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Abstract
Dimensionality reduction is a popular data visualization technique that projects
high-dimensional data to a low-dimensional space (2D or 3D) while preserving
distance and/or neighborhood relations between points. The projected dataset
can then be visualized in, for example, a scatterplot. This process greatly en-
hances interpretability of the dataset while minimizing information loss. While
projections that target the 2D space have been studied in detail both quan-
titatively and qualitatively, 3D projections are far less well understood, with
authors arguing both for and against the added value of a third visual dimen-
sion. More information can be stored in 3 dimensions, and point overlap in
visualizations is reduced, but exploring and understanding a 3D projection
adds complexity for users. A user can only ever see a 2D rendering of the 3D
projection as seen from a certain viewpoint. In each view many points can be
occluded, and therefore, in order to assess the entire projection, it is required
to consider multiple views found by rotating it. Certain quality metrics can
measure to what extent the structure of a dataset is preserved in a projection.
But as of now, quantitative studies of 3D projections have disregarded this
viewpoint limitation in 3D by using quality metrics that consider point neigh-
borhoods and inter-point distances in 3D. We propose a different approach of
measuring the quality of 3D projections, where we use quality metrics designed
for 2D projections not on the entire 3D projection, but on multiple 2D views
of a 3D projection. This tells us how the quality of a 3D projection changes as
a function of the viewpoint, which we believe can give a better answer to the
question of when and why 3D projections have added value over 2D projections
from a user perspective. After a quantitative analysis of 30 3D projections we
find that generally, most views of a 3D projection are of relatively high quality,
with only a few considerably worse views. Therefore, users should not have
trouble finding one of the better views. We furthermore find that, depending
on the projection technique and chosen quality metric, many single views of
a 3D projection can have higher quality than a 2D projection made with the
same projection technique. We perform a user study to gain more insight in
how users perceive the quality of single views of a 3D projection, and whether
standard quality metrics can predict whether users will deem a view to be of
good quality. Most importantly, we find that the strength of the correlation
between measured quality of a viewpoint and user perceived quality depends
on which dataset is projected. In some cases there appears to be no correlation
at all. For projections where this correlation is strong, we observe an increased
benefit of using a tool that suggests high quality viewpoints to users. In gen-
eral, we find that in terms of user perceived quality, a 3D projection is just
as good as or better than a 2D projection generated by the same projection
technique. Furthermore, we find that users believe 3D projections to better
display the dataset structure than their 2D counterpart.
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1 Introduction
Generally, one of the first steps of data analysis is a cursory exploration of
the dataset. Ideal for this is a visual representation of the dataset in a plot
or graph. This gets complicated when datasets have tens, or even hundreds
of variables and many samples. One common solution is dimensionality re-
duction (DR) [12]. DR techniques aid in the exploration of high-dimensional
datasets by projecting them to a low-dimensional space (two-dimensional (2D)
or three-dimensional (3D)), while preserving distance and/or neighborhood
relations between the original data points. This low-dimensional projected
space can then be visualized in a 2D or 3D scatterplot, where each point cor-
responds to a dataset entry. Projections1 greatly enhance the interpretability
of the dataset while retaining as much information as possible. Although the
projected datasets never perfectly capture the original dataset, they can still
provide significant insight in its quality and structure in terms of outliers,
distinguishable clusters and variable correlations. If the dataset is annotated
with class-labels, a color-coded projection thereof can display whether points
within a class are indeed similar, and whether classes overlap. In a machine
learning context such information is a useful indicator of which classes are easy
to classify and which classes are more likely to be difficult to distinguish.

In figure 1 we offer an example of a dataset (569 samples, 30 dimensions)
projected to the 2D space and visualised in a scatterplot. The dataset dis-
tinguishes between two classes, this is displayed in the projection by coloring
each data point either blue or orange based on the class label. It is clear
immediately that there is a strong correlation between attribute values and
class labels, since we can clearly see distinct blue and orange clusters with
little overlap. Since we assume that most of the data structure is preserved in
the projection, we can conclude that this class distinction indeed exists in the
original dataset.

Figure 1: Example of a 2D projection of a dataset with clear structure
1In this document we use the term ’projection technique’ when referring to a DR al-

gorithm and the term ’projection’ when referring to the resulting 2D or 3D scatterplot
visualization. To disambiguate this term from a graphical projection of R3 coordinates to
R2 for rendering 3D visualisations on a 2D screen, we use the words ’view’ or ’rendering’ for
the latter.
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Other techniques for the visualization of high-dimensional exist like scatter-
plot matrices [8] and parallel coordinates plots [16], but these are less scalable
for large numbers of samples and dimensions, which makes them less interest-
ing compared to projections. Therefore they are not the focus of this research.

1.1 3D projections
Generally projections target the two-dimensional space, which is more intuitive
and easier to plot on a 2D screen. A projection targeting the three-dimensional
space still needs to be rendered on a 2D screen, which means the depth dimen-
sion, aligned with the view vector, is flattened and not visible. This causes
the appearance of the projection to change depending on the viewpoint. To
illustrate this, take a look at figure 2, displaying two different views of a 3D
projection of the same dataset shown in figure 1. The left image is very similar
to the 2D projection in figure 1, and shows good separation of the two class
clusters. In the right image, the projection is rotated, by changing the view-
point we observe it from, such that the two clusters overlap completely, giving
the impression that there is no correlation between attribute values and class
labels. Furthermore, since all points are concentrated in a smaller area, there
is more point overlap.

Figure 2: A good (left) and bad (right) view of a 3D projection of a dataset
with clear structure

Clearly the quality of the 3D projection depends considerably on the view-
point it is observed from, and the only way to observe a 3D projection entirely
is through rotation. Something that is not required for 2D projections. Con-
sidering these simple examples, on could conclude that there is no reason to
use 3D projections since, arguably, the 2D projection and a good view of the
3D projection are very similar, and both give the same insight in the struc-
ture of the dataset. Apparently, there is no gain in the 3D projection, but it
adds complexity and even introduces the risk that a user does not find a good
viewpoint, which could lead to false insights.

To give an intuition of a scenario where there is value in using a 3D projec-
tion over a 2D projection, we look at three other projections, shown in figure
3. Here, the leftmost image (labeled ’2D’) shows a 2D projection of a more
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complex and larger dataset with 6 different classes. In this 2D projection we
can see multiple discernible point clusters. Points with similar colors are gen-
erally placed close to each other, however there is a lot of fuzziness and some
overlap. In the other two images (labeled ’3D-1’ and ’3D-2’) of figure 3, two
different views, of a 3D projection of the same dataset are shown. The images
look different than the 2D projection. For example, we see a much clearer
separation between the red and purple clusters in 3D than in 2D. (Classes D
and E). Thus, the 3D projection indicates less similarity between these classes
than its 2D counterpart. This difference likely occurs because in the 3D space,
the projection algorithm has an extra dimension to make distinctions between
points. There is more freedom to place points a structure preserving way, re-
sulting in a clearer visualization if the right viewpoint is chosen. The fact that
a 3D projection can offer different insights, raises the question of whether 2D
or 3D is superior, and if so, in which situations or for what tasks this is the
case.

Figure 3: Example of two views of a 3D projection (two right-most images)
that look different than a 2D projection (leftmost image),

To summarize, 2D and 3D projections both have advantages and disadvan-
tages. 2D projections are more intuitive to observe on a 2D screen, and require
no interaction. For larger datasets with more dimensions however, they lack
space to place points. This increases projection errors, and causes many points
to be plotted on the same pixel, which makes the projection harder to read.

3D projections target the 3D space, which means there is significantly more
space to place points. This results in a decrease in point overlap and projection
errors. Therefore, they can provide a clearer representation of the data struc-
ture. However, a user always observes a 3D projection from a viewpoint and
can only ever see a 2D view (rendering) of the 3D projection. Therefore, in the
eyes of the user, the 3D projection is essentially no more than a large set of 2D
projections. In each view, the depth/view dimension is not visible, and point
occlusion occurs depending on the viewpoint. Users are generally required to
find multiple good views to analyze the entire projection, and combine these
mentally into a map of the entire projection. This takes considerably more
effort and might cause mistakes that lead to false insights.
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Currently, many tools and techniques have been proposed that attempt
to aid users in interpreting and benefiting from 3D projections (see chapter
2). Multiple recent works of literature have compared 2D and 3D projections,
among which the primary inspiration for this work: A quantitative and qual-
itative comparison of 2D and 3D projection techniques [33]. It indicates that
while 3D projections have a limited measurable added value over 2D projec-
tions, they can show more structure and motivate users to explore the data
more than their 2D counterparts. It is however not clear how users pick good
viewpoints in 3D projections, and how they value these viewpoints compared
to 2D projections. This observation led us to the following research question.

Can we measure from a user perspective, for different projection
techniques and datasets, whether, and by how much, a 3D projec-
tion is better than a 2D projection?

In this project we attempt to answer this question with the following con-
tributions.

• We propose a tool to compare 2D and 3D projections, and display in
real-time how the quality of the 3D projection changes as a function of
the viewpoint.

• Using this tool, we perform a quantitative analysis of 3D projections and
how they compare to 2D projections of multiple datasets, created with
multiple projection techniques.

• We set up a user study showing how users pick good viewpoints in the
presence or absence of our guiding tool and how they value these views
compared to a 2D projection. Using this data, we test how predictive
our measurements are of user perceived quality and if we can measure
whether users prefer 3D or 2D.

In chapter 2 we provide a clear definition of datasets, projection techniques
and quality metrics. Furthermore, we place this work in the context of other
literature. We discuss projection techniques in general, visualization of 3D
projections, tools that help understand 3D projections, methods to evaluate
the quality of projections and studies that, like us, compare the quality and
usefulness of 3D projections versus 2D.

In chapter 3 we state the objectives of this work and repeat our research
question. We then split this research question into multiple subquestions.

In chapter 4, we go into a detailed description of our research. We specify
how we measure the quality of individual views of 3D projections using four
different quality metrics. We propose a tool that allows for a viewpoint-driven
comparison of 3D projections versus 2D.

In chapter 5, we present the results of our research. We start with a quantita-
tive analysis of projections of 6 different datasets, using 5 different projection
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techniques for a total of 30 projections. Secondly, we describe how we per-
formed a user experiment and analyze its results.

In chapter 6, we discuss our most important findings and use them to give
an answer to our research question. Lastly we give suggestions for future work.

For replication and verification purposes, all the code used in this project
is open source and can be found in this GitHub repository. The repository
also contains the datasets used in the experiment, the data gathered from the
user experiment and some additional snapshots.
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2 Related work
In this chapter we first formally explain dimensionality reduction (Section 2.1)
and give a brief overview of different types of projection techniques (Section
2.2). We then discuss relevant literature where we highlight recent develop-
ments in dimensionality reduction. We look in more detail at how to best
visualize 3D projections (Section 2.3), and how to convey more information
through projections (Section 2.4). We discuss how to measure and compare
projection quality (Section 2.5), and we go over previous works comparing 2D
and 3D projections (Section 2.6).

2.1 Preliminaries
To help explain this project and related work we start by introducing some
notations from Espadoto et al. [12]. Let x = (x1, ..., xn), xi ∈ R, 1 ≤ i ≤ n be
an n-dimensional (nD) real-valued sample, and let D = {xi}, 1 ≤ i ≤ N be a
dataset of N samples. Let xj = (xj

1, ..., x
j
N), 1 ≤ j ≤ n be the jth dimension

of D. Thus D can be seen as a table with N rows (samples, elements) and n
columns (dimensions, attributes, variables, features). A projection technique
is a function

P : Rn → Rq (1)

where q ≪ n. In this work, we consider q ∈ {2, 3}, the corresponding pro-
jections are denoted as P2, respectively P3. The projection P (x) of a sample
x ∈ D is a qD point. Projecting an entire dataset D yields a qD scatterplot,
denoted as P (D). The projection function P is also influenced by so-called
hyperparameters which are typically fine-tuned by the user to optimize for spe-
cific quality metrics. The quality of a projection technique P can be gauged
by several metrics defined as

M : {(D,P (D))} → R+ (2)

A metric M measures how well the projection P (D) captures specific prop-
erties of the dataset D, the underlying idea being that a good projection will
keep similar points in D close to each other in P (D).

