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A B S T R A C T

There are many large scale infrastructures in our modern day society, such
as gas transmission system, water supply networks and electrical grids. The
behaviour of these kinds of networks can be described using simulations
or sensors, using which huge datasets are created. Generally, we can refer
to these types of datasets as large temporal geospatial multivariate graphs.
The analysis of these datasets is important, since it can lead to new know-
ledge, for example by allowing researchers to get a better understanding of
algorithms they are developing, or system monitors to detect problem areas.
Analysing such datasets is however a challenging problem, due to their sheer
size, as these datasets contain many attributes, describe large time ranges,
and large spatial areas. In particular in a web-based environment where
processing power, storage and bandwidth are limited, additional challenges
are introduced.

This work proposes an analysis environment where these types of datasets
can be explored and analysed by using a set of linked visualisations. Each
of the visualisations specialises in an aspect of the data, allowing them to
complement each other. To serve the datasets to a web environment an
aggregation and storage scheme is constructed, which attempts to give a
good balance between enough detail and low bandwidth requirements. This
functionality is added to an existing universal analysis framework. The
result is a general purpose analysis platform for large temporal geospatial
multivariate graphs.

The implemented visualisations allow users to analyse aspects of their
datasets which could previously not be viewed using their tools. In particular
with respect to the analysis of temporal data significant improvements have
been made. The solution combines a map based visualisation with an
evolution spectrograph visualisation, which is a type of visualisation that to
our knowledge has never before been used to display these types of graphs.
Together these visualisation give the user the option to easily relate data
back to the real world and view the structure of the network, while also
offering a detailed view of the temporal behaviours in the data. The solution
follows Shneiderman’s mantra by giving a high level overview of the data,
and allowing the user to zoom and filter the data, and view details as desired.
We show such an analysis tool offers new non-trivial insights in the temporal
aspect of these types of datasets.
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1
I N T R O D U C T I O N

Many infrastructures can be described as large scale temporal geospatial mul-
tivariate graphs. Gas transmission systems, water supply networks, electricity
grids, road systems and computer networks; these are just a few examples
of large scale networks that can be considered as graphs: a set of objects
such as homes, intersections or generators, connected by cables, pipes or
roads. In other words, nodes and edges of a graph, with locations in the
real world. But such a graph only describes the structure of the network,
these types of networks are not simple static objects. Pressures vary, voltages
change, traffic speeds fluctuate, and each of these attributes can be measured
by using sensors, or generated by simulations, over periods of time. A graph
with these properties, it having attributes which are temporal in nature, its
nodes and edges relating to real world locations, and each element of the
graph being described by multiple attributes, is called a temporal geospatial
multivariate graph.

These graphs are interesting to analyse, since the types of networks they
describe, such as the examples listed above, are immense in size and play
an important role in our day to day lives. Because of this it is important to
observe the behaviour of these types of networks, so that they can be better
understood, and potential problems can be detected early on. Some questions
about these datasets can be easily answered, such as when and where in
time and space a safety limit is exceeded, or what is the total consumption
over some period of time. These questions have straightforward answers
which can be computed. Other questions are however harder to answer, such
as whether there are temporal periods which show similar patterns, or how
a network reacts to a local event, or which parts of a network need to be
upgraded. Answers to these type of questions can not be easily computed.

That is why this thesis proposes to create an interactive visualisation
platform for these kind of graphs. By visualising the data and interacting
with it, users can explore the data. This way they can search for interesting
data, and zoom in onto details, while refining their search queries. Exploring
these types datasets is however a challenging problem [1, 2]. Due to the
large scale of these graphs, sometimes covering entire nations or even the
entire world, with large amounts of attributes of which many are temporal
in nature, there is simply a huge amount of data to analyse. One can not
easily gain insights in these large volumes of data by looking at the raw
measurements.

Netherlands Organisation for Applied Scientific Research (TNO), is a
non-profit research institute in the Netherlands that performs and applies
research for government bodies and public organizations. They often en-
counters these types of networks in their projects. They develop simulations
of these kind of networks, as well as partake in projects involving large
sensor networks. An example of a recent project is that of the placement of
building sensors which monitor the effects of earth quakes on the property
of home owners [3]. Such sensor networks generate huge amounts of data,
reporting many measurements throughout the day. These kind of datasets
become more common as sensors, as well as mass storage of data becomes
cheaper. TNO is interested in finding a generic analysis solution for such
networks, which allows them to investigate the data effectively and give
insights in patterns in the data, allowing decisions to be made. Genericity
is an important aspect here, to allow the solution to be reused with future
projects.
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In the next sections first the biggest challenges in creating a analysis
solution for graphs will be discussed, and the scope of this work will be
outlined. Additionally a concrete problem statement will be formulated.

1.1 problem overview

To analyse these datasets, a set of visualisation solutions will be used. Using
these visualisations users will be able to explore their datasets, and view the
different aspects of the data, such as spatial locations, or temporal behaviours.
This solution will be created by extending an existing web visualisation
framework currently developed by TNO, called CommonSense [4]. The use
of this framework was set as a requirement by TNO. The details of this
framework will be discussed in Chapter 5. The use of this framework
does have an impact on some decisions. With regards to visualisation, this
framework is currently focused primarily on displaying spatial information.
The spatial view it offers for this purpose is good for understanding the
structure of the datasets, and the connection to real world locations. These
geospatial temporal multivariate graphs however have more aspects than just
the geospatial aspect, as they are also temporal and multivariate. Because of
this the visualisation solutions discussed in this work will focus primarily
on explaining these other aspects of the data, in a way that cooperates with
any existing functionality of the CommonSense framework.

Using a web application such as CommonSense as a visualisation plat-
form introduces some additional challenges. Compared to a native desktop
application, less computational power is available, and data storage is limited.
Practically all used data will have to reside in memory. Considering the
vast size of these datasets, and the limited storage available on the client, all
data will never be available locally on the system used for analysis, since
there is simply too much of it. Data will have to fetched from a remote
server as needed, and only the data that is relevant to the current viewing
parameters chosen by the user should be retrieved. To gain an overview of
the entire dataset, the dataset will have to be simplified strongly, and only
when viewing a small subset of the data can it be retrieved and shown in
full detail. Because of this data transformations will be required before the
data can be visualised.

The process of transforming raw data into information consists of a
number of components. This process can be described as a pipeline, where
data is transformed and send between the different parts that make up the
pipeline. A high level representation of the pipeline used in this work is
shown in Figure 1. The pipeline start with raw data coming into the system.
The origin could be anything, such as simulations, or real world sensors.
This raw data needs to be collected and stored somewhere so that it can be

Figure 1: High level representation of visualisation pipeline.
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processed. This processing step takes care of unifying different data formats
into a single standard. At this stage the data must also be structured and
simplified, so that a web client can easily request data subsets and aggregates.
This processed data can then be requested by the user its web browser, where
the data is visualised so that the user can interpret and analyse the data.
Finally the user can interact with the web browser to further explore the data,
updating the visualisation accordingly.

Not all stages of this pipeline will be discussed equally intensively in this
work, as we primarily focuses on the later stages in this pipeline. A data
source is assumed to exists, which can generate appropriate data, and the
output of which is stored in some kind of database. In this work, appropriate
visualisation techniques will be discussed first. Analysis is the main goal of
this work, and the visualisations used strongly impact the ability of users to
successfully perform this analysis. The chosen visualisations guide decisions
in the other stages of the pipeline. Strongly related to the visualisations is the
user interaction. User interaction is important to allow the user to explore
the dataset, so that they can look in more detail at interesting subsets of the
data. This is particularly important with a dataset this large, since subset
selection will be required to be able to gain a detailed view of the data, as it
is impossible to visualise all the data at once at higher detail levels. After
deciding on visualisation solutions, the problem of transforming the data
in a way that it can be effectively consumed by the web application will be
discussed. Due to the size of the datasets considered in this thesis, finding a
solution to this problem is very important for the success of this research.

1.2 problem statement

By analysing aspects of large scale geospatial temporal multivariate graphs
which represent important infrastructures, humans can get a deeper under-
standing of any patterns, trends, oddities or problems in the behaviour of
these large scale networks. This analysis requires visualisation, however
visualising such large graph datasets is a challenging problem. The solution
must be scalable, coping with the detail level of households but also the detail
level of a country. The solution must allow the identification of problem
areas, both problems that appear at specific points in time, as well as those
that only appear when analysing a period of time. Finally, it must be generic
and reusable for other similar datasets, and web compatible.

All these previous requirements leads to the following main research
question: “How can a large scale geospatial temporal multivariate graph
be visualised, allowing interesting behaviours and pattern to be analysed,
in a real time, interactive and generic way in a web based environment?”

To be able to answer the research question, it is split up into multiple sub
questions:

Q1 What visualisation techniques are suitable for visualising large scale
geospatial temporal multivariate graphs?

Q2 How can large scale geospatial temporal multivariate graph datasets
be processed and stored to allow the data to be retrieved effectively in
a web application?

Q3 How can the proposed solutions for data processing and visualisation
be implemented in a web application?

Q4 Do the used visualisation techniques allow data oriented questions to
be answered effectively in an interactive way?

1.3 structure

This thesis is structured as follows. Chapter 2 will attempt to answer Q1,
by investigating visualisation requirements and discussing existing solu-

15



tions. Based on that, a visualisation solution is proposed in Chapter 3. Next,
Chapter 4 will discuss the data problem outlined by Q2. It will discuss
the advantages and disadvantages of different solutions for aggregating,
storing and serving large geospatial temporal multivariate graphs. After this
Chapter 5 will discuss the details of the existing web visualisation frame-
work CommonSense mentioned earlier, and how the solutions proposed in
Chapter 3 and Chapter 4 can be integrated into it. This will answer Q3. Q4

will be answered next, in Chapter 6. Two different datasets will be analysed
in this section, to show how non-trivial insights can be achieved using the
tool created in this thesis. Chapter 7 summarises this work and will answer
the main research question. This chapter is concluded by outlining some
potential improvements and additions that could be investigated in future
work.
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2
T E M P O R A L G E O S PAT I A L M U LT I VA R I AT E G R A P H
V I S U A L I S AT I O N

In this chapter visualisation techniques appropriate for geospatial temporal
multivariate graph data are discussed. To help determine which solutions
are most appropriate, first some requirements are discussed in Section 2.1,
using an example use case. Afterwards a selection of existing visualisation
techniques is described and compared in Section 2.2, listing their advantages
and disadvantages.

2.1 requirement analysis

The data of interest in this project is structured as a graph, with its nodes
and edges having attributes that vary over time. In this project the structure
of this graph is assumed to be constant, where only the attributes changes.
Visualising this kind of data is challenging [1, 2], since there is a huge amount
of information related to a single object, a point or line, in the dataset. In this
work we often refer to these objects as features, by which we mean any object
that has a spatial location, this can be a point or a line, but also a polygon,
including any properties or attributes that belong to that object, temporal
or not. This is a typical definition of features in Geographic Information
System (GIS) systems [5]. When displaying these features spatially, which
is the only possibility in the current visualisation framework, visualising
such a large amount of data on a single point is essentially impossible. At
least not in a way a human could easily relate it back to the original data.
Using a small area around each feature helps, although this can easily cause
features to overlap, causing some features to be occluded. The exact location
of the feature also has meaning, which can be harder to read when the drawn
feature occupies more screen space than it actually relates to.

To clarify the problem even further, assume a technique exists that could
visualise a single value on each pixel of a screen. With colour mapping
this is a reasonable assumption. The datasets considered in this work can,
worst case, be on the level of countries. In the case of the Netherlands,
such a graph would have a number of nodes in the order of millions, or 106.
Assuming just a single attribute for each node, and ignoring the structure and
edges of a graph, 106 pixels are required for displaying this data. The most
commonly used screen resolution as of writing is 1366x768 [6], which has
only approximate 106 pixels, which would be roughly enough to visualise
all this data simultaneously. This is however just the nodes without their
connections, with just a single attribute, at a single time step. For the entire
dataset, at this resolution, a single pixel would essentially have to display
all the temporal data of all attributes of a single node in the graph, while
somehow also showing the structure. Some datasets can have in the order
of 105 time steps. Even the second most commonly used screen resolution,
1920x1080, has only approximately twice the number of pixels. Clearly, with
current technology it is impossible to view all this data simultaneously at its
highest level of detail. This thesis attempts to circumvent this problem by
allowing the user to explore the data at a high level, with strong aggregation.
Once a time period or sub-graph has been identified that exhibits interesting
behaviour, more detailed information will be shown.

To help guide design decisions during this research, a specific data source
was considered as a use case for the developed solution. In particular for
the choice of visualisation techniques this is important, since the usefulness
of a visualisation technique depends on the questions that one wishes to
answer. Different techniques are used for viewing geospatial infrastructure
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than those used for detecting correlations between attributes. Other tech-
niques are orientated towards the temporal aspect of data, allowing one to
see patterns over time. No single visualisation technique exists that is able to
clearly display all these aspects of a geospatial temporal multivariate graph
dataset all by itself. Implementing many different visualisation techniques
is unfortunately unrealistic however, given the time constraints of this pro-
ject. Because of this the ValueFlex project will be discussed in this section.
ValueFlex is another project of TNO. It provides an example use case for the
analysis solution proposed in this work. The ValueFlex project is the primary
use case for this solution. Based on the needs of this project, appropriate
visualisation techniques are chosen. To provide context for this project, the
concept of smart grids will be discussed first. While the chosen visualisation
techniques are selected specifically to display the data of the ValueFlex pro-
ject, Chapter 6 will show the solutions discussed in this work can be applied
successfully to two other projects. Even when a new visualisation technique
is required for a future project, the data transformation solutions discussed
in this work should allow new visualisation to be added relatively easily.

2.1.1 Smart grid

Power consumption and private production has increased significantly in
recent years [7], which puts more stress on the ageing electrical grid. More
power than ever is being put back into the grid by prosumers owning devices
such as solar panels and micro-CHPs, and, at the same time, higher peak
consumptions occur. This is due to synchronous high peak demands from
for example many electrical cars being charged simultaneously at the end
of the day. The current electrical grid was not designed with these use
cases in mind. With this increase in popularity of devices such as solar
panels and electrical cars, the limits of components of electrical grids are
being reached, overloading parts of these grids [8]. Since the demand on
electrical grids is expected to only increase further [7], solutions for these
problems are actively being researched. One solution would be to perform
grid reinforcement, which involves replacing part of the electrical grid to
satisfy the growing need for power, but there is an alternative. By modifying
the grid such that peak loads can be distributed over a longer period of
time, and dynamically increasing consumption to mitigate overproduction of
energy, the current network can still be sufficient for our needs for the time
being. Such an electrical grid that allows for this dynamic management of
supply and demand of power is called a smart power grid.

A smart power grid, commonly referred to as a smart grid, is a power
grid with advanced sensor and control capabilities, and integrated com-
munications. This additional functionality provides opportunities for the
supply and demand of power within a smart grid to be actively managed
to maintain balance and avoid overloading the network. This balancing is
done by managing so called smart devices within this network. These smart
devices have flexibility, which means for example that they can be instructed
to use more or less power on demand, or postpone their work to a later point
in time. Consider for example an electric car. For most people the car simply
needs to be fully charged again in the morning the next day, ready for use.
The owner does not care whether the car is charged immediately when he
comes home, or in the middle of the night, as long as it is fully charged
the next morning. There is flexibility in the exact time frame in which the
car is charged. Another example is a large cooled storage. Such a storage
has a range in which the temperature must remain. When there is a power
surplus this storage could be cooled a bit more than usual. At a later time the
cooling system could be turned lower, during which less power will be used,
allowing the temperature to increase again. There are many more of these
smart devices with flexibility available, such as micro-CHP’s, heat pumps
and generators, but four types of devices are generally recognised [9].
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• Uncontrollable. Devices that have no flexibility, but their production or
consumption is measurable. The operation can potentially be predicted.
Examples are solar panels, wind turbines, TV and indoor lighting.

• Time shiftable. Operation can be shifted in time, but has to be com-
pleted within a given time range. Examples are a washing machine, a
dishwasher and an electric car.

• Buffer/storage. Flexibility in either the production or consumption,
however the flexibility is bounded by a buffer. Examples are a freezer,
a heat pump and a micro-CHP.

• Unconstrained. Devices that can be used completely on-demand, and
are not limited by a buffer. Examples are generators.

By having a large system of such smart devices, power shortages and sur-
pluses can be mitigated.

2.1.2 ValueFlex

To help get an idea of the actual benefits of using a smart grid and the
consequences of using these smart grid solutions, the ValueFlex simulation
framework was created. This framework is being developed by TNO. The
ValueFlex project has spawned from their PowerMatcher [9] project, a smart
grid management solution. ValueFlex simulates the electrical market, the
power flow of the electrical network, the demand response system, and the
production and consumption of power, making extensive use of models.
Each of the components of the simulation generate output data. One of its
outputs is the state of the electrical grid during the course of the simulation.
This output can be analysed to detect electrical problems in the power grid.
ValueFlex is able to simulate large scale electrical grids, over varying time
periods ranging from just a few days to multiple years or potentially even a
decade. The output from this power flow analysis is essentially structured as
a graph, where nodes represent for example substations or generators, and
edges represents cables. Each of these components have attributes describing
their state. Some instances of these attributes are the voltage, amperage,
active or reactive power, resistance and phase angle. Each of these attributes
are recomputed for every time step in the simulation. This results in a
multivariate temporal graph dataset. Due to the size and complexity of such
a dataset, some kind of visualisation, or a set of visualisations is required to
analyse it effectively.

An electrical grid can be seen as an geospatial temporal multivariate
graph. In ValueFlex, the network is described in terms of generators, buses
and branches. The nodes of the graph are the generators and buses of the
network, and the branches between them are the edges. These objects have a
physical location, and multiple attributes which change over time, making it
a geospatial temporal multivariate graph. As such a electrical grid is a good
example of the kind of datasets considered in this work.

