />

<argument type="bool" />

</class-function-query>

<class-function-query

uid="QObject::child (non recursive) "
qid="QObject::child">
<argument type="const char * " />

<argument type="const char * " />

<argument type="bool" >

<restriction kind="QidRestriction"
value=" false|FALSE|0" />

</argument>

</class-function-query>

<class-function-query

uid="QObject::queryList "
qid="QObject::queryList "
const=" true">
<argument type="const char * " />

<argument type="const char * " />

<argument type="bool" />

<argument type="bool" />

</class-function-query>

<class-function-query

uid="QObject::queryList (non recursive) "
qid="QObject::queryList "
const=" true">
<argument type="const char * " />

<argument type="const char * " />

<argument type="bool" />

<argument type="bool">
<restriction kind=" LiteralRestriction "

value=" false|FALSE|0" />

</argument>

</class-function-query>

<!-- Class Queries -->

<!--

- From Qt4 documentation:

- classes that have been renamed in Qt 4. If

qt3 to qt4 porting example file 101

- you compile your applications with QT3_SUPPORT

- defined, the old names will be available.

-

- Whenever you see an occurrence of the name on

- the left, you can safely replace it with the

- Qt 4 equivalent in your program. The qt3to4

- tool performs the conversion automatically.

-->

<class-query uid="QIconSet" qid="QIconSet" />

<class-query uid="QWMatrix" qid="QWMatrix" />

<class-query uid="QGuardedPtr&l t ;T> ; "
qid="QGuardedPtr">

<!--

- This class has one template argument. We

- need to specify it, otherwise the query

- engine is not able to find the declaration.

-->

<template-argument />

</class-query>

</queries>

<transformations>

<!-- Function Queries -->

<transform

queryId=" qt_cast&l t ;T> ; (const QObject*) ">
<rule>

<replace-action item="FunctionId">
qobject_cast

</replace-action>

</rule>

</transform>

<!-- Enum Queries -->

<transform queryId="QButton::ToggleState">
<rule>

<replace-action item="All ">
QCheckBox::ToggleState

</replace-action>

</rule>

</transform>

<transform queryId="QIODevice::Offset">
<rule>

<replace-action item="All ">
qlonglong

</replace-action>

</rule>

</transform>

<transform queryId="QButton::Off">

102 qt3 to qt4 porting example file

<rule>

<replace-action item="All ">
QCheckBox::Off

</replace-action>

</rule>

</transform>

<!-- Class function queries -->

<!-- QString transforms -->

<transform

queryId="QString(const std: :string&) ">
<rule>

<if>

<condition

property=" ImplicitCtorCall "
expected-value=" true" />

<insert-action item="ObjectId"
location="After">

= QString::fromStdString

</insert-action>

</if>

<else>

<insert-action item="MemberId"
location="After">

::fromStdString

</insert-action>

</else>

</rule>

</transform>

<transform

queryId="QString::operator=(const std: :string&) ">
<rule>

<replace-action item="Arg[0] ">
QString::fromStdString(${Arg[0]})

</replace-action>

</rule>

</transform>

<transform queryId=" QString::ascii () const">
<rule>

<replace-action item="FunctionId">
toAscii

</replace-action>

</rule>

</transform>

<transform queryId=" QString::latin1 () const">
<rule>

<replace-action item="FunctionId">
toLatin1

</replace-action>

</rule>

qt3 to qt4 porting example file 103

</transform>

<!-- QObject transforms -->

<transform queryId="QObject::child (a l l) ">
<rule>

<!--

- foo->child("objName")
- becomes:

- qFindChild<QObject *>(foo, "objName")
-->

<if>

<condition property="ArgCount"
expected-value="1" />

<replace-action item="All ">
qFindChild<QObject *>(${ObjectId},

${Arg[0]})

</replace-action>

</if>

</rule>

<rule>

<!--

- foo->child("objName", "Class")
- becomes:

