
Visualizing Software Evolution with Code Clones

Master’s Thesis

Avdo Hanjalić

Department of Computing Science

University of Groningen, the Netherlands

E-mail: a.hanjalic@student.rug.nl

Supervisors:

Prof. dr. Alexandru C. Telea

dr. Apostolos Ampatzoglou

Groningen, January 2014

Abstract
To manage changes in software, developers use Software Configuration Management (SCM) sys-
tems. The SCM system offers a vast amount of information that can be used for analyzing the
evolution of a software project. We have designed and implemented a method, that allows soft-
ware designers and developers to obtain insight into the change of clone-related patterns, during
the evolution of a software codebase. The focus is set on scalability (in time and space) concerning
data acquisition, data processing and visualization, and ease of use. We have arrived at such a
solution, starting from existing work in the areas of static analysis, code clone detection, hierar-
chy visualization, multi-scale visualization and dynamic graphs. The resulting tool, which we call
ClonEvol, can be used to obtain insight into the state and the evolution of a C/C++/Java source
code base on the level of projects, files and scopes (e.g. classes, functions). This is achieved by
combining information obtained from the software versioning system and contents of files that
change between versions; ClonEvol operates as tool-chain of Subversion (SVN), Doxygen as static
analyzer and Simian as code duplication detector. The consolidated information is presented to
the user in an interactive visual manner. The visualization is approached by using a mirrored
radial tree to show the file and scope structures, complemented with hierarchically bundled edges
that show clone relations. Our method is evaluated by demonstrating the usefulness of ClonEvol
on two real-world codebases.

Acknowledgments
First and foremost, I would like to express my sincere gratitude to my supervisor prof. dr. Alexan-
dru C. Telea for his continuous support during this work. His guidance and previous work on the
subject helped me in all the time of research and writing of this thesis. I could not have imagined
having a better advisor and mentor for my MSc. thesis. I thank dr. Apostolos Ampatzoglou for
his interest, availability and prompt correspondence.

Besides my advisors, I thank all family, friends and relatives who supported me during this
research and reviewed my work.

During this project, many free-to-use (open source) tools were used. The tool ClonEvol, as is,
would not have been possible, without the Qt framework, Doxygen, Simian and libgraphicstreeview.
This report, as is, would not have been possible without the tools LYX and yEd. Therefore, I thank
all developers that invest their (free) time in development of the used tools.

Contents

Nomenclature . xii

1 Introduction 1
1.1 Software configuration management . 1
1.2 Analyzing change . 1
1.3 Software clones . 2
1.4 Requirements . 2
1.5 Structure of the thesis . 3

2 Related work 5
2.1 Introduction . 5
2.2 Static analyzers . 5

2.2.1 Structure and relationships . 5
2.2.2 Static analysis approaches . 7
2.2.3 SrcML toolkit . 7
2.2.4 Doxygen . 8
2.2.5 CPPX . 8
2.2.6 Elsa . 9
2.2.7 SolidFX . 9

2.3 Code clone detectors . 10
2.3.1 Clone types . 10
2.3.2 Clone extraction techniques . 11
2.3.3 Duplo . 12
2.3.4 Simian . 12
2.3.5 CCFinder(X) . 12

2.4 Hierarchy visualizations . 13
2.4.1 Node-link diagram . 13
2.4.2 Icicle plot . 13
2.4.3 Treemap . 14
2.4.4 Radial Tree . 14
2.4.5 Mirrored Radial Tree . 15

2.5 Multi-scale visualizations . 16
2.5.1 Aggregation constraints . 16
2.5.2 Data aggregation . 17
2.5.3 Visual aggregation . 17
2.5.4 Edge bundling . 18

2.6 Dynamic graphs . 18
2.6.1 Mental map preservation . 19
2.6.2 Small multiples visualizations . 19
2.6.3 Animated visualizations . 20

2.7 Conclusion . 21

vii

CONTENTS viii

3 Solution Design 23
3.1 Introduction . 23
3.2 Requirement refinement . 23

3.2.1 Functional requirements . 23
3.2.2 Non-Functional requirements . 25
3.2.3 Third-party component requirements . 25

3.3 Baseline architecture . 26
3.3.1 Fact types . 27
3.3.2 Visualization pipeline . 27
3.3.3 Data mining & refining . 28
3.3.4 Fact database . 29
3.3.5 Data mapping & visualization . 32

3.4 Repository extraction . 33
3.4.1 Output requirements . 33
3.4.2 Subversion (SVN) . 33
3.4.3 Processing: Changelogs & FileTree . 34
3.4.4 Data refining: FileNode events . 35

3.5 Scope extraction . 36
3.5.1 Output requirements . 36
3.5.2 Doxygen . 37
3.5.3 Processing: ScopeTree & Compound Graph 38
3.5.4 Data refining: ScopeNode events . 39

3.6 Clone extraction . 40
3.6.1 Output requirements . 40
3.6.2 Simian . 40
3.6.3 Processing: CodeClones & ScopeClones . 41
3.6.4 Data refining: ScopeClone events . 42

3.7 Visualization base . 44
3.7.1 Inner radial tree . 44
3.7.2 Outer radial tree . 44
3.7.3 Edges . 44

3.8 Colormaps . 46
3.8.1 Structure . 46
3.8.2 Difference . 47
3.8.3 Activity . 47

3.9 User interaction . 48
3.9.1 Navigation . 48
3.9.2 Filtering and aggregation . 49
3.9.3 Visualizing software evolution . 50

3.10 Conclusion . 51

4 Applications 53
4.1 Introduction . 53
4.2 Analysis tool: ClonEvol . 54

4.2.1 User interface . 54
4.2.2 Mandatory user steps . 56

4.3 FileZilla Client . 57
4.3.1 Project statistics . 57
4.3.2 First visual overview . 58
4.3.3 Repository exploration . 59

4.4 TortoiseSVN . 62
4.4.1 Project statistics . 62
4.4.2 First visual overview . 63
4.4.3 Picking a revision range . 64
4.4.4 Repository exploration . 65
4.4.5 Directory inspection . 67

CONTENTS ix

4.4.6 File inspection . 68
4.5 Resource and time consumption . 70

4.5.1 Project contents . 70
4.5.2 Initial overview . 70
4.5.3 Detailed overview . 71

4.6 Conclusion . 72

5 Conclusion 73
5.1 Introduction . 73
5.2 Discussion . 73
5.3 Limitations . 75
5.4 Future extensions . 76

Bibliography 77

List of Figures

2.3.1 Overview of code clone types [1] . 10
2.4.1 Non-radial hierarchy visualizations . 14
2.4.2 Radial hierarchy visualizations . 15
2.5.1 Hierarchical Edge Bundling . 18
2.6.1 Icicle plot with parallel coordinates [2] . 20

3.3.1 Visualization Pipeline . 27
3.3.2 Data mining procedure . 28
3.3.3 ORM entity relationship model of the fact database 30
3.3.4 ORM generated tables of the fact database . 31
3.3.5 Data mapping procedure . 32
3.4.1 Repository extraction procedure . 33
3.4.2 Changelog processing . 34
3.4.3 FileTree as result of Fig. 3.4.2 . 35
3.5.1 Hierarchy of the ScopeTree . 36
3.5.2 Scope Extraction Procedure . 36
3.5.3 Compound graph consisting of the FileTree and ScopeTree 39
3.5.4 ScopeTree Refinement: Evolution from Sn−1 to Sn 39
3.6.1 Clone extraction procedure . 40
3.6.2 Process of identifying scope clones . 42
3.6.3 Clone event identification procedure . 42
3.6.4 Hierarchy of ScopeClones . 43
3.7.1 Visualization base . 45
3.8.1 Structure colormap with clone size. 46
3.8.2 Difference colormap . 47
3.8.3 Activity colormap . 47
3.9.1 Codebase navigation used to expand the contents of sub-directories 48
3.9.2 Aggregation of clone events . 49
3.9.3 Edge Bundling . 49
3.9.4 Codebase evolution illustrated with time-slices . 50

4.2.1 Screenshot of ClonEvol . 54
4.3.1 FileZilla Client: Initial overview (revision 1 - 5301) 58
4.3.2 FileZilla Client: Mass file deletion event . 59
4.3.3 FileZilla Client: Detailed overview (revision 1 - 5,301) 60
4.3.4 FileZilla Client: Detailed evolution (revision 1 - 5,301) 61
4.4.1 TortoiseSVN: Initial overview (revision 1 - 25,086) 63
4.4.2 TortoiseSVN: Initial evolution (revision 1 - 25,086) 64
4.4.3 TortoiseSVN: Detailed structure of /src (revision 10,001 - 15,000) 65
4.4.4 TortoiseSVN: Detailed differences of /src (revision 10,001 - 15,000) 66
4.4.5 TortoiseSVN: Detailed differences of /src/LogCache (revision 10,001 - 15,000) . . 67
4.4.6 TortoiseSVN: Detailed activity of /src (revision 10,001 - 15,000) 68
4.4.7 TortoiseSVN: Details of /src/SVN/SVNStatusListCtrl.cpp (10,001 - 15,000) . . 69
4.4.8 TortoiseSVN: Detailed evolution of /src/SVN/SVNStatusListCtrl.cpp 69

x

List of Tables

4.3.1 FileZilla Client: SVN repository statistics . 57
4.3.2 FileZilla Client: File content statistics . 57
4.4.1 TortoiseSVN: SVN repository statistics . 62
4.4.2 TortoiseSVN: File content statistics . 62
4.5.1 Comparison of project contents and size . 70
4.5.2 Comparison of initial time and resource consumption 71
4.5.3 Comparison of mining resource and time consumption 72

xi

Nomenclature

ASG Abstract Syntax Graph.

AST Abstract Syntax Tree.

Codebase The whole collection of source code used to build a particular application or
component.

CodeClone A range of lines of code in a FileNode, indicating a duplication relation to one
or more other CodeClones. Member of a CloneSet.

Drift Special case of an inter-clone, that represents the movement of code from a
source to a target.

Evolution The gradual development of something (here: codebase), especially from a
simple to a more complex form.

FileNode Node in the hierarchy of files and directories, relating to exacly one codebase
revision.

FQN Fully Qualified Name; The name of an object, preceded by the FQN of its
parent, e.g. /root/src/sub/dir/file.cpp::NameSpace::Class::Function1.

Glyph In the context of data visualization, a glyph is the visual representation of a
piece of data where the attributes of a graphical entity are dictated by one or
more attributes of a data record. [3]

Inter-clone ScopeClone of which the related ScopeNodes exist in different revisions. Typ-
ically used to store a Drift.

Intra-clone ScopeClone of which the related ScopeNodes exist in the same revision.

Mental map The abstract structural information that a viewer forms
when looking at a graph. [4]

SCM Software Configuration Management (system), e.g. Subversion, Git, Mercu-
rial.

ScopeClone A tuple of ScopeNodes, indicating a duplication relation.

ScopeNode Node in the hierarchy of scopes/constucts (e.g. class, function), relating to
exacly one codebase revision.

xii

Chapter 1

Introduction

1.1 Software con�guration management
Nowadays, many software projects contain millions of Lines of Code (LoC), spread over thousands
of files and directories. They often involve many years of development and are maintained by many
contributors. The developers make their (experimental) changes in isolated (local) environments,
to circumvent conflicts that would otherwise arise from interference with the work of others. Once
a developer decides that his/her work is stable, he/she makes the changes visible to others, by
merging them with the common environment of the software project.

To manage these changes, developers use Software Configuration Management (SCM) systems,
also known as �version control systems�, �revision control systems�, �source control systems� and
often referred to with �software repositories�. SCMs store the changes made by developers, so that
any of them can determine afterward what was changed and by whom. Moreover, SCMs provide
methods to restore the software to a previous state, for instance when the effort performed by a
contributor appears to yield different results than intended. SCM systems, such as SVN, Git and
Mercurial, are nowadays a fundamental building block of the software development paradigm.

1.2 Analyzing change
Changes in a software project occur in time and on several levels; On high level, developers leave
and new developers join in the life-span of a project. The effort that developers perform for the
project varies in amount and in time. On intermediate level, developers modify, add and delete files
and directories, that form the codebase. On low level, changes apply to finer-grained details of the
codebase, such as file parts (e.g. classes, functions, lines of code). Once a chunk of work is finished,
the performed changes are reduced to changesets of the codebase. Together, they represent the
evolution of a software project, i.e. the gradual development, especially from a simple to a more
complex form.

The elements of a software project are related via dependencies, e.g. call graphs (usage), inher-
itance graphs, aggregation, data flows, code clones, responsibilities, requirement implementations,
change-request → modification, etc. Hence, at an abstract level the entire software can be seen
as a large complex graph [5] or entity-relationship model. As the elements change, so do their
relations, therefore it is a changing graph.

Analyzing change both at element and relationship level is important and useful: It can be
used to predict maintenance costs, to reduce maintenance costs, to discover potential improvement
directions we did not know about, to discover problems we did not know about, etc. All in all, it
can be used to support all types of maintenance (perfective, corrective, adaptive, etc).

The SCM offers a vast amount of information that can be used for the purpose of analyzing the
evolution of a software project. However, analyzing changes of a graph is hard, especially when
this graph is very large (i.e. has many nodes, edges, and time-moments when it changes). Clearly,
no universal solution exists here.

1

CHAPTER 1. INTRODUCTION 2

1.3 Software clones
The feasibility of a general solution for software evolution analysis is questionable at best. However,
we can design useful and usable solutions if we restrict the scope of our goal. We reduce the graph of
all possible elements and relationships to a smaller sub-graph: We limit elements to files and their
syntactic units (e.g. functions, classes) and we restrict relations to clones (code duplications). This
sub-graph is interesting because code duplication is an important quality metric with predictive
powers: many clones are bad for e.g. testing and modularity (thus, understanding). Therefore,
seeing how clones are added, removed, or modified, is important.

Clone detection in source code bases has a long history. It was mainly used to find clones
on single versions of software code bases, and many tools for that task exist. However, our goal
is to show how clones evolve in time in a project. Therefore, our main research question is:

How can we efficiently and effectively provide insight into the change of clone-related patterns
during the evolution of a software code base?

We can split this into sub-questions:

• Q1: How to define a clone at different levels of detail, or granularity?

• Q2: How to extract clones from existing revisions of a code base?

• Q3: How to define ‘interesting’ evolution events involving clones?

• Q4: How to visually present all above information in a way which is scalable and easy to use
for the typical software engineer?

In doing all above, we will use existing techniques for clone extraction and static analysis and
software visualization, but also extend and combine these techniques in new ways for our ends.

1.4 Requirements
To be usable and useful, our solution must comply to several (non-functional) requirements. In
software engineering, the desired qualities are known as (key) architectural drivers [6]. It is neces-
sary to discuss the key drivers here, because we need them to constrain related work in Chapter
2. In Chapter 3, they are used to drive the design decisions of our solution. Finally, in Chapter 5,
we use them to evaluate our solution. Next, the key drivers are elaborated in order of importance:

Comprehensibility
The core purpose of our solution is to support users to understand the evolution of a code-
base. Under the assumption that data acquisition and processing is performed correctly, our
solution will nonetheless not fulfill its purpose if the users cannot understand the visualiza-
tion. Therefore, above everything else, the visualization must be intuitive and/or easy to
learn to understand.

Ease Of Use
In any software visualization application, the user is key, as visualizing the data is pointless
without an user that is able to interpret the visual representation. Moreover, the user must
be able to easily query the information of his/her interest. To assure that the user does
not become unmotivated we must achieve a high level of automation; The user must not be
bothered with the adjusting of parameters that are not necessary to understand for the user’s
contemplated purpose.

Scalability
The amount of environment variables, that make manual tracking of changes an impossible
job, correlates with the size of a project. It is for this reason that mid- to large-scale projects
can benefit most of codebase evolution analysis. Therefore, our solution must be capable
of handling projects with thousands of files and revisions. If scalability is not achieved, the

CHAPTER 1. INTRODUCTION 3

applicability of our solution will be limited to small projects and hence it will not transcend
a ‘proof of concept’ state.

Besides the key drivers, several other qualities play a role and are to be used as guideline when
making design decisions. These qualities mostly relate to the applicability of our solution to
projects at current time and in the future:

Genericity
Our tool needs to support at least the languages that are most commonly used for large
software projects. Nowadays, many large software projects contain source code written in
programming languages such as JAVA, C++ and its predecessor C. However, newer lan-
guages, e.g. Python, are rapidly gaining popularity due to the opportunity to quickly develop
solutions. This must be taken into consideration if third party components are to be used.