There are three types of analysis that are desirable to analyse this type of
data:

• Value oriented analysis

• Time oriented analysis

• Comparison oriented analysis

value oriented analysis First of all, it is interesting to analyse the
performance of the grid by searching for behaviour purely based on spe-
cific attribute values. For example a user might be interested in knowing
how their network behaves on a very sunny day, or when all families in a
neighbourhood use electric cars. In these cases it is important to see how
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the grid performs compared to its safe limits. Many of the problems one
might encounter in an electrical grid are discussed by Dugan et al. [10]. As
discussed previously, one kind of problem can be the network being over-
loaded by too much simultaneous demand of power. This can for example
be indicated by power levels crossing an upper limit on components in the
grid. Other problems can also occur, such as a deviating voltage levels. Most
European countries use a voltage of 230V, but allow for a deviation of 10%
in either direction. If the voltage deviates too far from the standard value,
this is a potential power quality problem. It may cause electrical devices
to malfunction or even be damaged. Because of this it is important for the
voltage to stay within safe margins. The voltage may become lower, also
known as a voltage sag [11], as a result of a sudden increase in the load. The
opposite can also occur, a voltage swell, where the voltage actually increases
past the normal value. This can occur in the reversed scenario, where a large
load is suddenly disconnected. Because of these problems, being able to view
where and when specific values occur, in particular extremes and values
relative to safe limits, is desirable functionality.

time oriented analysis Other problems can be detected by analysing
time ranges. Constant fluctuations in the voltage can be problematic. They
can cause temperature changes that deteriorate cables, even when the fluc-
tuations themselves remain within safe margins. Eventually this can lead
to failures. Commonly this kind of problem can be observed by humans by
flickering lights, and its most common causes is arc furnaces [10]. To detect
these problems in the output of ValueFlex, one would have to look at the
behaviour of components of the grid over time, as opposed to looking at
single values as needed to find the problems discussed above.

comparison oriented analysis Finally another interesting type of
analysis is that of comparing the effectiveness of using a demand response
solution versus the same network without the demand response solution
in place. This is of interest to distribution network operators who need to
decide whether to invest in this technology on the grid they manage, or to
employ grid reinforcement. To help decide it is useful to be able to see which
parts of the network are affected, and how these parts are impacted by such
a change. For example, it would be interesting to see if a part of the grid
which is showing problems in a specific scenario, copes better in that same
scenario with a load balancing solution in place. To do this type of analysis a
solution is required which allows multiple simulation runs to be compared.

2.2 existing solutions

Many different visualisation solution already exist. In this section some
interesting visualisation techniques, which could be applied to the geospatial
temporal multivariate graph datasets, are discussed. These visualisations
primarily focus on dealing with the temporal aspect of the data, as the spatial
and relational aspect is largely dealt with by the existing interactive map in
the existing framework. Unfortunately no single ultimate visualisation exists
that is able to answer all questions a user might have about the data, each
visualisation technique has its strengths, but also its weaknesses. Each of
the visualisation shall be compared by their ability to deal with the three
following challenges:

data size The datasets considered in this work are large in size. Not only
does it consists of many features, but each of the these features has multiple
attributes, which are also recorded at many different time points. For a
visualisation to be useful, it should be able to deal with large multivariate
datasets.
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data heterogeneity The attributes of these features are also of different
types. The features have spatial attributes, such as the geographical position,
but also categorical attributes. For example, a pipe in a gas network can
be suited for low, medium or high pressure. Others are temporal in nature,
or describe a relation, i.e. connection, between features. When aggregating
features, it is hard to aggregate all these different types of attributes. Most
visualisation techniques avoid this problem by only focusing on one type of
attributes.

interactive exploration As discussed before, this work focuses on
the questions of users that can not be easily computed into a single number,
but that require exploration to answer. This means the visualisations need
to allow interaction, so that the user can search for the unknown such as
outliers, correlations and verifying hypotheses.

For each of the visualisation techniques mentioned below these challenges
are discussed.

2.2.1 Temporal graph visualisation

Solutions do exist for the visualisation of temporal graph datasets. Such
graph visualisation techniques can be divided into two groups, those that
utilize unfolding, and those that utilize animation [12]. In the former case,
the time axis is unfolded along a spatial axis, as is shown in Figure 2, a
solution presented in the work of Erten et al.. This particular example
attempts to display the time dimension of the data by rendering in 3D. In
this visualisation each time step is visualised as a separate graph, and each
of these graphs are stacked on top of each other. Corresponding nodes
in the different layers are connected by edges. Essentially a 3D graph is
created by connecting each of the graphs from each timestep into one larger
graph. Unfortunately, this method does not scale well to large graphs or
large periods of time.

While it would be possible to display temporal geospatial multivariate
graphs datasets with this technique, due to the large data size there would be
large amounts of occlusion, making it impossible to gain an overview of the
data. As it gives no clear overview exploring the data will be very hard, as a
user would have to zoom in to be able to see anything at all. The number
of attributes that can be displayed using this technique is also limited. In
Figure 2 only the size of the nodes is used to indicate the magnitude of an
attribute. Although an additional attribute could be displayed using the
colour of the nodes, this still only allows for two different attributes.

Animation, another commonly used visualisation technique, is currently
being used in CommonSense. Unlike the technique described above, anim-
ation scales incredibly well with large time ranges. However, to be able to
perform the time oriented analysis described previously a user would have
to memorize temporal patterns in order to compare different parts of the
animation. As time ranges are large and detailed in the datasets considered
in this thesis, this ask the user to remember a large amount of information.
This makes solutions that rely on animation less suitable for the purposes of
this work.

2.2.2 Table lenses

Another visualisation technique is table lenses [14, 15, 16, 17]. A table lens
visualises data as if it were a single large table, where each row consists
of a single observation, and each column contains an attribute of these
observations. An observation in this case could be a single node in a graph.
When viewing the table while zoomed in, the table contains the actual values
of these attributes as regular numbers. However, when zoomed out, instead
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Figure 2: Example of a temporal graph visualisation. A graph of each time
step is stacked on top of each other, resulting in a 3D graph. The separate
layers are shown on the right. Source: Erten et al. “Exploring the computing
literature using temporal graph visualization” [13]

of displaying the actual attribute as a number in this table, the attributes
are displayed in the form of bar, scaled according to the magnitude of the
value. This way this solution offers a high level overview, while also offering
the ability to look at details. An example of this technique is shown in
Figure 3 from the work of Telea. This technique is useful for finding those
observations where attributes take on interesting values. For example, it
could be used to find the nodes in the electrical grid where the voltage is
too low, by sorting the column corresponding to the voltage attribute. As
can be seen in the figure, it is only possible to visualise a limited number of
columns, or attributes, since screen space is limited. The user could be given
the ability to choose attributes of interest to solve this, since not all attributes
are necessarily interesting to visualise at the same time.

This technique, when preserving a one-to-one mapping, is however
limited by the number of rows available in the table, which is determined
by the number of vertical pixels available on the users screen. If more
table rows than there are pixel rows must be shown, multiple rows have
to be aggregated into a single row of pixels. This aggregation could be
something simple such as the average or maximum value, but this might
suppress interesting outliers. As such a more advanced technique could be
used instead that highlights relevant details. For example, Holten et al. [18]
describe an approach that weighs rows based on how frequently they appear
in their local neighbourhood. By using such aggregation techniques to render
multiple rows on a single pixel row, table lenses can potentially scale to a very
large number of rows. Once an interesting set of rows has been identified,
the user can zoom in to view the raw data. This way this visualisation is
able to cope with the large data sizes presented in this work, and allow for
effective exploration. It however achieves this at the cost of only focusing on
some type of attributes, ignoring for example relations present in the graph.

Temporal multivariate graphs can be mapped onto this table lens visual-
isation in a number of ways. Each row could represent a single node or edge,
where each column contains an attribute of the feature, aggregated over the
entire time range. This potentially allows interesting features to be detected,
as extreme values in attributes can be detected by sorting on columns. The
downside of this approach is that all temporal information is lost, removing
any details such as spikes from the data. Since the goal is to analyse the
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Figure 3: Example of a table view enhanced using the table lens technique,
zooming from the level of text (top left), to an overview of the whole table
(bottom right). Source: Telea “Combining Extended Table Lens and Treemap
Techniques for Visualizing Tabular Data” [17]

temporal data, as this is currently hard to do with the interactive map offered
by the existing framework, effectively throwing away the temporal data is
not a good solution.

A different way to map this data would be to have a column which
contains, for each row, the timestamp at which the data of the row was
recorded. A similar approach is used in Figure 3, although in this case the
date and the time are separated into two columns, and each combination of
a date and a time is unique to one row. Timestamps would not be unique in
a temporal multivariate graph, since the entire graph is defined at each time
stamp. When each feature of a graph is mapped to a separate row, multiple
rows with the same timestamp would exist. Assuming stable sorting, by
having a column with timestamps, a user could sort the rows on the features
they originate from, grouping all rows that belong to a single feature, and
do a second sort on time. This would then show how each feature behaves
over time for each of the attributes. As discussed before, a graph could have
106 features, with 105 timesteps. This will mean there will be in the order of
1011 rows. To gain an overview of this data, the user would have to zoom
out very far. However, at this point there would be many more rows than
there a pixel rows available. In fact there would be so many rows, that after
aggregating them, all rows belonging to a single feature would be mapped to
the same row in the table lens. The result is that the same image is acquired
using this mapping as was achieved using the previous mapping. The only
difference is that when zooming in, the user is able to view the temporal
behaviour of a limited number of features.

23



Another mapping would be to map a timestamp to a row, as opposed to a
feature. Each row would then present an aggregate of the entire graph at that
point in time. This essentially gives a set of vertical graphs of the aggregated
attributes of the entire graph over time, with each column containing one
graph. The same could be accomplished with the previous mapping, by
sorting on time and zooming out till all rows representing data of the same
timestamp is aggregated into a single line. This visualisation allow the user
to see where in time interesting behaviour occurs, at the level of the entire
graph. For example, if a large portion of the electrical grid suffers from a
large demand of power, this will show up in the visualisation. Small details
in the attributes in the graph are however lost, and a localised problem in an
infrastructure might be lost in this visualisation.

2.2.3 Parallel coordinates

A different approach, which focuses on correlations, is parallel coordin-
ates [19, 20, 21]. In this approach, a vertical line is drawn for each attribute
to be analysed. Next, for each observation a point is plotted on each of
these vertical lines, creating one-dimensional plots on each line. Finally, per
observation, all points are connected by a polyline. The result is one such
line for each observation in the dataset. An example of this, as created by
Robert Kosara, is shown in Figure 4. The main strength of this approach is
the ability to find correlations between attributes. Where two neighbouring
attributes are strongly correlated, many parallel lines will appear, as shown
between the 3rd and 4th vertical line in Figure 4. When they are inversely
correlated, the lines will form a cross, as happens between the first two and
the last two vertical lines in the example figure. Uncorrelated attributes
will result in the lines appearing to orientate randomly, filling up the area
between the two vertical lines.

Figure 4: Example of a parallel coordinates plot, showing the correla-
tions between different attributes of cars. Source: Robert Kosara, https:

//eagereyes.org/techniques/parallel-coordinates

Parallel coordinates however do not easily incorporate the time aspect
present in the data without aggregating over a dimension. A similar approach
as suggested for the temporal problem with table lenses can be used, where
instead of visualising individual components of the electrical grid, a single
timestep is aggregated over the entire graph to become a single observation.
Then one line in parallel coordinates can be a single timestep. Additionally
these lines could be coloured to indicate their age, allowing older and newer
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observations to be distinguished, although this may become a bit chaotic
when viewing a very large time range with many timesteps.

This technique scales well with many observations. With large numbers
of observations, while the lines will overlap, the patterns that indicate correl-
ations will remain visible when strong enough. A problem however is that
these correlations are only visible between neighbouring attributes. Because
of this the usefulness of this approach is strongly tied to the order of the
columns. This problem can be alleviated by allowing the user to re-order the
columns, but it is not reasonable to expect the user to try out all possible
permutations just to find these correlations. Some prior knowledge might
make this task somewhat more reasonable for the user.

Whether this technique is useful strongly depends on the data being
analysed, and the questions a user wishes to answer. The visualisation
focuses mostly on clarifying the relations between attributes, and individual
observations are lost as a result of all the overlapping lines. In the case of
ValueFlex, this may not be the most suitable visualisation, since the questions
outlined in Section 2.1.2 are more focused towards the values of attributes,
and their temporal behaviour, instead of correlations. This may however be
a useful visualisation solution for other projects.

2.2.4 Multidimensional projections

Another way to visualise the data is to utilize multidimensional projections.
The idea of this approach is to consider the observations to be points in an
N-dimensional space. The similarity of observations can then be described by
the distance between these points in the N-dimensional space. Since there are
currently no techniques to display or view a high dimensional dataset, these
high dimensional points are projected onto a low number of dimensions,
such as two or three. This low dimensional data can then be visualised by
using, for example, a simple scatter plot [22], as shown in Figure 5 from the
work of Paulovich et al. The challenge is to project these points in such a way
that the distances in the high dimensional space are preserved as much as
possible in the low dimensional space. Martins et al. [24] give a survey of
several recent dimensionality reduction algorithms.

This technique is primarily useful for finding relations between observa-
tions. Clusters indicate similarity, elongated structures indicate correlations,
and outliers indicate deviating observations. This may be useful for finding
nodes, subgraphs or time steps where interesting behaviour occurs. To be
able to use this technique however, a mapping needs to be found to map the
the graphs considered in this work onto this N-dimensional space. There
are numerous ways to do this. One mapping would be to consider the
attributes of a point in the N-dimensional space to be all the attributes of
all the components of an electrical grid at one time point. This could be
done for all components, or just one type, for example the nodes, and then
having such a multidimensional projection per component type. This way
time steps can be compared to each other. A different mapping would be
to instead consider a high dimensional point to represent all the values of
all the attributes of a single component over the whole time range. This
mapping would visualise the similarity of different components with respect
to their behaviour over time.

This technique is very scalable, since points can be rendered very small
if necessary. It can also easily deal with many attributes, even those of
different types. The results are however fairly abstract. While it shows that
some observations for example are similar, it does not show why they are
similar. Some recent research [25] has attempted to explain the clusterings in
a multidimensional projection by, by colouring these clusters by the attribute
most similar within the cluster, and labelling them accordingly. However, the
results presented in their work describe datasets with only a limited number
of attributes, each having only 12 metrics. While the colouring by attribute
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Figure 5: Example of a scatter plot of points projected from a high dimen-
sional space. In this example, two clusters appear in the projected data.
Source: Paulovich et al. “Least square projection: A fast high-precision multidimen-
sional projection technique and its application to document mapping” [23] © 2008

IEEE

can be done as performed in their work, the labels would be meaningless
in a scenario with one of the mappings discussed above, where an attribute
refers to the value of an attribute of a feature at one point in time. Thus the
resulting clusters are still not explained.

2.2.5 Calendar views

A quite different visualisation technique is that of calendar views [26]. The
primary strength of this visualisation technique is to view patterns over time.
Figure 6 shows an example of a calendar view from the work of Van Wijk
and Van Selow. It describes the number of present employees over a time
period of a year. To construct this visualisation the time range is split into
days, and the days are clustered in terms of their similarity. Each cluster has
its own colour assigned to it, and the days belonging to a cluster are coloured
accordingly in the calendar part of the view. On the right the average value
over the duration of a day is shown for each of the clusters.

The strength of this approach lies in the fact that it becomes possible
to easily spot patterns on varying time scales. In the graph section, a clear
pattern emerges within a day, where people arrive around 9 AM and leave
around 4 PM. But from the calendar part, it also clearly shows that, as
expected, attendance is very low during the weekends, and on Fridays
significantly less employees are present. Seasons also clearly appear, as there
for example are less people present during the summer.

This technique can deal very well with a large time scale, but it does
require it to be meaningful to divide the time range into equal chunks
such as months, weeks and days. For datasets such as those generated by
ValueFlex, this is most likely the case, since for example the production of
solar panels varies in a fairly consistent pattern each day. Industries will also
use less energy during the weekends. Problematic however is that the graph
visualisation used is not particularly well suited for the data available in this
project. In the dataset shown in Figure 6 a single attribute, the number of
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Figure 6: Example of a calendar view, showing the number of present
employees over the course of a day. Source: Van Wijk and Van Selow “Cluster
and calendar based visualization of time series data” [26] © 1999 IEEE

present employees, is displayed at each timepoint. In the case of a temporal
graph, the state of an entire graph is recorded for each time step. Because of
this, some strong aggregation would again be required to be able to use this
visualisation in its current form.

2.2.6 Evolution spectrographs

An evolution spectrograph [27], an example of which is shown in Figure 7

from the work of Wu et al., essentially visualises a matrix by colour mapping
its values. In the given example it is used to visualise the history of a code
repository. Each row represents a file, with each column showing the value
of an attribute of that file at a point in time. Such a row is similar to a
sparkline, a small line chart without axes or coordinates. By putting many
of these rows together a small multiple is created. In Figure 7 the shown
attribute is the change in the number of incoming dependencies of a file.
This clearly shows when the files are created, and how they evolve over time.
A similar technique has been used to visualise genome expression data [28].
A temporal graph could also be mapped well onto this visualisation, where
each row displays the temporal behaviour of a single attribute of a feature,
such as a node. This gives a highly detailed overview of the temporal
behaviour of the entire graph. Unfortunately, as is the case with all previous
visualisations, the size of the dataset is too large to visualise all the data
without aggregation. Multiple rows will have to be rendered to a single pixel,
and the same holds for the columns. Zooming and panning controls could
be added to allow the user to retrieve the unaggregated data in an area of
interest, showing a limited number of rows or columns using a one-to-one
mapping with pixels.

A benefit of this visualisation is that it has a very high information density,
potentially using every pixel of its drawing area to display information. For
example, the table lens visualisation uses the width of a column to display
a single value. Such a bar will use multiple pixels to display a single value.
In the case of an evolution spectrograph, when the number of rows and
columns match or exceed the number of pixel rows and columns, a single
value will be mapped to each pixel, maximizing the use of screen space. The
drawback of this is that, as a user, the value indicated by a colour is generally
harder to read and compare than one represented by the length of a bar.
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This techniques also suffers from details being lost to aggregation. If a
single row has a single point in time where an extreme value occurs, this
spike can be lost in the overview if simple averaging is used. Ideally the user
is allowed to choose the aggregation method, so that, for example, extreme
values can be highlighted by taking the maximum or minimum instead of
the average. Another downside of the evolution spectrograph is that it is
only able to show a single attribute at a time.

Figure 7: Example of an evolution spectrograph. Source: Wu et al. “Evolution
spectrographs: Visualizing punctuated change in software evolution” [27] © 2004

IEEE

2.2.7 Linked views

While linked views are not a visualisation by themselves, they are a good
way to strengthen the exploration capabilities of visualisations. The idea is
to link multiple visualisations, or views, of the same dataset together. An
early example of this approach can be found in the work of Becker et al. [29],
but linked views are a very common technique used in visualisation applica-
tions [30, 31, 32, 33]. In the work of Becker et al., a matrix of scatterplots is
used, where each scatterplot has a different combination of attributes. The
tool then allows the user to select points in any of the scatter plots, which
results in those points to be highlighted in all of the scatter plots. This is
the main concept of linked views, where an interaction such as selection or
filtering affects all the linked views.

Linked views are great for exploring a dataset when used with a diverse
set of visualisations. For example, one of the time orientated visualisations
such as the evolution spectrograph, could be used to find a point in time that
exhibits interesting behaviour in some nodes in the graph. By selecting this
time point on the spectrograph, this could in turn cause a spatially oriented
visualisation to show this same timepoint, allowing the user to see how
the interesting behaviour is spread over the spatial structure of the graph.
Another possible link would be to have the ability to select a node, or perhaps
a subgraph, which is then visualised or highlighted in a temporal orientated
visualisation. This allows the user to see how this node or subgraph behaves
over time. Especially in the case of a temporal multivariate graph, where it
is impossible to visualise all its aspects simultaneously without any overlap,
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these kind of interactions are important to allow a user to explore the data
effectively.