- qFindChild<Class *>(foo, "objName")
-->

<if>

<condition property="ArgCount"
expected-value="2" />

<replace-action item="All ">
qFindChild<${literalVal(Arg[1])} *>

(${ObjectId}, ${Arg[0]})

</replace-action>

</if>

</rule>

</transform>

<transform

queryId="QObject::child (non recursive) ">
<!--

- foo->child("objName", "Class", FALSE)

- becomes:

- KGlobal::findDirectChild<Class *>(foo, "objName")
-->

<rule>

<if>

<condition property="ArgCount"
expected-value="3" />

<replace-action item="All ">
KGlobal::findDirectChild

<${literalVal(Arg[1])} *>

(${ObjectId}, ${Arg[0]})

</replace-action>

</if>

104 qt3 to qt4 porting example file

</rule>

</transform>

<transform queryId="QObject::queryList ">
<!--

- foo->queryList("Class")
- becomes:

- qFindChildren<Class *>(foo)

-->

<rule>

<if>

<condition property="ImplicitOnThis"
expected-value=" false " />

<condition property="ArgCount"
expected-value="1" />

<replace-action item="All ">
qFindChildren<${literalVal(Arg[0])} *>

(${ObjectId})

</replace-action>

</if>

</rule>

<!--

- queryList("Class")
- becomes:

- qFindChildren<Class *>(this)

-->

<rule>

<if>

<condition property="ImplicitOnThis"
expected-value=" true" />

<condition property="ArgCount"
expected-value="1" />

<replace-action item="All ">
qFindChildren

<${literalVal(Arg[0])} *>(this)

</replace-action>

</if>

</rule>

<!--

- foo->queryList("Class", "objName")
- becomes:

- qFindChildren<Class *>(foo, "objName")
-->

<rule>

<if>

<condition property="ImplicitOnThis"
expected-value=" false " />

<condition property="ArgCount"
expected-value="2" />

<replace-action item="All ">
qFindChildren<

qt3 to qt4 porting example file 105

;${literalVal(Arg[0])} *>

(${ObjectId}, ${Arg[1]})

</replace-action>

</if>

</rule>

<!--

- foo->queryList("Class", "objName")
- becomes:

- qFindChildren<Class *>(foo, "objName")
-->

<rule>

<if>

<condition property="ImplicitOnThis"
expected-value=" true" />

<condition property="ArgCount"
expected-value="2" />

<replace-action item="All ">
qFindChildren

<${literalVal(Arg[0])} *>

(this, ${Arg[1]})

</replace-action>

</if>

</rule>

</transform>

<transform

queryId="QObject::queryList (non recursive) ">
<rule>

<replace-action item="All ">
KGlobal::findDirectChildren

<${literalVal(Arg[0])} *>

(${ObjectId}, ${Arg[1]})

</replace-action>

</rule>

</transform>

<!-- Class Queries -->

<transform queryId="QIconSet">
<rule>

<replace-action item="All ">
QIcon

</replace-action>

</rule>

</transform>

<transform queryId="QWMatrix">
<rule>

<replace-action item="All ">
QMatrix

</replace-action>

</rule>

</transform>

106 qt3 to qt4 porting example file

<transform queryId="QGuardedPtr&l t ;T> ; ">
<rule>

<replace-action item="TypeId">
QPointer

</replace-action>

</rule>

</transform>

</transformations>

</porting-description> �

B
P O RT I N G F I L E X M L D T D

Listing 28: DTD for porting XML files

<!--

Copyright (c) 2009, 2010 Bertjan Broeksema

Copyright (c) 2010 Milian Wolff

This file describes the XML format used for

defining queries and transformations for the

CPPPortingDatabase.