Extensibility
Our solution should be a contribution to the academic and open source communities, therefore
extensibility must be taken into account; The extensibility (and genericity) of our solution
correlate to the potential for a broader application of the method in the future.

1.5 Structure of the thesis
In Chapter 2 we discuss previous work that relates to our sub-questions. We handle the static
analysis, clone extraction and software evolution visualization. For each of the topics, we first
explain the fundamental techniques. Thereafter we discuss several existing solutions and we use
our key drivers to estimate the applicability of the tool/method.

In Chapter 3 we present the design of our solution. We first refine our key drivers into functional
and non-functional requirements. Next, we present the top-level architecture, that covers all of our
sub-questions. Subsequently, each component of our solution is explained in detail. The discussion
is limited to a functional level, hence we omit implementation details on the level of code.

In Chapter 4 we exemplify the result of our method. First the graphical user interface (GUI)
and use of our implementation are briefly explained, in order to help the reader understand how
the results are obtained further on. Then, we illustrate the use of our tool ClonEvol on two existing
open source projects. The chapter is concluded with a comparison of the projects.

Finally, in Chapter 5 we reflect on the previous chapters and discuss to which degree we were
able to meet our objectives, on the basis of our research (sub)questions and requirements. The
chapter ends with a short discussion on possible future work.

Chapter 2

Related work

2.1 Introduction
Since our goal listed in Chapter 1 involves showing the evolution of clones in a code base, related
work obviously can be split into code analysis for the extraction of relevant clone data, and visual-
ization for large changing software systems. Indeed, tools for visualizing change use mining tools
to get their data, and use visualization techniques to show (a subset of) the mined data.

For our purpose, we want to extract clones and reason about them on several levels of detail,
which involves two types of related work: Clone extraction and static analysis. Because some clone
extractors use the latter technique, we first discuss static analysis and related tools in Section 2.2.
Subsequently, in Section 2.3 we elaborate on clone detection techniques and tools.

In the second part of this chapter, we introduce a few visualization techniques, which are
commonly part of the construction of tools for visualizing software change. Visualizations of hier-
archical structures and their properties (that relate to our requirements) are discussed in Section
2.4. Scalability of visualization is needed to handle large projects, hence we investigate multi-scale
visualization constraints and techniques in Section 2.5. Finally, to visualize software change, we
elaborate dynamic graph visualization in Section 2.6.

2.2 Static analyzers
Under this name, we understand tools and techniques which deliver the static structure and rela-
tionships of entities in a codebase. Essentially, these tools deliver a graph where nodes are software
artifacts; edges are relations linking these artifacts; and both nodes and edges have attributes that
describe properties of the artifacts and relations respectively. We first give an overview of the
information that static analyzers (can) provide (cf. Section 2.2.1), followed by an elaboration on
types of tools (cf. Section 2.2.2). Finally we discuss a few of these tools, ranging from simple but
limited to complex but powerful (cf. Section 2.2.3 - 2.2.7).

2.2.1 Structure and relationships
The artifacts that static analyzers provide are of two types: (1) Physical artifacts that represent
lines of code, files and folders, and (2) logical artifacts that represent variables, functions, classes,
etc. The edges in the provided graph are also of two types, namely (1) containment edges (e.g.
folder has files), and (2) association edges (e.g. function f calls function g). The full graph of the
software can be seen as the union of the sub-graphs that we discuss next. Each graph provides a
different facet of/view on the software.

2.2.1.1 Containment graphs

This type of sub-graph is directed, connected and acyclic, hence it is a rooted tree. Typically, the
nodes of the containment graph are either limited to a specific type of software artifact, or to

5

CHAPTER 2. RELATED WORK 6

certain properties thereof. Based on the two artifact types (physical and logical), static analyzers
distinguish the following two graphs:

1. Physical containment graph
This tree represents the hierarchy of software artifacts, in a file-folder fashion: Directories
contain files, files encapsulate classes, functions, etc., that in turn are written as lines of code.
This representation of the codebase is used to store source code on the disk.

2. Logical nesting graph
This tree represents the hierarchy of software artifacts, in the domain of program logic. In
this context, nodes are often referred to as ‘scopes’ and ‘constructs’. C++ includes inter
alia, directories, files, namespaces, classes, functions, enumerations and attributes. This
representation of the codebase is used by developers during the construction of software,
to group elements that have related purpose. Clearly, the logical artifacts are contained
by physical files, but they do not comply to the physical containment rules. For instance,
namespaces contain classes, that are spread over different physical files.
To prevent confusion, it is important to note that files and directories can have another
meaning here: A file is also a logical artifact when a physically contained scope does not
have any other logical parent. Clearly, here the only logical ancestor of the scope can be the
file itself. This is in particular the case, when the contained scope is (1) ‘global’ and (2) not
forward declared somewhere else.
The structure of the logical nesting graph depends on the programming language: For in-
stance, Java only allows the declaration of classes as global constructs, while C++ does
not have this restriction. Unlike C++ namespaces, Java packages can be mapped to the
file-system, which would make the distinction between physical and logical nesting obso-
lete. Though, the project must have a one-to-one mapping between the physical and logical
containment graphs, which is rather exception than convention.

2.2.1.2 Association graphs

This category contains virtually all other (non-containment) relations. In essence, they indicate
dependencies between software components. Together with the physical and/or logical nodes, they
form graphs that represent aspects of software, such as:

1. Include dependency graph
Each node is a file and an edge indicates that a file a includes file b, meaning that the source
code in a cannot be correctly interpreted (compiled) if b is not evaluated first. Together these
artifacts form the include dependency graph, a directed graph that represents the dependen-
cies between �les. The most apparent application of this graph is during compilation of C
and C++ source code: Before translating the source code into binaries, the compiler builds
the dependency graph, to find the order in which source files are to be compiled. Moreover,
cycles in dependencies (also known as ‘circular dependencies’) lead to a situation in which
the program cannot be compiled, as no valid order for compilation of files exist. Besides the
use of include dependencies graphs in program compilation, visualization of this graph can
be used as indication of code coupling and cohesion; It can be used by developers to find
unanticipated, undesired and superfluous dependencies between program components.

2. Collaboration graph
Each node represents a class and an edge indicates that class s uses class t. These relations
can be refined further into inheritance (s is-a t) and usage (e.g. s reads/writes t). Together
they form the collaboration graph, a directed graph that represents the interaction between
classes. Depending on the used terminology, the collaboration graph is sometimes split into
finer-grained graphs, such as the inheritance graph and the uses graph. Applications of the
collaboration graph include figuring how the different modules (classes) of the application
depend and interact; Coupling and cohesion of logical objects is emphasized, hence it gives
a good indication of modularity of software. Similar to the collaboration graph, is the call
graph, which shows relations between functions (calls), rather than classes.

CHAPTER 2. RELATED WORK 7

3. Call graph
Each node represents a function (often referred to as ‘method’ or ‘procedure’) and an edge
indicates that function f calls function g. Together they form the call-graph, a directed graph
that represents the calling relationships between functions in the source code. In essence,
this graph represents the execution flow of a program. Applications of call-graphs include
finding of functions that are recursive, called often or not called at all. Static call-graphs, as
generated by static analyzers, show all possible runs of a program, while dynamic call-graphs
can be produced for a single run of the program, using a profiler. Furthermore, call graphs
can be of several levels of granularity: context-sensitive call graphs contain a separate node
for each possible call-stack that a function can be called with, while context-insensitive call
graphs contain only one node for each function.

2.2.2 Static analysis approaches
The containment and association graphs can be extracted using various open-source and com-
mercial tools. These tools are specialized for different types of programming languages. A more
interesting specialization direction concerns the level-of-detail at which these tools work [7]:

Lightweight extractors
This type of static analyzer performs partial parsing and type checking (if at all) and therefore
produces only a fraction of the Abstract Syntax Graph (ASG). Lightweight static analyzers
are typically very fast and can handle code fragments and faulty code. Because correctness
of code is of little or no concern, these extractors require very little to no configuration
at all. They can be easily used as component of software analysis frameworks. Moreover,
they typically are able to handle codebases that consist of source code written in multiple
languages. However, lightweight extractors are (very) limited in the amount of associative
relations they can recognize. They are particularly useful when a limited level of detail is
needed, where moreover correctness of and ambiguities in the ASG are of less or no concern.

Heavyweight extractors
This type of static analyzer performs (nearly) full parsing and type checking, and provides the
complete ASG. These extractors can be further classified into strict and tolerant ones. Strict
extractors are typically based on compiler parsers, that halt on lexical or syntax errors.
Tolerant extractors apply fuzzy parsing and are more fault-tolerant than the strict ones.
Heavyweight extractors typically produce associative edges and additional information about
the codebase, such as metrics. Many heavyweight extractors come as part of code analysis
frameworks, that moreover process the ASGs further to detect patterns, code smells, bad
structure, etc. They typically require a lot configuration and/or user interaction, to produce
desired results. In essence, for our task, where ease of use is paramount, and where code may
be incompletely saved in a repository, heavyweight extractors are not very suitable.

Nowadays, many lightweight and heavyweight static analyzers are available, under both open source
and commercial licenses. Next, we discuss a number of tools that comply to our requirements from
Section 1.4; All discussed tools can extract the desired information from C, C++ source code, and
a few also support Java .

2.2.3 SrcML toolkit
The srcML toolkit [8] is an actively developed open source project (GPL) and currently supports
C, C++ and Java. It consists of two tools: Src2srcml translates code into srcML and srcML2src
performs the reverse translation. Src2srcML was initially presented as an “XML-Based lightweight
C++ fact extractor” in [9], that uses the simultaneously proposed srcML format. In essence, srcML
is an extension of XML, where XML tags are interleaved with the original source code. It preserves
all source code text, including comments and formatting (whitespace). The main purpose of srcML
is to identify syntactic elements, for further processing by development environments and program
comprehension tools.

CHAPTER 2. RELATED WORK 8

SrcML and the toolkit are able to robustly handle source code irregularities, such as incompat-
ible code, broken code, code fragments, single statements, etc. This is achieved by using so-called
island grammars instead of complete grammars of the respective languages. Due to this approach,
the components are not linked to each other, and hence no association graphs are generated; The
srcML toolkit seems perfectly suitable to generate Abstract Syntax Trees (AST), for the purpose of
getting the code structure and calculating metrics. However, at the same time, it is the ultimately
achievable goal.

The toolkit is available in binary form for Windows, Mac OS X and several Linux distributions,
and can probably be ported easily to other platforms. It is generic in the sense that it supports
three very popular languages, and can be extended to support even more. Moreover, it is able
to process codebases that contain code written in multiple languages. Clearly, the srcML toolkit
performs fast, lightweight static analysis, that can be used in a fully automated manner.

2.2.4 Doxygen
Doxygen is a widely used open source (GPL) tool for generating documentation from annotated
C++ sources, but it is capable of extracting the code structure from undocumented source files.
It also supports other popular programming languages such as C, Objective-C, C#, PHP, Java,
Python, IDL, Fortran, VHDL, Tcl, and to some extent D [10]. Moreover, many extensions are
freely available to add support for other languages. The typical use of Doxygen is to generate
online and o�ine documentation in the form of HTML and LATEX respectively. Diagrams can be
generated as part of the documentation, but for this the external tool Graphviz is required.

Doxygen is capable of extracting the include dependency graph, inheritance graph and collabora-
tion graph. However, unknown constructs are ignored and local scopes (e.g. variables in functions)
are treated as ordinary text. This means that the generated ASG is only a subset of the complete
ASG. Moreover, due to the lack of type checking, and restrictions on how ambiguous code is han-
dled, the generated ASGs are not necessarily correct. The configuration possibilities of Doxygen
are extensive and can be stored in a configuration file; Hence, configuration needs to be performed
only once. Although its primary purpose is to generate documentation in human-oriented formats,
it can be configured to generate output in XML. XML output is useful in particular when the goal
is to automatically process the ASG.

Doxygen is set up to be highly portable; It is developed under Mac OS X and Windows, but
runs on most Unix flavors as well. As it supports many languages, that moreover can be mixed
in a codebase, it can be applied as a super-generic static analyzer. Furthermore, by configuring
Doxygen in such way that the annotations to be generated are limited to a minimum, it can be
used as lightweight, fully automated static analyzer. If it is configured to generate all association
edges too, it can be interpreted as a middle-weight static analyzer.

2.2.5 CPPX
CPPX is presented as an compiler which produces a fact base instead of executable code [11]. It
is intended as an universal C++ front-end that produces a fact base containing information about
the source code. CPPX is based on the open source GNU g++ compiler, from which it inherits the
GPL license. It performs its job by converting the internal data structures of g++ into a target
schema of the Datrix software exchange format.

The produced fact base is a graph that contains scopes, ranging from the lowest level of vari-
ables, to the level of classes and templates. The produced associative edges include the call graph,
collaboration graph, declaration graph, and more. From this fact base it is (almost) possible to
reproduce the original source code. CPPX can deliver the fact base in different formats, including
the Graph eXchange Language (GXL), which is based on XML. Not only the thoroughness and
configurability of g++ are inherited, but also the strictness. If the code to analyze is faulty and/or
incomplete, the parser will halt.

CPPX is provided for Linux and Solaris, and is based on g++ 3.0, which was released in 2001.
Without porting CPPX to a new version of g++, the use of it will be limited to either old software,
or software of limited complexity. Although the authors explicitly state that CPPX should support
commercial-scale software projects and run at the same speed as the g++ compiler, Boerboom

CHAPTER 2. RELATED WORK 9

and Janssen performed tests [12] from which they conclude otherwise. All this severely limits the
applicability of CPPX, despite the extraordinary completeness of its output. If these constraints
can be somehow overcome, CPPX could probably be applied as fully automated, heavy-weight fact
extractor.

2.2.6 Elsa
Elsa [13] is an open source (BSD) C and C++ parser that lexes and parses code into an AST.
It performs some type checking to elaborate the meaning of constructs, but does not necessarily
reject invalid code. Moreover, it is very well documented and hence it should be easy to extend.

Elsa is capable of extracting virtually all construct types, including templates (up to some level).
Moreover, it can be configured to run the type-checker at the end of a run, in order to (attempt to)
resolve ambiguities. The fact database stores the AST, but the authors do not explicitly mention
which association graphs are extracted. However, it appears that virtually all association graphs
can be reconstructed from the information available in the fact database. Furthermore, Elsa can
export the fact database to XML.

Elsa is available in source code form, which is written for gcc, and hence is targeted for Linux
based systems. However, as gcc-based compilers are available for many platforms, porting it should
not be hard. Elsa is able to parse industry-size projects if millions LoC and hence is scalable.
Moreover, it is able to do so at a speed comparable to compilation of the code. Elsa is a heavy-
weigh parser, that however can be executed in a generic way for many projects. Although this
would allow it to be used as fully automated, heavy-weight parser, stability issues make us believe
otherwise.

To tackle several issues of Elsa, Boerboom and Janssen forked Elsa into a EFES (Elsa Fact
Extractor System) [12]. Their tool addresses issues such as the lack of preprocessing capabilities,
partial availability of location information (no columns), incompleteness of the C++ standard and
crashes on incomplete/faulty code.

2.2.7 SolidFX
SolidFX was initially presented as an Integrated Reverse-engineering Environment (IRE) for C++
[14], that provides integration of code analysis and visualization. Nowadays, it is a commercial
framework for static analysis of industry-size projects, that are written in C and C++ [15]. Despite
that SolidFX requires a commercial license, we discuss it because it uses the EFES [12] fact
extractor, that is based on Elsa. SolidFX is capable of quickly analyzing multimillion LoC projects,
and able to handle incorrect and incomplete code. As part of the framework, which the authors
emphasize, SolidFX comes with an extensive set of tools for automated and interactive visual
inspection of several software aspects, from the level of LoC, to entire subsystems.

SolidFX allows configuration of the fact extractor, with specific settings for several compilers,
including GCC and Visual C++, and platforms including Windows, Mac OS X and Linux. The
output is in the form of a fact database, that contains a wide range of static information, including
syntax trees, semantic types, metrics, patterns, call graphs and dependency graphs. The software
comes in two commercial flavors, of which only the professional edition offers an API to query
and extend the fact database, for the purpose of using the tool in third-party analysis frameworks.
Tool integration can be performed by writing plug-ins for SolidFX, but data can also be exported
in several formats, including XML for the ASG and SQL for metrics.