2.3 discussion

No literature appears to exist regarding the visualisation of large scale tem-
poral geospatial multivariate graphs, thus in this chapter we discussed how
some commonly used visualisations could be applied to our data. The spatial
visualisation already present in the visualisation framework is a powerful
tool for analysing the structure of a graph, and relating data to physical
locations. It is however very limited in its ability to explore temporal data.
The analysis requirements posed by the ValueFlex project are primarily ori-
entated towards exploring and analysing time ranges. Thus we discussed
a number of existing visualisations that could be used to help perform the
types of analysis desired for the ValueFlex use case. Different visualisations
are however best suited for different tasks. Table lenses, calendar views and
evolution spectrographs are oriented towards showing large time ranges,
while parallel coordinates and multidimensional projections allows correla-
tions to be detected. None of these visualisations can however be applied
directly to our data. To use them we came up with a number of possible
ways to map the data onto the visualisations, the choice of which has a strong
impact on what the resulting visualisation looks like. In the next chapters we
will show how the visualisation techniques discussed in this chapter can be
used, and extended, to create a solution that supports the analysis features
desired in the ValueFlex use case.

29



30



3
V I S U A L I S AT I O N D E S I G N

As an analysis framework for large scale temporal geospatial multivariate
graphs, this work proposes to use a set of linked views. Due to the many
aspects present in the data, entire datasets can not be displayed effectively
using a single visualisation. However, by connecting visualisation that each
focus on a different aspect of the data, each can be used to help explore
and refine the search domain in another view. For example, when trying to
find parts of an electrical grid where overloading occurs, one can first find a
time slice of the dataset where problems occur using a temporally orientated
visualisation. After this, this time slice could be viewed in a spatial orientated
view, where the problematic components can be identified spatially.

In this chapter a design for an analysis platform for the large datasets
discussed previously is outlined. First a set of visualisations which we
believe are appropriate for the visualisation of these datasets is discussed in
Section 3.1. They focus on conveying spatial information, structure, attribute
values and temporal behaviour. Next the interactions that should be available
to a user are discussed in Section 3.2.

3.1 visualisations

We propose to use two linked visualisations to analyse large scale temporal
geospatial multivariate graphs. The first visualisation is an interactive map,
which focuses on the spatial information and structure present in such graphs.
The second visualisation is more oriented towards showing the temporal
aspect of these datasets. Together we think these visualisations allow large
scale temporal geospatial multivariate graphs to be viewed and analysed
effectively. Both of these techniques will be discussed in the following
sections.

3.1.1 Interactive map

We think a rendering of the graph on a map representing the real world as a
part of the analysis tool is important. Such a map would show the real world
positions of elements in the graph, as well as how these elements are inter-
connected. Fortunately, as mentioned previously, such a map visualisation is
already present in the CommonSense framework, an example of which is
shown in Figure 8. It shows a map of the real world, on top of which a road
network is rendered in black. A map rendering offers a very intuitive way
for users to view the structure and spatial positioning of an infrastructure.
Understanding these relations may be crucial in understanding behaviours
present in a dataset. For example, strong correlations between different parts
of a graph could be explained by these parts being spatially close to each
other. Or conversely, when two distant objects are behaving in a correlated
fashion the explanation may be simply that the two elements are connected
directly. Thus being able to understand how parts of a graph are spatially
located and interconnected is important for analysing these datasets.

Such a drawing of the infrastructure on a map opens possibilities for
showing additional information, such as attributes, using a number of simple
techniques. For example, a common occurrence in these types of networks
is that not all parts of it are of equal type. In the case of a power grid,
some parts may be rated for high voltage, while others only deal with low
voltage. They may also serve different uses, as some nodes may represent
generators while others display the location of a transformer. Being able to
easily distinguish these different types of elements would allow a user to
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Figure 8: Example of a graph struc-
ture drawn on an interactive map,
allowing it to be related back to real
world locations.

Figure 9: Examples of icons present
in the CommonSense framework,
used to indicate the locations of
bridges, hospitals, aeroplanes and
towns.

better understand the infrastructure they are viewing. What type of object
a feature is, is simply a categorical attribute. In the case of nodes, a simple
way to visualise such an attribute would be to display an icon on the location
of it. For electrical grids standard symbols exist for distinguishing different
elements [34, 35, 36], the use of which creates a convenient link to previous
knowledge of users. Some icons are already being used in CommonSense,
such as those shown in Figure 9, which are used to indicate the locations of
bridges, hospitals, aeroplanes and towns.

More techniques can be used to show additional attributes on such a
map rendering. CommonSense currently offers three techniques to show
attributes. First of all the icon discussed above can be colour mapped to
indicate the value of an attribute at that location. Secondly, the boundary
around the icon can be coloured. Finally, also the thickness of the outline can
be varied, allowing for another attribute to be visualised. While these last
two techniques can also be applied to display attributes on top of the lines,
since there is no icon to colour on lines, it is only possible to visualise two
attributes on a line. It should however be noted that not all three indicators
are equal in how well they can convey information, and they can conflict with
each other. While a coloured area can be read fairly well with a legend if a
good colour map is used, this is much harder when looking at the thickness
of the outline. If difference are large enough it is possible to compare two
different locations, but it is impossible to get an exact reading of the absolute
value at some location, since a legend will be hard to create for this indicator.
Care must also be taken when colour mapping information onto the icon
and outline of a feature. The same colour map could be used, but this results
in the same colour having multiple meanings. Care must also be taken when
using multiple colour maps however, such as two colour maps on both the
nodes and the edges. It is easy to create an overlap in the colour maps used.
A user can easily get confused in this scenario, and as such using all the
indicators at the same time is not advised.

Unfortunately these techniques all only show a single value, making
them unsuitable for showing how temporal attributes behave over time. At
best these techniques can show a single slice of time, which is described
by a single, possibly aggregated value. However, by offering the user a
way to choose which time slice to visualise, using these attribute mapping
techniques is still useful for understanding the state of an infrastructure at
a given point in time. For finding a point in time that exerts interesting
behaviour, or for analysing temporal behaviours, the second visualisation
described next should be used.
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3.1.2 Evolution spectrograph

The datasets considered in this work are temporal in nature, while the
map visualisation can only show three values at the same location, using
which only a single time slice of the dataset can be shown. In theory the
temporal aspect of the data could be explored using just this visualisation,
by constantly moving back and forth through time, which results in an
animation. However, without information about how the data behaves over
time, the user can not do anything but simply pick time slices at random,
looking for a time slice at which interesting behaviour appears. Patterns
over time will be close to impossible to view, as that would require a user
to remember previously viewed slices. Considering the quantity of data
considered in this thesis, that would be very challenging. To help guide
the user to a point in time in which they are interested, and view temporal
patterns in the data, the evolution spectrograph is proposed.

The strength of the evolution spectrograph lies in its ability to give a
detailed temporal overview of the data. Since all elements of the dataset are
shown simultaneously, connections in their temporal behaviour can easily
be detected. Imagine an area in an electric network where all nodes always
simultaneously demand more power. This could be an industrial area where
multiple factories depend on each other. Such behaviour will show up with
multiple rows showing simultaneous spikes, allowing this kind of correlation
to be easily identified.

To map the data of a graph a simplification of the data is required. For
the spectrograph to be easy to understand, data rendered on it must be
consistent. This means that each row should represent similar data, i.e. if
one row displays the voltage, the next row should not show the resistance
of a cable. Because of this the spectrograph can only show a single type of
features, and only one attribute which must be present on all of the features
shown. The same attributes are often not present on both the edges and
nodes of a graph, thus only either of the two can be shown. While this may
limit the analysis potential of this visualisation somewhat, generally different
types of features are not comparable, thus nothing is lost. If desired, multiple
spectrographs could be used simultaneously, each showing a different type
of feature.

The visualisation as described by Wu et al. is adapted slightly for the
purposes of this project. One change made to the spectrograph as discussed
by Wu et al. in this project is to render using linear interpolation, instead of
the nearest neighbour interpolation technique used in Figure 7. The values
of the attributes, in reality, will be changing constantly over time, and not
suddenly update on a set interval. Rendering the data as if these sudden
changes actually occur may confuse the user, thinking that is the actual
behaviour of the data. While the results of linear and nearest neighbour
interpolation will be very similar with the incredibly high data to pixel ratio
in the ValueFlex scenarios described previously, the significance of the need
of this interpolation will become more clear in Section 3.1.3. An example of
the result achieved by applying these changes is shown in Figure 10.

Figure 10: Example of an evolution spectrograph using linear interpolation.
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Figure 11: By drawing multiple spectrographs side by side we can visualise
multiple attributes, and look for correlations.

The evolution spectrograph as presented by Wu et al. has another down-
side. As mentioned before it only allows for a single attribute to be visualised.
The visualisation is also described as a static solution, without allowing any
user interaction to further investigate sub sections of the data. The former
problem can be circumvented by displaying multiple evolution spectrographs,
one for each attribute of interest, next to each other, with each showing the
same time range with the same features, but a different attribute. An example
of this is shown in Figure 11. Each row in both spectrographs represents the
same feature. The amount of times this can be repeated is limited by the
amount of screen space, so it does not scale to a large number of attributes,
but it does allow for a few attributes to be compared. This comparison, when
the spectrographs are placed side by side, will also allow users to detect
correlations between the attributes. The data exploration experience can be
improved by adding basic user interaction, such as zooming and panning.
This way the user can easily look at different time ranges, a more fine grained
time scale, or a subset of rows.

Another challenge with this visualisation is what ordering to use for the
rows. In the work of Wu et al., the rows are sorted by the creation date of

(a) Evolution spectrograph with rows sor-
ted by average value.

(b) Evolution spectrograph with rows in
arbitrary order.

Figure 12: Interpreting the evolution spectrograph is harder without any
ordering, in particular how big a part of the network exerts similar behaviour.
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the files they represent. With the data used in this thesis, this is not effective.
It is common for all elements to start recording values at the same time, in
particularly in simulations. Choosing an appropriate ordering is however
important, as a scenario where consecutive rows have a very different pattern
over time in their attribute values is problematic. This results in a very
noisy and hard to analyse pattern, as shown in Figure 12. In the sorted
version a clear noticeable peak in the middle of the time range only appears
for the bottom quarter of rows. In the unsorted example it is very hard to
estimate how many rows show this peak. It is also quite hard to compare
the individual rows, and as a result it is hard to be able to tell which rows
are similar. Such a noisy pattern can be avoided by sorting the rows by some
metric that describes the unique features of a row. This will put similar
values closely together.

A simple solution to this problem is to sort the rows on their average
values. This is what was used to generate the images shown in Figure 12,
and is used in the rest of this work. While this will not perfectly place the
most similar rows together, it will be a decent approximation, reducing the
existence of these noisy patterns. This ordering is also easy to understand by
an end user, and relatively cheap to compute. Optionally the user could be
given the ability to choose to use the maximum, minimum, median, or any
other function that can easily reduce a row to a single value.

An alternative solution would be to perform hierarchical clustering. This
is also what is done in the work of Eisen et al. with genome data. This would
more accurately allow similar rows to be placed together, and would allow for
a configurable distance function to be used. It would however be expensive
to compute the distance matrix, and would also require some explanation of
the resulting clustering, for example by using dendrogram. Without such
an explanation it would be unclear why a clustering is constructed as it is.
Ordering by a metric such as the average is a rough approximation of this
clustering, which is good enough for the purposes of this project.

An even different possibility would be to group rows based on their spa-
tial or relational proximity. This technique would work under the assumption
that proximity of elements implies behavioural similarity. In the case of a gas
network this may be an accurate assumption, but this assumption may not
hold in all cases. However, if spatially close objects show similar behaviour,
sorting by average should again give a rough approximation of the same
ordering.

How the evolution spectrograph is realised will be discussed in Sec-
tion 5.2.2.

3.1.3 Aggregation

The visualisation design follows a client-server model, with data management
performed by a server, and interactive data rendering performed by a client.
This is discussed in full detail in the next chapter. An issue related to this
design decision, which has been skipped over while discussing the previous
two visualisation, is that of the aggregation of data with respect to the
visualisations. As mentioned before, ValueFlex simulations can cover, in
the most extreme case, the size of a country over a time period of multiple
years. Even ignoring the problem of storing such quantities of data in a
browser, and rendering this data in a interactive fashion, clearly there are
less pixels on conventional screens than there is data, so it will be impossible
to have a one to one mapping between data and pixels. On the interactive
map features would be heavily occluded by each other. In the case of the
evolution spectrograph, there are too many features, and the time ranges
are too detailed to fit all the data directly on to it. Rendering a larger image
and allowing the user to pan around could be used as a solution, although
images would become so large it would be impossible to view an overview
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of the data. Displaying all features simultaneously on the map would result
in a very cluttered result with large amounts of overlap.

One approach would be to tackle these problems on the client side. The
evolution spectrograph could aggregate all data that is rendered to a single
pixel. Care must be taken to preserve interesting details, such as maxima
or minima, but solutions exist for this, as will be discussed in the next
chapter. The occlusion problem on the map could be combated by clustering
overlapping points, representing clusters with a single representative marker.
It has however been decided to not deal with these problems on the client
side. The reason is simple, this would require all the data to be retrieved
first, before it could be simplified. As concluded before, this is not a feasible
solution. Because of this the problem of aggregating and simplifying the data
will have to dealt with before the data reaches the web client. Solutions that
can be used to do this will be discussed in the next chapter. So, while the
visualised data will still be an aggregate of the original data, the aggregation
will not be performed by the web application. To approximate the original
data on the client side, interpolation can be used as discussed in the case of
the evolution spectrograph.

3.2 interactions

A very important aspect of these visualisations, or views, is the interaction
between them. The presence of interactions is what makes them linked views.
The main idea of linked views is that they show the same dataset, or subset
thereof, but in a different way. Since each view is only strong at displaying
some aspects of a dataset, having multiple views allows them to complement
each other. While the map visualisation is great for showing the relation
between objects and their real world counterparts, and the structure of an
infrastructure, it is limited in its capabilities of showing the temporal aspect
of a dataset. This aspect of the dataset can however be visualised very well
using a evolution spectrograph.

A great way to explore datasets is using Shneiderman’s Mantra [37]. The
idea is to first provide an overview, which gives a rough idea of where in
the dataset interesting behaviour may occur. A user can then zoom and filter
the presented data to a subset about which they wish to learn more about.
These subsets are then visualised with more detail. If the dataset is very
large, as is the case in this work, this process can be repeated multiple times.
This approach works well in combination with linked views. For example, a
user first select a spatial region of interest, such as a city. Clearly the map
is most suitable to make this selection, as it shows the relation between the
data and the physical world. Next the user may wish to select a specific time
slice to analyse. The spectrograph is more suited for this task, as it shows an
overview of the data over time. This way the dataset is filtered down to a
subset that can answer a question the user has.

In this work we distinguish three aspects of the data to which filtering
and zooming actions can be applied:

• the spatial domain

• the temporal domain

• attributes

Filtering on any of these aspects will affect the datasets visualised in
each of the views, thus resulting in these views changing. How a user can
perform these filtering and zooming actions will be discussed in Chapter 5.

3.3 discussion

In this chapter we discussed what selection of visualisations could be used to
perform analysis of large scale temporal geospatial multivariate graphs, and
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some of the challenges that have to be overcome with these visualisations.
How everything discussed in this chapter has been implemented will be
discussed in Chapter 5.
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4
S E RV I N G L A R G E D ATA S E T S

In this chapter we discuss the problem of making large scale temporal
geospatial multivariate graphs available in a web environment. First we take
a closer look at the proportions of the data in Section 4.1. We then discuss
the advantages and disadvantages of using a server side rendering solution
versus a client side rendering solution in Section 4.2. Finally we discuss
solutions for aggregating and storing these large graphs in Sections 4.3 and
4.4.

4.1 problem description

The datasets considered in this thesis are very large. Networks such as
those discussed before; gas transmission systems, water supply networks,
electricity grids, road systems and computer networks; span entire countries.
When considering a country such as the Netherlands, these networks have
in the order of millions of nodes, with individual nodes for each household.
For each of these nodes multiple attributes exist, such as voltage, amperage,
and power. Each of these attributes varies over time.

As a concrete example of the size of these datasets, again consider Value-
Flex. The largest simulations assumed to be performed in this work, as
described by its developers, would be a simulation at the level of a country,
over a year. As discussed before, in the case of the Netherlands, this would
mean a dataset has worst case in the order of millions of nodes. These
simulations run, in the most extreme case, over the period of a year, at a five
minute interval. This means a simulation has roughly a hundred thousand
time steps. These datasets are also multivariate, meaning they have multiple
attributes. Not all attributes are necessarily temporal, such as the geographic
location, but in the case of ValueFlex, there are at least the voltage magnitude,
the voltage angle, the active and reactive power, and the amperage. While
this is not a particularly high number of temporal attributes, the quantities
described above are enough for a dataset to grow into the order of terabytes
in size. Assuming 32 bit floating point numbers:

106 ∗ 105 ∗ 5 ∗ 4 = 2 ∗ 1012 bytes

Which is approximately 1.8 terabytes of raw data.
Unfortunately, the CommonSense framework does not currently have

any support for the large scale datasets considered in this work. All data is
loaded up front, after which all data is displayed at once. This works well
for the small datasets currently being visualised using this framework, but
for large datasets this approach simply wont work. Not only would sending
over these terabytes of data take a very long time to transfer to a client, the
client would be unable to store it all in memory. The data must be prepared
and structured so that a client can efficiently request only the data it needs
for the current viewing parameters, with an appropriate level of detail.

4.2 server side versus client side rendering

A commonly used technique when visualising data is to shift the responsibil-
ity of rendering to a server which has access to all the high detail information.
Clients can then request images from this server depending on which subset
of the data they are viewing. This is an often used technique in GIS systems
for the map image tiles showing the earth, in applications such as Google
Maps [38], Bing Maps [39], Nokia Here [40] and other competing map view-
ing applications. The data used to generate these image tiles is relatively
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static. Unless, for example, the local infrastructure has changed, or a new
house has been built, the data does not change. While this may happen quite
often at a global scale, locally updates will be very uncommon. In this case
server side rendering is very efficient. Data can be rendered once, and the
result can be cached, since each future request of the same map tile should
return the same image. All rendering could even be done up front, which is
exactly what is commonly done in the case of map tiles. Only once the map
data changes, do images change. Even then only the affected images would
have to be re-rendered.

So ideally server side rendering is used for completely static datasets,
displayed in a static way. The technique has however also been applied suc-
cessfully with more dynamic visualisations. One such an example uses this
technique to display three billion tweets [41]. These tweets are categorised by
the operating system of the mobile phone used to send the tweet. This results
in four groups, Android, iPhone, Blackberry and other. For each of these
tweets the location it was sent from is recorded. For each tweet in the dataset,
a point is rendered, coloured by the operating system it originates from. The
user is allowed to dynamically choose which of the origin operating systems
to show, being able to toggle each individual group on and off.