This format is identified using the SYSTEM

identifier "portingdatabase .dtd"

Files using this format should include a DOCTYPE

declaration like this:

<!DOCTYPE porting-description

SYSTEM "portingdatabase .dtd">

It is possible to use xmllint which comes with

XML Library libxml2:

xmllint \

**noout \

**dtdvalid portingdatabase.dtd \

yourdatabase.pd

(Replace ’ * ’ with ’−’. XML does not allow two ’−’
in comments)

NOTE: some of the code in this DTD is from

language.dtd of the Kate project.

-->

<!-- Boolean type

Attributes that are of type boolean allow the

following values:

true, TRUE and 1 all meaning true,

false, FALSE and 0 all meaning false.

It is encouraged to use true and false

instead of the alternatives.

-->

<!ENTITY % boolean " true|false|TRUE|FALSE|0|1">

107

108 porting file xml dtd

<!-- Restriction kind type -->

<!ENTITY % restriction-kind

"QidRestriction|LiteralRestriction ">

<!-- Condition property type -->

<!ENTITY % condition-property

" ImplicitCtorCall|ImplicitOnThis|ArgCount">

<!-- replace-action item type -->

<!ENTITY % action-item

"MemberId|ObjectId|FunctionId|TypeId|Accessor|All" >

<!-- insert-action location type -->

<!ENTITY % insert-action-location "After|Before">

<!-- porting-description specification

TODO: add attribs like name, version, author,

license, ...

TODO: add elements like description, ...

-->

<!ELEMENT porting-description

(queries, transformations?)>

<!-- queries -->

<!ELEMENT queries

(class-query|class-function-query

|global-function-query|enum-query)*>

<!-- class-query specification

uid: Unique descriptive name for this query,

e.g.: Foo::Bar<T>

qid: Qualified Identifier that should be

matched by this class-query,

e.g.: Foo::Bar

-->

<!ELEMENT class-query (template-argument)*>

<!ATTLIST class-query

uid CDATA #REQUIRED

qid CDATA #REQUIRED

>

<!-- class-function-query specification

uid: Unique descriptive name for this query,

e.g.: Foo::Bar<T>::methodName(someType T)

qid: Qualified Identifier that should be

matched by this class-query, e.g.:

Foo::Bar::methodName

const: Whether only const or non-const methods

should be matched. [boolean, optional,

default: both will be matched]

-->

<!ELEMENT class-function-query

(template-argument|argument)*>

porting file xml dtd 109

<!ATTLIST class-function-query

uid CDATA #REQUIRED

qid CDATA #REQUIRED

const (%boolean;) #IMPLIED

>

<!-- global-function-query specification

uid: Unique descriptive name for this query,

e.g.: NameSpace::funcName(t1 arg1, t2 arg2)

qid: Qualified Identifier that should be

matched by this class-query, e.g.:

NameSpace::funcName

-->

<!ELEMENT global-function-query

(template-argument|argument)*>

<!ATTLIST global-function-query

uid CDATA #REQUIRED

qid CDATA #REQUIRED

>

<!-- template-argument specification

restriction: A typename that is matched against

the instantiations and used for

filtering them. [string, optional,

default: empty]

-->

<!ELEMENT template-argument EMPTY>

<!ATTLIST template-argument

restriction CDATA #IMPLIED

>

<!-- template-argument specification

type: A typename that is matched against the

declarations and used for filtering

them. [string, optional, default: empty]

-->

<!ELEMENT argument (restriction)*>

<!ATTLIST argument

type CDATA #IMPLIED

>

<!-- restriction specification

kind: The kind of restriction you want to

impose (see top of this DTD for

list of valid restriction kinds)

value: The value the restriction should

fulfil. How the matching is done

depends on the restriction kind.