2.2 Projection techniques
Since Principal Component Analysis (PCA) was introduced [24, 15, 18], many
other projection techniques have been proposed. Projection techniques can be
categorized on the basis of multiple properties. First of all, projection tech-
niques map data in either a linear or nonlinear fashion. Which one is more
useful depends on whether the data is linearly or nonlinearly correlated in-
herently. Furthermore, a projection technique can optimize either for local
neighborhoods, or globally. In local neighborhood optimization, only the K
closest points to any point p are considered for computing the projection error.
Therefore any structure between points that are far away from each other is
disregarded. This generally results in better neighborhood preservation, but
worse overall point-pair distance preservation. Lastly, some techniques offer
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out-of-sample quality, meaning that new observations can be added immedi-
ately to the projection, without having to recompute it entirely. For the most
recent, and most extensive survey of (2D) projection techniques, refer to Es-
padoto et al. [12]. In our work, we do not target specific types of projection
techniques. To the best of our knowledge, the dilemma of whether 2D or 3D
is better applies to all projection techniques.

2.3 Visualizing 3D projections
A 3D projection can be visualized in a 3D scatterplot or point cloud, but finding
a good rendering technique is less straightforward than for 2D since there is
depth and occlusion to deal with. Picking the right visualization techniques
has significant influence on the interpretability of the projection. For example,
Piringer et al. [25] display how depth cues such as relative point size, halos
and mapping color to depth allow for better discrimination of points in 3D
point clouds. An image from their paper displaying this is shown in figure 4.
The figure contains three snapshots of a 3D point cloud. One without depth
cues (left), one with relative point size and halos (middle) and another with
relative point size, halos and mapping of color to depth, such that close points
are yellow and further points are increasingly blue (right).

Figure 4: Figure from Piringer et al. [25], showcasing how depth perception
can be improved. Left: No depth cues are used; Middle: Depth is indicated
with point size and halos are used to ease the discrimination of single points;
Right: Depth cueing using both color and point size, as well as halos

Furthermore, Sanftmann et al. [27] show how illumination techniques can
highlight structures in 3D scatterplots with high point density, which sup-
ports the user in inferring shapes. Examples can be seen in figure 5 of a 3D
scatterplot with and without illumination techniques.
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Figure 5: Figure from Sanftmann et al. [27] of a Lorenz attractor. Left: tra-
ditional 3D scatterplot; middle: illuminated scatterplot; right: linear, planar,
and spherical structures highlighted through mapping to green, red, and blue
colors respectively. The base colors are chosen to have equal intensities

Such techniques likely have some influence when qualitatively comparing
2D projections versus 3D projections, however, we believe that for the most
part, the question of whether 3D or 2D is better is independent of such ad-
justments. Furthermore, the more complex visualization techniques are not
widely used or publicly available, which means using them would make our
results less relevant. We therefore only use basic visualization techniques in
this work.

2.4 Explaining projections
Beyond the topic of how to render 3D projections, there is also an extensive
body of work on how to aid users in exploring and understanding projections.
Numerous tools have been proposed of which we will highlight some in this
section.

2.4.1 Interactively linked 2D and 3D scatterplots

The increased complexity of gathering useful information from 3D scatterplots
has been acknowledged in the past. Early on Piringer et al. [25] created a
tool combining both 2D and 3D point clouds with interactive linked views
to better convey information. An image of the tool can be seen in figure 6.
The tool offers multiple extensions of the 3D point clouds such as rendering
3D histograms of the point density on the surface of a cube around the point
cloud (bottom right widget), or displaying the principal component axes in
the point cloud. Furthermore, the tool allows a user to view three 2D views
alongside the 3D view, each showing an orthographic projection of the X-, Y-
and Z-axis respectively. In these views a user can brush (highlight) points
in square sections of the 2D point clouds, the same points are highlighted in
the corresponding cube section in the 3D view. It is also possible to highlight
points with attribute values in a certain range. Combining the more intuitive
2D views with the more information-rich 3D view and all extensions allows for a
very thorough analysis of a 3D point system. The authors clearly argue in favor
of using a third visual dimension when using the right visualisation tool, but
there is no quantification of the added value, nor did they investigate how the
effectiveness of the tool varies for different datasets or use-cases. Furthermore
the tool was designed for 3D datasets, where the dimensions have a clear
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meaning, and not 3D projections of nD datasets. For a 3D projection, where
the meaning of the axes is lost, it would not make sense to display their pair-
wise correlations in 2D views. as these correlations hold no meaning for us.

Figure 6: Figure from Piringer et al. [25], showcasing their tool displaying
a projected InfoVis dataset. Three widgets plot all axis pairs against each
other. The bottom right widget contains a 3D projection, with 3D histograms
emphasizing point density. The attribute ’year’ is mapped to color, the at-
tributes ’weight’, ’horsepower’ and ’miles per gallon’ are mapped to the axes.
The yellow line is the first principle component axis, the other two axes are
hardly visible as correlation occurs mostly in one direction

2.4.2 Enhanced biplots

Coimbra et al. [9] take a different, approach more specific to DR that involves
a tool that draws enhanced biplots in the scatterplot. Standard biplots have
linear axes, but often projection techniques are not linear. Furthermore, such
biplots cannot show the direction and scaling of the n variables. By projecting,
for each variable j ∈ n, custom data points that vary uniformly in variable
j while fixing other variable values to the average observed in D, and then
linking these points with a black line they create enhanced biplot axes that
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display the spread and nonlinearity of the projection for each distinct variable
in D. An example is shown in figure 7. These biplot axes can then be used to
find good viewpoints in 3D projections. If the biplot axis varies mostly in the X
and Y dimensions of the current viewport, and not in the Z (view) dimension,
we know that most of its variation is currently visible. This even allows for the
calculation of the optimal viewing angle to display the variation of one specific
variable, or the optimal view for correlation between two variables, by aligning
them with respectively the X and Y axis of the viewport. A tool like this
restores the connection with the original dataset dimensions in the projection
and greatly enhances a users ability to draw information from it, however it
requires some experience with the tool.

Figure 7: Figure from Coimbra et al. [9], showcasing how enhanced biplot axes
are drawn in a 3D projection. Opposite ends of the the same axes are labeled
with different colors (red and green)

2.4.3 Da Silva explanations

For projections that can not be color-coded based on class annotations (when
the dataset is not annotated), it is often not clear what properties of the origi-
nal data points contribute to the placement of that point in a certain position
in the projection. Several explanatory techniques have been proposed to aid
in the understanding of such projections. To better understand which dimen-
sions contribute the most to similarity of points in point-neighborhoods, Da
Silva et al. [10] proposed to color-code points based on which dimension best
explained the placement of the point in that particular position. To find this
dimension for each point, two techniques were proposed. The first being to
rank dimensions based on the least average euclidean distance to other points
in the neighborhood. The second technique ranked dimensions by the least
variance in the local point-neighborhood. We show an example of the second
technique in figure 8. Here an explained projection of a Wine dataset can be
seen, it is clear immediately that the dataset dimensions that most influence
point placement in the projection are ’Residual Sugar’, ’Alcohol’ and ’Sodium
Chloride’. These visual explanations give insight in why points are close to
each other, but they only highlight the single, best ranking dimension in the
projection, whereas often one dimension is not enough to interpret the projec-
tion structure. Therefore van Driel et al. [38] extended this work with three
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additional explanation techniques to nuance the Da Silva [10] explanations.
van Driel et al. [38] add views that color-code the local dimensionality (how
many dimensions are needed to explain a significant amount of the variance in
a point neighborhood) and local attribute correlations (which two dimensions
are most strongly correlated in a particular region). Tian et al. [32] add an-
other variation of a technique for explaining local dimensionality and provide
additional examples of the usefulness of combining the mentioned visual expla-
nations. The advantage of these explanatory views is that the connection with
the dimensions of the original dataset is brought back visibly in the projection,
at the cost of having a more complex tool.

Figure 8: Figure from Da Silva et al. [10], showcasing how they explain pro-
jections by coloring points based on which original dimension has the least
variance in the local point neighborhood. Brightness of points is reduced as
the confidence decreases. (When there are few points available, or when the
top ranking dimension varies much in an area.)

We have shown multiple techniques that help users in the interpretation of
projections. Some work for 2D projections, others for 3D and some in both.
It is good to be aware of the existence of such techniques, however they do not
help us answer the question of whether 3D or 2D is better, and which is more
preferred by users, which is our main topic of research.

2.5 Evaluation methods for projections
Multiple evaluation metrics have been proposed in the literature. Most of them
can be placed in the following categories. (1) Metrics based on the difference
between inter-point distances before and after projection, (2) metrics based on
the proportion of correct local neighbors in the projection, (3) metrics for class
consistency in point neighborhoods (for annotated datasets) and (4) metrics
for how well clusters are separated visually. We introduce a number of common
metrics that will be relevant for our research (definitions taken from [12]. These
metrics are Trustworthiness (class 2), Continuity (class 2), Normalized stress
(class 1) and Shepard diagram correlation (class 1). Next, we highlight some
other evaluation methods.
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2.5.1 Trustworthiness

Trustworthiness Mt, defined in equation 3 below, measures the fraction of close
points in D that are also close in P (D) [39]. Which tells us how much one
can trust that clusters in a projection represent actual data patterns. Here,
U

(K)
i is the set of points that are among the K nearest neighbors of point i in

Rq but not among the K nearest neighbors of point i in Rn. and r(i, j) is the
rank of the point j in the ordered set of nearest neighbors of i in Rq. K = 7
is commonly used [33]

Mt = 1− 2

NK(2N − 3K − 1)

N∑
i=1

∑
j∈U(K)

i

(r(i, j)−K) (3)

2.5.2 Continuity

Continuity Mc, defined in equation 4 below, measures the fraction of close
points in P (D) that are also close in D [39]. W (K)

i is the set of points that are
among the K nearest neighbors of point i in Rn but not among the K nearest
neighbors in Rq and r̂(i, j) is the rank of the Rn point j in the ordered set of
nearest neighbors of i in R⋉. As for Mt, K = 7 is commonly used

Mc = 1− 2

NK(2N − 3K − 1)

N∑
i=1

∑
j∈W (K)

i

(r̂(i, j)−K) (4)

2.5.3 Normalized stress

Normalized stress Mσ, defined in equation 5 below, measures the preservation
of point-pair distances from D to P (D) [23]. Any inter-point distance metric
∆n and ∆q can be used, but this is usually the euclidean distance. A lower
stress value means better preservation of the point distances of D.

Mσ =

∑
ij(∆

n(xi,xj)−∆q(P (xi), P (xj)))
2∑

ij ∆
n(xi,xj)2

(5)

2.5.4 Shepard diagram correlation

The Shepard diagram correlation Ms is the Spearman rank correlation of the
Shepard diagram S [17]. The Shepard diagram is a scatterplot that plots
the point-pair distances in P (D) against the corresponding distances in D.
The coordinates for each point can be calculated as defined in equation 6. In
a perfect projection all point-pair distances scale linearly from P (D) to D,
which means that in the Shepard diagram all points lie on a single diagonal.
The Spearman rank correlation measures to what degree this ideal correlation
exists.