The tool is provided in binary form for Windows, for UNIX systems the authors can be con-
tacted. Essentially, SolidFX is a project-specific, heavyweight fact extractor, that can provide a
wealth of additional information about the codebase. However, due to its self-contained character,
it appears that the tool is not truly intended (if at all) for fully automated, generic, one-time-
configuration use.

CHAPTER 2. RELATED WORK 10

2.3 Code clone detectors
Under this name, we understand tools that deliver information about code fragments that are
replicated identically (or nearly) across a code base. Thus formally, a clone extractor delivers a
graph where nodes are code fragments, edges indicate replication, and edge attributes may indicate
properties of the replication.

Roy et al. established a standardized approach to compare code clone detection tools and
methods [1]. Their work is the solid fundament on which we base our discussion of clone detection
tools and techniques. Our focus however lies on understanding the different types of clones and
related techniques, to be able to compare them on the requirements listed in Section 1.4.

2.3.1 Clone types
Roy et al. apply a qualitative approach to compare various tools and methods on several aspects
including (but not limited to) performance, accuracy, flexibility. In order to asses accuracy of the
various tools, they start by distinguishing four types of clones, exemplified in Fig. 2.3.1.

Figure 2.3.1: Overview of code clone types [1]

The four types of clones have an increasing amount of discrepancy between the code fragments
they relate to. These clone types are defined as follows (citation from [1]):

• Type-1: Identical code fragments except for variations in whitespace, layout and comments.

• Type-2: Syntactically identical fragments except for variations in identifiers, literals, types,
whitespace, layout and comments.

• Type-3: Copied fragments with further modifications such as changed, added or removed
statements, in addition to variations in identifiers, literals, types, whitespace, layout and
comments.

• Type-4: Two or more code fragments that perform the same computation but are implemented
by different syntactic variants.

CHAPTER 2. RELATED WORK 11

2.3.2 Clone extraction techniques
Many tools and methods exist that can be used to detect (a part of) the previously defined clone
types. The approaches used by most tools belong to one of the three categories discussed next.

Textual Approaches
Text-based detectors perform little or no transformation on the source code before the actual
comparison; In most cases the raw source code is used directly in the clone detection process.
Clone detectors of this type typically use hash-based string comparison to find clones. This
approach has benefit that it can be applied in a generic way; Many text-based cone detectors,
such as Simian [16], support comparison of virtually any type of text-based files.
Often additional techniques are used to improve robustness of clone detection: SDD [17] uses
a near-neighbor approach to find near-miss clones. NICAD [18] on the other hand exploits
the benefits of tree-based structural analysis based on lightweight parsing, to implement
source transformation and code filtering (which makes it a hybrid technique). Essentially,
text-based clone detectors are very fast, but limited to Type-1 and Type-2 clones, and Type-3
clones in exceptional cases.

Lexical Approaches
Lexical or token-based detectors initially transform the source core into tokens, in a way com-
parable to lexical analysis of compilers. Clone detectors of this type match token sequences
instead of the raw source code. In general, this is a more robust approach as minor changes
in source code, such as formatting, spacing and renaming are of little to no effect.
The first tool to efficiently perform token-based clone detection is Dup [19], that additionally
annotates tokens as parameter and non-parameter tokens. The non-parameter tokens are
hashed, and the parameter tokens are annotated with the position of their occurrence (in the
line of code); Concrete names and values are ignored, but their order of occurrence is used
to detect Type-1 and Type-2 clones. Combination of Type-1 and Type-2 clones is used to
detect Type-3 clones, if the occurrences satisfy certain constraints (e.g. distance).
This technique is extended in CCFinder [20], that uses additional source normalization tech-
niques, e.g. to remove high-level differences like brackets. In turn, CCFinder is used as base
for RTF [21], that uses suffix arrays in stead of suffix trees to improve memory consump-
tion. Other techniques apply a token- and line-based approach in combination with an island
grammar. They use pretty-printing (i.e. code refactoring for the purpose of a standardized
lay-out) to eliminate small formatting differences as much as possible.

Syntactic Approaches
Clone detectors that approach the source code syntactically, use parsing (static analysis)
to extract ASTs from the source code, that can then be compared using tree-matching or
metric-based comparison.

Tree-based approaches use tree-comparison algorithms to match source code based on its
structure. This approach allows more sophisticated clone detection than provided by the
methods discussed previously, but comes at the cost of (computational) complexity. To
reduce the complexity of tree comparison, several additional methods are used. CloneDr
[22] hashes (sub)trees into buckets, to only compare trees that are in the same bucket.
Recent approaches, such as the method of Koschke et al. [23], combine syntactic and
token-based clone detection; Here serialization is used to transform (parts of) the AST
into token sequences, to ultimately find syntactic clones at speed comparable to token-
based approaches.

Metric-based approaches collect metrics for code fragments, in order to compare metric
vectors, rather than code or ASTs. The generation of metrics often involves fingerprint-
ing functions, that can be interpreted as high-performance hashing functions. Typically,
the AST is used to define the source code fragment for which the metrics are calculated;
Metrics for each fragment are calculated from names, layout, expressions, control flow,
etc. A clone can then be identified when two fragments have metrics of similar values.

CHAPTER 2. RELATED WORK 12

Clearly, these categories are of increasing conceptual and computational complexity. Even more
complicated approaches for clone extraction exist, e.g. graph-based methods. However, these are
not widely used, and for that reason we have omitted them from this discussion.

In summary, the amount of tolerated difference between two code fragments is inherent to
the complexity of the approach. Clearly, accuracy and performance of the clone detectors have
a negative correlation; To accurately detect sophisticated code clones (of type 3 and 4), we need
advanced clone detectors that also perform static analysis.

2.3.3 Duplo
Duplo [24] is a tool to find duplicated code blocks in large C, C++, C#, Java, and Visual Basic.Net
source code. It is an implementation of the techniques described by Ducasse and Rieger in [25].
The tool is made available under an open source (GPL) license.

By default, Duplo produces its output in a human-readable textual format, but it can be
configured to produce XML output instead. Clones are provided as sets of locations (filenames
with line numbers) that contain the same block of code. A threshold can be defined to ignore
clones that are smaller than a certain number of lines. Other configuration options are limited to
the ignoring of preprocessor directives and the ignoring of file pairs with the same name. Roy et
al. indicated that the used approach of Ducasse and Rieger is able to detect Type-1 and Type-3
clones [1]. However, from a test that we conducted ourselves, we concluded that Duplo is able
to only detect Type-1 clones. Due to the string comparison based approach, the tool does accept
codebases that contain a mixture of languages as its input.

Duplo is not provided in binary form, but can be compiled for Windows, Linux, and probably
many other platforms. Although it is capable of processing small projects (12 KLoC) within a few
seconds, processing of Linux Kernel 2.6.11 takes approximately 16 hours. Clearly the tool does
not scale well to large codebases. Nonetheless, Duplo can easily be applied as generic, near-zero-
configuration, fully-automated clone detector.

2.3.4 Simian
Simian [16] (Similarity Analyser) is a clone extractor that identifies duplicated code in C, C++,
C#, COBOL, Java, and many more. Because it is based on string comparison, it is essentially
language independent, and hence can compare virtually any pair of text-based files. It is freely
available for academic purposes, but comes with a separate license for commercial purposes.

Clones are detected as pairs, but they are merged into clone sets in a post-processing step.
Simian produces output in a proprietary textual form, but can be configured to produce XML
instead. The granularity of clones can be configured to ignore clones that in terms of LoC are
smaller than a threshold. Other configuration parameters of the tool are limited to setting whether
to ignore certain patterns in file contents. Although the configuration options are limited, Simian
allows one-time configuration by means of a configuration file. Due to the limited complexity of
string-based comparison, Simian is limited to detection of Type-1 and Type-2 clones. Furthermore,
it is able to process codebases that contain a mixture of programming languages.

Simian runs on both Linux and Windows, but depends on either .Net or Java. As it is Java-
based it can probably run on more platforms. According to the author, it is capable of processing
large codebases, such as the JDK 1.5 source, containing 390 KLoC, in less than 10 seconds. We
have verified that such results are indeed achievable on modern hardware, if the time needed to
write the output is not taken into consideration. In summary, Simian can be applied as generic,
scalable, one-time-configuration, fully-automated clone detector.

2.3.5 CCFinder(X)
CCFinderX [20] is the leading clone detection tool that uses the token-based approach, followed by a
suffix-tree based search for clones. It supports code clone detection in C, C++, C#, COBOL, Java
and Visual Basic. CCFinderX is available under an open source (MIT) license. It is distributed
in combination with GemX, a tool for visual analysis of code clones by means of scatter plots.

CHAPTER 2. RELATED WORK 13

Furthermore, it is used as base for several tools, including D-CCFinder (Distributed CCFinder)
[26].

Clones are detected as pairs, but merged into clone sets in a post-processing stage. CCFinderX
produces output in a proprietary (binary) format, that can be converted to a pretty-printed, textual
format, that however still is not easily parseable. Configuration is extensive and includes parame-
ters for granularity and clone match percentage. Due to the token-based approach, CCFinderX is
able to detect clones of Type-1, Type2 and Type-3. However, it is unable to automatically process
the contents of a directory; The user must indicate the language of the source code, before running
the tool. Hence, only one programming language can be processed at the same time.

CCFinderX is available for both Windows and Linux, and depends on Java and Python. Al-
though we have not been able to find measurements of the time consumption of CCFinderX, the
authors provide example results of clone detection in JDK 1.5 and the Linux kernel 2.6.14, that
contain 1.9 million LoC and 6.3 million LoC respectively. This clearly indicates that the tool
scales to real-world projects. As it is able to detect Type-3 clones, it is a relatively powerful
clone detection tool, compared to Duplo and Simian. However, the dependencies, the need for
per-project configuration and proprietary output format make CCFinderX not very suitable as
generic, one-time-configuration clone detector.

2.4 Hierarchy visualizations
The data that we ultimately want to visualize is a graph, more precisely it is a rooted tree (file
or scope hierarchy), with association edges that represent clones. Although it is possible to map
hierarchical structures to flat ones, for the understanding of a codebase, it is important to retain the
parent-child relationships. Therefore, we limit this discussion to only visualizations that represent
the hierarchical structure. Next, we discuss a few basic and derived hierarchy visualizations and
set out their advantages and disadvantages.

2.4.1 Node-link diagram
The node-link (cf. Fig. 2.4.1a) diagram is maybe one of the most simple but most intuitive
approaches to visualize hierarchies. Nodes are typically drawn as dots, but could be represented
by glyphs. Containment relations are indicated by edges (the ‘links’) between parent-child node
pairs. To show properties of the node, its shape, color, size and label can be adapted.

Main advantages of the node-link diagram are: Capability to clearly show the hierarchy’s
structure; Anyone can read it, probably because it is the best known visualization of hierarchies.
The list of disadvantages is significantly longer: Only a limited amount of attributes can be shown
for a node; Space needed for visualization is inherent to the tree’s depth times its amount of leafs;
Occlusion tends to occur when many nodes are drawn and/or the labels contain lengthy text.

The showing of node relations, other than containment, is not explicitly covered. Drawing
additional edges between nodes leads to severe clutter for any reasonable amount of edges. Another
way to show relations between nodes would be to give them the same color and/or shape. However,
this seriously limits the amount of different relations/categories that can be represented, as the
amount of possible color-shape combinations is confined.

2.4.2 Icicle plot
The icicle plot (cf. Fig. 2.4.1b) is similar to the node-link diagram, with the difference that each
of the nodes is represented by a rectangle instead of a dot. The child nodes are shown as smaller
rectangles on one level beneath the parent. Together child rectangles cover an area equal in size of
the parent node. Containment relations are indicated by adjacency between parent and children.
The color and label of each rectangle can be used to represent attributes of the node.

Main advantages of the icicle plot are: The capability to clearly show the hierarchy’s structure;
It puts more emphasis on branches than the node-link diagram; Occlusion is not of concern, as all
properties of a node are contained within its rectangle. The disadvantages are: A small amount of
attributes can be shown per node; The space needed for visualization is inherent to the hierarchy’s
depth times its amount of leafs. Hence, the icicle plot does not scale well.

CHAPTER 2. RELATED WORK 14

Representation of node relations other than containment is still not explicitly covered. How-
ever, representation of relations as edges between nodes is less problematic than for the node-link
diagram, as there are no other edges to interfere with. Nevertheless, overdraw can only be avoided
by using a different approach, such as the parallel coordinates metaphor (cf. Section 2.6.2).

2.4.3 Treemap
The treemap (cf. Fig. 2.4.1c) is a widely used [27, 28, 29] space-filling visual representation for
hierarchies, that relates to the aggregation techniques discussed in Section 2.5.3. In essence, it
represents the hierarchical structure by drawing rectangles for nodes. The parent nodes are then
filled with smaller rectangles that represent their child nodes. In a sense, it is similar to the icicle
plot, but instead of sub-nodes being drawn outside of the parent node, they are aggregated inside
the parent node.

The main benefit is that the child nodes are aggregated, making the treemap a (more) scalable
alternative for the icicle plot. The treemap is very suitable for showing metrics, by size and/or color;
Telea and Voinea extend this even further by showing histograms inside nodes [29]. However, the
treemap does not provide means to clearly show relations between nodes, other than containment.

Again, node relations are not explicitly covered by the treemap. As it is a space-filling visualiza-
tion, the assumption can be made that the nodes are spread more uniformly than by the node-link
diagram and icicle plot. Hence, clutter of edges should occur less often than in the visualizations
discussed previously. However, edges are drawn between the parent nodes could be confused for
child relations. Due to aggregation, the parallel coordinates metaphor is less suitable here.

(a) Node-link diagram [30] (b) Icicle plot [31] (c) Treemap [29]

Figure 2.4.1: Non-radial hierarchy visualizations

2.4.4 Radial Tree
Nowadays, radial trees (cf. Fig. 2.4.2) are a widely used approach to visualize hierarchies. Circular
or radial hierarchy visualizations were introduced as an alternative to the treemap technique [32,
33]. Essentially, the generic radial (cf. Fig. 2.4.2a) tree is a circular version of the node-link
diagram. The visualization, of which the center represents the root node, is divided into level-
circles. Sub-nodes are then drawn as dots on the circle of their level. Containment relations are
indicated with edges between the parent-child node pairs. The layout enforces nodes to fit within
a fixed width, while the depth of the tree represents the amount of levels, that can be easily fit
into a fixed surface. The shape, size, color and label of nodes can be used to indicate properties.

The radial plot methodology is relatively close to traditional tree plots, but is better suitable
for limiting the amount of space needed for visualization. It also represents the structure of the
hierarchy very well, as child nodes are drawn outside the parent node. Radial representations do
not have opposite ends, therefore the (normalized) average distance between any pair of nodes is
smaller or equal than in non-radial representations. Obviously, this is a great benefit when users
have to interact with the visualization. Still, use of edges to represent non-containment relations
between nodes is not ideal, as they occlude nodes and containment edges.

CHAPTER 2. RELATED WORK 15

An extension of the radial tree is the Moire graph, proposed by Jankun-Kelly and Kwan-Liu
in [34]. In essence, they replace the dots by images (glyphs) to show graphical contents of nodes.
This approach could be exploited to represent relations as 2D image data (textures), rather than
size and color. However, the space needed by embedded images would limit the amount of nodes
that can be fit into the tree usefully to a few hundred at best.

Another development of the radial tree was introduced by Chuah: The Solar plot [32], also
known as the Sunburst plot (cf. Fig. 2.4.2b) [35], represents nodes by means of surfaces rather
than dots or glyphs. Due to the 2-dimensional nature of the nodes, a strong emphasis can be put
on metrics by representing them as the size of nodes.

2.4.5 Mirrored Radial Tree
Differences in characteristics and visualization output of the mirrored and regular radial tree are
of such magnitude that we discuss it separately. Still, the mirrored radial tree (cf. Fig. 2.4.2c) is
essentially an extension of the generic radial tree. It is used on many occasions to show relations
between software components [30, 29, 28], such as call graphs, dependency graphs and even code
clones. This illustrates that non-containment relations are explicitly covered.

The visualization is built up by first generating a traditional radial tree in the center of the
visualization, which is typically not shown. The internal radial tree is used to create ‘empty’ space
in the center. Then, for each node of the hidden radial tree, a mirrored node is drawn in a ring
outside the internal area (hence the name mirrored radial tree). The tree is now represented as a
collection of rings, that are inherent to the original layers/levels of the radial tree. The root node is
now drawn as the outer-most ring of the visualization, rather than inner-most node. The mirrored
radial tree utilizes adjacency to indicate containment relations, in the same way as the icicle plot.