-->

<!ELEMENT restriction EMPTY>

<!ATTLIST restriction

kind (%restriction-kind;) #REQUIRED

value CDATA #REQUIRED

110 porting file xml dtd

>

<!-- enum-query specification

uid: Unique descriptive name for this query,

e.g.: Foo::Bar<T>

qid: Qualified Identifier that should be

matched by this class-query,

e.g.: Foo::Bar

-->

<!ELEMENT enum-query EMPTY>

<!ATTLIST enum-query

uid CDATA #REQUIRED

qid CDATA #REQUIRED

>

<!-- transformations specification

-->

<!ELEMENT transformations (transform)*>

<!-- transform specification

queryId: the uid of the query you want to transform

-->

<!ELEMENT transform (rule)+>

<!ATTLIST transform

queryId CDATA #REQUIRED

>

<!-- rule specification

-->

<!ELEMENT rule ((if, else*) |

(replace-action|insert-action)*)>

<!-- if specification

-->

<!ELEMENT if (condition+,

(replace-action|insert-action)+)>

<!-- else specification

-->

<!ELEMENT else (replace-action|insert-action)+>

<!-- condition specification

property: The property you want to match.

(see top of this DTD for list

of valid properties)

expected-value: The value that this property

should have.

-->

<!ELEMENT condition EMPTY>

<!ATTLIST condition

property (%condition-property;) #REQUIRED

expected-value CDATA #REQUIRED

>

porting file xml dtd 111

<!-- insert-action specification

location: location you want to insert the CDATA

of this element at. (see top of this

DTD for list of valid locations).

item: The item relative to which location

is computed.

-->

<!ELEMENT insert-action (#PCDATA)>

<!ATTLIST insert-action

location (%insert-action-location;) #REQUIRED

item (%action-item;) #REQUIRED

>

<!-- replace-action specification

item: The item you want to replace with the

CDATA of this element. (see top of

this DTD for list of valid items).

-->

<!ELEMENT replace-action (#PCDATA)>

<!ATTLIST replace-action

item (%action-item;) #REQUIRED

> �

B I B L I O G R A P H Y

[1] Kde - an international technology team dedicated to creating
a free and user-friendly computing experience, 2010. URL
http://www.kde.org.

[2] Eclipse cdt - c/c++ development tooling, 2010. URL http:

//www.eclipse.org/cdt/.

[3] Eclipse - an extensible development platform, 2010. URL
http://www.eclipse.org.

[4] Emacs - a customizable text editor and lisp interpreter, 2010.
URL http://www.gnu.org/software/emacs.

[5] Kate - an advanced mdi text editor, 2010. URL http://

kate-editor.org.

[6] Kdab - the qt experts. platform independent software solu-
tions. URL http://www.kdab.com.

[7] Kdevelop - a free, open source ide, 2010. URL http://www.

kdevelop.org.

[8] Mfc - the microsoft foundation classes, 2010. URL
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.

71).aspx.

[9] Motif - an industy standard graphical user interface, 2010.
URL http://www.opengroup.org/motif/.

[10] Perl - a scripting language with good support for regular
expressions, 2010. URL http://www.perl.org.

[11] Qt - cross-platform application and ui framework, 2010. URL
http://qt.nokia.com.

[12] Qtcreator, 2010. URL http://qt.nokia.com/products/

appdev/developer-tools/developer-tools.

[13] Sloccount - a aet of tools for counting physical source lines
of code, 2010. URL http://www.dwheeler.com/sloccount/.

[14] Xrefactory - a c/c++ refactoring browser for emacs and
xemacs, 2010. URL http://www.xref.sk/xrefactory/main.

html.

[15] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley.

113

http://www.kde.org
http://www.eclipse.org/cdt/
http://www.eclipse.org/cdt/
http://www.eclipse.org
http://www.gnu.org/software/emacs
http://kate-editor.org
http://kate-editor.org
http://www.kdab.com
http://www.kdevelop.org
http://www.kdevelop.org
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx
http://msdn.microsoft.com/en-us/library/d06h2x6e(VS.71).aspx
http://www.opengroup.org/motif/
http://www.perl.org
http://qt.nokia.com
http://qt.nokia.com/products/appdev/developer-tools/developer-tools
http://qt.nokia.com/products/appdev/developer-tools/developer-tools
http://www.dwheeler.com/sloccount/
http://www.xref.sk/xrefactory/main.html
http://www.xref.sk/xrefactory/main.html

114 bibliography

[16] Robert L. Akers, Ira D. Baxter, Michael Mehlich, Brian J. Ellis,
and Kenn R. Luecke. Reengineering c++ component models
via automatic program transformation. In WCRE ’05: Pro-
ceedings of the 12th Working Conference on Reverse Engineering,
Washington, DC, USA, 2005.