S = {(||xi − xj||, ||P (xi)− P (xj)||)}, 1 ≤ i, j ≤ N, i ̸= j (6)
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2.5.5 Local error views

Arguing that general projection quality metrics only assess the overall quality
of a projection, and not local quality variations, Martins et al. [19] improve
upon other error visualization techniques to discover projection errors locally
instead of globally over the entire projection. They first propose a view that
color-codes points by how well distance relations to all other points are pre-
served. This highlights areas where the projected structure is not represen-
tative of the structure in nD. For extra insight in the more specific errors
of false neighbors and missing neighbors some additional views are proposed.
One view highlights points that have many false neighbors. Other views help
find where the missing neighbors are of points that have many of them. Finally
some views are proposed that help compare between projections created with
different DR techniques. In figure 9 an example can be seen of a projection
where points are color-coded based on their aggregate error with respect to
all other points. Points that have many missing neighbors are connected to
their missing neighbors using bundled lines that are drawn using a grayscale
color map to differentiate between higher and lower errors. Thus it is easy to
spot areas of points that should have been close to each other but are not. Er-
ror visualization techniques like this give more insight in whether information
can be drawn reliably from local areas in a projection, which could also be a
relevant factor when picking a good viewpoint Q(P3, p) for a 3D projection.

Figure 9: Figure from Martins et al. [19], Projection where points are color-
coded based on their aggregate error with respect to all other points. Points
that have many missing neighbors are connected to their missing neighbors
using bundled lines that are drawn using a grayscale color map to differentiate
between higher and lower errors.

2.5.6 Projection Inspector

Another tool for assessing the quality of projections is ProjInspector by Pagliosa
et al. [22]. The tool allows users to interpolate between different projections
created by different projection techniques (figure 10), and shows what the ef-
fect thereof is on the projection quality according to multiple metrics, one of
which is an adaptation of Neighborhood Preservation the authors call Smooth
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Neighborhood preservation. Which instead of measuring the percentage of
missing neighbors measures how far the missing neighbors are away from the
neighborhood of a point. Instead of capturing whether the projection is wrong,
the enhanced metric captures how wrong the projection is when neighbors are
missing. The tool offers an interesting approach to see the changes in quality
metrics for different projection techniques and interpolated combinations of
them, or for the same projection with different parameter settings. However,
only projection methods that rely on user-specified control points are used, be-
cause otherwise it is unlikely that different projection techniques place points
in similar locations, which would make interpolating between multiple of them
useless.

Figure 10: Figure from Pagliosa et al. [22], snapshot of how the ProjInspector
tool interpolates between projections created by five different projection tech-
niques

2.5.7 Visual cluster separation

In recent years, human perception of projection quality has gained increasing
attention. One of the most important factors for user-perceived projection
quality is visual cluster separation, which is the extent to which individual
clusters in a projection are visible and discernible. Clusters are formed if
groups of points are separated from other groups of points by empty space or
space with lower point density in the case of unlabeled data. When projections
are color-coded according to class labels the coloring of the points can also
create clusters even if the point groups are not otherwise separated.

Sedlmair et al. [29] created a taxonomy of factors that characterize clus-
ter separation of annotated datasets. Using this taxonomy they show how two
studied cluster separation metrics fail miserably in their judgement when com-
pared with human judgement. For over half of the projections of 75 datasets
the metrics were considered to wrongly quantify class separation, and the au-
thors show what factors cause these metrics to fail. Because of these findings
a later study [6] evaluates 2002 systematically generated visual quality met-
rics (VQMs) using a machine learning approach. 58% of the evaluated metrics
were found to better predict human judgement than the former state of the art
Distance Consistency (DSC) measure [30], demonstrating the need for metrics
that better capture user-perceived quality. This work inspired Wang et al.
[40] to invent a new DR approach using simulating annealing to find projec-
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tions close to the global optimum for two different human perception driven
quality metrics. The used metrics are the best metric found in [6] and, for
the sake of comparison, the DSC measure. Arguing that these measures lack
the ability to model class density, they adapt these metrics to a density-aware
version and demonstrate projections with significantly improved class sepa-
ration values according to both quantifiable metrics and human judgement.
While these results are impressive, the work lacks an evaluation of how these
metrics affect objective quality such as neighborhood and point-pair distance
preservation. In other words, while the projected points might be separated
very well into clusters, it is not clear how representative the projections are
of the original dataset compared to other DR techniques. The work does in-
spire a DR approach that searches for an optimal balance in both quantitative
and perception-based metrics, however, the simulated annealing technique is
linear, which means that it will have trouble projecting non-linear data, fur-
thermore the perception-based metric is only applicable with labeled data. For
this reason Abbas et al. [5] construct a monochrome VQM they call ClustMe,
which, compared to other metrics, has significantly more agreement with hu-
man judgement in the task of ranking scatterplots on their cluster pattern
complexity.

Overall however, it can be agreed that human judgement for cluster sep-
aration is an important aspect for projections that has recently gained con-
siderable attention. In a benchmark by, Aupetit et al. [7] state of the art
cluster separation metrics are compared in terms of how well they align with
human findings. The authors argue as well for using human perception as
a basis for the creation of new clustering/projection techniques. There are
however, a few problems with visual cluster separation metrics that caused
us to look for a different approach on measuring projection quality from a
user perspective. We already mentioned that these metrics only consider how
the projection looks visually, and they disregard to what extent the projection
resembles the original dataset. Seeing two clearly separated clusters in the pro-
jection is useless if these clusters don’t exist in the dataset. A solution could
be to use a combination of the visual cluster separation metrics with some of
the aforementioned objective methods, but the VQMs that require class labels
can not be used for unlabelled data, and the monochrome VQM ClustMe [5]
only works on unlabeled data, and will be less effective on labeled data. It
is not possible to design a single VQM that similarly handles all projections,
because the problem of measuring visual cluster separation changes depending
on whether and how points are colored.

2.6 Comparing 2D and 3D projections
It is clear that for some contexts and some tasks 3D representations outperform
2D representations. Tavanti et al. [31] show that 3D can help with tasks that
require spatial memory. Similarly Tory et al. [35] conclude that 3D views with
additional depth cues like shadows are effective for tasks involving relative
position estimation and orientation. Whether these findings also indicate an
advantage in the context of projections is not sure, but they advocate the
possibility. While in some scenarios 3D projections do not seem advantageous
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for 3D projections [36], other literature does suggest a benefit of 3D projections.
We follow with an overview of some relevant works on this topic.

2.6.1 A Framework for Exploring Multidimensional Data with 3D
Projections

Poco et al. [26] compare the performance of 2D vs 3D projections on an
annotated dataset of scientific documents. Analysis of the projections shows
that 3D scores better than 2D in the two objective metrics neighborhood hit
and neighborhood preservation. They next performed a user study where 12
participants were asked to do a number of tasks: Count the clusters, order
the clusters by density, list all pairwise overlaps of clusters, detect an object
within a cluster and twice find the cluster closest to a specific point. The study
showed that users were better able to provide the correct answer for these tasks
in 3D (74.4%) than in 2D (64.3%), however the only statistically significant
improvement was found in the last task of finding the cluster closest to a point.
Users required around 50% more time for these tasks in 3D. Overall the work
suggests a slight improvement when using 3D, but it lacks certainty.

2.6.2 Qualitative comparison of 2D, interactive 3D and scatterplot
matrices for class separation

Sedlmair et al. [28] empirically studied the effects of different visualisation
techniques on the specific task of visual cluster/class separation. Two expe-
rienced coders were asked to rate how well classes of 75 different classified
datasets were separable in either a 2D scatterplot, an interactive 3D scatter-
plot or a scatterplot matrix. The results indicate that in many cases a 2D
scatterplot is good enough to visualize separate classes. Since a 2D scatterplot
allows for the easiest exploration of the data in terms of time and effort, it
is therefore the preferable visualization method in most cases. In some cases
however the scatterplot matrices showed better separation. The interactive 3D
projection was not compared individually to the other 2 visualization methods,
but an analysis was made on when it was better than both the 2D scatter-
plot and the scatterplot matrix. It turned out that this was only the case for
highly synthetic datasets, specifically designed to give an edge to 3D projec-
tions. This work therefore provides evidence that 3D projections are in most
cases not preferable to the other visualization methods for the specific task of
class separation, but it is subjective since most results are the opinions of only
two persons.

2.6.3 Quantitative and qualitative 2D versus 3D comparison

As the main inspiration for this project, Tian et al. [33] performed a quan-
titative study of 3D projections that discovered that certain projections show
more structure in 3D than in their 2D counterparts, which could be of benefit
in the visual exploration of a dataset. This study had two primary contribu-
tions. The first being to quantify the quality of a large number of projection
techniques using four common quality metrics. These metrics excel at gaug-
ing objectively whether a projection technique was successful at its intended
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purpose, which is to preserve the structure of the dataset in the projection.
However, this does not necessarily mean that a projection is useful from a user
perspective. One core problem that calls for a different measuring approach is
that these metrics ’see’ in three dimensions, whereas a user can only look at
the projection from a certain viewpoint. This viewpoint limitation means that
a user can only ever see a 2D rendering of the 3D projection, which introduces
problems such as occlusion of projected points and a flattening of the view
dimension, which hides the true distance between points.

The second contribution was a qualitative study, showing that 3D projec-
tions either show the same structure as their 2D counterpart, or no structure
at all. However, when augmented with the Da Silva [10] explanation, 3D pro-
jections can show more insights than 2D projections in terms of more separate
zones explained by more data dimensions, which supports the hypothesis that
with the right tools 3D projections can be advantageous.

2.7 Summary
Many projection techniques exist. Generally the 2D space is preferred for
projections, because 2D visualisations are more intuitive and do not require
searching for multiple good viewpoints. Some argue in favour of using 3D
projections because the added dimension results in less projection errors. Fur-
thermore three dimensions can capture more of the structure of D when its
intrinsic dimensionality is more than two dimensional. However 3D projections
are more complex and require interaction to explore. Because data points can
be occluded in 3D, a combination of multiple viewpoints is needed to assess
the entire projection, which requires the user to maintain a mental map of
the projection. Albeit limited, there is evidence that 3D projections can have
added value over 2D projections. [26, 28, 33]. The right tools and visualization
techniques can help exploit this added value [10, 38, 32, 19], but they don’t
help us answer whether 3D or 2D is better or more preferred by users, and by
how much. As of now, it is still unclear when 3D projections are better and
how much of a difference they make. The few studies that have quantitatively
compared 2D vs 3D [33, 26] show a subtle increase in quality of 3D projections,
but we argue that the quality of 3D projections should not be measured in the
same way as 2D projections because a user can not see in 3D. Therefore, in
the next chapter we propose a different approach to measure the quality of
3D projections, that we believe to be more in line with how the user assesses
quality.
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3 Goal and Objectives
Now that we have introduced the topic and demonstrated its context in recent
literature we will more formally define the research goals of this project. We
have shown that there is debate on whether there can be an advantage for us-
ing 3D projections instead of 2D. This question has gained attention in some
previous works, with both quantitative and qualitative comparisons of 2D and
3D projections. In these projects the same quantitative metrics where used for
2D as for 3D, but we believe that this approach does not give a representative
view of how a user would perceive the quality of a 3D projection. After all,
a user can not see in 3D whereas these metrics operate on three dimensions.
This led us to the following research question.

Can we measure from a user perspective, for different projection
techniques and datasets, whether, and by how much, a 3D projec-
tion is better than a 2D projection?

Innovative in this question is the user perspective part. As we have argued,
measuring the quality of 3D and 2D projections in the same way is not fair,
since a user observes them differently. We therefore propose a different method
of quantifying the quality of 3D projections. Instead of calculating the quality
of the entire projection P3 at once, we create a uniformly distributed sample
of views of P3, and measure the quality of each 2D view individually, using
the 2D projection quality metrics. This will tell us how the quality of a view
of a 3D projection changes as a function of the viewpoint, which we believe to
be more similar to how a user would evaluate a 3D projection. More details
on this method are provided in section 4.1. We analyze our findings and see
if patterns emerge, and whether these patterns are specific to a dataset or
projection technique. Furthermore, we make a comparison to 2D projections,
and see whether 2D views of P3 can be of a higher quality than 2D projections.
Thus we define the following subquestions concerning the quantitative analysis
of P3 vs P2. After each subquestion, we reference the section that covers the
answering of it.