The user interaction offered in this case is however still very limited. In
this three billion tweets example, all the user can do is toggle on or off the
four categories. Effectively, there are 15 possible combinations, resulting in
15 different images for each raster tile. While this of course means 15 times as
many images will have to be rendered than when not offering this interaction,
this is still a manageable amount to pre-render. Even if not everything is
rendered beforehand, results can be cached as it is likely different users will
view the same tiles.

The datasets considered in this thesis are a lot more detailed. In the
case of the three billion tweets example, a single point just belongs to a
category, meaning it has only two attributes, a location attribute and a
categorical attribute. The datasets considered in this work however have
significantly more attributes, which have different values for each different
point in time on which it is defined. Also, with the visualisations proposed
in the previous chapter, users have a lot more fine grained control over the
visualisation. Users can choose which attributes to show on the map, which
colour mapping to use, and most importantly, choose a time slice. Allowing
the user to choose a time slice alone results in thousands of possible results
for a single image. This leads to a huge number of possible configurations for
the map visualisation alone, and thus a huge number of possible renderings.
It is impossible to store pre-rendered images of all these configurations, thus
all images will have to be rendered on demand. Doing so would require
a very powerful server to be able to serve multiple users simultaneously,
and does not scale well at all. Because of this, server side rendering is not a
particularly well suited solution for this project.

The alternative is to instead send the data itself, and delegate the render-
ing to the client. Clearly sending all the data at once, however, overloads the
client. As such a solution is required that cleverly only sends data relevant
to the current viewing parameters. An appropriate level of detail is also
important, as the highest level of detail is unnecessary when viewing the
entire world. If the same level of detail is used regardless of the zoom level,
the same problem of sending all the data still occurs at the high overview
zoom level. But just sending a small subset or aggregate of the spatial
features is not enough. If the fully detailed time data is still attached to
individual features, a small spatial subset of the data will still be quite large.
Aggregation must be performed both in the spatial and the temporal domain.
Also, the level of detail desired in the temporal domain is not necessarily
related to the level of detail desired in the spatial domain. A user may wish
to view the network at a high level, but only over a time span of a few
minutes. Conversely, a user may wish to analyse only a small subset of a
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network, but over a large time period. Because of this it has been decided
to separate the spatial data from the temporal data, and use a specialised
solution for each. This way spatial data and temporal data can be easily
requested at separate levels of detail.

In the following sections the spatial aspect is discussed first, after which
the temporal aspect is covered. For both aspect, aggregation solutions are
discussed, which allow the data to be requested at an detail level appropriate
for viewing parameters chosen by a user. Data storage and serving solutions
are also covered. It is assumed the spatial data has some reference which can
be used by the web client to retrieve the appropriate temporal data.

4.3 spatial data

The spatial data in the datasets considered in this project consists of the
locations of the nodes and edges of a graph. This data must be aggregated
in some way, so that different versions of the same data can be created,
with different levels of detail. The goal of this is to always have a roughly
constant number of elements on the screen of the user, no matter what part
of the world, at what zoom level a user may look. It is important to realise
these nodes and edges are connected, since they are part of a graph. This
has large consequences for the aggregation process. With a simple point
dataset, overlapping points can simply merged or discarded. Aggregation
can be performed very locally. In this case points are however connected.
Deleting a node has consequences for the structure of the graph. How a
graph can be aggregated will be discussed in the next section. After this
solutions for storing and serving the aggregated data are discussed. These
sections will only cover the spatial structure of the datasets, not the data
required to display the map on top of which the structure is to be rendered.
As discussed previously pre-rendered images are commonly used for this.
The serving of such tiles is standardised [42], and many free services exist
that serve these image tiles. Some of these services will be utilized in this
project as discussed in Chapter 5.

4.3.1 Simplification

No standard algorithm appear to exist for simplifying geospatial graphs
based on spatial proximity. Two problems need to be tackled to perform
simplification. Firstly, some algorithm is needed that decided which nodes
and edges need to be combined to acquire a graph of an appropriate detail
level. This could be simply some distance threshold between the nodes, but
other solutions exist. Once these sets have been identified, some new point
that represents the original points needs to be constructed. This new point
needs a location, attributes, and edges, which all need to be determined
based on the original nodes which are combined to create the new node.

Selection

The simplification of spatial graphs does not appear to be an extensively re-
searched area. Solutions for the simplification of general graphs do exist [43],
however, the graphs considered in those works are not spatial in nature. The
location of nodes in spatial graphs have important meaning, while in general
graphs nodes do not have set positions. These techniques are generally
concerned with grouping up strongly connected parts of graphs spatially by
moving nodes. This is however not necessarily the behaviour desired for the
data in this project. Strongly connected does not necessarily imply spatial
proximity. By clustering points that lie far apart critical spatial information
could be lost. These general solutions are therefore not a good fit for this
problem.
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Another area where a similar problem is encountered is when resampling
polygonal meshes[44]. A polygonal mesh could be seen as a graph, as both
are made of points, vertices and nodes, which are connected by lines, edges.
The resampling algorithms used for the resampling of polygonal meshes are
concerned with acquiring a new polygonal mesh which closely approximates
the original mesh, while using less vertices. As a result the rendering of such
a surface is more efficient, as well as requiring less space to store the surface.
The goals of these algorithms is however again different from what is desired
in this case. These algorithms try to describe a densely sampled surface as
accurately as possible using fewer vertices, while preserving the original
shape. Generally no restrictions are applied however to where the resampled
vertices appear on the surface, in theory allowing vertices to appear anywhere
on the surface. This means new vertices can potentially appear far from the
locations of the original vertices, by which the spatial meaning of points is
lost. In the case of a polygonal mesh this is fine, since the information is
described by the shape of the mesh as a whole. Individual points carry little
meaning. The spatial location of points is however important in a real world
infrastructure, thus this information should not be discarded.

A different way to look at this problem is to consider the dataset as
a simple set of points, instead of a graph. This allows the problem to be
simplified to a clustering problem. After clusters have been identified, the
cluster can be merged into a single point. This approach may however
be problematic in a strongly connected graph. As such a graph has many
edges, less clusters have to be used to still achieve a consistent number of
features in the output. This may be undesirable, as in extreme cases this can
mean a strongly connected graph has a lot fewer nodes than a graph with
few edges. In a highly connected graph it may thus be desirable to either
instead of or in addition to clustering one may wish to reduce the number
of edges directly, for example by edge bundling [45]. As such this solution
only works as expected when most edges are short, and only connect nodes
within a local cluster, as they can then be aggregated together. Many long
edges should be avoided. This appears to be a valid assumption in this case,
because in real infrastructures, having a single node connected to many other
distant nodes is inefficient. This would require many long cables or pipes
to achieve. Generally only a limited number of sources, i.e. power plants,
are connected through the network to many destinations, i.e. households.
In these infrastructures the long distance transportation occurs on a high
throughput connections, for example with high pressure or high voltage in
the case of gas and electricity. Near destinations, connections branch off
this main line, going into medium pressure or voltage networks. One could
compare these infrastructures with a tree type structure, with one, or few
roots, but many leaves. Such a network satisfies our requirement of most
edges being small and local, as locally a dense network of low pressure or
voltage components are used, while for long distance transport single large
capacity components are used.

So it is possible to solve this problem using clustering. Of importance
to our solution is a consistent density in the result. If a huge dataset can
be simplified down to a thousand points, but almost all points lie closely
together and overlap, the data may be small enough for visualisation, but is
still hard to interpret. At the same time, the spatial size a cluster describes
should be as small as possible, so that the clustered point can represent the
locations of the original data as accurately as possible. In the case of a city
filling the users screen, all points within the city may lie closely enough
together to warrant to cluster them, but of course it is not very interesting to
see a single point. So the spatial size of a cluster must be limited somehow.
Also, any clustering solutions that upfront require a desired number of
clusters to be specified are not desirable, since it is hard to know in advance
how many clusters should be used.
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A solution that satisfies all these requirements is hierarchical clustering.
Traditionally this is done by constructing a distance matrix which contains
the distance between any pair of points in the dataset, and grouping up
the points that lie closest to each other. This is repeated recursively until a
desired number of points remains. Computing the distance matrix alone has
a complexity of O(n2) however, which is quite computationally expensive.
With datasets that have in the order of millions of nodes, this becomes
problematic. A slightly different approach is to use a quad tree. Using this
technique a space is continuously subdivided into smaller squares, until each
square only contains a given number of points. The result of this process on
a set of points is shown in Figure 13, where a limit of one point per cell is
used. After constructing such a tree, a simplified version of the dataset can
be constructed by traversing the entire tree up to a given depth. Which depth
is used decided how detailed the result will be. The cells encountered along
this traversal can either be empty or contain a single point, or contain more
child cells with more points. When empty or containing only a single point
nothing needs to be done, the single point can be directly included in the
simplified graph. The cells that contain multiple points need to be aggregated
into a new single point. This approach has been applied successfully to point
data in a geospatial setting on huge datasets, with great performance [46]. A
solution to efficiently generate such a quad tree is the Approximate Nearest
Neighbour, or ANN, library [47]. This library can construct data structures
of millions of points to efficiently perform nearest neighbour queries, one of
which is the quad tree.

This approach is a great fit for this use case. Since the quad tree has at
most 4d cells at a depth d, there is a strict upper limit to the possible number
of points in the end result, which limits the level of detail. The clusters
described by cells also clearly describe a limited spatial area, as a cluster can
never contain an outlier. Different levels of detail can also be achieved easily
by reconstructing a simplified graph using the cells at different depth of the
tree. Now that clusters have been selected, they need to be aggregated.

Figure 13: Example of a quad tree. Each cell is subdivided into four
smaller cell until each cell contains only a single point. Source: Wiki-
pedia user David Eppstein, https://en.wikipedia.org/wiki/File:Point_

quadtree.svg, public domain license.

43

https://en.wikipedia.org/wiki/File:Point_quadtree.svg
https://en.wikipedia.org/wiki/File:Point_quadtree.svg


(a) Before aggregation (b) After aggregation

Figure 14: Example of the effect of the proposed graph aggregation algorithm
on an example graph, aggregated at depth 1.

Aggregation

Since each node has a location, relations with other nodes in the graph, and
temporal attributes, aggregating groups of nodes is not trivial. Each of these
problems will have to be dealt with to be able to successfully combine a
group of nodes into a single node. The problem of location can be solved
quite easily by taking the mean location of the group of nodes to combine.
Since the raw data combined into a point can only originate from a small
spatial area due to the way the group is selected, as long as the new point
lies within the cell of the quad tree, where the new point ends up exactly
is not very critical. While more sophisticated methods could be used for
location selection, such as weighing the nodes for example by throughput
capacity, the difference in position will be so minor a user will hardly be
able to tell the difference. Because of this the mean location should be good
enough for our purposes.

The problem of nodes being connected by edges can be solved by con-
necting the newly constructed node, to any nodes outside of the aggregation
group which are connected to any of the nodes within the group. This is
commonly referred to as vertex contraction in the context of graphs. Two
nodes, which are not necessarily connected by an edge, are combined into
a single new node. If they are connected the edge between them is simply
removed. The new node is adjacent, i.e. connected, to all nodes to which the
original two nodes were adjacent. The aggregation of a group of nodes into
a single node then is the same as repeatedly contracting a node in the group
with any other node in the group, until a single node remains. An example
of the result of using these rules for aggregation is shown in Figure 14. A
very simple graph, with a quad tree subdivision is shown in Figure 14a. The
smallest cells lie at depth 2. The aggregation of this graph at depth 1, after
computing the mean position of the nodes within each quad tree cell, and
the set of adjacent nodes of each cell, is shown in Figure 14b. Due to the
existence of attributes it becomes slightly more complex however.

The most difficult problem is that of combining the attributes. Both ver-
tices and edges can have attributes, both of which need to be combined. No
single best solution exists here, since the best aggregation technique strongly
depends on the data, and what questions a user wishes to answer using
the data. There are two kinds of attributes, temporal attributes, for which
different values are available at different points in time, and static attributes,
which are the same throughout the entire time range. For numerical attrib-
utes such as pressure it makes the most sense to use something such as an
average, which gives an indication of the overall pressure in the aggregated
group. However, for attributes such as consumption or throughput, adding
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the individual values seems more appropriate, so the consumption of the
aggregated group as a whole can be viewed. Adding these values together
potentially introduces a new problem, as the values of different nodes no
longer lie in the same ranges. For example, if consumption rates at nodes
normally lie between 0.9 and 1, then comparing a single node to a cluster
made out of two or more nodes is meaningless, since the values of the cluster
will always be much larger. Whether to use the average, mean, median, max-
imum, minimum, variance, standard deviation, sum, or any other function
will have to be decided by an expert of the data. Similar problems occur with
other types of attributes, such as text and categorical attributes. Text could
be simply concatenated, or perhaps each individual textual attribute will be
present as a separate attribute in the new node. These problems could be
solved in many ways, but their aggregation can not be solved in a generic
way, and will have to be specified on a case by case basis. In any case, it is
important it is clear to the user what kind of aggregation technique has been
performed, as this explains what information is lost and what is attenuated
by the aggregation. This can help the user distinguish actual interesting
patterns from any artefacts that result from aggregation.

In the case of temporal attributes, attributes can also be defined at dif-
ferent points in time for different features, which makes combining these
features even harder. Solving this in a general way is again very hard, but
usually the temporal attributes will be numerical in nature. A way to solve
this problem of different sampling rates for numerical attributes is to con-
sider all values of an attribute as a signal, which can be resampled. This
resampling could be done by reconstructing a continuous signal by interpol-
ation, and sampling the reconstructed signal at desired points in time. This
way values for the attribute for both features can be sampled on common
time points. Preferably this set of common time points at least contains the
union of the timepoints at which the individual attributes were sampled for
the original features. This way the original values should not be lost, as the
reconstructed continuous signal should give the same value when sampled
again. What function to use to combine these resampled signals is left to
an expert. How these temporal attributes, including the combined ones, are
simplified is discussed in Section 4.4.

4.3.2 Storage

Now that an algorithm for simplifying the spatial aspect of datasets has been
described, a solution needs to be found to store and serve the resulting data.
Multiple solutions exist. The first storage solution, spatial databases, serve
data within a bounding box defined by the clients viewing area. The second
solution uses a set of vector tiles, which use a similar concept as the map
image tiles encountered in the server side rendering techniques. The client
can again request these depending on the viewing area chosen by the user.
Another interesting option is graph databases. Each of these solutions will
be discussed in the following sections.

Spatial databases

The first spatial data storage solution would be to utilize a spatial database.
A spatial database is a specialised database designed specifically to deal with
spatial information, allowing it to be queried spatially. With such a database
it is for example possible to retrieve all features within a given area. Using
such a storage solution would allow the client to simply send a bounding box
of the current view, after which the spatial server can compute which features
lie within this box and send only those specific features. There are many
existing solutions. Special purpose solutions exist, such as SpaceBase [48]
and GeoMesa [49], which have been specifically created for storing spatial
data. However, many of the general purpose database solutions have either
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build in support (MongoDB [50], Neo4j [51]), or modules available to add
spatial support (PostgreSQL [52], CouchDB [53], SQLite [54]).

After choosing a database one has to decide when to perform the sim-
plification of the data. Not all these spatial databases offer aggregation
features, and even those that do seem to be limited in their customizability.
Admittedly, the aggregation of spatial is a hard problem that can not easily
be solved in a generic way, as discussed before. Most of these databases are
also not specifically build to support graph structures, and store features as
separate points lines and polygons. They do not have a concept of a graph.
Because of this these databases are not capable of simplifying the data of this
project effectively in a generic way.

One option to solve this problem would be to perform these simplifica-
tions on the fly on the output of the database. This however leads to a large
amount of extra computations on every query sent to the database, which
can be particularly problematic with a view containing large amounts of
high detail features. This problem is enhanced by the fact that each query is
essentially unique. Query results can not easily be cached between different
users, and even consecutive queries of the same user, while largely overlap-
ping, will generally require the result to be computed from scratch. There is
no simple way for the server to know which data the user already has, nor
can the client easily request only the new features that came into view. To
constantly reaggregate all data from the highest level of detail to the lowest
level of detail would be very inefficient, and poorly scalable. The only way to
avoid this seems to be preprocessing the data, and storing multiple version
of it at different levels of detail. Then somehow the server will have to decide
which version to use, for example by looking at the size of the bounding box
of the query.

Thus the simplification must be performed by a custom solution before
storage in such a database. The challenge then becomes to find an appropriate
mapping of the data onto the database that allows the data to be queried
effectively by a client. The simplest way seems to store multiple copies of the
data at different levels of details in the database, while allowing the client
to choose the most appropriate detail level for the current view. Each query
result will however still have to be build from scratch, no caching is possible.

Tiling

A different solution is tiling. We have mentioned before this technique is
used commonly for images in map applications. These tiles are constructed
using a structure which is very similar to a quad tree. They are constructed
by building a pyramid of equal size images, where all the images together
in one layer of the pyramid make up the original image. At the top of the
pyramid the image is described by a single image, and all layers below have
four times the number of tiles as the level above it. So considering a tile
has for example 256x256 pixels, at the top most level the image is describe
by 256x256 pixels, at the level below it by 512x512 pixels, below that by
1024x1024 pixels, etc. As illustrated in Figure 15 from the work of García
et al., lower levels have more detail than the higher levels. After constructing
such a pyramid a client can selectively request tiles from this pyramid from
a part of the source image of interest, at an appropriate level of detail. For an
overview the detail available in the top most tile may be sufficient, but when
viewing a very small part of the image a much lower level of the pyramid
may be appropriate.

The main advantages of tiling is that with it, unlike the spatial databases,
caching of queries is easily possible. Results can be (pre-)computed once
and used many times. This same approach could be use on the feature data,
by splitting up the graph in small tiles, with different amounts of detail for
varying zoom levels. However, instead of renderings of the data, these tiles
would contain the actual features, point and lines, as raw data. These tiles
can then be used by the client to render the data as the user desires. By using

46



Figure 15: Illustration of a tile pyramid. Each layer of the pyramid describes
the data with more tiles, and thus more detail than the layer above it. Source:
García et al. “Web Map Tile Services for Spatial Data Infrastructures: Management
and Optimization” [55]

tiles the client is able to only retrieve the data required for the current view,
in terms of location and zoom level.

This tiling is exactly what has already been done for simplifying the
spatial data. The construction of such a pyramid of tiles uses exactly the same
logic as is used for the construction for the quad tree in the simplification
process. If instead of extending the zero depth tile of the quad tree exactly
over the spatial dimensions of the data, the tile is extended over the entire
world, a tile in the quad tree matches up exactly with a tile in the tile
pyramid. Thus after performing the simplification, constructing the tiles
requires relatively little effort.