The major advantage of this representation is that the empty space in the center of the visu-
alization can be used to show additional information; Edges can be drawn without occluding the
nodes. Moreover, the (invisible) nodes of the internal radial tree can be used to shape the edges
between nodes, and therewith emphasize hierarchical structure in the relations.

Although this representation seems to consume more space than the standard radial tree, this
is not necessarily the case: The nodes of the inner radial tree do not need to be drawn, hence
their size can be reduced significantly; Edges must have a minimum thickness of 1 pixel, but dots
require more pixels. A disadvantage is that additional levels provide less space for nodes, as they
are drawn inside. Therefore, with a fixed minimum node size, the mirrored radial tree can discern
less nodes than the standard radial tree. Moreover, the pre-defined shape of a node reduces the
amount of properties that it can be represent, compared to nodes of the generic radial tree.

(a) Radial Tree [30] (b) Sunburst Plot (c) Mirrored Radial Tree [30]

Figure 2.4.2: Radial hierarchy visualizations

CHAPTER 2. RELATED WORK 16

2.5 Multi-scale visualizations
Overview is one of the most important tasks in information visualization and thus in software
visualization. With the increasing size of datasets, i.e. the trees and edges that we extract from
codebases, overview is becoming increasingly difficult to establish. Most (generic) visualization
techniques aim to show all elements in a dataset, which results in technical issues that relate to
performance and/or stability. Moreover, showing huge amounts of data results in visual indis-
tinguishability of elements and does not help the user to understand the structure nor contents.
Hence, visualizations must be (made) scalable, so that the viewer can obtain useful overviews on
multiple scales. This can be achieved by aggregation in data and in visual space.

2.5.1 Aggregation constraints
In essence, aggregation is the mapping of data to a smaller and/or simpler form. We must be
able to reverse-map (relevant) aggregated data to original data, without obtaining significantly
different results. For example, when we are interested in the outliers of a dataset, an approach
that involves averaging is undesirable. Indeed, the viewer expects that the same conclusions that
can be drawn from visualizations of aggregated and of raw data. Aggregation techniques often
require the data to be of a certain type, but not each dataset of this type can be safely aggregated
with that technique. Hence, before applying aggregation on a dataset, constraints and implications
must be inspected carefully.

Elmqvist and Fekete surveyed existing hierarchical information visualization techniques [36], in
order to formalize design guidelines for aggregation in data and in visual space. The guidelines,
that we elaborate next, can be interpreted as constraints that must be complied to, in order to
apply aggregation safely and usefully.

Entity budget
The visualization should maintain a maximum amount of visual entities. As the amount of
pixels is limited, it makes sense to cut off entities that are smaller than a pixel. Moreover,
by maintaining a visual budget, the time spent on rendering can be framed. Furthermore,
by limiting the amount of visual objects, we prevent visual overloading of the viewer.

Visual summary
The aggregated data should represent the underlying data. This way the viewer can get an
basic overview, without being overloaded by all details. In some cases, adaptive rendering
might be useful; For instance, when interesting features of the data would be hidden by
aggregation, it can be useful to increase the level of detail in that part.

Interpretability & Visual simplicity
The main goal of aggregation is to improve interpretability of data, and not necessarily
to reduce the visual complexity. Indeed, the purpose is to provide overview, therefore the
output should be simple to interpret. Although aggregation is used to reduce the amount of
information shown, it does not guarantee that the resulting output is visually simple, nor
interpretable.

Discriminability & Fidelity
Aggregation of data is accompanied with hiding of (raw) data. This may not lead to situations
in which viewers get a wrong impression of the displayed information. For instance, adaptive
rendering can lead to confusion about the level of detail in parts of the hierarchy. Another
example of bad aggregations is the averaging of sampled data that contains relevant outliers.
Measures must be taken to prevent faulty interpretation of data due to aggregation; This
could mean that additional information must be presented to explain/emphasize aggregation.
Although different visual representations should be avoided in general, in some cases they
could indeed be revealing.

CHAPTER 2. RELATED WORK 17

2.5.2 Data aggregation
By data aggregation (or multi-scale visualization), we mean the approach to reduce the amount of
data to be visualized. Approaches to achieve the latter include dimension reduction (e.g. Principal
Component Analysis), subsetting (e.g. random sampling), segmentation (e.g. cluster analysis) and
aggregation (e.g. re-sampling into new aggregate items) [36]. The data that we want to ultimately
visualize is of hierarchical nature, therefore in particular the latter technique is interesting.

Essentially, hierarchical data aggregation is based on clustering of nodes. Voinea distinguishes
two approaches [37] for multi-scale visualizations, that can be used to perform reduction of the
amount of nodes to be visualized:

Step-based
In essence, the step-based approach encompasses limitation of depth to which a tree is vi-
sualized; All elements below a certain level are simply cut off. This level can be calculated
automatically, e.g. by constraining the visualization with an entity budget. Clearly, this
approach has a serious problem when the tree is not balanced, which is often the case in
codebase repositories; Showing files of only small higher level directories and hiding files of
larger lower level directories will give a wrong impression of the hierarchy.

Relevance-based
To omit the issue that is inherent to the step-based approach, Voinea explains the approach to
select a tree decomposition, based on node properties [37]. For this approach to be applicable,
nodes in the hierarchy must have a (somehow defined) relevance metric. Nodes that do not
meet the threshold (or surpass the threshold, as Voinea defines it) can be filtered out. To
retain a correct structure in the output tree, the function that calculates the relevance value
of nodes, must guarantee that children of nodes always have a smaller value than their parent.
The step-based approach can be implemented as a relevance-based approach, by assigning
the (inverse) depth of a node as relevance metric. To eliminate the balance-related issue of
the latter approach, the amount of leafs of a node can be used as its relevance value. If
nodes in the hierarchy are purely categorical, a mapping function can be used to prioritize
categories. Though, the mapping function should be designed carefully, as similar issues can
arise as in the step-based approach.

Clearly, the step-based approach is less resource-intensive than the relevance-based method; In
the first case, the original hierarchy can be used for rendering, and cut off when a certain level
is reached. The relevance-based approach typically results in a new tree, that is to be used for
visualization. Whether the latter is really necessary depends on the hierarchy and function that
calculates the relevance metric. Hence, in some configurations relevance-based decomposition can
be done cheaply.

2.5.3 Visual aggregation
Visual aggregation is used to reduce the amount of visual space needed by the visual elements. In
essence, data is mapped to a small and/or simple visual elements, that together represent larger
and/or complex entities in the same dataset. The treemap (cf. Section 2.4.3) is an example of
aggregate visualization: All visual elements are scaled to a fixed surface and are represented by the
visual aggregation of their children. However, when mapping large datasets to a limited surface,
chances are great that the available amount of pixels is insufficient to fit all elements. A clear
example of where the issue occurs is visualization of dynamic software logs.

Moreta and Telea lay focus on visualization of large changelogs [38], where they map changes
in a software repository to a 2D Cartesian layout; The x-axis represents time, the y-axis represents
files. Because the amount of files does not fit the screen, multiple elements are mapped to the
same pixels (on the y-axis). By default the common area is overdrawn over and over, eventually
to represent only the element drawn last. To guarantee that important information is not lost
this way, they perform importance-based anti-aliasing, based on color blending. However, the
constraint here is that the data can be prioritized.

CHAPTER 2. RELATED WORK 18

Another aggregation method that they apply is the grouping of visual elements, based on a
distance metric. Changes are grouped on similarity, which results in reduction of the surface
needed to show similar change events. The latter is particularly useful when we are interested
in an overview of the different events that occurred, rather than how many times a certain event
occurred.

Such visualizations do not explicitly display relationships, but let viewers infer them, e.g. by
means of seeing which elements change together in time. These visualizations are very compact,
and can show tens of thousands of elements on a single screen. However, seeing relations is hard,
since these are not drawn explicitly or not even considered at all.

2.5.4 Edge bundling
During this research, we have not found any proper alternative to represent association relations
than edges. However, we did encounter a technique for visual aggregation of edges: Hierarchical
edge bundling (HEB) [30] was proposed by Holten. In essence, the technique encompasses inter-
polation of two edges, of which the first connects the nodes linea recta, and the second follows the
hierarchical path through the least common ancestor. Many authors have applied HEB in combi-
nation with the mirrored radial tree [29, 28], which resulted in images that are easy to interpret.
This is exemplified in Fig. 2.5.1. The technique is not limited to mirrored radial trees; It can
be applied to any hierarchical representation. Holten has shown that the combination of treemap
with HEB significantly improves comprehensibility of the resulting visualizations. We conclude
that HEB can improve any visualization that uses edges to represent relations in a hierarchy.

(a) Without HEB[30] (b) With HEB[30]

Figure 2.5.1: Hierarchical Edge Bundling

2.6 Dynamic graphs
Dynamic graph drawing essentially approaches the problem of drawing a graph that evolves over
time. Typically, dynamic graphs are represented by a series of timeslices. Each timeslice contains
the state/structure of the graph at a point in time, that is a software version in the context of
this thesis. By investigating the timeslices in chronological order, the viewer learns how the graph
evolves. We first discuss mental map preservation, which is important for the viewer to be able to
compare the different timeslices, regardless of how they are visualized. Subsequently, we discuss
two visualization subclasses that approach dynamic graphs.

CHAPTER 2. RELATED WORK 19

2.6.1 Mental map preservation
The term mental map is used to indicate the abstract structural information that a viewer forms
when looking at a graph. It is used by the viewer to navigate through the graph and compare
it with other graphs. When timeslices of a graph are represented by multiple images, the viewer
relies on his/her memory to remember what was where, in order to mentally derive what changed
when. The larger the difference is between the images, the harder it is for the viewer to understand
what happened. Hence, preservation of the mental map is a desirable property of dynamic graph
visualizations [4, 39, 40].

Mental map preservation is performed by maintaining the same overall shape of the graph,
and moving as few nodes as possible, as little as possible. Diehl and Görg approach this by
constructing a supergraph of all slices [4], which forms a global layout. In the simplest form, they
use this supergraph ‘as is’ for each timeslice. This way the structure of the graph remains stable
in time, which preserves the viewer’s mental map. For the purpose of producing more compact
global layouts, they propose to form temporal equivalence classes; Nodes with disjoint live times
are grouped together, so that different nodes can share the same location at different points in
time. They extend the approach even further, by allowing the layouts of individual timeslices to
deviate from the global layout; This is allowed as long as the deviation remains below a certain
threshold. The latter approach allows to trade aesthetic quality for dynamic stability and vice
versa.

In [39], Archambault et al. investigate the effect of mental map preservation on animation and
small multiples visualization of dynamic graphs. Initially, they discuss that several studies have
contradicting conclusions on the benefit from mental map preservation. From the results of their
experiment, they conclude that mental map preservation results in a small but significant difference
in the viewer’s response time for both small multiples and animated visualizations: Mental map
preservation reduces the time needed by the viewer to obtain the same insight. Furthermore, they
conclude mental map preservation does not significantly influence the amount of errors made by
viewers.

2.6.2 Small multiples visualizations
In small multiples visualizations, originally proposed by E. Tufte in [41], different graphs are drawn
side-by-side, to show differences between objects. The method is typically used to show different
attributes and/or representations of the same data side by side, in order to show correlations
between them. Hence, it can be used to circumvent the limit on the amount of node properties
that can be shown at the same time, from which various visualizations suffer.

When the small multiples approach is used to visualize dynamic graphs, timeslices are unfolded
and represented by separate (sub-)images. In this case, the images represent different points in
time, rather than different attributes. This way, the viewer can compare all timeslices at the same
time. For instance, Hurter et al. use small multiples visualization to show addition and removal of
software clones in several major releases of Firefox [40]. Essentially, they emphasize clone addition
and removal by mixing two unfolded views on the graph: They plot two separate sub-images for
each software version, where each sub-image shows only one type of change event.

Depending on the visual representation of the graph, the corresponding elements in the different
images can be linked together, to indicate ‘what moved where’. In Code Flows [2], small multiples
visualization is combined with parallel coordinates (cf. Fig. 2.6.1); Here one image is built up from
several small images, that are interconnected, in order to show the ‘flow’ of software artifacts in
time. This approach very well represents the flow in time, which is aligned to the x-axis. However,
the approach is not applicable to representations such as (mirrored) radial trees.

The main advantage of small multiples visualization is that many timeslices can be shown at
once. This allows the viewer to compare consecutive timeslices, but also distant ones. However,
the latter depends on similarity between the distant sub-images; If the viewer is unable to preserve
the mental map, because the difference in visualization output is large, he/she will not be able to
see the similarities nor interpret the differences.

Clearly, the small multiples approach requires a lot of space and allows us only to show a
limited amount of slices. The problem becomes even more severe when we visualize large graphs.
Sub-sampling and/or interpolation of timeslices can be used to limit the amount of sub-images.

CHAPTER 2. RELATED WORK 20

However, seeing differences becomes increasingly difficult when we reduce the amount of images,
and therewith increase the density of visualized data. Indeed, differences are derived mentally, by
visual comparison of sub-images. Moreover, when change events are blent together (or not shown
at all), the emphasis on separate events is lost.

All in all, reducing the amount of sub-images may seriously impede understandability of the
overall visualization. Hence, the small multiples approach is not very suitable to emphasize change
events in dynamic graphs with long time-sequences.

Figure 2.6.1: Icicle plot with parallel coordinates [2]

2.6.3 Animated visualizations
In animated visualizations, a single graph is drawn, which changes in time as data evolves. An
obvious, but relevant constraint to animation is that it can only be applied when the visualization
is projected on a screen; The typical approach to print animations is still to show the data with a
small multiples representation.

In order to create smooth transitions, subsequent timeslices can be interpolated. Hurter et al.
present an approach for smooth interpolation of edges between consecutive timeslices of dynamic
graphs in [40]. This is particularly useful to put emphasis on change events, as they ‘pop-out’ from
the static part of the visualization. Moreover, animating transitions between timeslices can help
the viewer to understand how the structure of the graph changes [39].

The major benefit of animating a dynamic graph is that the full screen can be used for the
drawing. The amount of timeslices that can be shown is virtually unlimited, as it only affects the
duration of the animation. Hence, animation is a scalable approach to visualize dynamic graphs.
However, as one timeslice can be depicted at the same time, the user will need to interact with
the visualization to inspect time-dependent details. Because only one timeslice can be viewed at
the same time, the viewer relies on his memory to obtain an overview of e.g. how the amount of
change events varies in time. This issue can be overcome by providing a small overview of time, by
means of a supportive small multiples visualization: This is often shown as an additional filmstrip
with thumbnail visualizations of timeslices.

Archambault et al. compared graph comprehension by small multiples visualization with an-
imation [39]. They conclude that viewers make significantly less errors when animation is used.
On the other hand, small multiples visualization gave significantly faster performance overall.
Furthermore, they show that there is no correlation between performance and error rate.

CHAPTER 2. RELATED WORK 21

2.7 Conclusion
As we have seen, there are many tools for (1) extracting software structure (cf. Section 2.2) and
(2) extracting clones (cf. Section 2.3). To visualize software change, we have discussed several
visual representations for our dataset, and approaches that help us to handle the large size of the
data; Many approaches exist to visualize hierarchies (cf. Section 2.4), and several methods exist
to do this in a scalable way (cf. Section 2.5). Moreover, we have seen that existing methods can
be used to visualize evolving graphs (cf. Section 2.6).

However, for our goal, these tools cannot be used directly, since we do not have a tool/technique
that easily gives us clones combined with software structure. Moreover, to our best knowledge,
there is not a tool/technique that extracts relevant clone-related events from the evolution of a
code base; We can extract clones from each revision, but what we want is to see how these changed
with respect to the next/previous revision. Hence, we do not have a solution combining all above
in an easy to use and scalable way for the end user. So, in the next chapter, we will show how we
arrive to such a solution, starting from the related work described here.

Chapter 3

Solution Design

3.1 Introduction
In this chapter we elaborate our solution to the research questions presented in Chapter 1. We
present the solution on a functional level, where we omit implementation details. First we refine
the requirements up to a level where we can take concrete actions to implement/check them (cf.
Section 3.2). Next, we introduce the baseline architecture of our solution (cf. Section 3.3). The
rest of this chapter can be divided into two parts, that relate to data analysis (cf. Section 3.4 -
3.3.3) and data visualization (cf. Section 3.7 - 3.9).