A1 How can we measure the quality of a view of a 3D projection? (Section
4.1)

A2 How do quality metric values vary as a function of the viewpoints of a
3D projection? (Sections 5.2.1 - 5.2.4)

A3 Can we find a recurring pattern in the viewpoint quality distribution for
the same dataset using different projection techniques? (Section 5.2.5)

A4 Can we find a recurring pattern in the viewpoint quality distribution for
the same projection technique over different datasets? (Section 5.2.5)

A5 Are there specific projection techniques, or specific types of datasets that
score consistently better in 3D or in 2D, and if so can we find out why
this is the case? (Section 5.2.6)
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Naturally, the only way to confirm that our measurements indeed better
capture the user perspective, is a user study. Therefore, we test if our quality
metrics are predictive of the user-perceived quality. We furthermore investi-
gate how users pick good viewpoints and whether it helps them to know the
metric values. This part of the research can be broken down into the following
subquestions. We again reference the sections that answer them.

B1 Are our quantitative metrics predictive of user perceived quality? (Sec-
tions 5.3.4 - 5.3.7)

B2 Does knowing the metric values help users find better viewpoints? (Sec-
tions 5.3.4 - 5.3.7)

B3 Can users find single views of a 3D projection that they prefer over its
2D counterpart? (Section 5.3.8)
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4 Methodology
In the previous chapter we defined the goals of this research project. In this
chapter we will provide a more exact specification of how we aim to achieve
these goals.

4.1 Quality measurement of 3D projection views
For this work we will use four evaluation metrics defined earlier in section
2.5, that are also used in [12]. These metrics are specifically Trustworthiness,
Continuity, Normalized stress, and the Shepard diagram correlation.

Answering research subquestion A1 in chapter 3, we propose a viewpoint
oriented method of measuring the quality of a 3D projection. We explain this
approach now with some additional notation, on top of the notation introduced
earlier in section 2.1. A 3D projection P3 is always observed from a certain
viewpoint p ∈ R3. In this work viewport operations on the 3D projection are
constrained, thus the distance ∆(p, c) from p to the center of the projection c
is always the same and the view vector always points from p towards c. Our
quality measurements are independent of rotation in the view plane, which
side is up or down does not affect how the projection is perceived. Therefore
defining an upvector is obsolete. Let Q(P3,p) denote the resulting 2D screen
rendering (view, projection) of the 3D projection P3 observed by looking at
the projection P3 from viewpoint p. Q is defined as

Q : R3 × p → R2 (7)

A view Q(P3,p) is essentially a two-dimensional scatterplot, so we can use the
same metrics M defined in equation 2 to gauge the quality of Q(P3,p) for a
dataset D:

M : {(D,Q(P3,p))} → R+. (8)

Let V = {Q(P3,pi) | 1 ≤ i ≤ s} be a sample of s views of a 3D projection.
Applying a quality metric M on each view in V yields a distribution of the
quality of P3 over all viewpoints. We denote this distribution as S(V,M)

We mentioned the problem of occluded points when observing 3D projec-
tions, which gives rise to the question, should we remove occluded points when
computing Q? After all, a user can’t see these points and will therefore not
include them when assessing the quality of a view. We decide to ignore oc-
clusion for a few reasons. For 2D projections, occlusion depends on the order
in which points are drawn, Since, theoretically there is no drawing order for
points in a 2D projection, it would be impossible to decide which points get
ignored and which do not, and therefore the comparison to the 3D projection
view where we do know the drawing order, would be unfair. Furthermore, oc-
clusion depends on the point size, which is a parameter that users can change
freely. Taking occlusion due to point size into account for the measurement of
projection quality would add another degree of freedom to this study that is
out of our scope.
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4.2 Analysis of the viewpoint quality distribu-
tion

In order to analyze the viewpoint quality distribution S(V,M) and perform the
user evaluation we created a tool. This tool contains four different widgets.
Two of these widgets are a 3D projection and a 2D projection of the same
dataset, by the same projection technique. The projections are made to have
more or less the same point size and the same scale. In the 3D projection
we use depth cues inspired by the previously mentioned Piringer et al. [25]
(Section 2). All points have dark halos, and we map color to depth by slightly
brightening colors of points further away and darkening colors of closer points.
We call the other two widgets the quality sphere widget and the histogram
widget, which we explain in the next sections. An overview of the complete
tool can be seen in Figure 11

Figure 11: Image of the projection comparison tool containing four different
widgets. Top left: A rotatable 3D projection scatterplot of D. Top right: A
2D projection scatterplot of D. Bottom left: A colored sphere showing the
quality of different views of P3 according to the selected metric. The sphere has
its viewport linked with the 3D projection. Bottom right: Four histograms,
showing the quality distribution S(V,M) of 1000 different views of P3 for four
different quality metrics M

4.2.1 Quality sphere widget

We form all the views in V by generating s = 1000 approximately evenly
spaced viewpoints on a sphere around the center of the projection using the
Spherical Fibonacci Lattice algorithm [13]. Therefore, we can visualize the
quality measurements (Equation 8) of said viewpoints in a 3D rendering of
a sphere, its surface color-coded by the measured quality values in S(V,M).
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Very similar to what was done in [9]. We use a dark green color for optimal
values, yellow for medium values, and dark red for the worst values. Using the
crosshair in the center, targeted at the quality of the current 3D projection
view, a user can quickly search for good views according to one selected quality
metric, by rotating the sphere to a greener area. The rotation of the sphere is
linked to the rotation of the 3D projection. Adjusting either of them affects
both. The legend next to the sphere contains a black horizontal line that
indicates the quality of the current viewpoint. Two white lines indicate the
lower and upper bound of S(V,M).

4.2.2 Histogram widget

The last widget contains four histograms, one for each quality metric. These
histograms display the same quality distribution S(V,M) of the views of P3.
This visualization shows directly what influence changing the viewpoint can
have on the quality of the projection. We can see whether all viewpoints have
similar quality, or whether there is a significant difference between viewpoints,
which shows that picking a good viewpoint is crucial. Furthermore, by dis-
playing two small ticks/lines under each histogram axis, we show the quality
measured directly on P3 (longer tick) and P2 (shorter tick). This visualization
allows us to see the proportion of views that have better or worse quality than
P2 or P3. For example, look at figure 12, which shows a zoomed in version
of the Shepard correlation histogram from figure 11. Here, the blue rectangle
highlights the proportion of views with better quality than the 3D projection
P3. Similarly the orange rectangle highlights the views with better quality
than the 2D projection P2. This image shows that there are multiple views
with better quality than both P3 and P2, according to the Shepard correlation
metric. Lastly, with one slightly darker bar we highlight the quality interval
that contains the current view of the 3D projection. Therefore, rotating the
3D projection affects which bar is highlighted.

Figure 12: Visual explanation of how one glance at a histogram shows the
proportion of views with better quality than P3 (blue rectangle) and P2 (orange
triangle). The darker bar highlights the current view quality.

4.2.3 Histogram widget hovering

For the histograms we also implemented a hovering feature. Two things happen
when a histogram bar is hovered over. The first is that the sphere and 3D
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projection widget rotate to a view that has a quality value within the hovered
bar’s interval. Hovering at the bottom of the bar will select a view with a
quality closest to the lower end of the interval, hovering at the upper end of
the bar will select the viewpoint with the quality value closest to the higher
end of the interval. Thus, by moving the mouse pointer from the bottom to the
top of the bar allows a user to quickly scan, in order, all views with qualities
within a specific interval. Using two snapshots we show how the hovering
affects the tool. In figure 13 we show a snapshot of what the tool looks like
initially. The 3D projection view does not look good as there is much overlap,
in the quality sphere we see the crosshair targeting a yellow area, indicating
that the value for Shepard diagram correlation of the current view is quite low.
In the histogram widget we see, by looking at the darker bars, that all of the
metrics are at the average or lower end of their quality range. In the second
snapshot, shown in figure 14, we see how the view shifts by hovering at the top
end of the right-most bar in the Shepard diagram correlation histogram. The
3D projection is rotated towards the view that has a Shepard correlation value
corresponding to the value that is being hovered. This is also apparent in the
quality sphere, where a dark green area is now targeted. In the histograms,
we see that the current view has higher quality values for all metrics.

Figure 13: The first of two snapshots showing how hovering on a bar in the
histograms affects the entire tool. This image shows the tool in its initial state.
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Figure 14: The second of two snapshots showing how hovering on a bar in
the histograms affects the entire tool. This image shows the tool after a user
has hovered on the highest end of the rightmost bar in the Shepard diagram
correlation histogram

Secondly when hovering over a bar in the histogram, polylines are drawn
from the hovered bar to other histogram axes, forming a PCP (Parallel Co-
ordinates Plot). An example is shown in Figure 15. One polyline is drawn
for each view contained in the hovered bar. It shows all quality metric values
of this view by going through the axes of each metric. A thicker, and more
opaque line highlights the currently hovered viewpoint. The PCP shows for
the hovered quality interval (bar) of a metric, how quality is spread for the
other three metrics. For example, the PCP in Figure 15 shows that all views
with a normalized stress value around 0.53 (the red hovered bar), have very
different values for Shepard correlation, very similar values for continuity, and
quite similar values for trustworthiness. This visualization allows a user to
dive deeper into high quality views. It is easy to find, for all views with a high
value for a single metric, a view that also has high quality for one or multiple
other metrics.
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Figure 15: Image of the PCP formed by hovering over a red (normalized stress)
bar in the histogram widget
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5 Evaluation
Now that we have introduced the tool in the previous chapter we can use it
to look for answers to our research question defined in section 3. We want
to determine if our proposed viewpoint-driven approach of evaluating 3D pro-
jections can give us new insights in whether 3D or 2D is better for different
datasets and different projection techniques. Therefore, we first need to make
a varied selection of datasets and projection techniques to create our 3D and
2D projections. In section 5.1 we present this selection and give the reasoning
behind our choices.

In order to find out if our new measurement approach can give us any
new insights in how the quality of a 3D projection varies as a function of
the viewpoint, we first quantitatively evaluate our projections in section 5.2.
We analyze our measurements for recurring patterns and determine if these
patterns are dataset or projection technique dependent. We furthermore com-
pare how the single views of a 3D projection compare to its corresponding 2D
projection.

Key in our research is the user perspective. We have proposed a new way
to measure the quality of 3D projections that we believe to be more in line
with how a user perceives them. We therefore perform a user experiment,
described in detail in section 5.3, that has the primary purpose of correlating
our quantitative measurements to user perceived quality, so that we can better
reason about how quantifiable properties influence whether a user prefers a 3D
or 2D projection, and determine what causes this. Furthermore, we test if the
guiding widgets of our tool can help users exploit the value of 3D projections
by suggesting higher quality views.

5.1 Choice of datasets and projection techniques
To create the 2D and 3D projections used in our experiments, we needed a
number of datasets and projection techniques. The total number of projec-
tions had to be manageable for manual inspection, but large enough to find
generalizable results. Ultimately, we used 6 different real-world datasets, and
5 different projection techniques yielding a total of 30 2D and 3D projection
pairs.

The datasets we chose and their characteristics can be seen in table 1.
They are a subset of the datasets used in [33], and chosen for their differing
characteristics in terms of sample count N and dimensions n. For each dataset
we specify its size in terms of samples and dimensions, and we specify whether
they contain class labels. For the labels, we make a distinction between ordi-
nal and categorical classes, since these will have different color coding in the
projections. (e.g. a categorical color map vs an ordinal color map.)