One problem with this tiling approach however is the fact that lines and
polygons can cross the boundaries of tiles. In these cases parts of a single
feature reside in multiple tiles. This scenario is very likely to occur very often
in the case of the large infrastructures considered in this thesis, considering
these infrastructures cover entire countries. One solution to this would be to
clip the feature, cutting it into two or more separate pieces, each of which
is stored in the associated tiled. This way, when a feature covers multiple
tiles, each tile only contains the part of the feature that covers it. A side
effect of this is however that multiple separate pieces of the same feature are
presented to the client, even though each piece belongs to a single feature.
Some extra work would be required to still consider it a single object with
just one set of attributes. As each feature has an identifier required to retrieve
the associated temporal data, the individual pieces can be identified and
stitched together. This is important for example when selecting features,
the selection of a single part must result in the selection of all visible parts.
Alternatively, instead of cutting up the feature, the whole feature could be
stored in every tile it overlaps. By doing so the complete feature is available
whenever one of the tiles it lies within is visible. Again extra work would
be required however, to avoid multiple copies of the feature to be placed on
top of each other. This solution might also turn out to be problematic when
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many tiles are overlapped by a single feature, resulting in large amounts of
duplicate data.

Many different formats exist to store these tiles in, for which many
different implementations have been created. A very popular format for
geospatial data is GeoJSON [56], which is also the format CommonSense
currently uses, albeit not in a tiled form. GeoJSON specifies a standardised
structure using which features can be stored in the JSON [57] format. The
benefit of this format is that it can be natively parsed by JavaScript and
is human readable. Using any JSON parser, which exist for almost every
programming language, the generated tiles can be easily converted into files
with this format. These files can then be easily served using a simple web
server providing a RESTful API, which is a common way to serve these
types of tiles. Alternatively, a closely related format could be used, called
TopoJSON [58]. As the name suggest it also describes a JSON structure,
although one that is generally more compact than that of GeoJSON, thus
reducing the size of the resulting data.

While the benefits of using GeoJSON or TopoJSON are that it is human
readable and easy to use in JavaScript, it is fairly verbose and contains
significant amounts of redundant information. An alternative would be to
use a binary format, such as Mapbox vector tiles [59]. By using protocol
buffers [60] the vector data are encoded efficiently, significantly reducing the
data in size. Many tools exist for the generation and parsing of these kind of
tiles [61, 62, 63, 64, 65, 66]. Using this solution would allow for more data
to be displayed with the same use of bandwidth, making it an interesting
solution.

Graph databases

Another storage solution worth mentioning is graph databases. As the
name implies these databases are optimized for storing graph shaped data,
allowing for queries regarding the structure of the graph. Many popular
implementations exist [67, 68, 69], including the earlier mentioned Neo4j
which has native support for spatial data. The main strength of these kind of
databases lies in the traversal of the edges it stores, so that queries asking
for the neighbours of a node can be performed efficiently. This can be very
useful when a user wishes to select sub networks of the entire network.

However, such a database will most likely not be a good fit for this project.
While graph queries may be interesting in some scenarios, graph databases
generally offer no options for spatial queries, which are required for selecting
portion of the graph appropriate for the current view. Simplification will also
be hard to do, although this could be solved by storing multiple preprocessed
copies of the data. If the graph queries are truly important, it is probably
more effective to implement these queries on the client side, considering
the size of the graphs sent to the client will be limited in size regardless,
making such queries possible in real time even in a resource limited web
environment. Since the biggest advantage of using a graph database can also
be achieved in another way, it will be more appropriate to choose a database
specialised in spatial data.

Now that it is clear how to simplify and store the spatial aspect of the
data, the temporal aspect will be covered.

4.4 temporal data

Each feature can potentially have temporal attributes, and possibly have
multiple of them. As discussed before, storing this temporal data separate
from the features themselves allows spatial and temporal data to be viewed
at independent levels of detail. To do this, each feature has been given a
unique identifier, including those in the simplified graphs. These identifiers
can be used to look up the temporal data belonging to that feature.
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Similar problems of aggregation, storage and serving as encountered with
spatial data are encountered in the context of temporal data. Fortunately,
time series data is a more commonly encountered data type than geospatial
graph data, in the context of web applications. Many solutions exist for the
aggregation and storage of these kind of datasets. Some of these solutions
will be discussed next.

4.4.1 Simplification

As with the spatial data, a solution is needed for constructing new versions
of the data with different levels of detail. When viewing temporal data
at the level of weeks, the values at individual seconds are too detailed for
visualisation or analysis. At this point an aggregate with a sampling closer
to the number of pixels available for rendering should be used. This is
essentially the same problem as encountered with the spatial data. The lower
detail versions of the data could be computed on demand. However, when
viewing the entire time range at a low zoom level, the entire time range
must be aggregated each time, for every feature in view, for every attribute it
has. This would be too computationally expensive for it to be interactive or
scalable. Thus to facilitate these different temporal levels of detail efficiently,
the data should be preprocessed, as was done with the spatial data.

Just as we proposed with the spatial data, for the temporal data we can
also pre-compute and store a number of different copies of the data with
varying levels of detail. Each lower detail version could have half the number
of samples as present in the next most detailed version, similar as was done
with the spatial data, although more or less detailed levels could be used as
desired. The client can then request data of an appropriate level of detail.
Computing these lower detail version is again a non-trivial problem however.
As a lower detail version of the data has less samples than a higher detail
version, some method is required to compute a single value from multiple
samples. A simple way to perform the needed aggregation would be to just
take the average. This may be sufficient for some time series, for example
those that do not contain small variations, or those where small variations are
not important. Averaging would remove many small details from a dataset
however. If these small details are important, they must be preserved so that
they appear in higher level overviews.

Instead of taking a simple average, taking the minimum, maximum or
most deviating value may be more appropriate. Holten et al. [18] describes a
method to weigh samples by how different they are from their neighbouring
values. What approach is best to use depends strongly on the features
present in the underlying signal, and the goals of the visualisation. A noisy
signal needs a different approach than a signal with many spikes or sharp
transitions. Thus, unfortunately, we again can not provide a general purpose
solution that works well in all scenarios. The most appropriate aggregation
technique must be decided on a case by case basis.

4.4.2 Storage

The temporal data in this project is essentially sensor data, i.e. time series
data that belongs to one of many entities. Many solutions already exist that
allow sensor data to be stored and queried efficiently. Some of these solutions
also incorporate aggregation functionality. ElasticSearch [70], the solution
currently being used for storage of ValueFlex simulation data, offers a wide
range of aggregation functions and queries. With regard to functionality, it is
a great fit for this project. It seems less capable however of performing these
aggregations on larger dataset in a timely manner, which is unsurprising
considering the quantity of data. Thus pre-computation of the aggregated
data is still required. This however means none of the functionality that
makes ElasticSearch special will be used, thus a database more specifically
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designed for serving temporal data may be appropriate. As the name implies,
it is better suited as a search engine.

When performing the aggregation by a custom solution, in theory any
existing storage solution can be used. Many databases have been used effect-
ively for sensor data, such as PostgreSQL [52], MongoDB [50], HBase [71],
CouchDB [53] and Cassandra [72]. The work of Van der Veen et al. [73] com-
pares the performance of some of these storage solutions, showing Cassandra
provides great read performance if queried appropriately. Each of these data-
bases could store the different detail copies discusses above, allowing the
client to query the appropriate version dynamically.

Another promising solution would be to use InfluxDB [74]. Similar to
Cassandra, it is specifically designed to deal with sensor data. Addition-
ally, it also offers functionality to aggregate data automatically by using so
called continuous queries. These queries, which have as primary function
precomputing expensive queries, are run periodically when new data is
added. The results of these queries is then stored, allowing the result to
be queries efficiently. This can be used very well for computing the down
sampled version of the temporal data, and would allow live data to be easily
supported.

4.5 discussion

In its current form the existing framework CommonSense is designed for
small amount of data, rendering it incapable of displaying large datasets.
While there are many existing software solutions that are designed to help
deal with this problem, none appear to exist that are specifically designed
to perform the aggregation of spatial graph data. To simplify the problem,
spatial and temporal data is split up, so both can be easily requested by a
client at different levels of detail. To be able to serve the data efficiently,
strong aggregation is required. While general recommendations can be
given regarding aggregation, what aggregation best suits a project strongly
depends on the data and questions a user may wish to ask.
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5
R E A L I S AT I O N

In this chapter the existing visualisation framework CommonSense is first
discussed in Section 5.1. We list what functionality is already present, and
what still need to be implemented to achieve the functionality discussed in the
previous chapters. Afterwards the implementation of the new functionality
is discussed in Section 5.2.

5.1 commonsense

The existing visualisation framework, CommonSense [4], is a framework
developed by TNO. This framework was used in this project as it is a
commonly used solution at TNO, and integration into this platform allows
the new functionality to be easily reused for future projects. Its design
philosophy is to offer a generic platform for the visualisation of any kind of
spatial data, by providing a highly configurable web environment, with a set
of generic visualisation solutions, which can be customized to specifically
fit the needs of each individual project. An example of what CommonSense
can do is shown in Figure 16.

Figure 16: A showcase of the functionality in the CommonSense framework,
in which Dutch healthcare information is visualised.

While the framework is intended as a generic visualisation solution, it
is still in a relatively early stage of development, and because of this the
framework is not quite ready for data on the scale as generated by the
ValueFlex project. While some functionality to support temporal data, like
that of the ValueFlex project, already exists, it is designed for small datasets
with in the order of hundreds of features and timepoints. No functionality
is present to allow CommonSense to cope with large quantities of data, nor
does it allow such large spatial temporal datasets to be visualised effectively.

As discussed in Chapter 1, any solutions proposed in this work must
be integrated into the CommonSense framework. Due to the reusability of
the CommonSense framework it is important that any new functionality is
designed and implemented within CommonSense framework in such a way,
that it too can be reused in future projects. This asks for the chosen solution
to be designed and implemented in a generic way so that it will fit the design
philosophy of the CommonSense framework. As such it is important that
any new components must cooperate with existing functionality, not only
ensuring no existing functionality is broken, but also that the result is one
unified application.
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Figure 17: CommonSense interactive map, showing features, in this case
polygons and points, coloured by their attributes.

5.1.1 Existing functionality

CommonSense already offers a substantial amount of the functionality dis-
cussed in Chapter 3. The interactive map is present, and it provides some
filtering functionality. The existing functionality is however not always suf-
ficient for the purposes of this work, and some additional functionality is
required for CommonSense to be usable as an effective analysis tool for
large scale temporal geospatial multivariate graphs. Below we discuss what
needed functionality is already present and what is missing, in particular
with regard to the two visualisations, the interactive map and the evolution
spectrograph.

Interactive Map

The interactive map as discussed is already implemented in CommonSense.
It was created using the JavaScript library Leaflet [75]. Leaflet offers many of
the standard exploration functionality commonly present in visualisations
where exploration is required, such as zooming and panning. On this map
any kind of features can be displayed, being simple points and lines, or
polygons. The user can choose what attribute each of these features are to be
colour mapped by, and what colour map to use. Additionally the user can
choose whether to colour the icon itself or its boundary. Alternatively the
thickness of the boundary can also be used to indicate the magnitude of an
attribute.

Figure 18: Selection of the colour maps available in CommonSense.
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The colour maps currently available in CommonSense are somewhat
limited. A selection of the colour map functions available by default are
shown in Figure 18. Each consists of two, or in one case three colours
between which is interpolated. The interpolation results in mixtures of
colours appearing in the middle of the range of these functions. The biggest
problem with these colour maps is however that large ranges of the colour
map results in colours which are hard to perceptually distinguish. This mean
a user will have a hard time performing the reverse mapping of colours
using the legend. To improve this, a new colour map has been added as part
of our additions, which is shown in Figure 29. This new colour map will be
discussed further in Section 5.2.2.

Figure 19: Attribute overview in CommonSense. This panel shows the
attributes of the currently selected feature, at the currently selected time
slice.

Selecting features on the map gives the user a detailed list of all attributes
of that feature in the attribute panel, as shown in Figure 19. These are the
values of the currently selected time slice. The buttons in front of each
attribute allow that attribute to be used for colouring the features on the
map, and also allows features to be filtered based on that attribute.

Figure 20: Filter controls in CommonSense, which allow the users to filter
the displayed set of features on any of its attributes. In this particular
example the features, representing counties, are filtered by the percentage of
unmarried inhabitants. As a result only counties with a unmarried inhabitant
percentage between 46.73% and 51.21% are displayed.

Pressing the filter button brings up a panel such as the one shown in
Figure 20, although the exact filter shown depends on the type of the attribute.
This panel allows a user to filter features based on attribute. In this example
a bar chart is used to display a histogram of the percentages of unmarried
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inhabitants of counties in the Netherlands. The user can select a range on
this histogram to choose which range of values to show. Features with values
for this attribute outside of the selected range will be filtered out, hiding
them on the map. Multiple filters like this can be used simultaneously.

Figure 21: The location filter allows a region to be selected, which exclude
any feature outside of the region to be filtered out.

One other special kind of filter available is the location filter, as shown in
Figure 21. As the name suggest this filter allows features to be filtered based
on their location. Activating it presents a selection box to the user, which
can be moved and resized to fit around a region of interest. Any features
outside of the box are no longer drawn. While for the map visualisation itself
this functionality is not particularly useful, as a user could simply zoom in
or ignore features outside of his area of interest, when combined with the
linked evolution spectrograph visualisation this becomes a useful tool for
filtering.

Evolution spectrograph

While the interactive map is already implemented, the evolution spectrograph
has been implemented from scratch. Some support for temporal data is
already present however. Internally support is present for features having
different attribute values over time. CommonSense also already contains
a timeline, which is shown in Figure 22. This timeline component has an
indicator. It shows which point in time is currently the focus point, which
determines the time slice being displayed on the map. The user can drag
this indicator element to manipulate this focus point. The timeline supports
zooming and panning, allowing the user to easily manipulate the time range
being displayed, and choose whether they wish to work on the level of
seconds or milliseconds, or the level of years or decades.

Figure 22: Timeline in CommonSense. The timeline allows the user to ma-
nipulate the current temporal focus point and time range, which determines
the time slice shown on the interactive map.

Another functionality that CommonSense provides is widgets, an ex-
ample of which is shown in Figure 23. Widgets are elements which are
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placed inside separate containers, and shown on top of the map visualisation.
They can be moved and resized as the user desires. What these widgets
contain exactly could be anything. They can offer additional controls, or
new views of the data, such as additional information of a selected feature
as is the case in the indicator widget in the example. Another example of
a widget is one that shows the current value of some sensor, such as the
current temperature. These widgets offer a great place to add the evolution
spectrograph, as will be discussed further in Section 5.2.

Figure 23: Example of an indicator widget in CommonSense. This particular
widget shows additional additional information about the currently selected
province.

5.1.2 Limitations

In Section 2.1.2 three types of analysis were listed which are desirable in
the context of ValueFlex. They were value oriented, time oriented, and
comparison oriented analysis. In its current form, CommonSense is not
particularly well suited to allow for any of these three types of analysis. The
first, where users attempt to find specific values such as extremes could
theoretically be done, but without any temporal overview, it would require
going back and forth through time to manually find these values. Time
oriented analysis is practically impossible, since there is no way to see how
data behaves over time. This shortcoming also makes dataset comparison
hard. While multiple datasets can be shown simultaneously on the map,
allowing them to be compared spatially, without a high level overview of the
data that includes time, it is hard to compare different datasets thoroughly.
Essentially the temporal support of CommonSense is very limited, which is
very important for the analysis required for large scale temporal geospatial
multivariate graphs.

CommonSense is also poorly suited for coping with large amounts of
features. Clearly, in the case of millions of households as simulated by the
ValueFlex project, there would be too many features to be able to distinguish
them when all the features are all displayed simultaneously on the map. The
CommonSense framework already contains a feature that attempts to solve
this problem by clustering points, as implemented by the JavaScript library
Leaflet.MarkerCluster [76]. This library coalesces points between which the
distance is below a given threshold into a single cluster point that represents
these individual points. This process is depicted in Figure 24. This process
can repeat itself, where a marker representing a cluster of points can be
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clustered again. By doing this one can set an upper limit to the point density
on the map. This approach unfortunately only works well with datasets
consisting purely out of points, since it is unable to cluster lines or polygons.
It is also required that these points only represent a location without any
further attributes, since these attributes becomes inaccessible after clustering,
and can only be viewed by zooming in far enough until the individual points
reappear. A temporal multivariate graph, such as an electrical grid, does not
satisfy either of these requirements. Components of the graph have many
attributes, and the edges can not be represented by a simple point. Because
of this, this solution will not be satisfactory for the kind of data considered
in this project.

(a) Two separate point markers (b) Two points markers grouped into a
single cluster

Figure 24: Point clustering functionality in CommonSense. Once two or
more point markers lie too closely together, these points are automatically
grouped into a single cluster point.

Another limitation is that the CommonSense framework currently does
not support selective retrieval of features. While different datasets are loaded
dynamically, these datasets are loaded in their entirety once selected by
the user. Loading the complete datasets discussed in this paper would be
problematic, as we have shown these can easily grow in the order of terabytes
in size. With the average computer having only in the order of gigabytes of
memory, it is impossible to send these entire datasets to users at once. This
is ignoring even other significant problems such as bandwidth limitations
and server capacity issues. To utilize the solutions discussed in the previous
chapter, not only must the aggregation and serving of data be implemented,
but new functionality is also required in the CommonSense framework.

5.1.3 Architecture

A high level overview of the relevant components of the architecture of
CommonSense is shown in Figure 25. The CommonSense framework uses
the AngularJS [77] toolset, or Angular for short. At its core Angular consists
of directives and services. Directives are markers on DOM elements, that
add functionality to, or transform these elements. By using directives func-
tionality can be added to raw HTML. CommonSense defines a set of these
directives and services which can be used to build a visualisation framework.
Services on the other hand offer common functionality that is needed in mul-
tiple locations of the application. In the context of CommonSense, directives
are mostly used for reusable interface components, such as the map, the
timeline and the attribute overview. These directives take care of displaying
their respective elements of the application on screen. This way a custom ap-
plication can be created easily by using a set of these preconstructed elements.

56



A specific subset of these directives are called widgets within CommonSense,
which are elements which are displayed in separate containers on top of the
rest of the framework. Examples of services used in CommonSense are the
translation service, the layer service and the communication bus service.

Figure 25: High level view of the relevant components of the architecture of
CommonSense.

Most important for this project are the communication bus service and the
layer service. While some communication occurs directly between widgets
and services, the communication bus service is used to announce events
throughout the framework, and allows components such as directives to
subscribe for these events. This is used, for example, when the time focus
point is changed using the timeline directive. This change has an impact
on what is visualised in other directives such as the map. Any component
affected by this subscribes for the appropriate event at the message bus,
to which the timeline directive posts a message once it receives user input
and changes the focus time point. This way individual components can be
decoupled from each other, but still respond to events such as changes to
viewing parameters.

The layer service is responsible for retrieving and storing data. This
service is named as such, due to the fact that data is structured in layers. This
naming convention comes from the fact that the CommonSense framework
is mostly geared towards GIS data, where different sets of data, such as
that of roads, political boundaries, and rivers, are considered as different
layers. In the case of our graph infrastructure datasets, one such a dataset
would be one layer. The layers are organised in groups, allowing layers with
related data to be grouped together in the user interface. These groups in
turn belong to a project, in which all application wide information is stored
such as the temporal parameters like the current focus time, and the extends
of the time range currently being analysed. This structure is shown in the
class diagram in Figure 26. In this diagram the type notation present in
TypeScript [78] was used, as this is the language in which CommonSense is
written.