In the first part, we explain the data acquisition steps in order of execution; First we handle the
acquisition of files and changelogs by the repository extractor (cf. Section 3.4). Next, we explain
extraction of scope information by the static analyzer (cf. Section 3.5). Subsequently, we elaborate
extraction of code clones by the clone detector (cf. Section 3.6). In the latter three steps, data
refinement is performed on the level of the related data type.

In the second part, we first introduce the basic form of the visualization (cf. Section 3.7), as
it is easier to understand the mapping procedures; The result of all mappings can be explained
best by illustrating their effect on the visualization. Once the base transformation from input (fact
database) to output (visualization) is clarified, we continue with the mapping components, that
alter the visualization output. The mapping components have decreasing amount of impact on
the produced image, with respect to the execution order. Hence, a reversed order of elaboration
should be easier to understand. We first discuss color mapping (cf. Section 3.8), in order to finish
with a discussion of user dependent techniques, such as navigation and filtering (cf. Section 3.9).

3.2 Requirement re�nement
We first formalize functional requirements (cf. Section 3.2.1) and elaborate the non-functional
requirements of our solution (cf. Section 3.2.2). Finally, we discuss to which requirements third
party components must comply, in order to be usable as part of our solution (cf. Section 3.2.3).

3.2.1 Functional requirements
Data Acquisition Requirements

F-A.1 Must The application shall support mining of changelogs from SVN
(Subversion) repositories.

F-A.2 Must The application shall support mining of files from SVN (Subversion)
repositories.

F-A.3 Must The application shall support mining of scopes from source code
files written in the following languages: C, C++, and Java

F-A.4 Must The application shall support mining of the following scopes:
Classes, Enumerations, Functions, NameSpaces.

23

CHAPTER 3. SOLUTION DESIGN 24

F-A.5 Must The application shall support mining of clones from source code
files written in the languages listed in F-A.3.

F-A.6 Must The application shall support mining of an user-selectable range of
revisions.

F-A.7 Must The application shall support storing of mined data into a fact
database.

F-A.8 Must The application shall support mining of additional revisions on a
moment later than the initial acquisition.

F-A.9 Option The application should support mining of files from Git repositories.
F-A.10 Option The application should support mining of scopes from source code

files written in the following languages: C#, Objective-C, IDL,
VHDL, PHP, Python, Tcl, Fortran, and D.

Visualization Requirements

F-V.1 Must The application shall support visualization of many revisions in one
overview.

F-V.2 Must The application shall support visualization of the code base (files
and scopes) in a file-oriented fashion.

F-V.3 Must The application shall support visualization of clones.
F-V.4 Must The application shall support visualization of the code structure at

some revision.
F-V.5 Must The application shall support visualization of changes in a range of

revisions.
F-V.6 Must The application shall support visualization of file, scope and clone

activity in a range of revisions.
F-V.7 Must The application shall support the following metrics for clones: Age

and size.
F-V.8 Must The application shall support the user to to preserve his/her mental

map.
F-V.9 Must The application shall provide a legend to explain the meaning of

different colors.
F-V.10 Must The application shall provide an overview of the total amount of

files, scopes and clones in the repository.
F-V.11 Option The application should support visualization of the code base in a

scope-oriented fashion.

User Interaction Requirements

F-I.1 Must The application shall allow the user to input project details (URL
and name) and start the data acquisition.

F-I.2 Must The application shall indicate which revisions exist and can be
mined in detail.

F-I.3 Must The application shall allow the user to select a range of revisions to
mine in detail.

F-I.4 Must The application shall indicate which revisions are already mined in
detail.

F-I.5 Must The application shall allow the user to abort the data acquisition
process.

F-I.6 Must The application shall support zooming into/out of (sub-)directories
and files of a codebase.

F-I.7 Must The application shall support filtering of scope types.
F-I.8 Must The application shall support filtering of clone types.
F-I.9 Must The application shall allow the user to view which file/scope is

represented by a visual component.

CHAPTER 3. SOLUTION DESIGN 25

F-I.10 Must The application shall allow the user to view what clone is
represented by a visual component.

F-I.11 Option The application should support exporting of the visualization to
PNG and SVG.

F-I.12 Option The application should support exporting a sequence of images,
allowing the user to set the range to export and time-window size.

3.2.2 Non-Functional requirements
Ease of Use Requirements

USE-1 Must The application shall be easy to start using; The user shall be able
to point the application to a repository URL and press ‘Go’.

USE-2 Must The application shall provide a limited amount of options to the
user; Where possible, configuration parameters shall be grouped
and hidden as presets.

Scalability Requirements

SCL-1 Must The application shall support visualization of small to large
code-bases.

SCL-2 Must The application shall acquire the bare minimum data needed for
fact extraction.

SCL-3 Must The application shall re-use acquired data where possible instead of
re-acquiring it.

SCL-4 Must The application shall support mining of data in stages; It will only
acquire details on request of the user.

SCL-5 Must The application shall process the bare minimum data needed to
extract the requested facts.

SCL-6 Must The data extraction components of the application shall require a
smaller or equal amount of time than needed to compile the project.

Genericity Requirements

The genericity requirements are covered by functional requirements F-A.3, F-A.4 and F-A.5.

Other Requirements

NFO-1 Option The application should run on multiple platforms, including
Windows and Linux.

3.2.3 Third-party component requirements
As discussed in Section 2.2 and 2.3, many third party tools exist that can extract code structure
and clones. Instead of reinventing the wheel, and to limit the amount of work, we decided to rely
on such tools (this is discussed elaborately in Section 3.3.3). Because many different tools exist for
extraction of the needed facts, we need to determine which properties the tools must have. The
required properties are deducted from the requirements of our solution, though each of the fact
extractors has additional issues in its particular field that must be taken into consideration. The
third-party component requirements are listed below, in the order of importance:
Zero-con�guration

The third-party tools to be used will be embedded as part of the data mining pipeline. This
procedure must be performed without the need for user interaction with the third-party
tools (cf. Req. F-I.1). If the external tool requires the user to interact with it (graphical or
non-graphical) interface, it cannot be used.

CHAPTER 3. SOLUTION DESIGN 26

Genericity
The third-party tool should preferably support as many programming languages as possible,
but at least have support for C, C++ and JAVA (cf. Req. F-A.3, F-A.5) . The detected
scope types (classes, functions, etc.) should be annotated the same way, independent of the
language. The latter property guarantees that the same categorical colormaps can be applied
for all languages. Each fact extractor supports a set of languages, therefore selection of a
tool can be done by exclusion based on this requirement.

The previous requirements prescribe which properties/features the static analyzer must have to be
compatible with our tool. The following requirements are of a more qualitative and therefore less
strict nature:

Fault-tolerance
As we only want to acquire files that change between revisions (cf. Req. SCL-2), extraction
of scopes must be possible from source code that does not compile; Such code can suffer from
inra-file errors (i.e. syntactic and semantic) and inter-file errors, such as missing dependencies.
If construction of the AST is not complete, the missing part of the AST might be annotated
as deleted, resulting in detection of false events. Although this issue cannot be omitted
completely, the various fact extractors have more or less focus on the aspect and can be
prioritized by it.

Stability of output
Scopes that were detected in a revision and persist in the next revision, must be detected
again. This requirement has a strong relation to fault-tolerance, however the concern here
is not that errors are handled nicely, but rather consistently; If the AST construction of a
source file varies in time, due to small but meaningless changes, false evolution events will
be detected in the file’s contents. This requirement relates to the question which (erroneous)
code changes are accepted by the static analyzer. Moreover, it is hard to measure and might
need a research on its own.

Performance
The fact extractor should be capable of parsing industry-sized code bases (cf. Req. SCL-1),
containing millions of lines of code (LoC) and complex C++ constructs in the same amount
of time or less than needed to compile the code (cf. Req. SCL-6); It is undesirable to have to
wait for days for the extractor to finish its job in the case of a large codebase. Because we are
only interested in the high-level structure, the static analyzer should be capable of ignoring
the lowest level code artifacts, such as function-local attributes. Performance conflicts with
fault-tolerance, but not necessarily with stability of output. It is of less importance than the
other quality attributes; Indeed, long waiting time limits the applicability of our solution,
though it could be rendered useless if it produces data that contains many falsely detected
events.

Standardized output
The output of each of the third-party components is used as input to our application. In order
to be able to process this data easily, a standard format of the output is highly desirable.

Portability
Because we intend to build a multi-platform tool, for at least Linux and Windows, each of
the fact extractors should support the same platforms (cf. Req. NFO-1).

3.3 Baseline architecture
In this Section we describe the high-level architecture of our solution (the tool ClonEvol). First
we formalize the fact types that we want to extract and visualize, and we explain why they are
needed and how they relate (cf. Section 3.3.1). Subsequently, we discuss the visualization pipeline,
that describes our solution on the highest level (cf. Section 3.3.2).

CHAPTER 3. SOLUTION DESIGN 27

3.3.1 Fact types
In order to capture the evolution of a project, we inspect the changes between subsequent versions
of a codebase. The DataStore, i.e. the main data structure used by ClonEvol, contains all revisions
in which changes were made to the inspected project. A revision in the SCM represents a changeset,
therefore it contains only the changes that were performed in the related commit to the repository.
A Revision R consists of four components, discriminated as the following fact types:

• FileTree F : The (changed) files must be acquired before the contained scopes and clone
events can be mined. Moreover, to be able to produce a file-centric visualization, a hierarchy
of (relevant) files is required.

• ScopeTree S: Scopes are used to provide fine-grained information on code changes, below
the level of an entire file; The ScopeTree is a unification of Abstract Syntax Trees (AST),
that are extracted from Fn. Because the ASTs are linked together, the ScopeTree contains
more information than the separate syntax trees.

• Code-clones CC: The raw code clone relations are used to relate similar scopes. They
come as sets or pairs of ranges of LoC, and have only an intermediate purpose; They are not
explicitly visualized.

• Scope-clones SC: Changes in similarity relations between scopes form the data that is
ultimately to be visualized.

Each revision is a set Rn = {F; S;CC; SC}, where F is the FileTree of modified, added and deleted
files, S is the ScopeTree containing scopes s ∈ f ∈ F , CC contains sets of related code blocks
so that {(f ∈ F; linestart; lineend)} ∈ cc ∈ CC, and SC contains scope-clone relations so that
(sa; sb) ∈ SC; a 6= b. F , S and CC are built up during the mining procedure and SC is generated
by the refinement procedure.

The mapping of elements from F to S is one-to-many and the reverse mapping S to F is
one-to-one; A file can contain multiple scopes but each scope has one main file where its skeleton
is implemented and its sub-scopes are defined (forward declared). In order to unite F and S, it
seems obvious to pick one of the hierarchies as master and embed the other. However, the chosen
approach is to keep both trees and interconnect the leafs in a compound graph. This allows us
to visualize the data from both a file and scope point of view. We do this by creating a graph
(cf. Section 3.5.2) from F and S, where containment relations between the elements are explicitly
modeled. This graph can later be mapped to file or scope oriented trees (cf. Req. F-V.11).

3.3.2 Visualization pipeline
Our design follows the pipes and filters and shared repository architectural patterns, which are
described in [42, 43]. The visualization pipeline [44, 2, 28] is complemented by a shared repository
(DataStore), where the output of each pipe is stored rather than passed forward. Each pipe requires
all of the mined data, therefore it would not make sense to forward it each time. The high-level
process, as applied in ClonEvol, is depicted in Fig. 3.3.1.

User
Process flow

Output
Input

Visualization Pipeline

Files on disk Memory Graphical ObjectsCode Repository (SCM)

VisualizationMining Refining Mapping

Fact Database

Figure 3.3.1: Visualization Pipeline

CHAPTER 3. SOLUTION DESIGN 28

The used visualization pipeline utilizes the divide-and-conquer strategy and allows us to manage
the complexity of the whole process; By applying this strategy, we make sure that our application
is set up modularly. In order to create visualizations, the raw data must be acquired, transformed,
enriched, filtered, mapped to visual representations, in order to be rendered. Each of these data
manipulations is a separate module, or so called “pipe�. Next, we discuss the top-level pipes in
more detail.

3.3.3 Data mining & re�ning
Each of the data mining components performs both acquisition and refining of the data that relates
to that component. However, once all facts are extracted and cleaned up, clone event detection is
performed in an additional data refinement step.

Extraction of facts is achieved by combining information obtained from the software versioning
system and contents of files that change between versions. More precisely, the tool combines the
version change-logs with static analysis (of file contents) and clone detection. The data acquisition
process is cut in three parts; Repository extraction, scope extraction and clone extraction. The
high level process is depicted in Figure 3.3.2, together with its sub-processes and the related inputs
and outputs.

Code Repository

Files

Changelogs

Diffs

Data Mining

RepoExtractor ScopeExtractor CloneExtractor

DataStore

FileTree ScopeTree Clones

Files on disk
Process flow

Output

Input

Data Refining

Figure 3.3.2: Data mining procedure

The FileTree is constructed directly from the information contained in the SCM changelog of a
revision. Filenames contained in the FileTree are then downloaded to the local storage drive to
be used for processing in the following steps. Next, the ScopeTree is extracted using the static
analyzer. Finally files of the subsequent revisions are matched using a clone detector.

The SCM provides meta-information in the form of change-logs (Logn), that contain records
of files modified from revision Rn−1 to Rn. The change-log is used to build Fn and then acquire
each f ∈ Fn to continue with the next step. The process that must be performed for each tuple
(Rn; Rn−1) of subsequent revisions is summarized below:

1. From the change-log Logn of revision Rn, build Fn = files(Logn).

2. From the repository, acquire f ∈ Fn for both Rn and Rn−1 (if it exists).

3. For Rn and Rn−1, extract the scopes (joint syntax tree), so that Sn = ∪(s ∈ f ∈ Fn).

4. For Rn and Rn−1, extract the code clones Cn = intraClones(Fn) ∪ interClones(Fn; Fn−1)

Unlike for most other project-level analysis tools, acquisition of only the modified files Fn for Rn

and Rn−1 is sufficient for ClonEvol to produce the desired information; Files that were not changed
cannot contain any evolutionary information and therefore they are ignored. This property is in-
herent to the capability of ClonEvol to process projects containing thousands of files and revisions.

Fact extraction of only differences between revisions is the core tactic that makes ClonEvol
capable of handling large projects, that contain thousands of versions and source-code files.

CHAPTER 3. SOLUTION DESIGN 29

3.3.4 Fact database
After completion of the mining procedure, the extracted facts are stored in a fact database. We
now outline the data storage scheme used for our solution. The main goal is to explain the
database schema, so that the queries used in the mapping procedure can be understood; We omit
substantiation of low-level database design related choices, as they are outside the scope of this
project.

As the fact types introduced in Section 3.3.1 can be described by an entity relationship model,
we use a relational database (SQL). Object Role Modeling (ORM) [45] is a modeling language
for entity relationships, that can be translated directly to a database schema. Moreover, with the
right tool (we use NORMA [46]), one can automatically generate SQL statements for creation of
the schema. Hence, our approach is to translate the components of the DataStore into an ORM
model, from which we then generate the database schema.

First, the DataStore and all the facts it contains (Revision, FileTree, ScopeTree, CodeClone
and ScopeClone) are mapped to ORM entities. Next, entity relations and additional constraints
are added so that data correctness and consistency are guaranteed by the database. The resulting
ORM model is depicted in Fig 3.3.3 and its components are elaborated next.

DataStore is the main entity that describes the mined software repository. It is modeled explicitly
to store project properties such as the name and URL. Although it should have a relation
to Revision, the relation is dropped, as we explicitly choose to store only a single project
in one database. This should reduce the database size and therewith supposedly improve
performance.

Revision can contain the SCM log message and author name. It stores whether the revision was
acquired, so that we can easily show this information in the user interface. More important,
it is used to identify a FileNode and ScopeNode: FileNodes and ScopeNodes with the same
name can appear in many revisions, but with different properties.

FileNode represents a File in exactly one Revision. It must have a file name, operation (added,
deleted, modified) and type (file or directory). The latter is stored bit-wise, so that filtering
can be easily performed using the XOR operator. It has either a FileNode as parent, or is
the root directory of a Revision (this is modeled by an exclusive or constraint). Furthermore,
it has containment relations with ScopeNodes, and associative relations with CodeClones.
These relationships are used to uniquely identify the entities.

ScopeNode represents a Scope in exactly one revision. It cannot exist if it is not contained by
a FileNode. It must have a scope name, operation and type (class, function, etc.), which
is stored bit-wise for filtering purposes. It has either a ScopeNode as parent, or is the root
scope of a Revision (exclusive or constraint). Furthermore, it has a containment relationship
to ScopeClones.