28



Dataset Samples N Dimensions n Class labels
AirQuality[11] 9357 13 -
Concrete[1] 1030 8 Ordinal
Reuters[2] 8432 1000 Categorical
Software[21] 6773 12 Ordinal
Wine[3] 6497 11 Ordinal
WisconsinBreastCancer[4] 569 30 Categorical

Table 1: Selected real-world datasets and their characteristics.

The projection techniques selected for our experiment are displayed in table
2. Again, we chose a diverse set of projection techniques in terms of linearity
(nonlinear vs linear), input type (samples or point-pair distances) and whether
they optimize for local or global neighborhoods. This ensures that our results
are not specific to any kind of projection technique. Within these constraints,
we favored more popular techniques.

Projection Linearity Input Neighborhood
AE [14] nonlinear samples global
MDS [34] nonlinear distances global
PCA [18] linear samples global
T-SNE [37] nonlinear distances local
UMAP [20] nonlinear distances local

Table 2: Selected projection techniques and their characteristics
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5.2 Quantitative measurements
We start our analysis of all 30 projection pairs with an an image displayed
in figure 16 that provides a visual overview of all our measurements using
snapshots from the widgets of the tool. The figure displays a table, with a row
for each projection, ordered primarily by dataset and secondarily by projection
technique. Each row displays two snapshots of the quality sphere for each
quality metric. These two snapshots are taken from two opposite viewpoints
( chosen arbitrarily), so that nearly the entire sphere can be seen. Since there
are four quality metrics, there is a total of 8 sphere snapshots. Next to these
sphere images we display the corresponding histograms of each metric. These
histograms display the quality distribution of the s = 1000 uniformly spread
viewpoints in V . Therefore, they show how much the quality of the view of the
3D projection can change depending on the viewpoint, according to the four
quality metrics. In this figure, the columns are named either T, C, S or N, for
the respective quality metrics Trustworthiness, Continuity, Shepard diagram
correlation and Normalized stress. The image showcases lots of interesting
results, which we will next discuss.

5.2.1 Metric signal ranges

Arguably, one of the most notable observations is that the measurements for
the metrics trustworthiness and especially continuity have a small range very
close to the maximal value of 1, indicating that regardless of the viewpoint,
the quality values are high. This is shown in almost all the spheres where only
green or dark green colors are visible, and in the blue and orange histograms
that are only one or a few bars wide. It would seem that these metrics can
not be used as indicators of good viewpoint quality, since according to these
metrics, all viewpoints are good. Whether that is truly the case depends
on whether a small change in metric value in fact can denote a significant
change in viewpoint quality. It could be that the metrics trustworthiness and
continuity simply have a smaller effective signal range, but that relative within
this range changes are just as significant as for the other metrics. To test this
theory we visually compare views with the highest quality, and views with the
worst quality. We do this for two projections. The T-SNE projection of the
Wisconsin Breast Cancer dataset, which is a very clear projection, and the
the PCA projection of the Airquality dataset, which is harder to read. The
comparisons are shown in Figure 17. In this figure the first row shows the best
view versus the worst view for both metrics for the Wisconsin Breast Cancer
projection, the second row shows the the second-best versus the second-worst
view. The third and fourth rows show the same information for the Airquality
dataset. For each view we display the metric values rounded to two decimals.

In both figures we see the same trend. The views with maximal measured
quality show significantly more of the point spread, whereas in the the worst
views there is more overlap and and points are compressed in smaller spaces.
This is the case even though the metric values only differ slightly. For example,
the continuity value of the Airquality projection only differs by 0.02 between
the best and worst view. The largest difference is 0.22 for the Trustworthiness
metric of the Wisconsin Breast Cancer projection.
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Figure 16: This figure contains images of the quality sphere for each metric, for
each dataset, for each projection technique. For each sphere, two snapshots are
taken from an arbitrary viewpoint, and its opposite viewpoint. Hence there are
8 sphere images for each dataset and projection technique configuration. Next
to the spheres the corresponding viewpoint quality distribution histograms are
shown. The letters T, C, S and N indicate the columns belonging to metrics
Trustworthiness, Continuity, Shepard correlation and Normalized stress.
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Figure 17: Comparison of the best and worst views of the Wisconsin Breast
Cancer dataset T-SNE projection (top), and the Air Quality dataset PCA pro-
jection (bottom) according to the metrics Continuity (C) and Trustworthiness
(T). For each dataset, the first row shows the best and worst views for both
metrics, and the second row shows the second-best and second-worst views
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We’ve only shown images of two projections, but we found this trend in
the other projections as well. Clearly, these small differences in metric values
can have significant impact on the view quality, so it stands to reason that
we should consider these differences in our analysis. We therefore recreate
figure 16, but change the axis bounds of each histogram to the minimum
and maximum values observed within it, which essentially zooms in on each
histogram. In this representation we lose the ability to fairly compare values
of one metric with values of other metrics but also with values of the same
metric in different projections, but we can better evaluate patterns for the
metrics that have a condensed signal range. The result is shown in Figure 18.

Figure 18: Adaptation of Figure 16 with axis bounds set to the minimum and
maximum metric values for each individual sphere and histogram, to allow for
better reasoning about patterns

Using both figures 16 and 18, we can search for an answer to the research
subquestion A2 (Section 3). How do quality metric values vary as a function
of the viewpoints of a 3D projection?. First of all we see how important it is to
not measure the quality of a 3D projection as a whole, since its quality depends
significantly on the viewpoint. Furthermore, we conclude that all metrics have
a different effective signal range. The metric values for continuity are generally
close to the maximum of one, regardless of the viewpoint, whereas the metrics

33



Normalized Stress and especially Shepard Diagram Correlation cover a large
portion of the signal range. However, we’ve also seen that small changes in
the metric value for continuity or trustworthiness have significant effect on
the view quality, so we can not conclude that all views are good according to
these metrics. Because the significance of a specific difference in metric value is
relative to the metric, and probably also to the projection, we can disregard the
signal range of 0 to 1, and only consider the effective signal range determined
by the minimum and maximum values, as shown in figure 18.

5.2.2 Patterns in the view quality distribution

In figure 18, the spheres give a good intuition of how the quality of the views is
distributed. If a sphere is mostly green, it means that most of the viewpoints
have a quality value at the higher end of the signal range. This means that
it is very easy to find a higher quality viewpoint. A good example here is
the UMAP projection of the WBC dataset. The spheres for each metric are
almost entirely green. (Note that there are still yellow and red areas at the
edges that are barely visible due to the chosen viewpoint.) We see why this
is the case by looking at the histograms, that have tall bars on the higher
end of the effective signal range and a tail of low bars on the left. There
are few cases where the opposite is true, and the spheres are mostly red.
Generally, the worst we observe is that the quality values are spread more
or less evenly. Only in a few cases do we observe that there are more bad
viewpoints than good viewpoints. For example for the normalized stress metric
in the Airquality MDS projection, or the Shepard Correlation metric in the
Software AE projection. These findings indicate that for most projections, a
user should not have a problem finding a high quality viewpoint, countering
the argument against 3D projections that their value can be lost because the
user might not find a good viewpoint. However, we do not yet know if users
also perceive these views to be of good quality. Therefore we test whether
there is a positive correlation between high metric values and good viewpoint
quality according to users later in section 5.3

5.2.3 Similar patterns across metrics

If all metric values are similarly correlated with viewpoint quality, then one
would expect the histograms of different metrics to be of similar shapes. After
all, if most viewpoints are good, or if most viewpoints are bad, the metrics
should all similarly reflect this. Looking at the histograms in figure 18, we find
that in most cases the shapes of the histograms are similar, albeit sometimes
they are a bit shifted. Because of the individual scaling of the histograms, this
can happen very easily if there are a few outlying values. Only in a few cases
do we see large differences. For example in the Airquality PCA projection
(figure 18, third row), we see that the T, C and S histograms have very similar
shapes, with a thin tail on the left, and a peak at the right end. Whereas the N
metric is very evenly spread, with a small tail on the right end. Observing this
difference raises the question of which metric is ’right’, because there must be
cases where normalized stress considers a viewpoint bad, and the other metrics
consider it good. This is a difficult question to answer because each metric
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measures in its own way the preservation of the original dataset structure,
and it depends on which properties of the original dataset a user deems more
important to be preserved. One answer could be to measure which metric has
a stronger correlation with user perceived viewpoint quality which, again, is
covered in section 5.3.

5.2.4 Similarity of opposite sphere images

Another observation of note in figure 18 is that for all metrics, both images
of the sphere are very similar. This is a logical result considering that the
snapshots are taken from opposite viewpoints. Because the view vector is
flattened in the 2D rendering of a 3D projection, two views from opposite
viewpoints should be mirrored and equal in terms of distances between points.
The only difference between these views lies in the tilting of the camera, and
the order in which points are drawn on the screen. These things are not
considered by the metrics. The opposite shapes on the spheres differ slightly
because the Spherical Fibonacci Lattice algorithm [13] we used to generate the
viewpoints does not ensure that each point has an opposite.

5.2.5 Patterns inherent to datasets or projection techniques

To answer the research subquestions A3 and A4 (Section 3), we search for
patterns specific to a dataset or projection technique. Here we have to conclude
that, in terms of histogram shapes and sphere patterns, there is no discernible
pattern specific to any dataset. Therefore, any other findings we have are likely
to be applicable to projections of other datasets as well.

In order to search for projection technique specific patterns we create an-
other adaptation of figure 16, where the rows are sorted first by projection
techniques, and secondly by dataset, such that all projections by the same
projection technique are grouped together. This image can be seen in figure
19. This figure helps us to make the observation that the projection techniques
PCA and especially UMAP tend to be more peaked. Many of their histograms
have many similar values in a small part of the signal range, and long tails
consisting of a few outlying values. The spheres reflect this by having small
red dots for the few worst views, and being mostly green otherwise. The con-
clusion we can draw from this observation is that, according to the quality
metrics, most views of these projection techniques are quite similar, with a
few views that are considerably worse. So, for these projection techniques it
should be easy to find one of the better viewpoints in terms of measured qual-
ity. However this does not imply that these projection techniques are better
than the others, since we do now know how the actual quality values compare.
Aside from this, there do not appear to be any patterns specific to projection
techniques. Figure 16 shows that there are projection techniques that tend to
score higher than others for certain metrics, but this is not a pattern within
the projection technique itself.
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Figure 19: Adaptation of Figure 18 with rows ordered first by projection tech-
nique, and secondly by dataset.
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5.2.6 Comparison of 3D versus 2D

Answering research subquestion A5 (Section 3) is not easy. Like Tian et. al.
[33], we find that directly measuring the quality of the 3D projections, instead
of its views, generally results in higher metric values than the 2D projections.
In table 3 we show the average quality values for both the 2D projections and
the 3D projections. We see for each metric that on average the 3D projection
scores slightly higher.

T C S N
2D 0.945 0.961 0.732 0.556
3D 0.968 0.974 0.780 0.603

Table 3: Average metric values over all 2D projections and over all 3D pro-
jections for the metrics Trustworthiness (T), Continuity (C), Shepard diagram
correlation (S) and Normalized stress (N)

However, we have argued that it is unfair to directly compare quality mea-
surements of 3D projections with 2D projections, because users can not observe
them in the same way. What we can find out is how the quality values S(V,M)
of the views of the 3D projection compare to the quality of the 2D projection.
After all, both are essentially 2D point clouds so they can be compared fairly.
In figure 20 we show a stacked bar plot that shows for each dataset, for each
of the metrics, and through color-coding for each of the projections, the per-
centage of views (from the s = 1000 generated viewpoints) that score higher
than the 2D projection. Because we stack the bars of projections by 5 projec-
tion techniques on top of each other, 20% corresponds to the number of views
(1000) of a single projection technique and dataset pair.