The most important aspect of this diagram is the way the features are
stored, shown in the bottom half. Each feature has both a set of properties,
as well as a set of sensors, which are sets of name-value and name-array
pairs respectively. Any of the time independent attributes are stored in the
properties collection. The storage of time dependent attributes is slightly
more complex. The attribute values are stored in the sensors set. The
associated time stamps are stored separately in the timestamps array. There
are however two locations to store these timestamps, at the level of a feature,
or the level of a layer. Thus the same sampling can be used for an entire
layer, or an individual sampling for each feature. It does however enforce
different attributes of a single feature must be recorded at the same interval.

For each sensor, a property with the same name also exists. At all times,
the value of this property is kept equal to the nearest sensor value to the
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current time focus point. This task is left to the layer service. Understanding
this mechanic is important for understanding how new temporal data can be
inserted dynamically into CommonSense.

Figure 26: Simplified class diagram of data model in CommonSense.

How solutions proposed in this work are integrated into CommonSense
will be discussed next. First the visualisation aspects will be discussed, after
which the data solutions will be covered.

5.2 integration

This section will discuss how all the functionality discussed in the previous
chapters can be integrated into the CommonSense framework. First we
discuss the data management. How exactly the spectrograph was realised,
and what functionality it offers will be discussed next. After this an aug-
mentation to the timeline will be discussed. Finally the configuration of the
map element of CommonSense is explained.

5.2.1 Data management

Unfortunately, due to time constraints, the data solutions discussed in the
previous chapter could not be completely realised during the course of this
project. Work on this functionality has started, but no usable results have
been achieved at the time of writing. One factor in this is the documentation
of CommonSense, which is still preliminary due to the active development of
the framework. As a result, understanding the inner structure of Common-
Sense and integrating the visualisation additions was more time consuming
than expected. In this section ways for integrating the data solutions men-
tioned in the previous chapter into CommonSense will be discussed. Most
important for these solutions is that they integrate well into the Common-
Sense framework, and allow existing functionality to continue to work. It
must also be possible to use only the spatial or the temporal data solutions,
so that they can also be used for datasets which only contain large amounts
of spatial, or temporal data respectively. Unfortunately these solutions are
mere suggestions, and their effectiveness has not been verified.

Spatial

The layer service, as discussed before, is responsible for the management of
data. This service however relies on so called layer sources for the actual
retrieval of data from different kinds of sources. For example, there is a
GeoJSON source, but also a Web Map Service (WMS) source, which is a
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standard for serving map images. By adding a new type of layer source
which can cope with the data services proposed in Section 4.3, it would be
possible to easily integrate the spatial data retrieval into the CommonSense
framework. Hooking into Leaflet functionality may also be advantageous,
as Leaflet already deals with loading the right background tiles as the view
changes. As the background tiles use the same system as the data tiles,
when a background tile request is made a request for the same tile can
be made to the data server. Whichever approach is used, of course it is
important all requests are performed asynchronously as to not block the user
interface while new data is retrieved. It should be possible to query required
data aggressively and letting the browser worry about caching any request.
Browsers by default cache a lot of the data they request. If the data server is
set up correctly, a Last-Modified header can be send along with each tile.
The browser can send this information back on future requests, allowing
the server to determine whether a file needs to be send again, or the cached
version can be used, which would result in a 304 HTTP response.

Temporal

The temporal aspect can be solved in a similar way, by adding some sort of
temporal source manager to the layer service. This source manager must
make sure the right sensor data is attached to each feature by the time
the layer service updates the properties of features. It must also update
the timestamp arrays accordingly. In the case of temporal data we did not
propose to use a tiling scheme, unlike with the spatial data. Thus we can
not rely on the browser to perform the caching in this case. As such the
implementation at the client side must keep track of what data it has already
requested. In particular when shifting a small amount through time this can
save a lot of unnecessary data transfer. In this case it is not needed to retrieve
the entire time range selected by the user, but only the part of the time range
that was shifted into view.

5.2.2 Evolution Spectrograph

The evolution spectrograph visualisation has been implemented by adding
a new widget directive, as is indicated in Figure 27. By using a widget the
spectrograph can be visible simultaneously with the map, so that a linked
view environment is realised. It also allows the visualisation to be easily
moved and rescaled as the user desires. At the same time this keeps the
design modular, so that the visualisation can be easily added or removed
depending on a project its needs. This is important since not every project
that will use the CommonSense framework is temporal in nature.

Figure 27: The evolution spectrograph is implemented in CommonSense by
means of a widget directive.
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Figure 28: Evolution Spectrograph as realised in CommonSense.

To implement the evolution spectrograph efficiently, it was decided to
utilize WebGL [79]. Initially Three.js [80], a lightweight JavaScript library
which provides a low level abstraction layer over the WebGL renderer, among
others, was used to implement the rendering. OpenGL, and as its derivation,
WebGL, are notorious for requiring a large amount of boilerplate code even
for the most trivial of renderings. This library could potentially remove
large amounts of this boilerplate. Unfortunately, at the time of writing,
Three.js does not support triangle strips. As will be explained later this is a
desirable method of rendering in our case. In the past Three.js has offered
support for this rendering mode, and requests and pull requests have been
made to reintroduce the functionality [81]. However, as official support is
current lacking, Three.js was abandoned and instead raw WebGL has been
used in this work. The decision to use WebGL instead of for example a 2D
canvas or SVGs, was primarily made because of the better performance of
WebGL due to its acceleration by the GPU [82]. In early stages of the project
experimentations were done with SVG rendering, but a large number of
SVG elements was required to achieve an acceptable result. Using such a
large number of SVG elements lead to significant slow downs, with render
times of single images going over a second in some scenarios. These kind
of slow downs are unacceptable in an interactive application, since an user
no longer feels he is directly interacting with the data if a response takes
longer than 0.1 second [83, 84, 85]. Another benefit of using WebGL is that
the interpolation of the data can be performed by shaders, allowing the
computations to be off-loaded to the GPU instead of the CPU. The end result
is shown in Figure 28.

The black line on the evolution spectrograph indicates the current focus
time shown on the map. It is linked to the focus time indicator of the
timeline, shown in Figure 22, so any movements in the indicator on the
timeline translate to movements of the black line on the spectrograph. At
the top of the spectrograph an indication is given of the time range being
displayed on the spectrograph. It helps the user relate the information shown
on the timeline and on the map, to the information shown in the evolution
spectrograph. One may also notice a different colour map being used in this
figure than those presented previously in Figure 18. The colour map used is
based on a suggestion from the tool ColorBrewer.org [86]. This website offers

Figure 29: Colour map inspired by ColorBrewer.org [86].
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many different colour schemes with easily differentiable colours. While
these colour maps are primarily intended for class based data, they work
quite well for continuous data as well. These colour maps suffer less from
the perceptual issues discusses previously. The colour map used in the
spectrograph renderings shown in the remainder of the thesis will be the
one shown in Figure 29.

The spectrograph is also able to display multiple attributes, as was dis-
cussed in Section 3.1.2. This is achieved by effectively rendering multiple
spectrograph side by side, each showing the same time range, but each copy
visualises a different attribute. A feature is represented by a row in the
same vertical position in each of the spectrographs. The result is shown in
Figure 30. Each copy of the spectrograph has its own focus time indicator to
help relate the spectrograph to the other views.

Figure 30: The implemented spectrograph has support for showing multiple
attributes by rendering the same time range multiple times, but each time
depicting a different attribute of the feature.

Interaction

The evolution spectrograph offers a number of interactions. First of all, a user
is able to narrow down the time range they want to analyse. This interaction
is shown in Figure 31. By dragging over the evolution spectrograph, an

(a) During selection (b) After selection

Figure 31: The user can select a time range on the spectrograph by making a
horizontal selection.
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(a) During selection (b) After selection

Figure 32: The user can select a subset of features on the spectrograph by
making a vertical selection.

area bounded by dotted lines can be selected that spans the horizontal space
of the spectrograph, selecting a time range. The user is also able to select
a vertical range, as is illustrated in Figure 32, which results in a subset of
features being shown, both on the spectrograph and the map. The user can
switch between the two types of selection by holding or releasing a modifier
key. This allows the user to easily take a closer look at a specific interesting
time range, or set of features. Due to the linked nature of the visualisation
the timeline at the bottom of CommonSense is also updated accordingly, as
is the set of features displayed on the map. Finally, it is also possible to select
a feature through the evolution spectrograph. This will highlight the feature
both in the spectrograph and on the map, as well as show the attributes of
the feature in the attribute overview, shown in Figure 19. This helps identify
the spatial location of a feature shown on the spectrograph

Rendering

To achieve this result triangle strips were used to construct the rows making
up the image. Using this technique, given an array of vertices, the vertices
at index 0, 1 and 2 form a triangle; 1, 2 and 3 form another triangle; 2, 3

and 4 form the next triangle; etc. An example of this is shown in Figure 33.
Such a strip is constructed for each feature being displayed on the evolution
spectrograph. In Figure 33, x and v represent the x position of the vertices in
the column, and the value attached to those vertices, respectively. tn and vn
represent the n-th timestamp, and the value of the attribute being displayed

0 2 4 6

1 3 5 7

x = t0

v = v0

x = t1

v = v1

x = t2

v = v2

x = t3

v = v3

Figure 33: Triangle strip.
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at the n-th point in time. By setting the x position of the vertices equal to the
timestamp at which their value is defined, the relative position of the vertices
is automatically correct, and the time range shown in the spectrograph can
be easily manipulated by offsetting the camera by the time point which
corresponds to the left side of the current time range.

By assigning the values to visualise to the vertices, an OpenGL Shading
Language (GLSL) varying variable can be used to get linearly interpolated
values. This results in the values between any of pair of horizontal vertices
to be computed using the GPU. This way the original data is approximated.
One can compare the result to using nearest-linear mipmap filtering, as
the nearest version of the data is retrieved from the server, to which linear
filtering is applied to acquire the final value that corresponds to each pixel
on screen. The colour mapping then occurs in the fragment shader using
a one dimensional texture. By using a one dimensional texture to perform
the colour mapping, instead of interpolating the colours themselves, false
colours are avoided [87, Chapter 5]. False colours are colours which are not
present in the colour map used, but are created by interpolating two colours
which do exist in the colour map.

Rendering each individual row of triangles using a separate draw call
would introduce some additional overhead. To avoid this overhead degen-
erate triangles are used to stitch the triangle strips together, allowing all
of them to be rendered at once. At the end of each strip, four of these
degenerate triangles are added by repeating the last vertex of the current
strip, and the first vertex of the next strip. Consider the situations sketched
in Figure 34. With this approach, a index buffer for these vertices would look
like the following:

0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15

The four degenerate triangles consist of the vertices

6, 7, 7

7, 7, 8

7, 8, 8

8, 8, 9

These triangles are shown in Figure 34 in red. Since these triangles are
degenerate, they will not be mapped to any pixels in the final result. Only
the triangle strips making up the rows will remain.

By rendering the data in this way using triangle strips, values for each
feature can be defined at arbitrary points in time. As shown in Figure 34,

0 2 4 6

1 3 5 7

8 10 12 14

9 11 13 15

Figure 34: Multiple triangle strips, connected by degenerate triangles, which
are shown in red.
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different rows can have data starting and ending at different points in time.
In this particular example the data is defined at a set interval, but this is
also not a requirement for this approach. This freedom is important since, as
can be seen in Figure 26, each feature can potentially have a unique set of
timestamps at which its sensor values are defined. By using this rendering
technique this is fully supported, and no resampling is required prior to
rendering.

Precision

Rendering using this approach however leads to a problem. Timestamps
within CommonSense are millisecond precision integer numbers, giving
numbers in the order of 1012. Using these values as coordinates for vertices
leads to these vertices being extremely far away from the origin of the world.
Once converted to floats by the graphics pipeline, precision problems occur in
these very large values. This problem is extensively discussed by Thorne [88].
In this project the problem resulted in camera translations no longer being
fluent when zooming in to the level of minutes. For example, the timestamp
1296934200000, once converted to a 32 bit floating point number on the
testing system, results in the value 1296934240256. This is more than a 40

second shift from the original value. As a result, when attempting to shift the
camera at the level of seconds, by offsetting it by such a millisecond precision
number, nothing happened until the difference became large enough for
the millisecond precision number to be mapped to a different floating point
number.

To solve this problem, as proposed by Thorne, the data is moved towards
the camera, instead of the camera being moved to the data. The vertex
positions are translated to the origin before being send to the GPU. Since
this translation is performed before the data is sent to the GPU, the high
precision of JavaScript numbers is still available, and no error is introduced
in the shift. As a result when shifting, even when zoomed in at the level
of seconds, movements remain fluent. The downside of this approach is
however that this transformation takes place on the CPU, and has to be done
again each time the view changes. Normally these transformations are left
to the GPU as it is specialised to perform these kind of transformations in
a highly parallelised fashion. Fortunately, the performance decreases has
not turned out to be particularly problematic, as will be shown in the next
section.

Performance

One of the goals of the implementation is to offer a interactive platform
on which data can be analysed. As discussed before, any action by the
user should result in a response within 0.1 seconds for a user to feel like
they are directly interacting with the data. To verify this requirement the
performance of the rendering of the spectrograph was analysed. We consider
the evolution spectrograph specifically since it is the most computationally
expensive of the visualisations. To perform this analysis the Google Chrome
Developer Tools [89] were used. This set of tools includes a profiler, which
can be used to keep track of the run time of all functions in a JavaScript
program. As our testing platform, we used a desktop system containing an
Intel Quad-Core i5-2500k CPU running at 3.30GHz, and an NVIDIA GeForce
GTX 970 GPU. For testing we consider a scenario where the spectrograph is
displaying three attributes, of a dataset of 449 features with temporal data
over 7 days recorded at 5 minute intervals. As each spectrograph is drawn
separately this is roughly three times as intensive as a single spectrograph.
On this testing system, the rendering code took on average, over 41 calls,
18.32 ms. About 11.79 ms of this time is spend on shifting the data to avoid
the aforementioned precision issues. Clearly this easily falls under the 100 ms
requirement discussed earlier, even when including the shifting time.
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5.2.3 Timeline

Even with an indication of the current focus time on the evolution spectro-
graph, there is a disconnection between the controls used to manipulate
temporal parameters, and the view needed to guide these manipulations. A
specific event in the evolution spectrograph can not easily be mapped to a
date on the timeline. Because of this it was decided to augment the timeline
directive by displaying temporal data onto it, in the form of a chart. As
vertical space is limited, displaying the spectrograph itself on the timeline as
well would force many of the rows to be mapped to the same row of pixels,
resulting in a strongly aggregated result. Because this limited space requires
an aggregate regardless, it was decided to use a line chart. A line chart is bet-
ter suited to utilizing this limited vertical space to display values accurately.
Using this line chart an aggregate over the entire graph is displayed for each
time step. With the line chart the user immediately gets a rough indication
of what the data looks like at a specific point in time.

Which aggregate to use is however a though decision to make in the
general case. Simply averaging over all the values of all features is the easiest
solution, and does give the guidance this feature was implemented for.
However, any outliers in the data will of course be lost this way. One must
also realise that the data available in the browser is already an aggregate,
as was discussed in Section 4.4. If at that aggregation stage an average was
used, using a function such as the minimum or maximum will no longer
result in the actual minimum and maximum present in the original dataset.
While the average was used in the implementation, ideas for other functions
will be discussed in Section 7.3.3.

The realised timeline chart is depicted in Figure 35. To create it the
JavaScript library dc.js [90] was used. It is a charting library, which supports
crossfilter [91] for efficient exploration of large datasets. It uses D3.js [92]
for rendering. The line chart is attached to the timeline, displaying a line
chart over exactly the same time range as shown on the timeline. It also
shifts with the timeline as it is moved by the user. This allows the user to
easily see where in the shown time range interesting behaviour may occur.
The vertical axis of the chart is automatically scaled to the minimum and
maximum values found in the data.

Figure 35: Timeline chart, showing the average average speed over the entire
graph.

As with the spectrograph the timeline chart also supports showing mul-
tiple attributes, as is shown in Figure 36. Each different attribute is shown as
a separate line with a unique colour.

Figure 36: Timeline chart, showing the average average speed over the entire
graph.
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Interaction

As discussed previously the timeline offers the ability to shift through time,
zoom in out and, and select a time slice to visualise on top of the map.
No additional interaction has been build into the timeline element of the
analysis platform. It does however react accordingly when interacting with
for example the spectrograph. Choosing a smaller time range there updates
the time range shown on the timeline, and choosing a subset of features on
the spectrograph or map changes the set of data on which the timeline chart
is based.

5.2.4 Configuration

A number of useful features were already present in CommonSense, such as
the interactive map and the attribute panel discussed in Section 5.1.1. The
implementation of these elements was not modified over the course of this
project. For them to function correctly however, they need to be configured.
This involves declaring attributes, styling features and choosing background
layers.

To use CommonSense effectively, one needs to tell it what kind of attrib-
utes a feature can have, and how to display these. For each type of feature,
for example buses and branches, one needs to declare a FeatureType, which
specifies the name of the type, its styling, and its attributes. This styling
specifies properties such as the icon to use, opacity, and the fill and stroke
colours to use when not colour mapped. For each of the attributes, one
needs to specify a label which will be used in for example the attribute panel.
CommonSense also needs to know whether an attribute is text, numerical or
a date. With this information CommonSense elements can apply appropriate
styling when displaying the attribute values. Finally, it is possible to specify
whether an attribute should be shown in the attribute panel or not. This is
useful for attributes such as the unique identifier discussed in Section 4.4,
which are required by the application, but are not important for an end user
to view.

Finally a choice of background layer is also important, since the structure
of the graphs will be rendered and colour mapped on top of this. If a colour
in the colour map is also used in the background layer, this may result in the
graph being hard to see. See for example Figure 37a. The parts of the graph
which are colour mapped to white are very hard to distinguish from the
roads shown on the background layer, which are also shown in white. Many
of the background layers found by default in the CommonSense framework

(a) Graph rendering on a light back-
ground layer.

(b) Graph rendering on a dark back-
ground layer.

Figure 37: The choice of background layer has a large impact on the visibility
of the graph rendering.
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are very light, causing issues with the colour map function shown in the
figure. Because of this a new background layer option was added, Dark
Matter [93], which is shown in Figure 37b. This is a background layer created
and hosted by CartoDB. On this layer the graph can be clearly distinguished
from the roads.

5.3 discussion

CommonSense already offers some useful functionality, such as the inter-
active map, attribute panel, a timeline and filters. It is however severely
lacking in its ability to cope with large datasets, and its features geared
toward temporal exploration are limited. Two temporally oriented features
were added successfully to the framework to solve the latter problem, but
unfortunately due to time constraints no support for large datasets could be
added to CommonSense.
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6E VA L U AT I O N

In this chapter, the realised solution is evaluated to determine the success
of this work. In Section 2.1, three types of analysis were discussed which
are desirable in an analysis solution; value oriented analysis, time oriented
analysis and comparison oriented analysis. To evaluate whether the imple-
mented solution succeeds at offering these types of analysis, the solution
has been used to analyse two datasets. The observations made during these
analyses will be reported next.