CodeClone represents a range of lines in a FileNode, and is member of aCloneSet, that indicates
which CodeClones relate to one another. It contains a start and end line of the LoC range
of a FileNode, that must be unique for the related FileNode.

ScopeClone represents the clone relation between two ScopeNodes and can occur only once. It
stores information about the clone type (intra vs. inter), and performed operation (added,
deleted, modified, drifted).

From this ORM entity relationship model, NORMA automatically generated the database schema
depicted in Fig. 3.3.4. As our purpose is to clarify the structure of the fact database, we omit a
discussion of the generated SQL table creation statements. Although we used SQLite [47] for the
implementation, any other SQL based RDBMS should be compatible.

C
H

A
PT

ER
3.

SO
LU

T
IO

N
D

ESIG
N

30

Figure 3.3.3: ORM entity relationship model of the fact database

C
H

A
PT

ER
3.

SO
LU

T
IO

N
D

ESIG
N

31

Figure 3.3.4: ORM generated tables of the fact database

CHAPTER 3. SOLUTION DESIGN 32

3.3.5 Data mapping & visualization
At this point the fact database is already populated with all facts (cf. Section 3.3.1) needed for
mapping and visualization. The mapping procedure transforms (a subset of) these facts into visual
objects, which are then displayed on the screen. The resulting visualization is inspected by the
user, who in turn may modify mapping and visualization parameters. The process is depicted in
Figure 3.3.5.

Data Mapping

Root Node Selection
Scope & Clone

Filtering
Color Mapping

Data Mining &
Refining

Data Visualization

User

Fact Database Visual Objects

Process flow

Output

Input

Figure 3.3.5: Data mapping procedure

The fact database is the core input of the data mining pipe. It is result of the data mining and
refining pipes, but can be loaded at a later point in time. The mapping and visualization of this
data involves the following steps:

1. Navigation: The (user) selected root node is used to define a subset of all files and scopes to
ultimately visualize.

2. Filtering: The subset from (1) is filtered on type of scope and/or clone, which is mapped to
the set of visual objects.

3. Color mapping: Each visual object is annotated with a color, based on the (user) selected
colormap.

4. Visualization Rendering: An image is generated from the visual objects and presented on
screen.

5. User Interaction: In essence, the user makes a closed loop the mapping and visualization
process; He/she inspects and interacts with the visualization (4) to subsequently change
parameters of (1), (2) and (3).

We design three colormaps (cf. Req. F-V.4 � F-V.6): The first colormap shows the structure of
the code base (files, classes, functions, etc.) and the existing clones. This colormap is used as first
overview to help the user understand the visualization of the project. The differences colormap can
be used to visualize raw changes in the files and scopes, performed between two or more subsequent
versions of a code base. Implications of the changes, such as added, removed and persisting code
clones can be visualized by tracking changed clone relations between files and the contained scopes.
Moreover, code drifts, that are indicators of code refactoring, are emphasized. The code activity
colormap can be used to track frequently changed files and the related clones, for the purpose of
identifying tightly coupled code and/or stubborn clones that form a sore spot for maintenance.

The visualization is approached by using a (mirrored) radial tree to show the file and scope
structures, complemented with hierarchically bundled edges that indicate the clone relations. The
user can scroll through time to search for particular events and apply several colormaps to highlight
different fact types.

CHAPTER 3. SOLUTION DESIGN 33

3.4 Repository extraction
The FileTree is a hierarchical data structure, which is not only important for the eventual visu-
alization, but also for file content acquisition from the SCM system. The SCM system contains
files of all revisions and changelogs, i.e. information on what files were changed (added, deleted or
modified) between two consecutive revisions. From the changelogs, FileTrees are built up for all
revisions, in order to be used for acquisition of only the files that differ. Indeed, files that were not
changed cannot be subject of evolution, as evolution implies that something changed. The inputs,
outputs and related pipes of repository extraction are emphasized in Fig. 3.4.1.

Code Repository

Files

Changelogs

Diffs

Data Mining

RepoExtractor ScopeExtractor CloneExtractor

DataStore

FileTree ScopeTree Clones

Files on disk
Process flow

Output

Input

Data Refining

Figure 3.4.1: Repository extraction procedure

3.4.1 Output requirements
Because we want to extract data from existing SCM systems, there is little room to set quality
requirements for them. However, to comply with our needs, an SCM system must at least be able
to provide:

• Basic Information: This encompasses the first and last revision that contain changelogs
for the chosen (sub-directory of the) codebase. The information is used to acquire only the
changelogs that are relevant for the inspected URL. Most projects start at revision 1, however
this is not necessarily the case; For instance, Apache projects all share the same repository
and the start revision depends per project. Moreover, the same problem occurs when we
inspect a sub-directory of a codebase.

• Changelogs: Per version logs of file addition, deletion and modification are needed to build
up the FileTree and annotate the FileNodes.

• File Contents: In order to perform static analysis and clone detection, the source code must
be downloaded. Because we investigate the evolution of a file, we must be able to access any
version of a file; The SCM system must provide the full file content as it was in a requested
version of the codebase.

3.4.2 Subversion (SVN)
For this project SVN [48] is used to acquire changelogs and files from a repository, but any ver-
sioning system can be used that provides the information mentioned above. The reason for this
choice is simple: SVN provides all necessary information and it is the SCM with which we have
most experience.

SVN is optimized to acquire complete revisions, but not the changes between revisions. In order
to download only the needed files, we need to recursively check out all related sub-directories as
empty, before we can acquire the file. The hierarchical structure support us in this job, as we can
approach each sub-directory as a FileNode and mark it as acquired. Once the contents of all files
in the FileTree are acquired, we can proceed with scope and clone extraction. Because the amount
of changed files per commit does not increase on average, one might conclude that complexity of
the procedure is O(

∑|R|
i=1(|Fi|). However, the sub-directories of FileTrees require additional check

CHAPTER 3. SOLUTION DESIGN 34

out steps, of which the amount is equal to depth(F∪) in the worst case. Therefore the repository
extraction pipe is of complexity O(

∑|R|
i=1(|Fi| ∗ depth(Fi)) = O(|R| ∗ depth(F∪)).

The required information is provided by SVN, as output to the following query: svn log
--xml -v -r <revision>. This output is formatted in XML as exampled below:

Listing 3.1: Example output of SVN log
<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<log>
<logent ry

r e v i s i o n ="3228">
<author>botg</author>
<date >2009−06−22T14 : 06 : 53 . 957363Z</date>
<paths>
. . .
<path

ac t i on="A"
prop−mods=" f a l s e "
text−mods=" f l a s e "
kind=" f i l e ">/trunk/ s r c / i n t e r f a c e / s e t t i n g s / opt i on spage_f i l e type . cpp</path>

<path
ac t i on="M"
prop−mods=" f a l s e "
text−mods=" true "
kind=" f i l e ">/trunk/ s r c / i n t e r f a c e /Mainfrm . cpp</path>

<path
ac t i on="D"
prop−mods=" f a l s e "
text−mods=" f a l s e "
kind=" f i l e ">/trunk/ s r c / i n t e r f a c e / opt ionspage_edit . cpp</path>

. . .
</paths>
<msg>Move a l l s e t t i n g s d i a l o g code in to new subd i r e c to ry .</msg>
</logentry>
</log>

3.4.3 Processing: Changelogs & FileTree
From the SVN output we need to build the FileTree, which will first be used to acquire the contents
of relevant files, and eventually to produce the hierarchy of the visualization. The changelog Logn

contains records of files to be added to Fn, and the operations that were performed on them.
However, acquisition of only these files is not sufficient for us to be able to perform comparisons
between revisions; To compare a file that was modified in revision Rn, we also need the contents
of the file in the preceding revision Rn−1. To build a complete FileTree Fn, we need to process the
log information contained in Log[n−1, n], as illustrated in Fig. 3.4.2.

Figure 3.4.2: Changelog processing

CHAPTER 3. SOLUTION DESIGN 35

Based on the action that was performed on a file, provided by the changelog, we add the file to
Fn, Fn−1 or both. We describe the relevant files in revision Rn as the set:

FileTree(n) = Added(Logn) ∪ Deleted(Log[n, n+1]) ∪ Modified(Log[n, n+1])

Next, we explain the implications of the changelog operation on the annotation of the file in the
FileTree. Because the changelog operations and file annotations share the same terms, we discern
these by writing changelog operations in a bold font type and file evolution annotations in
italics.

• If the file was added in the changelog, it qualifies as target of a code movement. Because
a predecessor does not exist, it can only be acquired for revision Rn. Hence, it is an added
element of Fn and does not exist in Fn−1.

• If the file was deleted in the changelog, it qualifies as source of a code movement. Because
the file does not exist anymore, it can only be acquired for revision Rn−1. However, it holds
no property of evolution in revision Rn−1. Hence, the file is needed for comparison in Rn−1
and deleted in Rn.

• If the file wasmodi�ed in the changelog, the contained scopes still might be added or deleted.
These finer-grained scope evolution annotations are to be extracted in a later stage. Hence,
the file is needed for comparison in Rn−1 and modified in Rn.

3.4.4 Data re�ning: FileNode events
The processing and enhancement of data provided by the example changelogs (cf. Fig 3.4.2) results
in the FileTrees depicted in Fig. 3.4.3. A discrepancy between Fig. 3.4.2 and Fig. 3.4.3 can be
spotted in FileTree Fn+1; In an SVN changelog, deletion of a directory implies the deletion of
its contents. However, for the visualization we need to explicitly create and annotate each node.
Hence, we need to reconstruct the deletion of lower level nodes in the FileTree.

Reconstruction of deleted nodes can be done by querying SVN for the complete list of directory
contents of the previous revision. However, querying this information takes a long time and impedes
performance. We resolve the in post-processing, i.e. after FileTrees are constructed for all revisions.
We then construct the union of all FileTrees F∪, which yields the same information that would be
queried otherwise. Next, we use the union F∪ to reconstruct the nodes of the deleted directory.
Ultimately, the reconstructed nodes are annotated as deleted.

Figure 3.4.3: FileTree as result of Fig. 3.4.2

CHAPTER 3. SOLUTION DESIGN 36

3.5 Scope extraction
The ScopeTree is a hierarchical data structure, which is not only important for the eventual
visualization, but also for construction of ScopeClones. It contains all sub-scopes of a project and
respects inter-file relations. The ScopeTree of a code-base conforms hierarchy rules which should
be familiar to anyone with basic programming knowledge (cf. Fig. 3.5.1).

File

NameSpace

Class

Attribute

Directory

Function

Figure 3.5.1: Hierarchy of the ScopeTree

Nodes with a thick border do not necessarily have a (unique) parent node; For instance, a namespace
is a scope that can be used in multiple "physical" files. Note that directory and file has a different
meaning now than for the FileTree; Directories and files should be interpreted as a scope in this
case (this was elaborated in Section 2.2.1). Once the relevant files and their contents are acquired
from the SCM, the ASTs are extracted by means of an static analyzer. The inputs, outputs and
related pipes of scope extraction are emphasized in Fig. 3.5.2.

Code Repository

Files

Changelogs

Diffs

Data Mining

RepoExtractor ScopeExtractor CloneExtractor

DataStore

FileTree ScopeTree Clones

Files on disk
Process flow

Output

Input

Data Refining

Figure 3.5.2: Scope Extraction Procedure

3.5.1 Output requirements
To comply to our needs, a static analyzer must be able to provide:

• Scope Type: For our purpose, it is sufficient to limit the scopes types that the static analyzer
must be able to extract to: attributes, classes, defines, enumerations, functions, namespaces
(cf. Req. F-A.4). Preferably, the static analyzer should support commonly used libraries
and frameworks such as Boost and Qt. Only if supported by the static analyzer, the set of
supported scope types can be extended, e.g. to Qt signals and slots.

• Location: We need to link the scopes to the files and line(s) of code (LoC) where they are
implemented and defined in case of a C/C++ codebase. The data should either be on a
per-file base, or annotate each scope in which file it is contained.

Typically, Abstract Syntax Trees (AST) contain the (sub)scopes of a file, but lack relations between
scopes in different files. The separate ASTs provide fragmented (and therefore incomplete/ambigu-
ous) information about the code-base. As example, we take a source-header file pair:

CHAPTER 3. SOLUTION DESIGN 37

• The header file has an AST that contains the implementation of a class, where the functions
are forward declared. We know the names of the functions, but do not have the implemen-
tation details.

• The source file has an AST that contains implementations of functions, but the scope of the
functions can be defined somewhere else; A part of all functions are ‘local’ functions, i.e.
declared and implemented locally, however the other part is forward declared in the header
files.

When the parent scope of the implemented functions is not defined in the same file, we will be
unable to correctly qualify the parent; We might know the name of the parent scope but do not
know its type. If the scopes in the source and header files are not linked by the static analyzer,
additional effort must be put into resolving these dependencies. We consider this out of the scope
of our project and part of the completeness requirement to the third-party static analysis
component.

Compromise
In the elaboration of repository extraction (cf. Section 3.4), we explained that only files that
changed between revisions are acquired. However, to comply to the completeness requirement,
the static analyzer will always need the header files that relate to the source files; To properly
identify all scope types of C/C++ source code, both files are needed. However, most commits to
the repository do not contain source-header file pairs. It is noteworthy that the issue does not
arise for source files written in Java, because Java scopes are self-contained.

Without doubt, the best way (in terms of performance) is to trace the dependencies of all source
files and only acquire/process the relevant headers. However, such optimization is not trivial to
achieve, moreover it does not improve the worst case scenario (in which all headers are needed). To
guarantee that all scopes can be identified correctly, but limit the complexity of our application,
we have decided to always process all header files of a repository.

Eventually, the most important is that scopes in source files are always well-defined. This
can indeed be achieved with our approach, as header files are always available and this way the
dependencies are resolved. However, our compromise comes at cost of performance: While the
repository extraction pipe has complexity O(|R| ∗ depth(F∪)), the scope extraction pipe is of
complexity O(|R| ∗max(1; h)). Clearly, the complexity of static analysis of Java projects becomes
O(|R|).

3.5.2 Doxygen
For this project Doxygen [10] is used as scope extractor. However, any static analyzer could be
used if it provides the information mentioned above, and complies to the additional requirements
(cf Section 3.2.3). Doxygen is widely used as documentation tool rather than a scope extractor,
nevertheless it can provide all necessary information and complies to the completeness requirement.
Doxygen complies to our third-party tool quality requirements (cf. Section 3.2.3) as follows:

• Zero-con�guration: To generate output, Doxygen can be run without any configuration.
However, to produce the desired XML output, we do need to configure Doxygen. Never-
theless, the configuration can be saved and used automatically, without the need for user
interaction.

• Output completeness: Doxygen does not perform heavy-weight static analysis, e.g. function-
local variables are not extracted, but this is not needed either. It provides more scope types
than mentioned in the input requirements, with an extensive set of properties such as inheri-
tance and dependency relations, protection level (public, protected, private) and many more.
These are out of scope of this project, but could become useful in the future.

• Genericity: “By default, Doxygen supports: C, C++, C#, Objective-C, IDL, Java, VHDL,
PHP, Python, Tcl, Fortran, and D. Also, completely different languages can be supported by
using preprocessor programs.” [10]

CHAPTER 3. SOLUTION DESIGN 38

• Fault-tolerance: According to Boerboom and Janssen [12], Doxygen is fault tolerant.

• Stability of output: We have not been able to find any existing work that relates to this
requirement in the area of static analysis. Even though stability of output is important, we
were unable to thoroughly compare different static analyzers on this criterion.

• Performance: Doxygen allows extensive configuration with respect to output to produce.
In the context of our solution, virtually all fact extraction options are disabled, which results
in very fast scope extraction that takes far less time than needed to compile the application.

• Standardized output: One of the supported output formats is XML, exampled in Listing
2, which makes using it as input very convenient.