The image contains a lot of interesting information. For the metric Trust-
worthiness (T), there are only a few cases where a single view of the 3D pro-
jection outperforms the 2D projection, but for all other metrics we see that
many views have higher quality scores than the 2D projection. In some cases
(For example, the Normalized stress metric for the Airquality dataset), more
than 50% of the views of the 3D projections have higher quality than the cor-
responding 2D projection. Furthermore, for all datasets and all metrics except
Trustworthiness, we see that the bars generally consist of multiple, differently
colored, stacked bars. This means that for many projection techniques, their
respective 3D projections have a considerable amount of views that score bet-
ter than their 2D counterpart. Whether this is evidence in favor of preferring
3D projections over 2D projections is arguable. On the one hand one might
say that, if there are single views of the 3D projection that are, on their own,
better than the 2D projection, then looking at that view alone should give
users better information than looking at a single 2D projection, and that is
not even considering all the other vantage points that could give even more
insights. On the other hand, there are still many views that are worse, and a
user might prefer to look at these, which could lead to less reliable insights.
Here, a tool like ours could make a significant difference by helping users to
only consider the views that score better than 2D projection.

To give a definitive answer to research subquestion A5 (Section 3), we do
not see a specific dataset, of which all projections score consistently better in
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3D. We do observe however that some projection techniques score consistently
better in 3D, for specific metrics. For example, for all but one of the AE
projections (blue bars), close to all of the views (20% in the figure) have better
normalized stress values than the 2D projection. One could argue that if every
single view of the 3D projection has better quality than the 2D projection,
then 3D is without a doubt better. Because no matter what the vantage
point is, the view shows a better representation of the dataset than the 2D
projection. Following this reasoning, we find that for AE projections, and
considering only the Normalized stress metric, 3D is better for all but one of
the datasets. For PCA and T-SNE (green and red) we see considerably less 2D
views that outperform the 2D projection in terms of Normalized stress, this
indicates that in terms of Normalized stress these latter projection techniques
improve less in 3D, than the others. Of course, since this finding is relative,
these 3D projections could still score higher than the AE projection, but there
appears to be less reason to pick 3D instead of 2D for them. Following the same
reasoning, it appears to only be beneficial to use 3D UMAP projections (purple
bars) when it comes to Shepard Correlation or Normalized stress, but rarely for
Continuity and never for trustworthiness. Similarly, for all MDS projections
(orange bars) the views outperform the 2D projections mostly in terms of
Continuity. Because we see these differences, we can conclude that it likely
depends on the projection technique, and the metric, how much improvement,
if any, one can expect from using a 3D projection instead of 2D.
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Figure 20: Stacked bar plot displaying for each dataset and for of the met-
rics Trustworthiness (T), Continuity (C), Shepard diagram correlation (S) and
Normalized stress (N), the percentage of views of the 3D projection, that
score higher than the measurement of the same metric of the corresponding
2D projection. For each projection technique, a different color is used and
the corresponding bars are stacked on top of each other. Since there are five
different projection techniques, and s = 1000 views per configuration, 100%
corresponds to 5000 views.
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5.3 User evaluation
In our quantitative analysis we have seen how the quality metrics change for
different views of a 3D projection, and we have seen that small changes for
one metric can be just as significant in terms of view quality as large changes
for another metric. As of now however, we are not sure to what extent our
quality metrics align with user perceived quality of a projection. We have
seen for example, how projections of different datasets can have similar quality
values, but these projections will likely be very different in the eyes of the user.
Overall, on multiple occasions we have seen that we need to take into account
how users reason about quality of views before we can draw any conclusions
on how effective quality metric values are to characterize the user perceived
quality of a viewpoint. Therefore, we performed a user study with the specific
purpose of testing how quality metric values relate to user perceived quality in
terms of single views of a 3D projection. With this user study we specifically
target the research subquestions B1-B3 (Section 3). For our user study we
selected a subset of projections. This process is described in section 5.3.1. We
next describe and motivate how we set up the experiment in the section 5.3.2,
and in the rest of this section we discuss the results.

5.3.1 Evaluated projections

To limit the duration of the user study, we manually selected a subset of the 30
2D and 3D projection pairs introduced in 5.1. These projections were selected
based on three criteria. (1) They should have some discernible structure, e.g.
distinguishable point clusters with similar coloring based on the class labels.
(2) Finding a good view, with strong visual cluster separation for the 3D
projection should not be trivial. (3) The datasets should be of sufficient size
so that the added space of a third dimension can have value. The chosen
configurations are specified in Table 4.

Dataset Projection Samples N
Wine TSNE 6497
Wine PCA 6497
Concrete TSNE 1030
Reuters AE 8432
Reuters TSNE 8432
Software TSNE 6773

Table 4: Selected dataset and projection technique configurations to create the
2D and 3D projection pairs used in the user evaluation

5.3.2 Task definition

We will now describe what we asked users to do in this experiment. The exact
evaluation procedure that users received is given in the appendix (Section 7).
The primary purpose of this evaluation was to discover how users reason about
the quality of views of a 3D projection in comparison to a 2D projection, and
how their reasoning correlates to our metric values and findings in section 5.2.
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We therefore had to let users use our tool, to see to what extent their judgement
of the viewpoints was in line with the measurements of the tool. Therefore, we
first explained our tool to users and described what the different widgets were
for, and how they could use them, as described in section 4.2. To understand
the widgets, users needed some intuition of what our quality metrics mean. We
kept this explanation very basic, because deep understanding of the metrics is
not required to use the tool and this also decreased the required experience so
that we could reach a broader group of participants. We told users only that
the metric values range from 0 (worst) to 1 (best), that Trustworthiness and
Continuity measure neighborhood preservation, and that Normalized stress
and Shepard diagram correlation measure distance preservation between point
pairs. After that, we described in detail what each of the four widgets of our
tool display and how they can be used.

Since we wanted to know what viewpoints are deemed good by users, the
main aspect of the experiment was for users to search for good viewpoints
of the 3D projection. We therefore first needed a definition of what a ’good’
viewpoint was, that a user could read and understand. We ended up describing
a good view as a view that has visually well-separated point groups, that have
similar colors internally. This means that indirectly, we asked users to find
views that have minimal overlap for different clusters and show most of the
interesting structure in terms of class separation.

The widgets of our tool tell users what good viewpoints are according to
measured quality metrics, however we are also interested in what users them-
selves think are good viewpoints if they are unaware of the measured quality,
since this removes bias in the results. We therefore decided to show them half
of the projections in table 4, without access to the guiding widgets, and the
other half with access to these widgets. This allows us to see how knowledge
of the metric value of the observed view and the metric value distribution
affects the decision making of the user. We let users go through these projec-
tions one by one, and asked them to select 3 different viewpoints that they
deemed good according to the definition we just gave. For the first three pro-
jections, the sphere and histogram widgets were invisible, and for the second
three projections users could use the sphere and histogram widgets to guide
them in selecting a good view. This means that for the last three projections,
they could easily find views that had high quality values for any or multi-
ple chosen metrics. We stressed here that the users should not rely solely on
the high quality values, but ultimately use their own judgement for picking
good viewpoints. We did this to remind users that the quality metrics don’t
measure class and cluster separation, but only structure preservation. Using
these widgets, users were motivated to look mostly at high quality views until
they found one that appealed to them. From there they could make slight
adjustments if they so preferred. We randomized the order in which users saw
the projections, so that the projections seen with or without the widgets differ
for each user. Because we wanted some indication of how the 3D projection
compares to the 2D projection in the eyes of the users, we asked them, each
time they found a good viewpoint, whether, considering only the current view
of the 3D projection, they preferred the 3D or the 2D projection.

Our evaluation ultimately left us with, for each projection pair in table 4,
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a list of three viewpoints per user that they deemed good. For each viewpoint
we stored the quality metric values, whether users preferred the view of the
3D projection over the 2D projection, and whether users had access to the
guiding widgets or not when choosing the viewpoint. Furthermore, at the end
of the evaluation we asked users to rank their agreement with the following
statement on a 7 point scale. Considering the entire 3D projection, instead of
just one viewpoint, the 3D projection better displays the data structure than
the 2D projection.

5.3.3 Result analysis

22 participants responded to our user evaluation. This means that per projec-
tion we have 66 viewpoints that users deem good. Due to the random order in
which users saw the projections, approximately half of these viewpoints were
selected by users that did not have access to the guiding widgets, and for the
other half users did have access to guiding widgets. For future reference we
call these sets of viewpoints the blind set and the guided set, respectively. We
call the union of these sets the combined set. To get a feeling for what the
users saw, we show snapshots of an arbitrary selection of these views in section
7.2 of the appendix. Our GitHub repository contains additional snapshots of
all views grouped by set and specified preference over the 2D projection.

For an initial analysis of the results, we created figure 21. It contains the
histograms displayed in the tool for each metric and each projection pair in the
evaluation set. Since we found in our quantitative analysis that the significance
of small changes in metric values depends on the metric and projection, we
again zoom in on the histograms by using the histogram signal bounds as the
axis bounds. We would like to note here that during the user evaluation, we
did not use the zoomed in versions of the histograms in our tool. Therefore,
it might be that users paid more attention to metrics with a larger signal
range. This is something that could be addressed in future work. Below
each histogram three box plots are drawn labeled with, in order from top to
bottom, ’histogram’, ’users-blind’ and ’users-guided’. The boxplots summarize
the distribution of, respectively, the quality values S(V,M) viewpoints that
make up the histogram, the quality values of the blind set and the quality
values of the guided set.

5.3.4 Do users prefer higher quality viewpoints?

Figure 21 allows for an easy analysis of how the means and spread of the
different viewpoint sets compare to each other. By looking at the red lines
in the boxplots, corresponding to the mean metric values, we observe that
except for a few occasions, the viewpoints in the blind set are of higher average
quality than the histogram average. So it appears that users tend to prefer
viewpoints with above average quality. The viewpoints from the guided set are
usually of even higher quality, so, as might have been expected, our guiding
widgets cause users to pick even higher quality viewpoints. Before we can
draw any conclusions from these observations, we have to test whether these
differences are indeed statistically significant. Therefore we perform a T-test
(equal variance, one tail) for each projection, for each metric and for each of
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three sets of user selected views. We display the p-values in table 5. Here,
each significant p-value (p < 0.05) is displayed in bold. We see that for nearly
all projections and metrics, the views from the guided set have a significantly
higher average quality than the histogram average. For the combined set this
is slightly less often.
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Figure 21: Zoomed in histograms corresponding to all projections used in the
user evaluation. Under each histogram boxplots are drawn for the quality of,
in order from top to bottom, 1) the 1000 viewpoints in the histogram, 2) the
viewpoints from the blind set, 3) the viewpoints from the guided set.
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T C
Blind Guided Comb Blind Guided Comb

Wine TSNE .029 .001 <.001 .01 <.001 <.001
Wine PCA .015 <.001 <.001 .121 .041 .025
Concrete TSNE .003 .035 .001 .004 .111 .004
Reuters AE .087 <.001 <.001 .232 <.001 <.001
Reuters TSNE .418 .025 .059 .595 .029 .111
Software TSNE .04 <.001 <.001 .088 <.001 <.001

S N
Blind Guided Comb Blind Guided Comb

Wine TSNE .005 <.001 <.001 .24 .001 .003
Wine PCA .003 <.001 <.001 <.001 <.001 <.001
Concrete TSNE .159 .156 .08 .148 .049 .029
Reuters AE .214 <.001 <.001 .448 .025 .071
Reuters TSNE .935 .009 .23 .679 .056 .197
Software TSNE .689 <.001 .002 .279 <.001 <.001

Table 5: P-values for a test of whether the mean metric values of the viewpoints
picked by the users are significantly higher than the mean metric values of the
S = 1000 sampled viewpoints, calculated using the equal variance, one tail
t-test. We show the values for the blind set, the guided set and the combined
set. Significant values (p < 0.05) are displayed in bold.