[17] Robert Anisko, Valentin David, and Clément Vasseur. Trans-
formers: a c++ program transformation framework. Techni-
cal Report 0310, EPITA/LRDE, 2003.

[18] Rudolf Ferenc Arp, Rudolf Ferenc, Árpád Beszédes, and
Tibor Gyimóthy. Extracting facts with columbus from c++
code. In In Tool Demonstrations of the 8th European Conference
on Software Maintenance and Reengineering (CSMR 2004, pages
4–8. IEEE Computer Society, 2004.

[19] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich.
Dms®: Program transformations for practical scalable soft-
ware evolution. In ICSE ’04: Proceedings of the 26th Interna-
tional Conference on Software Engineering, 2004.

[20] F.J.A. Boerboom and A.A.M.G. Janssen. Fact extraction,
querying and visualization of large c++ code bases. Master’s
thesis, Technische Universiteit Eindhoven, 2006.

[21] A. Van Deursen, J. Heering, H. A. De Jong, M. De Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. J. Vinju,
E. Visser, and J. Visser. The asf+sdf meta-environment:
a component-based language development environment.
pages 365–370. Springer-Verlag, 2001.

[22] Stephan Diehl. Software Visualization. Visualizing the Structure,
Behaviour, and Evolution of Software. 2007.

[23] S.C. Eick, J.L. Steffen, and E.E. Sumner Jr. Seesoft - a tool for
visualizing line oriented software statistics. IEEE Transactions
on Software Engineering, 18:957–968, 1992. ISSN 0098-5589.

[24] R. Ferenc, A. Beszé, M. Tarkiainen, and T. Gyimóthy. Colum-
bus - reverse engineering tool and schema for c++. In ICSM
’02: Proceedings of the International Conference on Software Main-
tenance (ICSM’02), 2002.

[25] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1999. ISBN 0-201-48567-2.

[26] Michele Lanza, Radu Marinescu, and Stéphane Ducasse.
Object-Oriented Metrics in Practice. 2005.

[27] Gerard Lommerse, Freek Nossin, Lucian Voinea, and Alexan-
dru Telea. The visual code navigator: An interactive toolset

bibliography 115

for source code investigation. Information Visualization, IEEE
Symposium on, 0:4, 2005. ISSN 1522-404x.

[28] Santanu Paul and Atul Prakash. A framework for source
code search using program patterns. IEEE Transactions on
Software Engineering, 20:463–475, 1994.

[29] Peter Pirolli and Ramana Rao. Table lens as a tool for making
sense of data. In AVI ’96: Proceedings of the workshop on
Advanced visual interfaces, 1996.

[30] Ramana Rao and Stuart K. Card. The table lens: merging
graphical and symbolic representations in an interactive
focus + context visualization for tabular information. In CHI
’94: Proceedings of the SIGCHI conference on Human factors in
computing systems, 1994.

[31] Olaf Spinczyk. The puma project, 2010. URL http://ivs.

cs.uni-magdeburg.de/~puma/.

[32] Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-
Preikschat. Aspectc++: An aspect-oriented extension to the
c++ programming language. In Fortieth International Confer-
ence on Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002).

[33] B. Stroustrup. The C++ programming language. Addison-
Wesley, 1997.

[34] Herb Sutter and Andrei Alexandrescu. C++ Coding Standards.
101 Rules, Guidelines, and best practices. Addison-Wesley.