• Portability: “Doxygen is developed under Mac OS X and Linux, but is set-up to be highly
portable. As a result, it runs on most other Unix �avors as well. Furthermore, executables
for Windows are available.” [10]

Listing 3.2: Example output of Doxygen
<?xml ve r s i on = '1.0 ' encoding='UTF−8' s tanda lone='no '?>
<doxygen xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e " . . . >

<compounddef id="classCAboutDialog " kind=" c l a s s " prot="pub l i c ">
<compoundname>CAboutDialog</compoundname>
<basecompoundref . . . > wxDialogEx</basecompoundref>

<s e c t i o nd e f kind="publ ic−func">
<memberdef kind=" func t i on " id = " . . . " prot="pub l i c " s t a t i c ="no " const="no "

e x p l i c i t ="no " i n l i n e ="no " v i r t ="non−v i r t u a l ">
<type></type>
<de f i n i t i o n >CAboutDialog : : CAboutDialog</d e f i n i t i o n >
<arg s s t r i n g >()</ a rg s s t r i n g >
<name>CAboutDialog</name>
. . .
<l o c a t i o n f i l e = " . . . / s r c / i n t e r f a c e / aboutd ia log . h "

l i n e ="9"
b ody f i l e = " . . . / s r c / i n t e r f a c e / aboutd ia log . h "
bodystart ="9" bodyend="9"/>

</memberdef>
<memberdef kind=" func t i on " id = " . . . " prot="pub l i c " s t a t i c ="no " const="no "

e x p l i c i t ="no " i n l i n e ="no " v i r t ="non−v i r t u a l ">
<type>bool</type>
<de f i n i t i o n >bool CAboutDialog : : Create</d e f i n i t i o n >
<arg s s t r i n g >(wxWindow ∗parent)</ a rg s s t r i n g >
<name>Create</name>
. . .
<l o c a t i o n f i l e = " . . . / s r c / i n t e r f a c e / aboutd ia log . h " l i n e ="12"/>

</memberdef>
</s e c t i onde f >
. . .

<l o c a t i o n f i l e = " . . . / s r c / i n t e r f a c e / aboutd ia log . h "
l i n e ="7"
b ody f i l e = " . . . / s r c / i n t e r f a c e / aboutd ia log . h "
bodystart ="6" bodyend="19"/>

</compounddef>
</doxygen>

3.5.3 Processing: ScopeTree & Compound Graph
Before we explain the construction of the ScopeTree, first a fundamental question must be answered:
How can the file and scope hierarchies be united? It seems obvious to pick one of the hierarchies as
base and embed the other. However, the chosen approach is to keep both trees and interconnect the
leafs. The mapping of elements from the FileTree to ScopeTree is one-to-many and the mapping
back is one-to-one; A file can contain multiple scopes but each scope has one main file where it
is defined. This is illustrated in Figure 3.5.3. The result is a compound graph, from which both
flattened hierarchies can be generated by traversing the graph.

CHAPTER 3. SOLUTION DESIGN 39

FileTree

Directory D

File 2

File 1

File 4

File 3

ScopeTree

Class C

Function G

Function F

Function G

Function F

File 2

File 1

Directory D

Unchanged

Modified

Added

Figure 3.5.3: Compound graph consisting of the FileTree and ScopeTree

Extraction of the ScopeTree from the output of the static analyzer is now trivial; Scopes are simply
read from Doxygen’s output, and created in the ScopeTree. The file and line numbers are used to
uniquely relate a scope to the files where it is defined and implemented (the latter is referred to as
‘bodyFile’ by Doxygen). The evolutionary property of scopes is initially adopted from the related
file, but must be refined in post-processing. After construction of the ScopeTree has finished, files
can be queried for the scopes that they define and/or implement.

3.5.4 Data re�ning: ScopeNode events
After the initial extraction of scopes from the output of the static analyzer, scope events (addition,
deletion, modification) are inherited from the events of the related files. The case of addition and
deletion is obvious and does not need refining; Indeed, if the file was added or deleted, the same
operation must apply to the (fully qualified) scope. However, if the file was modified, addition
and/or deletion might have taken place on scope level. The possible evolutions are illustrated in
Fig. 3.5.4.

ScopeTree Sn (initial)

File

Scope B

Scope A

Scope a

Scope b

Scope a

ScopeTree Sn (refined)

File

Scope B

Scope A

Scope a

Scope b

Scope a

Scope b

ScopeTree Sn-1

File

Scope B

Scope A

Scope a

Scope b

Scope a

Modified

Added

Deleted

Needed for
Comparison

Unchanged

Figure 3.5.4: ScopeTree Refinement: Evolution from Sn−1 to Sn

In essence, refinement of scope events is performed by taking the difference between the ScopeTrees
of two consecutive versions and annotating the scopes. If a file is modified in Fn, we know that
it is acquired for both Fn and Fn−1 (cf. Section 3.4). Because scopes are extracted from these
files, we have initially attempted to extract it for Sn−1. Therefore, all modified scopes in Sn must
annotated as added, if they are nonexistent or deleted in Sn−1. It is crucial to stress that the
scope’s file must be modified Fn, because files that are needed for comparison are used in Fn+1,
and have no meaning in comparison with Fn−1. The opposite reasoning is used to find scopes that
were deleted in Sn: All scopes that exist and are not deleted in Sn−1, but are nonexistent in Sn,
must be created and annotated as deleted in Sn. In summary, s ∈ Sn\Sn−1 ∧ modified(s) are
marked added, s ∈ Sn−1\Sn ∧ ¬deleted(s) are created and marked deleted.

CHAPTER 3. SOLUTION DESIGN 40

3.6 Clone extraction
In the base, code clones form a list of relations between lines of code (LoC) in files. They are
matched with the ScopeTree in order to construct scope clones. The code clones are extracted by
a clone detector, from the files that were acquired by the repository extractor (cf. Section 3.4).
The difference between code and scope clones is of a technical nature; Code clones are relations
on the level of LoC and scope clones (as the name indicates) are on the level of scopes. Only the
latter are used to draw relations between similar scopes. Moreover, due to scope refinement (cf.
Section 3.5), we are able to identify clone events more precisely by using the compound graph,
as ScopeNodes contain most accurate evolutionary information. The inputs, outputs and related
pipes of clone extraction are emphasized in Fig. 3.6.1.

Code Repository

Files

Changelogs

Diffs

Data Mining

RepoExtractor ScopeExtractor CloneExtractor

DataStore

FileTree ScopeTree Clones

Files on disk
Process flow

Output

Input

Data Refining

Figure 3.6.1: Clone extraction procedure

3.6.1 Output requirements
To comply to our needs, a clone detector must be able to provide:

• Clone Relations: Although this requirement is inherent to the primary purpose of clone
detectors, we need this information to relate different files and eventually scopes to one
another.

• Location: In order to trace the scopes that are (partly) duplicates, the clone detector must
provide the filenames and matching ranges of LoC.

3.6.2 Simian
For this project Simian (Similarity Analyzer) [16] is used as clone extractor. However, any code
duplication detector can be used that provides the information mentioned above, and complies to
the additional requirements (cf Section 3.2.3). Simian complies with our third-party tool quality
requirements (cf. Section 3.2.3) as follows:

• Zero-con�guration: To generate output, Simian can be run without any configuration.
However, to produce the desired XML output, we do need to configure Doxygen. Neverthe-
less, the configuration can be saved and used automatically, without need for user interaction.

• Genericity: “Simian identifies duplication in Java, C#, C, C++, COBOL, Ruby, JSP,
ASP, HTML, XML, Visual Basic, Groovy source code and even plain text files. In fact,
Simian can be used on any human readable files such as ini files, deployment descriptors,
etc.” [16]

• Fault-tolerance: The parser of Simian cannot be very strict, as it is able to process any type
of human readable file. Because clones are not interpreted in the context of (well-formed)
code, fault-tolerance in the sense of accepting erroneous code is guaranteed.

• Stability of output: We have not been able to find any existing work that relates to this
requirement in the area of clone detection. Even though stability of output is important, we
were unable to thoroughly compare different clone detectors on this criterion.

CHAPTER 3. SOLUTION DESIGN 41

• Performance: “Running against a large source base such as the entire 390,309 LoC (1.2
million lines of raw source) in 4,242 files of the JDK 1.5.0_13 source, Simian identified
66,375 duplicate LoC in 1,260 files in less than 10 seconds using as little as 48M of heap.”
[16]

• Standardized output: One of the supported output formats is XML, exampled in Listing
3, which makes using it as input very convenient.

• Portability: “Simian runs natively in any .NET 1.1 or higher supported environment and
on any Java 5 or higher virtual machine, meaning Simian can be run on just about any
hardware and any operating system.” [16]

We extract code clones within the same revision (intra-clones) and between subsequent revisions
(inter-clones). The latter are needed to find code movements, which we handle elaborately in
Section 3.6.4. Depending on the used clone detector, we will have to extract intra-clones and
inter-clones separately. In the case of Simian, the clone detector is executed twice to extract the
two types of clones separately.

Listing 3.3: Example output of Simian
S im i l a r i t y Analyser 2 . 3 . 3 3 − http ://www. harukizaemon . com/ simian
Copyright (c) 2003−2011 Simon Harr i s . A l l r i g h t s r e s e rved .
Simian i s not f r e e un l e s s used s o l e l y f o r non−commercial or eva lua t i on purposes .
<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<?xml−s t y l e s h e e t h r e f="s imian . x s l " type=" text / x s l "?>
<simian ve r s i on ="2.3.33" >

<check ignoreCharacterCase=" true " ignoreCur lyBraces=" true " . . . >
. . .
<s e t l ineCount="10">

<block s ou r c eF i l e = " . . . \ s r c \ i n t e r f a c e \ ed i thand l e r . cpp "
startLineNumber="1328" endLineNumber="1340"/>

<block s ou r c eF i l e = " . . . \ s r c \ i n t e r f a c e \ ed i thand l e r . cpp "
startLineNumber="1380" endLineNumber="1393"/>

<block s ou r c eF i l e = " . . . \ s r c \ i n t e r f a c e \ ed i thand l e r . cpp "
startLineNumber="1430" endLineNumber="1443"/>

</set>
<se t l ineCount="18">

<block s ou r c eF i l e = " . . . \ s r c \ i n t e r f a c e \ ed i thand l e r . cpp "
startLineNumber="1328" endLineNumber="1355"/>

<block s ou r c eF i l e = " . . . \ s r c \ i n t e r f a c e \ ed i thand l e r . cpp "
startLineNumber="1380" endLineNumber="1408"/>

</set>
. . .
<summary dup l i ca teF i l eCount ="34" dupl icateLineCount ="1270" . . . />

</check>
</simian>

3.6.3 Processing: CodeClones & ScopeClones
Previously we stated that the code clones form a list of relations between files. However, the input
generated by Simian consists of a list of clonesets. The latter cannot be mapped directly to scope
clones, as scope clones require exactly two unique scopes. Therefore, we first read the list of code
clone sets ‘as is’, in order to transform it into a list that contains tuples. Once the list of similar
code fragment sets is available, these code fragments are matched with the ScopeTree, in order to
construct scope clones. This procedure is depicted in Fig. 3.6.2.

Although tracing the scopes that relate to the matching code blocks is almost trivial when using
the data structures we have built so far, building the list of scope clones is more sophisticated; To
generate a list of scope clones, which represents the edges to visualize eventually, we proceed as
follows:

CHAPTER 3. SOLUTION DESIGN 42

Figure 3.6.2: Process of identifying scope clones

1. For each possible pair of code blocks in a cloneset, find the related scopes.

2. If more than one scope is found on either side, match the scopes by means of their position
relative to the range of LoC.

3. For each unique pair of scopes, create a scope clone if does not yet exist, then add this
cloneset to that scope clone.

4. Register the new scope clone, so that we have a list of edges for the visualization.

The generation of scope-clones is performed by matching the line numbers of code-clones cc ∈ CC
with the elements of Sn and Sn−1. In Section 3.3.1 a code-clone (or maybe better ‘cloneset’) is
defined as a set {(f ∈ F; linestart; lineend)} ∈ cc ∈ CC. From f ∈ F , the related s ∈ Sn are traced
using the compound graph and the line numbers provided by cc. Indeed, each scope s ∈ f has
to start and end at some line in f . If the amount of lines in cc is large, the code-block can refer
to multiple scopes. This is handled by taking into account the offset of s in the code-block when
relating two scopes. Two scopes are eventually matched and for each pair of scopes a scope-clone is
created. The only constraint is that the fully qualified name of the scope is not allowed to match;
Self-clones are discarded immediately because they pose an issue in event detection.

3.6.4 Data re�ning: ScopeClone events
Once the scope clones are generated, they must be filtered and categorized. This step is explic-
itly named `data refining', because we combine all the previous data sources to identify clone
events. However, due to a strong logical relation, the procedure is embedded in clone extraction;
Clone event identification, illustrated in Fig. 3.6.3, is performed immediately after a revision’s
ScopeClones are available.

Data Refining

Annotate Intra-
and Inter-Clones

Annotate
Addition / Deletetion

Annotate Drifts

DataStore

ScopeTree ClonesFileTree

Data Mining Data Mapping

Process flow

Output

Input

Figure 3.6.3: Clone event identification procedure

At this point, code clones have become irrelevant, therefore whenever we use the term clone further
on, we refer to a scope clone. We next explain the clone annotation and filtering process. Clones
that are not annotated during this process, are discarded afterward. Previously, distinguished
clones that relate a single revision, and clones that relate to two consecutive revisions. We name
these clone categories intra-clones and inter-clones respectively. The hierarchy of clone events is
shown in Figure 3.6.4.

CHAPTER 3. SOLUTION DESIGN 43

Old Clones:
In Rn and Rn-1

ScopeClones

Inter-Clones

Splits:
One-to-Many

Merges:
Many-to-One

Drifts:
One-to-One

Intra-Clones

Added Clones:
In Rn, not in Rn-1

Deleted Clones:
In Rn-1, not in Rn

Figure 3.6.4: Hierarchy of ScopeClones

3.6.4.1 Intra-Clone Events

The ScopeNodes of an intra-clone relationship both exist in revision Rn. The related nodes cannot
be distinguished in an useful way that gives them direction. Hence, this clone type is undirected.
If a file is modified in Fn, we have the guarantee that it is acquired for both Fn and Fn−1 (cf.
Section 3.4). On base of the latter, intra-clones are annotated as follows:

• Added: All clones that are not needed for comparison in SCn, and do not exist or are deleted
in SCn−1, are annotated as added (in SCn).

• Deleted: All clones that are not deleted in SCn−1, and do not exist in SCn, are constructed
in SCn and annotated as deleted.

• Needed for comparison: All remaining intra-clones are automatically assigned to this
category. They do not represent any event in SCn, but are crucial to be able to detect
intra-clone events in SCn+1.

In summary, sc ∈ SCn\SCn−1 ∧ ¬nfc(sc) are marked added, sc ∈ SCn−1\SCn ∧ ¬deleted(sc) are
created and marked deleted. All other clones are marked needed for comparison.

3.6.4.2 Inter-Clone Events

The ScopeNodes of an inter-clone relationship exist in revisions Rn−1 and Rn; We name the node
s is in revision Rn−1 the source, and node t in Rn the target. Hence, the clone type is directed by
the time order of its nodes, in this case from s to t. We need to stress that the source and target
cannot have the same fully qualified name (cf. Section 3.6.3).

Based on the revision number of related scopes, intra-clones can easily be separated from inter-
clones; Each of the related ScopeNodes can be queried for its revision number. The approach used
to distinguish intra-clones form inter-clones is trivial, however the sieving drifts out of inter-clones
is not.

The major problem to tackle is that virtually each code base contains intra-revision clones.
If an inter-clone an−1 = bn has a related intra-clone an−1 = bn−1 or an = bn, it cannot be a
drift; If the scope/file is/was duplicated, then obviously it was not moved. Now, try to answer the
following question: If a scope an−1 = bn = cn, has an−1 drifted to bn or cn? In this case we see
three clone relations: an−1 = bn, an−1 = cn and bn = cn, of which the first two are inter-clones
and the last is an intra-clone. We cannot identify two drifts of/from an−1, because a drift implies
a one-to-one relation between two nodes in different revisions. The same reasoning can be applied
to conclude that the same issue arises when we have multiple sources and one target. Once the
irrelevant inter-clones are separated from the drifts, they are annotated as follows:

• Drift: One source is related to one target.

• Split: One source is related to many targets.

• Merge: Multiple sources are related to one target.

In essence, splits and merges are the same if the clone relation has no direction. Because the files
and scopes of the different revisions are compared in time � this is where the names source and
target come from � the distinction becomes relevant when distinguishing actions performed on the
code-base.