We can however, only use the viewpoints from the blind set to fairly answer
the question of whether users prefer viewpoints that are of higher quality
according to our metrics. This is because users were biased to pick higher
quality viewpoints for the guided set because our tool said that they were
good. Perhaps they themselves did not think them better. Whether the views
from the blind set have a significantly higher average quality varies, and seems
to depend on the dataset. For both Reuters projections, users did not pick
viewpoints with significantly higher average quality for any metric. We see
this also in the box plots in figure 21 where the mean metric values are often
very similar, or even lower than average in the blind set. The Concrete and
especially Wine dataset projections do show a significant increase in metric
values for viewpoints of the blind set.

Following these observations, we have to conclude for now that users do
not prefer higher quality viewpoints in all cases. This could be because the
number of participants is too low for statistically significant results, but likely
the correlation between measured quality and user-perceived quality depends
on the datasets. After all, the strength of the correlation between high metric
values and good visual cluster separation is inherently dataset dependent. If
class clusters are not separated well in the dataset D then a good projection
of it will also have bad cluster separation. In this case there might be little
difference between a high and low quality view in the eyes of the user. All
our datasets are real world datasets, which means clear separation of classes
is not to be expected. We specifically selected projections for which finding a
view with clear cluster separation was not trivial. The Reuters dataset, which
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appears to score the worst when it concerns correlation with metric quality and
user perceived quality, also happens to be one of the most complex datasets
we have. With N = 8432 samples and n = 1000 dimensions. A topic of
future research could be how the quality or complexity of the dataset affects
the strength of the correlation between user-perceived quality and objectively
measured quality. In this user evaluation, we lack the number of different
datasets and number of participants to make relevant statements on this topic.

5.3.5 Quality improvement for views of the guided set

A conclusion we can make from our data is that the guiding widgets cause
users to select viewpoints with significantly higher than average quality metric
values. Generally the selected views also have higher quality metric values
than those they would have picked without the guiding widgets. Metric values,
however do not measure visual cluster separation, which was the task given
to the users. They only measure dataset preservation of dataset properties.
Therefore, We can not assume that users actually believed these views more
visually appealing than the views users picked in the blind set. But we argue
that, even if we stick with the weaker assumption that users only believed the
views equally visually appealing, then the views with higher quality are still
preferable. Finding a good view is a multi-objective problem, since objectively,
the best viewpoints should be of high visual appeal to the user, and of high
quality according to metrics. Because the latter means the dataset is more
strongly represented, resulting in more reliable insights. It appears that our
tool helps users find such viewpoints.

5.3.6 User perceived quality difference between the blind and guided
set

So we have found that our tool causes users to pick higher quality viewpoints,
but we can not be sure whether users indeed prefer them over the lower quality
viewpoints they selected in the blind dataset. We have one other measurement
that indirectly captures how users perceived the quality of the 3D projection
view, which is whether they preferred it over the 2D projection or not. If
users prefer high quality viewpoints, then the views they prefer over the 2D
projection should reasonably be of higher quality than the views they do not
prefer over 2D, since clearly they deem the former set better than the latter.
Figure 22 contains a bar graph that shows for both the blind and guided set
the percentage of views that users preferred over the 2D projection of the same
dataset. Here we see that generally, users were more inclined to prefer the 3D
projection view for the viewpoints they picked when guided by the sphere and
histogram widgets. Especially for the wine dataset projections do we see a
substantial increase for the guided set. This is interesting, since for the wine
dataset we also observed the strongest correlation between metric values and
user perceived quality according to table 5. For the Reuters and Software
dataset projections, where we found little or no correlation between metric
values and user perceived quality there is a substantially smaller increase in 3D
over 2D preference in the guided set. In fact for the Software TSNE projection,
we see a substantial decrease in preference of the 3D projection view for the
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guided set, which seems odd. Users were allowed to ignore the suggestions of
the tool to pick viewpoints they liked, they were only given more information.
So one would expect that, in the worst scenario, this extra information was
of no benefit to the user in which case the user was essentially blind again.
This should result in viewpoints with more or less equal user-perceived quality
compared to the blind set, and therefore equal 3D over 2D preference. It could
be that the suggested viewpoints were mostly bad in the eyes of the user, and
that users were therefore mislead into picking worse viewpoints. But if they
deemed the suggested viewpoints bad, why did they not search for a better
one? Either way, we observe that for datasets where we’ve measured a stronger
correlation between metric values and user perceived quality, users appear to
benefit more from the suggestions of high quality viewpoints.

We observe that totalled over all projections, there is a slight increase in
3D over 2D preference for the guided set. If we correlate this observation
with the finding in figure 21 and table 5 that the viewpoints in the guided
set are of higher quality, there appears to be more evidence towards a corre-
lation between higher metric quality and user-perceived quality. To further
investigate this we performed another T-test to calculate whether there is a
significant increase in metric values for 3D views that users preferred over the
2D projection, compared to the quality of views they did not prefer over the
same 2D projection. The P-values of the tests are displayed in table 6. Here,
only for the wine dataset projections and the continuity metric, do we see a
significant increase in values compared to the viewpoint qualities where users
preferred the 2D projection. P-values above 0.5 indicate a negative correlation
between high metric values and 3D view preference, which happens quite of-
ten, especially for the Reuters and Software dataset projections. Though only
significantly (p > 0.95) for the the continuity metric in the Reuters AE projec-
tion. These results, appear to support our earlier findings that it depends on
the dataset whether there is a positive correlation between metric values and
perceived quality, but since most results are not significant, we can not make
any relevant claims using them.

5.3.7 Answering research subquestion B1 and B2

Following the previous discussion, we answer research subquestion B1 (Sec-
tion 3) like this. We have found evidence that depending on which dataset
was projected, users prefer viewpoints that are of higher quality according to
our metrics, when it concerns visual cluster separation. Therefore, depending
on the dataset the objective metrics are predictive of user perceived quality.
Supporting this statement, we have also observed that, for the projections
where we have found a stronger correlation between metric values and user
perceived quality, we see an increased benefit for users from the suggestions of
higher quality views by our guiding widgets.

A number of observations concern research subquestion B2 (Section 3).
Initially, we have seen in figure 21 and table 5 that users pick higher quality
viewpoints when the quality metrics are known to them. This is undoubtedly
an improvement, but it does not prove that users also perceived these view-
points to be of higher quality. However, it seems in figure 22 that users are
generally more inclined to prefer the 3D projection view over the 2D projec-
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tion in the guided set where users had access to the metric values. For some
datasets this correlation is stronger than others. This indicates that know-
ing the metric values can indeed help users find viewpoints of not only higher
metric quality but also better perceived quality. We therefore answer research
subquestion B2 as follows. Yes, knowing the metric values, users pick higher
quality viewpoints, that are more representative of the dataset and can there-
fore be considered as better, and depending on the dataset the user-perceived
quality of these views also increases.

Figure 22: Bar graph displaying the percentage of views of the 3D projection
where users specified a preference over the corresponding 2D projection, for
each projection pair in the evaluation, for both the blind and guided set of
viewpoints
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T C S N
Wine TSNE 0.104 0.037 0.258 0.302
Wine PCA 0.058 0.037 0.104 0.308
Concrete TSNE 0.556 0.341 0.321 0.186
Reuters AE 0.916 0.954 0.877 0.455
Reuters TSNE .411 .317 .557 .361
Software TSNE .945 .695 .93 .842

Table 6: P-values for an equal variance, one-tail t-test of whether the set of
views users preferred over the 2D projection have significantly higher metric
quality than the set of views users did not prefer over the 2D projection,
for each metric and each projection pair. Significant values (p < 0.05) are
displayed in bold.

5.3.8 Is 3D better than 2D?

An interesting observation in figure 22 is that, regardless of whether they
were guided or not, the users preferred most of their selected views of the 3D
projection over the 2D projection. About 60% averaged over all projections.
Thus, it is quite likely that a 3D projection contains single views that a user
prefers over the 2D projection of the same dataset. One reason of this occurring
might be that users don’t get a choice for the the 2D projection. There is just
a single, unalterable projection they simply have to accept, whereas for the
3D projection they can essentially search through thousands of 2D projections
until they find one that appeals to them. While, this is time consuming,
the result of a more preferable view could be an argument in favor of 3D
projections. After all, if a single view outperforms a 2D projection, then one
could argue that the combination of multiple such views of the 3D projection
can definitely outperform a 2D projection. Either way, we can now answer
research subquestion B3 (Section 3). It is likely that a user can find a view
they deem better than or at least equally good as the 2D projection. Naturally
it depends on the projection. For some projections, like the Wine dataset
projections, users reported significantly more often to prefer their chosen view
of the 3D projection, but for none of the projections is there a significant
preference for 2D. The worst we observe is a more or less 50/50 ratio, which
we can interpret as that users simply do not have a preference, and they picked
one at random. That means that overall, the selected views are at least as good
as 2D, and can be better. So in terms of user perceived quality, there is no
reason not to use a 3D projection.

On a side note, we should not disregard the possibility that users were
biased into reporting they preferred their selected view. They might have
been more inclined to say they prefer it over the 2D projection, since they
spent time and effort to find it. To test if this bias exists, we would need
a separate user experiment where unbiased users are asked to rate the views
picked by other users compared to the 2D projection. Which is a topic we
suggest for future work.

At the end of the evaluation, we asked users to rate, on a 7 point scale,
their agreement with the following statement: Considering the entire 3D pro-
jection, instead of just one viewpoint, the 3D projection better displays the data
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structure than the 2D projection. Every single participant responded with a
value on the positive side of the scale (4 or higher), with an average of 5.94.
Thus all users agreed that the 3D projection in its entirety has a better rep-
resentation of the structure than the 2D projection. All our measurements up
till now are focused on single views of 3D projections, since this allows for a
fairer comparison to 2D, but it does complicate the question of whether 3D is
better than 2D. The answers to this question indicate that, although we have
not found strong evidence that users prefer 3D views over 2D, they do believe
the 3D projection in its entirety shows more of the dataset structure.
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6 Discussion and conclusions
In this project we proposed a new, viewpoint-driven way of measuring and
analyzing the quality of 3D projections, hoping that it could give us better
insights in finding out if and why a 3D projection is better than a 2D projec-
tion. Traditionally, the quality of 3D projections is measured as how well the
structure of D is preserved in the 3D space, just like for 2D projections in the
2D space. We have argued that this is an unfair measurement, because a user
can not see in three dimensions, and the 3D projection is displayed on a 2D
screen anyway. We therefore proposed a new tool that instead measures the
quality of 3D projections as a function of the viewpoint, where each 3D pro-
jection view is evaluated as a 2D projection. Two different widgets allow users
to see in real-time what the quality of the current view of the 3D projection is.
Using this tool we performed a quantitative analysis of 30 projections created
using 6 datasets and 5 different projection techniques. It becomes clear that
the quality of a 3D projection depends significantly on the viewpoint it is ob-
served from. Our findings include that it is difficult to compare quality values
of different metrics or different projections, since the effective range of qual-
ity metrics depends strongly on the metric and projection. For example, all
continuity metric values were close to the maximum of 1, whereas for Shepard
diagram correlation the values are spread out much more over the 0-1 range.
We have shown that relative within its own signal range, changes in metric
values can be just as important as other metrics. A small change in continuity
likely has a stronger effect on the projection quality than the same change in
the Shepard correlation metric.

Using images of the histogram and sphere widgets of our tool, we searched
for patterns in how the view quality of 3D projections is distributed for different
projections. We observe that generally, most views of a 3D projections are of
relatively high quality, with a smaller number of views that have significantly
worse quality. This means that in general, it should not be hard for a user to
find one of the better viewpoints in terms of metric quality.