6.1 requirement satisfaction

Unfortunately the development of the ValueFlex project has come to a tem-
porary halt halfway into this project. As a consequence no dataset is available
of a large scale electrical grid simulation. However, other datasets can be
used to verify the effectiveness of the analysis solution created in this work,
since the developed solution has been set up in a generic way to allow its use
with future projects. An unfortunate consequence however is that for these
different datasets no expert is available to provide questions a potential user
would wish to ask, nor can any conclusions be verified. To verify the solution,
two datasets have been used. The first is a dataset of the gas distribution
network of the island Texel in the Netherlands. The second dataset contains
traffic information of major roads around the city of Aarhus in Denmark.
Both these datasets will be analysed in the following sections.

According to the work of Telea, the goals of visualisation can be categor-
ised into two groups [87]. The first goal is to find an answer to concrete
questions, which generally have a concrete answer such as a single number,
while the second is to find facts about a given problem that we were not
aware of. The analysis described in the following sections will primarily
focus on the analysis of the second type. Instead of trying to answer concrete
questions, the approach used in these sections is to view an overview of the
dataset, and from there investigate any oddities and patterns that stand out.
This may lead to questions of the first category. This way we hope to still
prove the validity of the proposed solutions by showing how a wide range
of questions can be answered using the implemented solution, even if the
originally intended data source is not available.

6.1.1 Gas distribution network Texel

The gas distribution network datasets contains simulated data of the pressure
within the various pipes of the gas network of Texel over the course of two
days, measured at 15 minute intervals. Three different types of pipes are
distinguished, high pressure, medium pressure, and low pressure. For each
of these pressures the dataset contains, from high to low pressure, 265,
1536 and 18999 pipes. This gives us 50.880, 294.912 and 3.647.808 recorded
pressure values respectively, for a total of 4.105.728 pressure values. For each
pipe the geographic coordinates of its beginning and end are provided.

This dataset has been split up into three disjoint datasets, where each
contains the pipes of a given level of pressure. This was done for two reasons.
First of all, without the dynamic data serving solution, the CommonSense
application is not capable of visualising this amount of data all at once. On
our testing setup which uses the browser Google Chrome, when loading
just the low pressure parts of the network, the browser aborts the web
application as a result of memory issues. Because of this during analysis
only the medium and high pressure parts of the network have been used.

69



Secondly, the pressure values found in the different subsets have relatively
small variation, but the median pressure is very different. Therefore, when
attempting to display these values simultaneously using a single simple linear
colour map, all pressure values of the same subset will be effectively mapped
to the same colour. This is because the differences in pressure between
elements of one subset are negligible when compared to the differences
in pressure between the subsets. While solutions exist to circumvent this
problem, such as the use of a non-linear colour mapping function, currently
the implementation does not support such functionality.

Figure 38 contains a screenshot of CommonSense showing an overview of
the medium pressure elements of the gas network. The spectrograph in this
figure is sorted by the average pressure of each pipe, with the lowest average
pressure pipes at the top and the highest pressure pipes at the bottom. A
clear pattern immediately becomes apparent in this dataset by looking at the
spectrograph and the timeline chart. In particular on the timeline chart, in
the morning of both the days present in the dataset we can see the pressure
over the entire network going down, creating a minimum around 8 AM.
This drop can be explained by people getting up for work, at which point
they turn on the heating and take a shower. After this initial spike the
pressure goes up a bit again, although not quite to the same level which is
reached during the nights. In the evenings when people come back home
after work a similar drop is visible as the one occurring in the morning, as
consumption again increases as people turn on the heating and start cooking
dinner. The pressure clearly shows a pattern that repeats on both days, which
is explained by the behaviour of the island its inhabitants.

Figure 38: An overview of the medium pressure gas network dataset of the
island Texel visualised using CommonSense. The spectrograph is sorted by
the average pressure of each pipe, with the lowest average pressure pipes at
the top and the highest pressure pipes at the bottom.

On the spectrograph it becomes apparent this pattern occurs over the
entire network, but the local minima and maxima are not equal across all
elements of the network. In particular during the day, elements that appear
near the top of the spectrograph show a drop in pressure, while the pressure
for those elements that appear at the bottom of the spectrograph remains
almost constant. The map gives a rough indication of where the elements
with the highest and lowest pressure appear on the island as the pressure of
the pipes is colour mapped onto them. The pressure appears to be higher
centrally and lower near the edges of the island. By selecting a subset of the
dataset on the spectrograph, the subset that contains only features from the
top or the bottom of the spectrograph, we can easily see where exactly the
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(a) Selection of lowest pressure pipes (b) Location of lowest pressure pipes

(c) Selection of highest pressure pipes (d) Location of highest pressure pipes

Figure 39: The location of the lowest and highest pressure pipes on the
spectrograph can be identified by selecting them.

low and high pressure parts are located. The selections and resulting map
views are shown in Figure 39. The fact that the high pressure parts have a
more constant pressure than the rest of the medium pressure network can
be explained by viewing the high pressure part of the network, as is shown
in Figure 40. The medium pressure parts that remain constant are close to
the points where the high and medium pressure networks are connected. As
new gas is fed into the medium pressure network from the high pressure
network, the pressure hardly drops at all.

From the spectrograph it becomes apparent there are no significant
temporal outliers or events, as there appear to be no sudden changes in
the pressure of any of the features in this dataset. Each feature behaves very
similarly over time, with pressure values changing smoothly. This is most
likely because the measurements in this dataset do not originate from actual
sensors, but from a simulation. This results in the data being very clean,
with pressure values almost always strictly increasing or decreasing towards
the next minimum or maximum.

6.1.2 Traffic data Aarhus

The second dataset analysed using the tool developed in this thesis is a
traffic sensor dataset of the CityPulse project [94]. The main objective of the
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Figure 40: Location of the pipes of the high pressure network.

CityPulse project, as described by their website, is to “develop, build and test
a distributed framework for the semantic discovery and processing of large-scale
real-time IoT [internet of things] and relevant social data streams for knowledge
extraction in a city environment”. They provide a number of datasets on their
website for use under the Creative Commons Attribution 4.0 International
license. Among these datasets are three datasets which contain the traffic
sensor data of major roads around the city of Aarhus, Denmark. Each dataset
describes a different time range. In this work the dataset describing the
months October and November in 2014 is used.

This dataset contains the average speed, average travel time and vehicle
count for 449 road segments, where both sides of the road are considered
separate segments. These attributes are recorded every 5 minutes over this
two month interval, although as will be demonstrated shortly data is not
always recorded. Once again the entire dataset proves to be too much for the
CommonSense application without the dynamic retrieval system in place,
thus a subset was used. Because of this only the first week of this dataset was
used, which describes the days of Wednesday October 1st 2014 till Tuesday
October 7th 2014. For comparison, this subset has 646.496 recorded values
for each of the individual attributes, whereas the whole dataset has 4.383.048
values. This means these datasets have 1.939.488 and 13.149.144 total data
values respectively.

The meta data of the dataset describes where the start and end points
of each road segment are located in the real world. Unfortunately, no
accurate geometry was provided. Simply drawing straight lines between
the start and end points results in lines that poorly match the real world
geometry of the roads they describe, as shown in Figure 41a. Real world
roads often do not follow straight lines, especially near cities. The problem
is aggravated because many of the road segments measure traffic across
junctions, which appear as sharp corners on a map. However, by querying
the Google Directions API [95], which provides a route between any two
given points, a more accurate geometry has been retrieved. The result is
shown in Figure 41b. Which form is preferred depends of course on the
user. Some user may be simply interested in the rough structure of the
network, and less so in the exact location of all the pieces. In this case the
former layout may be preferred. Personally, we believe the more accurate
representation is favourable in this situation, as the map is used as a tool
to relate the data back to the real world, which is easier when the drawing
most accurately represents its real world counterpart. Because of this the
accurate roads are used in the following images.

An overview of the Aarhus dataset is shown in Figure 42. In that screen-
shot the spectrograph and timeline chart show the average speed attribute of
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(a) Straight lines between road segment
start and end points

(b) Line geometries retrieved from the
Google Directions API

Figure 41: The CityPulse dataset only describes the start and end points of
road segment, which when directly connected results in poorly the drawn
lines poorly matching the roads they describe. By using the Google Directions
API more accurate road geometries were realised.

the road segments. The spectrograph is sorted by average speed, arranged
in ascending order from top to bottom. It immediately becomes apparent
this dataset is much more noisy than the gas dataset, as the values shown in
the spectrograph and timeline chart show many small fluctuations. This is
most likely due to the fact that this is a real world dataset, measured using
sensors, as opposed to being generated by a simulation. It does however
also show similarities with the gas dataset. In particular on the timeline
chart, it becomes apparent this dataset also contains a daily repeating pattern.
The average speed drops twice throughout the day, around 8 AM and 4

PM, which obviously correlate to the peak hours during which most people
commute between home and work. Annotation A in Figure 42 highlights
these drops in speed for the first two days. The same behaviour can be seen
in vertical lines in the spectrograph, but it is easier to identify on the timeline

Figure 42: An overview of the traffic datasets of major roads around the city
of Aarhus. On the spectrograph and timeline chart the speed attribute of
the road segments is shown. The spectrograph is sorted by average speed,
arranged in ascending order from top to bottom. Interesting patterns in the
visualisations are annotated in red.
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chart. Unexpectedly, these drops do not appear during the weekend. The
average speed still clearly fluctuates, but there are no large sudden drops
at any hour of the day. This is of course because most people do not work
during the weekend, thus resulting in less traffic on the roads which allows
for better traffic flow.

Both in the spectrograph and the timeline chart three time ranges appear
where the values change suspiciously smoothly relative to the rest of the data.
These ranges are indicated by annotation B in Figure 42 on both visualisations,
where B1, B2 and B3 refer to the same time range on both the spectrograph
and the timeline chart. While over the entire time range both visualisation
show constant small fluctuations, here the values suddenly change linearly
over time. The first time range where this happens actually covers the 8 AM
rush hour, so clearly a significant change similar as shown on the other days
would be expected. A quick peek at the raw data informs us there is actually
no data available at these time ranges. Apparently there was some issue
which resulted in the loss of this data. Both the spectrograph and timeline
chart visualisation tried to reconstruct the missing data through interpolation.
As simple linear interpolation is used, this results in smooth transitions which
stand out from the other data which is constantly fluctuating. Some parts
of these ranges, such as the second half of the first smooth period, and the
entire third smooth period, do contain fluctuations on the timeline chart,
while the spectrograph still appears smooth. This is because just a few of
the sensors start reporting values again. Thus a new graph wide average
can be computed, while most part of the graph will still show the linearly
interpolated values.

A seemingly related observation is some constantly coloured horizontal
bars in the spectrograph. An image highlighting a number of these horizontal
bars is shown in Figure 43. The spectrographs in this image are again sorted
by speed. These bars seem to suggest the average speed remains perfectly
constant on some road segment. This is however caused by another peculiar
behaviour in the data. The bottom spectrograph in Figure 43 gives an
enlarged view of a small section of the top spectrograph, giving a detailed
view of one of such horizontal bars. Clearly the speed remains perfectly
constant for a significant portion of time. When also viewing the vehicle
count attribute, which is shown on right hand side of the spectrograph, a
strong correlation appears. Each time the speed remains constant, the vehicle
count part of the spectrograph is white, which corresponds to the value zero.
While one might expect the recorded speed to become zero when there is
no traffic, the sensor appears to keep reporting the same speed over and
over until a new car passes by. Only then the average speed is updated.
As a result these horizontal bars appear where the speed remains perfectly
constant. A keen observer may have noted these bars all appear in vertical
columns. Unsurprisingly, these columns correlate to the nights. Especially in
the vehicle count part of the spectrograph the nights show a clear contrast
to the days. It is unsurprising these period where no cars are registered
primarily occur during the nights. As a result, these horizontal bars mostly
appear during the night time.

The spectrograph can also show other correlations between attributes. In
the case of the CityPulse traffic dataset, all attributes are strongly correlated,
as can be seen in Figure 44. This figure shows all three attributes present
in the CityPulse traffic dataset; the average speed, the average travel time
and the vehicle count; both on the evolution spectrograph and the timeline
chart. While the use of a shared y axis on the timeline chart does reduce
the visibility of the correlations somewhat, the timeline chart does shows
a strong correlation between the three attributes. The speed is inversely
correlated with the vehicle count and travel time, and the vehicle count and
travel time are positively correlated. This is of course to be expected. As
the vehicle count goes up, roads becomes busier, which reduces the average
speed. As the speed decreases, naturally the travel time increases. Thus all
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Figure 43: Two snapshots of spectrographs showing the CityPulse traffic
dataset, both sorted by average speed, with rows arranged in ascending order
from top to bottom. Both spectrographs show two attributes; the average
speed on the left, and the vehicle count on the right. On the top spectrograph
horizontal bars exhibiting constant colour are highlighted in red. The bottom
spectrograph shows a zoomed in view of one of these horizontal bars.
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Figure 44: Overview of the CityPulse traffic dataset showing all three of
the attribute, average speed, average travel time and vehicle count, on the
evolution spectrograph and timeline chart. Rows are sorted in ascending
order by average speed, including those visualising the travel time and
vehicle count.

three attributes are expected to be correlated. The existence of this correlation
can also be confirmed using the spectrograph. As the darkest rows appear
near the bottom in the average speed column of the spectrograph, where
the speed is highest, these same rows are the lightest in the case of the
average travel time, indicating a relatively low travel time. These same rows
are also dark in the vehicle count column, as higher speeds allow for more
throughput. However, not all individual rows show this same pattern. For
example, one dark purple line appears near the bottom of the average travel
time column. This is of course because the travel time does not depend solely
on the speed at which vehicles drive on a given road segment, but also its
length. This dark line in particular belongs to the long road which lies south
of Aarhus. This road forms the longest road segment in this dataset, thus
naturally the average travel time will be above average on this road.

One more oddity that appears in the visualisation is some sharp spikes
on the timeline chart. One may notice these spikes happen primarily near
the areas with missing data, as indicated in Figure 42. In particular near
the first of these time periods where data is missing one may notice on the
evolution spectrograph that the sensors in some of the road segments have
started reporting values again sooner than others. This means that at some of
the timestamps, only a limited number of values is recorded. Unfortunately,
due to the way the timeline chart is constructed, this leads to this erratic
behaviour in the chart. It is constructed by first finding all the time points in
the dataset at which a value is recorded. The algorithm then simply takes
all the values recorded at each time point, and averages them. This clearly
leads to values that misrepresent the average of the network, as during these
periods with missing data, only a small number of values are recorded. Thus
the resulting average is computed using only a small subset of the network.
As more sensors start reporting data again, the average stabilizes again.

Thus these spikes are caused by a limitation of the implementation. The
timeline chart is not currently designed to cope with missing data. A non-
trivial question is however what the expected behaviour is in the case of
missing data. The answer will depend on the specific dataset being visualised,
as the cause and meaning of missing data depends strongly on the context of
the data, and the goals of a user. Does a user wish to know which sensors are
failing to report data, then the visualisation should attempt to highlight parts
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of the dataset where this problem occurs. Does the user however expect a best
approximation of the missing data, the application should instead attempt to
reconstruct the data. However even then many different techniques could be
used to perform this reconstruction. The quantity of missing data may also
be a factor. While here the entire network of sensors stops reporting values,
which may be useful to be informed about, a single missing value from one
sensor may be less important. Thus context is important. In the general case,
it will even be impossible to decide whether data is in fact missing, or that
the frequency at which values are recorded is simply strongly erratic. A
feature to highlight areas with missing data may be desirable, for example by
shading the timeline chart by which percentage of the features contributed
to an average, but even then it must be left to the user to define exactly when
data is in fact missing.

6.2 discussion

In this chapter we have shown how the solution discussed in this thesis can
be used to analyse temporal geospatial multivariate graph datasets. While
we were unable to test the solution on datasets of the scale we originally
intended, we have clearly shown how the visualisations can be used to
perform both value oriented and time oriented analysis on moderately sized
datasets. The addition of the data management system should however
not introduce significantly different results, due to the simple fact that
no larger amount of data could be viewed simultaneously than was done
during the evaluation. The introduction of the data management system
would merely result in the ability to view differently detailed versions of
the data. We identified different patterns that emerged over time, such
a daily repeating patterns. We also explained observations by looking at
specific vehicle count values. The third type of analysis, comparison oriented,
has however not been evaluated. Unfortunately, we found no appropriate
alternative dataset which allows us to perform a meaningful comparison
analysis. While functionality is present to allow for this, the effectiveness
of it remains unproven. The implementation also showed some limitations,
such as its inability to support non-linear colour mapping functions, and the
lack of functionality to highlight missing data.
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7
D I S C U S S I O N A N D C O N C L U S I O N S

This chapter first discusses the results achieved in this work in Section 7.1,
and compares the results to what was out lined in Chapter 1. We will also
answer the research questions in Section 7.2, and share some ideas for future
work in Section 7.3.

7.1 discussion

We set out to create an interactive analysis platform for large scale tem-
poral geospatial multivariate graphs in a web-based environment, using
the CommonSense framework. While we succeeded at some of these goals,
we unfortunately did not achieve everything we hoped to. In particular
the support for large scale graphs, while thoroughly investigated and a
promising solution was found, has not been realised in the actual imple-
mentation. As such we could not verify the success of our proposed data
management solutions. As such the datasets used during the evaluation
were of a smaller size than originally intended, but we believe it to be likely
similar results would be achieved using larger datasets. We successfully
integrated our visualisation ideas into the CommonSense framework, even
though this often proved challenging due to preliminary documentation.
These ideas include a highly detailed temporal view called the evolution
spectrograph, which to our knowledge is a novel approach for large scale
temporal geospatial multivariate graphs visualisation, in particular when
combined with an interactive map. While we were unable to test our solution
on the originally intended use case, nor have we tested the solution at the
scale we originally intended, we have shown that the additions we proposed
can be used effectively to analyse temporal geospatial multivariate graphs
of up to a moderate size in a web-based environment, proving the solutions
can be applied on these types of graphs in general, not just electrical grids.

7.2 conclusion

In this work we have shown an answer to the main research question: “How
can a large scale geospatial temporal multivariate graph be visualised,
allowing interesting behaviours and pattern to be analysed, in a real time,
interactive and generic way in a web based environment?”.

To answer this question, we first discussed a number of different visual-
isation solutions, each of which had their own advantages and disadvantages.
As there are many aspects to large scale geospatial temporal multivariate
graph datasets, we found it best to have visualisation focus on only a few of
these aspects. Some are more focused on finding correlations, while others
show the relations of the graph. With the spatial aspect of the graph being
covered by functionality in the existing visualisation framework, this work
focused more visualisations that help gain insights in other aspects of these
graph datasets. We proposed to use the evolution spectrograph, since it gives
a very detailed view of the temporal behaviour of individual components
of a network, and with some tweaks could even support multiple attributes
and the detection of correlations.