[35] A Telea and H Byelas. Querying large c and c++ code bases:
the open approach. In Colloquium and Festschrift at the occasion
of the 60th birthday of Derrick Kourie (Computer Science). Windy
Brow, 2008.

[36] Alexandru Telea. Combining extended table lens and
treemap techniques for visualizing tabular data. In EuroVis,
pages 51–58, 2006.

[37] Alexandru Telea and Lucian Voinea. A tool for optimizing
the build performance of large software code bases. In
CSMR ’08: Proceedings of the 2008 12th European Conference on
Software Maintenance and Reengineering, 2008.

[38] Eelco Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in Stratego/XT 0.9.
In Domain-Specific Program Generation, International Seminar,
Dagstuhl Castle, Germany, March 23-28, 2003, Revised Papers,
pages 216–238, 2003.

http://ivs.cs.uni-magdeburg.de/~puma/
http://ivs.cs.uni-magdeburg.de/~puma/

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Estimation
	1.3 Porting
	1.3.1 Learning
	1.3.2 Analysis of the code base
	1.3.3 Automated porting
	1.3.4 Bug fixing
	1.3.5 Requirements for a porting system

	1.4 The Qt3 to Qt4 porting process
	1.4.1 Scripts
	1.4.2 The qt3toqt4 porting tool
	1.4.3 IDEs

	1.5 Proposed solution
	1.6 Road map

	i Related Work
	2 Fact Extraction
	2.1 Fact extraction from C++ code bases
	2.2 Requirements
	2.3 AspectC++
	2.4 Columbus CAN
	2.5 DMS
	2.6 KDevelop
	2.7 SolidFX

	3 Transformation systems
	3.1 Requirements
	3.2 ASF+SDF
	3.3 Stratego/XT
	3.4 Transformers
	3.5 DMS
	3.6 Software understanding and refactoring support in IDEs
	3.6.1 Program understanding
	3.6.2 Refactoring
	3.6.3 Querying

	ii Design and implementation
	4 Framework Design
	4.1 Architecture
	4.2 KDevelop
	4.2.1 Project handling
	4.2.2 Fact extraction

	5 Querying
	5.1 Method
	5.2 Query engine design
	5.3 Query types and result classes
	5.3.1 Function queries
	5.3.2 Method queries
	5.3.3 Class queries

	6 Transforming code
	6.1 Method
	6.1.1 Procedural transforms
	6.1.2 Source-to-source transforms
	6.1.3 Range based approach

	6.2 Transform engine design

	7 Use cases and limitations
	7.1 Enumerations
	7.2 Classes
	7.3 Global functions
	7.4 Methods
	7.4.1 QString
	7.4.2 QPtrList
	7.4.3 QObject

	7.5 Limitations
	7.5.1 Structural limitations
	7.5.2 Minor limitations

	8 Visual support for estimation and porting
	8.1 Use case: Estimation of a porting process
	8.1.1 Initial setup
	8.1.2 Project overview
	8.1.3 Interpreting the results
	8.1.4 Configuration of data presentation

	8.2 Use case: Performing a port
	8.2.1 File oriented view
	8.2.2 File impact view rendering
	8.2.3 Editor interaction and performing transformations
	8.2.4 File impact view zooming

	8.3 Use case: API feedback and refactoring estimation
	8.4 Use case: deprecated API tracking
	8.5 Use case: Identify which parts of a class are affected
	8.6 Use case: Affected code complexity

	iii Evaluation and conclusion
	9 Conclusions
	9.1 Fact extraction
	9.2 Querying
	9.3 Code transformation
	9.4 Visual support
	9.5 Future work
	9.5.1 Scripting support
	9.5.2 Defining queries and transformations
	9.5.3 Visual improvements

	iv Appendix
	A Qt3 to Qt4 porting example file
	B Porting file XML dtd
	Bibliography