We have not found any patterns in the way that the quality of viewpoints
is distributed that are specific to any one dataset. Which indicates that the
quantitative findings of this work are likely generalizeable over all datasets.
We do observe patterns that appear specific to some projection techniques.
For example, the view quality distributions of UMAP projections are more
peaked, which means that, relative to projections by other techniques, their
outliers are significantly further away. The conclusion we can draw from this
is that the projection technique influences how easy it is for users to find a
viewpoint in the higher quality ranges, and how much worse it is if a user picks
a lower quality viewpoint.

With our measurement method, we can still not directly compare 3D versus
2D projections, so we can not objectively state when 3D or 2D is better for
specific projection techniques or datasets. But by looking at how the quality
of 3D projection views compares to the quality of the 2D projection, we are
able to give an intuition of which is better. We have seen that depending on
the projection technique and the metric, a significant portion of the views of
a 3D projection score better than the 2D projection. Therefore, one way to
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measure whether 3D or 2D is better could be to compute the percentage of
views of a 3D projection, that score better than the 2D projection. To further
refine this metric one could also measure the actual quality increase for these
better views.

In our user evaluation we found that generally users appear to have a
preference for views with above average metric values. We found that the
strength of this correlation appears to depend on the dataset, sometimes there
is no correlation at all. The guiding widgets of our proposed tool cause users
to select significantly higher quality views, which offer a better representation
of the dataset and also appear to be better, or at least as good in the eyes
of the user. For datasets that have a stronger correlation with metric quality
and user perceived quality, we notice that suggesting high quality views using
our tool is of more benefit to users than for datasets where we did not find a
such a correlation. Therefore,whether we can measure if a user will prefer one
projection over the other, and subsequently the effectiveness of a tool like ours,
seems to depend on the dataset. Since we only have a few datasets to base
these findings on, more research is required to validate them. An interesting
topic would be to investigate how the quality or complexity of datasets affects
the correlation of metric values with user perceived quality.

We do find that in most cases, users can find a view of the 3D projection
that they deem better than, or at least equally good as the 2D projection.
Which indicates that purely in terms of the user perceived quality, there is
no reason not to use a 3D projection. On top of that, all participants of our
user evaluation unanimously reported that they believe the 3D projection in
its entirety to better display the dataset structure than the 2D projection, a
strong argument in favor of using 3D projections.

Our research question stated in Section 3 was the following. Can we mea-
sure from a user perspective, for different projection techniques and datasets,
whether, and by how much, a 3D projection is better than a 2D projection?.
We answer it with the following summary. Our new way to measure and com-
pare the quality of 3D and 2D projections can in some sense give an objective
measure which of the two is better, and by how much, by looking at how the
quality of the views of the 3D projection compare to the quality of the 2D
projection. If a significant proportion of the views have higher quality values
than the 2D projection, then one could argue that it is better than the 2D
projection. A threshold for the proportion, could be defined for this. However,
the extent to which users prefer views with higher quality metric values, and
therefore the extent to which we can measure whether a user will prefer 3D or
2D, depends on the dataset. But overall, users can generally find a view of a
3D projection they like at least equally well as the 2D projection, arguably, a
3D projection in its entirety can then only be better. A statement supported
by the result that all users in our experiment believe the 3D projection in its
entirety to better represent the dataset structure than the 2D projection. Of
course, here we look purely in terms of quality and we do not take into account
that the 3D projection takes more time and interaction to explore.

There are many directions in which to continue or expand this line of
research. Naturally, one could be to set up a user evaluation with more partic-
ipants for more statistically relevant results, and instead of letting users rate
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their own found views, let them rate those of others to get rid of any bias. Ex-
periments could be done with different or more projection techniques, datasets
and metrics. We already mentioned the relevance of an investigation of how
dataset quality and complexity affects the correlation between user perceived
quality and metric values. Part of this investigation could be to define a metric
that is normalized by dataset complexity, so that metric values of projections
of different datasets can be compared more fairly. Further research could be
done on whether users prefer higher quality views in general by, for example,
letting them repeatedly choose which of two random views they prefer, and
observe how often they pick the higher quality views. We also have not in-
vestigated how much 3D or 2D preference depends on the users. Likely there
are some users that are more inclined to prefer either of the two. It would
be interesting to see how many users always prefer 3D, how many always pre-
fer 2D and how many choose differently each time, over different projections.
Furthermore, users could be given a different task than rating visual cluster
separation. Lastly, it would be interesting to gauge the effect of techniques
like the Da Silva explanations [10] or Enhanced Biplots [9] on how users pick
good viewpoints.
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7 Appendix
7.1 User evaluation
Here we display the instructions given to all participants of our user exper-
iment. We skip the parts on downloading, running the tool and uploading
evaluation data.

7.1.1 Introduction

Dimensionality reduction is a popular data visualization technique that projects
high-dimensional data to a low-dimensional space (2D or 3D) while preserv-
ing distance and/or neighborhood relations between points. The projected
dataset can then be visualized in a 2D or 3D scatterplot. In this evaluation
we compare 2D projections versus 3D projections of the same dataset from a
user perspective.

For this purpose we created a tool and set up this user evaluation. We will
next explain how to download the tool and get it running

If you encounter any problems, or have any questions during the survey you
can contact me here: w.m.castelein@students.uu.nl

7.1.2 How to get the program running

Once running, the tool should look like the image in figure 23. In the next
section we will explain what you see, and how the tool can be used.

Figure 23:
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7.1.3 Projection widgets

The top left widget, marked with a red A in the image in figure 24, contains
a scatterplot of the 3D projection of a high dimensional dataset. Each point
is color-coded based on a class label. The colors and labels are displayed in a
legend in the top right. In our datasets, the classes can be either categorical
or ordinal. Categorical classes are denoted with letters from the alphabet,
and have very distinct colors. Ordinal classes are denoted with numbers and
smooth color transition between nearby classes. For this survey, it only mat-
ters that different classes exist, not what these classes are specifically. The
projection can be rotated by holding and dragging the mouse. To give a feel-
ing depth, closer points are colored slightly darker and further points slightly
brighter.

The top right widget, marked with a red B in the image below, contains a
scatterplot of a 2D projection of the same high dimensional dataset. These
points are color-coded exactly the same as the 3D projection.

Figure 24:

7.1.4 Quality metrics

Before we look at the two bottom widgets, we need to give an intuitive expla-
nation of four different quality metrics for projections. These metrics capture
how well structure from the original dataset is preserved in the projection.
Each quality metric has a value ranging between 0 and 1. Where 0 is the
worst quality, and 1 the best.

The metrics Normalized stress and Shepard diagram correlation relate to how
well a projection preserves distances between data points.

The other two metrics are called Continuity and Trustworthiness. These met-
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rics relate to how well a projection keeps similar data points close to each other
in the projection

7.1.5 The quality sphere widget

The quality metrics we just mentioned are used in the bottom two widgets.
The bottom left widget contains a colored sphere. As with the 3D projection,
you can rotate this sphere. You will notice that the view of the sphere and the
3D projection are linked, moving one also moves the other. This is because the
sphere shows the quality of the current view of the 3D projection, as measured
by one of the previously described quality metrics.

Look at the image in figure 25 while reading what is explained next. The
color under the crosshair in the center of the sphere shows the quality of the
current viewpoint. Therefore, if we rotate the sphere such that the crosshair
targets a green area, we know that the current view of the 3D projection is
of high quality according to the selected quality metric. Likewise, a red area
indicates a poor score.

The colored bar on the right of the sphere serves as a legend that displays
the full range of colors from best (quality 1) to worst (quality 0). In this bar
a black line indicates the quality of the current viewpoint. Two white lines
indicate the minimum and maximum quality values observed over the entire
sphere for the current metric.

It is only possible to look at one metric at a time. To change the metric
shown by the sphere, click on the name (label) of the metric you want to show
in the Quality histogram widget to the right of the Sphere widget.

Figure 25:
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7.1.6 Histogram widget

The bottom right widget contains one histogram for each of the four different
quality metrics. The histograms show the quality distribution of 1000 different
views of the 3D projection. Each bar is placed on a quality value interval, the
height of the bar indicates how many views exist that have a quality within
this interval. The name of a metric is shown in the title above its histogram.
Next to that, we show the metric value for the currently selected view of the
3D projection.

Each histogram contains a slightly darker bar. This is the interval in which
the quality of the current view of the 3D projection falls. Rotate the 3D view
to see how this bar changes.

Figure 26:

7.1.7 Histogram hovering

You can hover the mouse pointer over a histogram bar to do several things.
First, the 3D projection and colored sphere rotate to a view that has a quality
value within the hovered bar. Hovering at the bottom of the bar will select a
viewpoint with quality on the lower end of the bar’s interval. Hovering at the
top of the bar will select a viewpoint with quality on the higher end of the bar’s
interval. For example: to find a view with highest overall quality for a met-
ric, move the pointer to the top of the rightmost bar of that metric’s histogram.

A number of polylines are drawn from the hovered bar to the other histograms,
forming a parallel coordinates plot (PCP). Each polyline corresponds to one
viewpoint contained in the hovered bar. The polyline shows all quality metric
values of that viewpoint by going through the axes of each metric. A thicker,
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and more opaque line highlights the currently hovered viewpoint. The PCP
plot shows, for the hovered quality interval (bar) of a metric, how quality is
spread for the other three metrics.

For example, the PCP plot in the image below shows that all views with a
normalized stress value around 0.35 (red selected bar) have very different val-
ues for Shepard correlation (green bars), quite similar values for Continuity
(orange bars), and quite different values for Trustworthiness (blue bars). To
test if you understand the hovering tools, try to use it to find a viewpoint that
has high quality for multiple metrics.

Figure 27:

7.1.8 Survey

The tool starts off with projections of an example dataset. This allows you to
familiarize yourself with the tool before beginning the survey. Make sure the
tool is in fullscreen view, if it isn’t already so you can see more detail. Try
to understand each of the widgets and how they can be used. When you are
ready press the ‘begin survey’ button in the top left menu. (figure 28)

Figure 28:

This will load a new set of projections, and the bottom two widgets disap-
pear for now.

The menu now looks like this: (figure 29)
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Figure 29:

We now ask you to repeatedly take the following steps:

Find a viewpoint in the 3D projection that best displays, accord-
ing to you, visually well-separated point groups, that have similar
colors internally.

Once you have found such a viewpoint, press the button ‘Select view’ in the
top left menu. This will freeze the tool. (It is no longer possible to change
the view). Two buttons have appeared with the texts ‘3D preference’ and ‘2D
preference’. (32)

Figure 30:

Now look at the 3D projection (from the current view) and 2D projection
and select the one which you think has clearer point-group and color separa-
tion. To do this, click one of the buttons shown above (3D preference or 2D
preference)

Once you have done this it is possible to select a second viewpoint as long
as it is not too close to a previously selected viewpoint. Repeat the previous
steps until you have selected three different viewpoints, then press the ‘next
projection’ button. Repeat these steps for three different projections, until the
two bottom widgets reappear.

We now ask you to repeat the previous steps, but this time you can use the
sphere and histogram widget to help finding good view points. Remember
that the quality metrics do not directly measure visual group separation and
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similar internal coloring, but only preservation of the original dataset struc-
ture. Therefore you should see the tool as a recommender system for good
viewpoints, but ultimately use your own judgement to pick a viewpoint.

Once you are finished, the program will close automatically.
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7.2 Snapshots of user selected views

Figure 31: Arbitrarily chosen snapshots of the views selected by users in the
user evaluation, for both the guided set and the blind set. A distinction is
made between views where users preferred the 2D projection (2D preference)
and the view of the 3D projection (3D preference). Per dataset/projection
pair, we show 2 snapshots of each category
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Figure 32: Arbitrarily chosen snapshots of the views selected by users in the
user evaluation, for both the guided set and the blind set. A distinction is
made between views where users preferred the 2D projection (2D preference)
and the view of the 3D projection (3D preference). Per dataset/projection
pair, we show 2 snapshots of each group
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