We also investigated the size of the datasets we wanted to analyse with
these solutions, and how to cope with such large volumes of data in a web
environment. The graphs considered in this work are too large to display in
a browser directly, being able to grow into the terabytes in size. They contain
too many features, and too large time ranges, for which there simply are not
enough pixels available on a conventional screen to display it all. Transferring
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these amounts of data is also impossible in a real time setting, nor can it be
stored in a web environment. By aggregating, storing and serving the spatial
and temporal aspect of the datasets separately, these problems were dealt
with. Many different options exist for these steps, and the exact solution that
should be used depends on the data.

To verify the effectiveness of the proposed solutions, they were imple-
mented. Integrating these proposed solutions into CommonSense turned
out to be challenging and time consuming. Working with new unfamiliar
frameworks, libraries and languages, as well as preliminary documentation
meant the realisation took more time than initially expected. As a result
only the visualisations discussed in this work were implemented. A way to
integrate the data management part is proposed, but the implementation is
left to future work.

The success of the proposed visualisation solution has been shown in
this work by analysing two real-world datasets which fit the description of
temporal geospatial multivariate graphs. The realised visualisations allowed
for the discovery of several interesting and potentially important unknown
facts in the analysed datasets. While the realised solution does not cater
equally well to all the types of analysis that are desired, it does add signi-
ficant analysis options with respect to temporal data to the CommonSense
framework.

7.3 future work

While working on this project many opportunities presented itself to add
more functionality, or improve the functionality discussed throughout the
thesis. Unfortunately, there was not enough time to explore each of these
opportunities. In this section some possibilities for future work, including
some of the most promising additions and improvements are discussed.

7.3.1 Verification

Unfortunately we were unable to verify all proposed functionality in this
work. In future work it would be important to verify some of the suggestions
made. Primarily this of course means verifying the solutions proposed to
support large datasets in CommonSense should be implemented and tested.
Significant amounts of work went into the research of these solutions, thus it
is very unfortunately these were never realised. We were also unable to verify
how well the implemented solutions can be used to perform comparison
oriented analysis. Unfortunately we did not have the right datasets to
perform any kind of meaningful comparison oriented analysis. Future work
could search further for an appropriate dataset.

7.3.2 Additions

One way to further improve the analysis capabilities of the framework
would be to add additional visualisation options. These additions could
focus on any aspects of the data. An example would be to extend the map
visualisation, by computing an estimate of a scalar field of an attribute of the
graph. This opens up a lot of possibilities for visualisations, such as a heat
map, contour lines, or glyphs. These techniques may be interesting when
the dataset contains observations of a set of sensors. This is different from
the datasets considered in this thesis, in that attributes measured at a pipe
or cable make no sense when interpolated in the middle of an empty field.
In the case of sensors which, for example, measure the quality of the air,
the sensors give exact measurements at those locations, but the measured
attributes are also well defined in other locations, just not measured.
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As part of this project the company Phase To Phase was visited, which is
based in Arnhem, the Netherlands. This company specialises in developing
tools for the analysis, design and monitoring of electrical grids. They were
kind enough to show some of their latest developments for the visualisation
of electrical grid data. While none of the ideas were directly implemented in
the CommonSense framework during this project, some of their ideas are very
interesting and could be implemented in a future work. For example, they
provide functionality that improves the users ability to relate a location on the
map to a real world location. Given a highly detailed spatial dataset of, for
example, an electricity or gas network, it may be interesting to visit the real
world locations which appear problematic during analysis in CommonSense.
They integrated a street view service such as Google Street View [97], which
results in a more accurate mapping between the data and the physical
location it refers to can be achieved. They improve on this even further
by augmenting the street view by a precise indication of the the physical
location of the object, as shown in Figure 45.

The visualisation could also be extended to use a three dimensional
rendering as opposed to the flat two dimensional map currently being
used. This could allow the third dimension to be used to display temporal
information, for example by using 3D icons, as shown in Figure 46 from
the work of Tominski et al. These 3D icons could be used to display the
temporal behaviour of a single feature at the location of the feature, so the
user does not have to first identify the feature in the evolution spectrograph.
The pencil shown in Figure 46a can visualise one attribute per face of the
pencil, encoding time along the length of the pencil. The helix icon, shown in
Figure 46b, is constructed similarly, where time progresses along the ribbon.
This icon is particularly well suited for cyclic data, such as that shown in the
calendar views in Section 2.2.5. With that type of data, each revolution of
the ribbon could represent a single day, lining up the same point of time of
each day in a vertical column. Another master thesis project at TNO actually
already looked into the possibility of adding three dimensional visualisations
to the CommonSense framework. Some of his results are shown in Figure 47,
in which he utilized the third dimension to visualise an additional attribute
of polygons by using height.

Figure 45: Example of an augmented street view rendering. In this image,
the location of power lines is indicated by coloured lines. Source: Verbree et al.

“Interactive navigation services through value-added CycloMedia panoramic images”
[96]
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(a) Pencil icons (b) Helix icons

Figure 46: 3D icons can be used to display additional information regarding
a location on the map, where time is encoded along the length of the icon.
Source: Tominski et al. “3d information visualization for time dependent data on
maps” [98] © 2005 IEEE

7.3.3 Improvements

The implementations discussed in this thesis also have some room for im-
provement. The user could be given more control over the visualisation, and
more interactions could be added.

While exploring, queries need to be kept small to keep the application
interactive, but while the user is leaving the view stationary, this time could
be used by the application to retrieve more detailed information. Spatially
this must be done very carefully, since using a too detailed representation of
the network can easily result in the map being cluttered. However temporally,
especially in the case of the timeline graph, there is more screen estate for
additional information. This can improve the preservation of details in the
data.

This work did not focus on creating a user friendly solution. There are
plenty of opportunities to improve the user experience user experience. One
aspect is consistency. For example, currently the user is only able to select
a time range on the evolution spectrograph, not on the timeline or timeline
graph. Similarly, the user is able to drag the timeline to shift the focus
time range through time. This same behaviour is lacking in the evolution

Figure 47: Example of the three dimensional rendering capabilities added to
CommonSense by Lukas de Boer.
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spectrograph. Also the ability to change the temporal focus point, present on
the timeline, is missing on the spectrograph. By making these interactions
more consistent, using the application becomes more intuitive, as opposed
to having to learn how to use each view from scratch.

By allowing the user to customize more aspects of the visualisation, it
could also be tailored more specifically to the users needs. For example,
the colour mapping function is currently set by CommonSense itself, using
the minimum and maximum values of a dataset. By allowing the user to
customize the minimum and maximum values used to map values to the
colour map, clamping any values outside of the range to the minimum or
maximum, details of interest to the user can be made more pronounced by
increasing the colour differences between them. For example, consider a
scenario where all values between 0 and 1 signify everything is operating
normally, and any values higher than 1 indicate a problem. The range of
values which are most interesting then starts at 1, instead of the value of 0

chosen by CommonSense. Part of the colour map is then essentially wasted
on uninteresting data. Allowing the user to choose how values are mapped
to colours would solve this problem.

Another addition would be to compute multiple version of the temporal
data using different aggregation functions, such as the minimum, the max-
imum, the variance, or any other metric of interest in a particular project.
In the current implementation only one aggregation function is provided,
resulting in only one version of the temporal data. By computing multiple
aggregations, the user could then be given the option to choose between
these aggregates dynamically within CommonSense. This could improve the
ability to find time points or ranges of interest.

Another potential area of improvement is the spatial aggregation al-
gorithm. Currently cluster selection purely looks at spatial proximity. The
resulting clusters represent a cell of the spatial quad tree. The locations of
these cells are however very arbitrary, as they have no connection to any real
infrastructure. If for example a city happens to lie exactly on the boundary of
two cells on which the graph is simplified, the city will be represented by two
separate clusters, while a single cluster for the city would be more intuitive.
By selecting clusters based on real world infrastructures, this problem could
be avoided. For example, clustering could be done on the level of countries,
provinces, towns, villages, district, streets or even households. By clustering
this way the resulting clusters represent well defined physical regions, result-
ing in a more natural simplified infrastructure. Some challenges need to be
overcome however. By aggregating this way it becomes harder to acquire a
desirable level aggregation, as there are only so many natural simplification
’levels’ available, with nothing in between. Some cities or streets may also
be very elongated, or even crescent shaped, which makes describing them
well by a single point hard. This solution also requires accurate descriptions
of the regions to simplify by. While datasets such as CitySDK [99] exist,
acquiring such data for the entire world will be challenging. Finally, not all
areas are equal in size, some countries are much smaller than others. This
may result in many more aggregated points in some areas than in others.

Another aspect of spatial aggregation that could be investigated further is
the different types of sub networks present in infrastructures. Gas networks
use different pressures for different parts of the network, high pressure for
long distance high volume transport, and lower pressures at the consumers.
Similar concepts consist in infrastructures such as electrical grids, water
supply networks and road systems. Generally, the higher throughput con-
nections are less common, but most important for the overall structure of
the graph. At a high level they describe how producers and consumers are
connected. One could argue these connections are more important than
lower throughput connections when viewing an overview of a network.
Potentially aggregation could prioritise preserving these high throughput
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connections in the aggregated result, and focus primarily on aggregating the
lower throughput elements.

84



B I B L I O G R A P H Y

[1] Daniel Archambault, James Abello, Jessie Kennedy, Stephen Kobourov,
Kwan-Liu Ma, Silvia Miksch, Chris Muelder, and Alexandru C Telea.
Temporal multivariate networks. In Multivariate Network Visualization,
pages 151–174. Springer, 2014.

[2] A Johannes Pretorius and Jarke J Van Wijk. Visual inspection of mul-
tivariate graphs. In Computer Graphics Forum, volume 27, pages 967–974.
Wiley Online Library, 2008.

[3] Nederlandse Aardolie Maatschappij. Gebouwsensoren. http://www.

namplatform.nl/bouwkundig-versterken/gebouwsensoren.html,
march 2014. [Accessed 2015-09-02].

[4] TNO. CommonSense Map (csMap). https://github.com/TNOCS/

csMap.

[5] Esri. ArcGIS Help - Features. http://resources.arcgis.com/EN/

HELP/MAIN/10.1/index.html#//000n00000070000000.

[6] StatCounter. Global stats, July 2014 - July 2015. URL
http://gs.statcounter.com/#desktop-resolution-ww-monthly-

201407-201507-bar. [Accessed August 5th, 2015].

[7] Günther Brauner, Wiliam D’Haeseleer, Willy Gehrer, Wolfgang Glaun-
singer, Thilo Krause, Henning Kaul, Martin Kleimaier, W L Kling,
Horst Michael Prasser, Ireneus Pyc, Wolfgang Schröppel, and Waldemar
Skomudek. Electrical power vision 2040 for europe. A Document from
the EUREL Task Force, 2013.

[8] Omroep Gelderland. Het is gelukt: Lochem zit zonder
stroom. http://www.omroepgelderland.nl/nieuws/2088183/Het-is-
gelukt-Lochem-zit-zonder-stroom, 2015. [Accessed 2015-08-19].

[9] PowerMatcherSuite. The flexible power application infrastruc-
ture. URL http://flexiblepower.github.io/technology/fpai/. [Ac-
cessed 2015-08-19].

[10] Roger C Dugan, Mark F McGranaghan, and H Wayne Beaty. Electrical
power system quality. New York, NY: McGraw-Hill,| c1996, 1, 1996.

[11] IEEE recommended practice for monitoring electric power quality. IEEE
Std 1159-2009 (Revision of IEEE Std 1159-1995), pages c1–81, June 2009.
doi: 10.1109/IEEESTD.2009.5154067.

[12] Christophe Hurter, Ozan Ersoy, Sara Irina Fabrikant, Tijmen R Klein,
and Alexandru C Telea. Bundled visualization of dynamicgraph and
trail data. Visualization and Computer Graphics, IEEE Transactions on, 20

(8):1141–1157, 2014.

[13] Cesim Erten, Philip J Harding, Stephen G Kobourov, Kevin Wampler,
and Gary Yee. Exploring the computing literature using temporal graph
visualization. In Electronic Imaging 2004, pages 45–56. International
Society for Optics and Photonics, 2004.

[14] Ramana Rao and Stuart K Card. The table lens: merging graphical and
symbolic representations in an interactive focus+ context visualization
for tabular information. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 318–322. ACM, 1994.

85

http://www.namplatform.nl/bouwkundig-versterken/gebouwsensoren.html
http://www.namplatform.nl/bouwkundig-versterken/gebouwsensoren.html
https://github.com/TNOCS/csMap
https://github.com/TNOCS/csMap
http://resources.arcgis.com/EN/HELP/MAIN/10.1/index.html#//000n00000070000000
http://resources.arcgis.com/EN/HELP/MAIN/10.1/index.html#//000n00000070000000
http://gs.statcounter.com/#desktop-resolution-ww-monthly-201407-201507-bar
http://gs.statcounter.com/#desktop-resolution-ww-monthly-201407-201507-bar
http://www.omroepgelderland.nl/nieuws/2088183/Het-is-gelukt-Lochem-zit-zonder-stroom
http://www.omroepgelderland.nl/nieuws/2088183/Het-is-gelukt-Lochem-zit-zonder-stroom
http://flexiblepower.github.io/technology/fpai/


[15] Peter Pirolli and Ramana Rao. Table lens as a tool for making sense of
data. In Proceedings of the workshop on Advanced visual interfaces, pages
67–80. ACM, 1996.

[16] Tichomir Tenev and Ramana Rao. Managing multiple focal levels in
table lens. In Information Visualization, 1997. Proceedings., IEEE Symposium
on, pages 59–63. IEEE, 1997.

[17] Alexandru Telea. Combining Extended Table Lens and Treemap Tech-
niques for Visualizing Tabular Data. In Beatriz Sousa Santos, Thomas
Ertl, and Ken Joy, editors, EUROVIS - Eurographics /IEEE VGTC Sym-
posium on Visualization, pages 51–58. The Eurographics Association, 2006.
ISBN 3-905673-31-2. doi: 10.2312/VisSym/EuroVis06/051-058.

[18] Danny Holten, Bas Cornelissen, and Jarke J Van Wijk. Trace visualiza-
tion using hierarchical edge bundles and massive sequence views. In
Visualizing Software for Understanding and Analysis, 2007. VISSOFT 2007.
4th IEEE International Workshop on, pages 47–54. IEEE, 2007.

[19] Alfred Inselberg. The plane with parallel coordinates. The Visual Com-
puter, 1(2):69–91, 1985.

[20] Alfred Inselberg and Bernard Dimsdale. Parallel coordinates. In Human-
Machine Interactive Systems, pages 199–233. Springer, 1991.

[21] Alfred Inselberg. Parallel coordinates. Springer, 2009.

[22] Niklas Elmqvist, Pierre Dragicevic, and Jean-Daniel Fekete. Rolling
the dice: Multidimensional visual exploration using scatterplot matrix
navigation. Visualization and Computer Graphics, IEEE Transactions on, 14

(6):1539–1148, 2008.

[23] Fernando V Paulovich, Luis Gustavo Nonato, Rosane Minghim, and
Haim Levkowitz. Least square projection: A fast high-precision mul-
tidimensional projection technique and its application to document
mapping. Visualization and Computer Graphics, IEEE Transactions on, 14

(3):564–575, 2008.

[24] Rafael Messias Martins, Danilo Barbosa Coimbra, Rosane Minghim, and
Alexandru C Telea. Visual analysis of dimensionality reduction quality
for parameterized projections. Computers & Graphics, 41:26–42, 2014.

[25] Renato R O da Silva, Paulo E Rauber, Rafael M Martins, Rosane
Minghim, and Alexandru C Telea. Attribute-based visual explanation
of multidimensional projections. 2015.

[26] Jarke J Van Wijk and Edward R Van Selow. Cluster and calendar based
visualization of time series data. In Information Visualization, 1999.(Info
Vis’ 99) Proceedings. 1999 IEEE Symposium on, pages 4–9. IEEE, 1999.

[27] Jingwei Wu, Claus W Spitzer, Ahmed E Hassan, and Richard C Holt.
Evolution spectrographs: Visualizing punctuated change in software
evolution. In Software Evolution, 2004. Proceedings. 7th International Work-
shop on Principles of, pages 57–66. IEEE, 2004.

[28] Michael B Eisen, Paul T Spellman, Patrick O Brown, and David Bot-
stein. Cluster analysis and display of genome-wide expression patterns.
Proceedings of the National Academy of Sciences, 95(25):14863–14868, 1998.

[29] Richard A Becker, William S Cleveland, and Allan R Wilks. Dynamic
graphics for data analysis. Statistical Science, pages 355–383, 1987.

[30] Mark Derthick, John Kolojejchick, and Steven F Roth. An interactive
visual query environment for exploring data. In Proceedings of the 10th
annual ACM symposium on User interface software and technology, pages
189–198. ACM, 1997.

86



[31] Jonathan C Roberts. State of the art: Coordinated & multiple views in
exploratory visualization. In Coordinated and Multiple Views in Exploratory
Visualization, 2007. CMV’07. Fifth International Conference on, pages 61–71.
IEEE, 2007.

[32] Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen, Arie
van Deursen, and Jarke J van Wijk. Execution trace analysis through
massive sequence and circular bundle views. Journal of Systems and
Software, 81(12):2252–2268, 2008.

[33] Graham Wills. Linked data views. In Handbook of Data Visualization,
pages 217–241. Springer, 2008.

[34] Institute of Electrical and Electronics Engineers. IEEE Std 91a-1991 and
IEEE Std 91-1984: "Graphic Symbols for Logic Functions", 1991.

[35] International Electrotechnical Commission. IEC 60617: "Graphical Sym-
bols for Diagrams".

[36] American National Standards Institute. ANSI Y32.2-1975: "Graphic
Symbols for Electrical and Electronics Diagrams", 1975.

[37] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336–343, Sep 1996. doi: 10.1109/VL.1996.545307.

[38] Google. Google Maps. https://www.google.nl/maps/, .

[39] Microsoft. Bing Maps. https://www.bing.com/maps/.

[40] Nokia. Here. https://www.here.com/.

[41] Eric Gundersen. Visualizing 3 billion tweets, june 2013. URL https://

www.mapbox.com/blog/visualizing-3-billion-tweets/. [Accessed
August 5th, 2015].

[42] Joan Maso, Keith Pomakis, and Nuria Julia. Opengis web map tile
service implementation standard. Open Geospatial Consortium Inc, pages
04–06, 2010.

[43] Ning Ruan, Ruoming Jin, and Yan Huang. Distance preserving graph
simplification. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1200–1205. IEEE, 2011.

[44] Paul S Heckbert and Michael Garland. Survey of polygonal surface
simplification algorithms. Technical report, DTIC Document, 1997.

[45] Danny Holten. Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data. Visualization and Computer Graphics, IEEE
Transactions on, 12(5):741–748, 2006.
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