CHAPTER 3. SOLUTION DESIGN 44

3.7 Visualization base
For the visual representation of the facts stored in the fact database, we use the mirrored radial
tree (cf. Section 2.4.5); By its nature, this visual representation supports the showing of relations
by means of edges and hence covers our needs. In order to add more structure to the visualization
output, we extend the mirrored radial tree with Hierarchical Edge Bundling (HEB) (cf. Section
2.5.4). Furthermore, the visual appearance of edges is improved by using spline interpolation. Our
implementation is based on libgraphicstreeview [49], which provides functionality for construction
of the visualization as well as basic interaction. Just as the rest of our application, it is based on the
Qt cross-platform application framework [50]. Next, we detail how the visualization is constructed.

3.7.1 Inner radial tree
Before creating the outer ring (the mirrored radial tree), we first build the (generic) internal
radial tree (cf. Section 2.4.4): The root element is drawn in the middle of the ring; Additional
levels are created from the middle toward the outside, in accordance to the tree depth. The
traditional radial tree drawing algorithm places each node of the radial on the corresponding
level, counted from the root towards the outside. In order to reduce the length of edges, we
‘push’ the nodes as far as possible outward. The latter is achieved by placing the node on level
L = treeDepth − (branchDepth − nodeDepth). The result of this approach (cf. Fig. 3.7.1a) is
that all leafs touch the outer level ring of the radial tree.

3.7.2 Outer radial tree
By mirroring the inner radial tree, we create the outer radial tree (hence the name `mirrored radial
tree'). The procedure is trivial and works as follows: The root node, which is in the middle of the
inner tree, is drawn on the outside of the outer tree; Each of the levels is drawn from the outside
toward the inside of the ring. However, instead of using dots and lines for nodes and containment
edges, nodes are represented by ‘blocks’ that show containment relations by adjacency. Essentially,
this algorithm is a (mirrored) circular version of the icicle plot (cf. Section 2.4.2). If mirroring is
not applied, the drawing algorithm will produce a sunburst plot (cf. Section 2.4.5).

Furthermore, in order to improve discernibility of nodes, borders are made thinner for lower
levels: borderThickness = c ∗ (treeDepth− nodeDepth), where c is some constant factor. In Fig.
3.7.1b, we show the result of this step, accompanied by the inner radial tree, so that the similarities
can be seen. For the final visualization (cf. Fig. 3.7.1f), we have chosen to stretch the lowest level
nodes, in such way that inner side is flattened. In our opinion, this results in a more sophisticated
appearance. However, because hierarchical structure is lost when filling the ring. Hence, we make
this an user configurable option.

3.7.3 Edges
The edges are built as follows: As input we have two nodes, n1 and n2, that are to be connected.
Clearly, the most straightforward way to achieve this, is to draw a straight line from n1 to n2.
However, we want to reflect the hierarchical structure in the edges. For this purpose, we construct
an edge path as follows:

1. By moving through the inner radial tree, we visit each ancestor of node nx and add it to
the path (list of control points). This way we obtain a path that goes from nx to nroot.
This procedure is performed for both n1 to n2, which yields us two paths (p1 and p2) that
potentially overlap. The control points of all paths are shown as red dots in Fig. 3.7.1.

2. We repeatedly remove common ancestor control points from p1 and p2, until we reach the
Least Common Ancestor (LCA). If the XOR path parameter is enabled, we also remove
the LCA. We now have two paths that do not share any ancestor nodes besides the LCA.

3. The two separate paths are now consolidated; We mirror one of the two paths, and attach it
to the end of the other. This yields us a single path, which is sufficient to connect n1 to n2.
The intermediate result is depicted in Fig. 3.7.1c.

CHAPTER 3. SOLUTION DESIGN 45

We now are able to show clone relations in a hierarchical manner. However, sub-paths that are
shared between multiple paths are overdrawn, which results in occlusion and indistinguishability.
Also, the visual output is still very angular and visually not very appealing. To counter these
issues, we perform two post-processing steps on the edge:

1. Once the path between n1 and n2 (edge) is available, we apply edge bundling. Essentially, the
technique encompasses interpolation between the previously obtained path, and a straight line
between n1 and n2. For technical details on the algorithm, we refer to Holten’s Hierarchical
edge bundles [30]. As result, edges are pulled apart, as depicted in Fig. 3.7.1d. Where we
previously saw overdrawn edges, we now clearly see edge bundles.

2. The last step is to resolve the angularity of the edges. This is achieved by interpolating (or
‘relaxing’) the edges, so that they become smooth. Initially, Catmull-Rom spline interpolation
[51] was used, which resulted in sharp and occluded edges. Eventually, we have chosen to
use quadratic Bézier curves [52] instead, that are achieved with piecewise linear subdivision;
Essentially, for each original control point, two additional points are added to the path, with
a distance d from the end point. This procedure is performed recursively, until the spline is
sufficiently smoothed. The parameter d is user settable, but constrained to the range (0, 0.5).
As we see in Fig. 3.7.1e, the approach results in smooth edges and reduces edge overdraw
even further; We can now better distinguish the locality of edges, as they do not touch the
control points anymore.

(a) Inner radial tree (b) Inner & outer radial trees (c) Basic edges

(d) Hierarchical Edge Bundling (HEB) (e) Edge smoothing (f) Final Visualization

Figure 3.7.1: Visualization base

CHAPTER 3. SOLUTION DESIGN 46

3.8 Colormaps
To show different aspects of the codebase, we present three colormaps. To exemplify these col-
ormaps, we use visualizations of the FileZilla Client codebase [53]. The focus here is to demonstrate
the visualizations, rather than to build insight into the codebase. Content related properties of the
FileZilla Client repository and their significance are elaborated in Section 4.3.

3.8.1 Structure
This categorical colormap, depicted in Fig. 3.8.1, shows the structure and state of the code
base at a chosen revision; It emphasizes object types in the code base (files, classes, functions,
etc.) and the still existing clones (deleted clones and drifts are omitted). It is the effective result
of all changes performed in the selected revision range. Moreover, it can be interpreted as the
environment in which subsequent changes occur. The latter is particularly useful to better
understand visualizations on the base of the differences colormap.

The structure colormap is generated by uniting all changelogs in the selected revision range;
Indeed, these are the only data that we have mined previously. The colors used for nodes are
derived from the color coding used by Qt Creator [50] where possible, the others are picked to
maximize contrast. Files and scopes are marked gray if in the selected range (1) they were not
modified; (2) they did not exist; or (3) they were deleted. Hence, in order to obtain a complete
image of a revision n, the revision range must start at the first available revision (to prevent that
existing nodes do not appear) and end with n.

For edges, a value-based colormap is used, that supports the mapping of the metrics clone
size and clone age to opacity of edges. Higher values result in more opaque edges. In order to
produce images with high contrast, the values are normalized. The edge colormap has an additive
property; Nodes that have several clones are implicitly emphasized as the opacity of overlapping
edges is added up. For clone size, large clones become more visible and therewith intuitively
indicate a stronger clone relation. For clone age, the scale is inverted, meaning that recently added
(or ‘young’) clones are emphasized over old clones. That way we can get an impression of the
recent development of code clones in the project.

src/Interface

src/engine

src/putty

(Effective Result)
Structure

Directory
File
Attribute
Class
Define
Enum
Function
NameSpace
Signal (Qt)
Slot (Qt)

Removed Elements

Figure 3.8.1: Structure colormap with clone size.

CHAPTER 3. SOLUTION DESIGN 47

3.8.2 Difference
This categorical colormap, depicted in Fig. 3.8.2, shows the dynamics of a codebase, i.e. the
changes that occurred in a chosen revision range; It emphasizes change events for files, scopes and
clones. These events include addition, modification and removal, and clone specific events that
relate to code movement.

The difference colormap is generated by uniting all changelogs in the selected revision range. We
flatten all changes in the selected revision range to show them as one change-set. To achieve this,
we prioritize change events as follows: Deletion has highest priority, and addition is prioritized over
modification. This prioritization is useful, as the emphasizing of events that affect the codebase
structure has a clarifying effect. Moreover, this way we yield a mapping as would be provided
by the SCM, if all actions were performed in one changelog. The only exception is that files can
appear deleted, without being added in a preceding revision range.

For edges, a combination of value-based and categorical colormaps is used; The metrics clone
size and clone age are available and again they map to opacity. However, the hue is used to indicate
event types: For code drifts, we use a red-to-green gradient, where red is the source of movement,
and green the destination. To explicitly distinguish intra-clone events, we use yellow for deletions,
and blue for additions. Because our primary interest is to show events of code movement, drifts
are rendered on top of other events. Furthermore, we prioritize by the same approach used for
node events: Deleted clones are prioritized over added ones.

3.8.3 Activity
This value-based colormap, depicted in Fig. 3.8.3, shows the amount of changesets that affected
a part of the codebase, within a given revision range; It emphasizes files, scopes and clones based
on their prominence in the change-sets. The colormap shows all intra-clones, but omits inter-clones
as these typically occur only once. Under the assumption that the overall amount of changesets
(affecting a file/scope) translates into the invested amount of work, the activity colormap shows
how much effort was put into a file/scope. Regardless whether the assumption holds, activity does
indicate importance of a node.

The activity colormap is generated by counting how often a file/scope was involved in a change-
set. To get the best contrast, we divide the count by the highest value. The same approach is used
for clones, which are separately normalized against the most active clone. A rainbow gradient is
used to differentiate files/scopes/clones that did not show up in changelogs (blue) from the ones
that appear most in changelogs (red).

Difference
(Effective Changes)
Nodes

Edges

Added
Deleted
Modified

Added
Deleted
Moved

Figure 3.8.2: Difference colormap

Stubborn Clones

Highly active files

Activity
(Performed Effort)

0% - 100%

Figure 3.8.3: Activity colormap

CHAPTER 3. SOLUTION DESIGN 48

3.9 User interaction
Showing all small details that exist in a full-blown codebase, such as attributes and definitions,
makes little sense when we are interested in a global view on the codebase. Vice versa, when we are
looking into the attributes of a specific part of the codebase, we do not want to fill the image with
details of irrelevant parts. Furthermore, if we decide to hide certain lower-level structures, we still
might be interested in how they affect the higher-level structures. Our solution is equipped with
three techniques to limit and/or increase the amount of detail, on a specific part of the codebase:
navigation (cf. Section 3.9.1), filtering and aggregation (cf. Section 3.9.2). However, each of
these features must be manually activated by the user. Ultimately, we show how revision range
manipulation allows the user to visualize software evolution with code clones (cf. Section 3.9.3).

3.9.1 Navigation
The first technique relates to the showing of only the codebase part that is of current interest:
The solution supports elevation of sub-folders, files, namespaces and classes to the root node of the
visualization. This allows the user to browse through the codebase. While structural differences
between sub-directories are often hard to spot in a combined overview, they can be revealed by
elevation. For instance, Fig. 3.9.1 depicts elevation to the three largest sub-directories of the
FileZilla Client codebase. We see that a clear distinction can be made between the structure of
the sub-directories.

(Effective Result)
Structure

Directory
File
Attribute
Class
Define
Enum
Function
NameSpace
Signal (Qt)
Slot (Qt)

Figure 3.9.1: Codebase navigation used to expand the contents of sub-directories

CHAPTER 3. SOLUTION DESIGN 49

3.9.2 Filtering and aggregation
Particularly when inspecting the full-blown codebase, it is undesirable to show all node types; The
visual elements become too small to make much sense. The second technique that is used to limit
and/or increase the amount of data to be visualized, is filtering of node types to be visualized. Still,
we might be interested to see clone relations that exist between the hidden nodes. Aggregation is
the (user selectable) technique used to resolve the issues that arise when filtering out nodes that
hold clone relations. It is used to show valuable information, which otherwise would be hidden at
the selected level of detail. Our solution includes three types of aggregation, which are depicted in
Fig. 3.9.2, and elaborated next.

Self-Clone 'Hidden' Clone

src/Interface

src/engine

src/putty

(Effective Result)
Structure

Directory
File
Attribute
Class
Define
Enum
Function
NameSpace
Signal (Qt)
Slot (Qt)

Edge Bundling

Figure 3.9.2: Aggregation of clone events

Hidden Clones: If a clone relates to a node or nodes that is/are hidden (as result of the chosen
filter), this relation is indicated by a dashed line. The edge is drawn between the first visible
parent of the hidden nodes.

Self-Clones: If two or more hidden children of the same parent hold a clone relation, the edges
are not aggregated as hidden clones, as this would result in clutter at the inner side of the
ring. To indicate that the file/scope contains a self-clone, meaning it has hidden children
holding a clone relation, a glyph is drawn in the node.

Edge bundling: Edges between nodes in the same section of the codebase are bundled to un-
clutter the visualization. Edge bundling has a clarifying effect if the edge paths sufficiently
differ, which is typically the case in the visualization of a whole codebase. However, the
opposite is true when many edges share the same path, as exampled in Fig. 3.9.3a. In this
case, the bundling strength β can be lowered, in order to discern the edges. A second ap-
proach to obtain clarity is to use the XOR path. Both approaches create more distinction in
locally cluttered areas, but result in messy overviews of directories that have a deep file/node
hierarchy.

(a) β = 1.0 (b) β = 1.0, XOR (c) β = 0.5 (d) β = 0.5, XOR (e) β = 0.0

Figure 3.9.3: Edge Bundling

CHAPTER 3. SOLUTION DESIGN 50

3.9.3 Visualizing software evolution
So far we have focused on how the visualization can be modified by the user to find events of interest
in a (given) revision range. The latter is user-settable and allows him/her to scroll through time.
By scrolling through time we can see which parts of the codebase was worked on (activity), to
which changes the combined effort led (difference), and the effect of these changes on the codebase
(structure).

The sequence-export feature of our tool ClonEvol (cf. Section 4.2) is used to generate the
example time-slices of FileZilla Client (cf. Fig. 3.9.4). Due to the limited amount of figures we can
fit on a page, each image represents 824 revisions (the repository contains 4119 revisions, divided by
5 is approximately 824). Although the revision ranges seem arbitrary, ClonEvol produced images
containing 824 revisions each; Some revisions are missing, because the related code commits did
not contain any changes in the acquired (sub-)directory of the codebase.

In the top row, we see how changes in time affect the total structure of the project. The second
and third row show the addition/removal events and code drifts respectively. The bottom row is
dedicated to represent the activity in the depicted revision ranges. The ring of each image is based
on the union of all revisions’ hierarchies. This way stability of the visualization is guaranteed, for
the purpose of mental map preservation; The user can expect the same element to be located at
the same spot. Elements that do not exist in the visualized revision range, because they are not
yet added or because they were deleted, are colored gray.

(a) Revision 1-825 (b) Revision 825-1661 (c) Revision 1661-2556 (d) Revision 2556-3442 (e) Revision 3442-5162

Figure 3.9.4: Codebase evolution illustrated with time-slices

CHAPTER 3. SOLUTION DESIGN 51

3.10 Conclusion
The composition of the visualization pipeline (cf. Section 3.3) has helped us to approach the sub-
questions of our research. We have shown that all needed entities can be extracted by means of
previously discussed tools (cf. Chapter 2). Acquisition of files and file events must be performed
first (cf. Section 3.4.3), in order to increase their granularity by extracting the contained constructs
(cf. Section 3.5.3). By subsequently extracting code clones (cf. Section 3.6.3), and matching them
against the previous data, clones can be defined at several levels of detail. Moreover, this all can
be done very efficiently by processing only the differences between consecutive software versions.
So far, we have answered the first two sub-questions of our research.

To extract file, scope and clone events, data of consecutive software versions must be compared.
Identification of addition and deletion events is performed by matching the existence of entities in
different software versions (cf. Section 3.4.4, 3.5.4, 3.6.4.1). On the other hand, code movement
events are found by detecting clones between different revisions (3.6.4.2). For the latter purpose,
clone detection is used in a different way than intended. This answers the third sub-question of
our research.

We have explained how the mirrored radial tree, hierarchical edge bundling and colormaps are
used to display all this information (3.7, 3.8). The visualization is extended by several aggregation
and dynamic graph techniques (cf. Section 3.9). Hence, we have shown how to efficiently acquire
and visualize evolution-related clone events. However, we have not shown that our method is
indeed effective in providing insight. So, in the next chapter, we will exemplify how insight can be
obtained by using the tool ClonEvol, in which we implemented the method described here.

Chapter 4

Applications

4.1 Introduction
In this chapter we exemplify the visual clone analysis tool ClonEvol [54], which is our implementa-
tion of the solution presented in Chapter 3. We want to illustrate properties of comprehensibility,
ease of use and scalability. For the latter purpose, we picked one small and one large software
repository on which we apply the tool. Furthermore, our intention is to exemplify the kind of
information that can be obtained, rather than to perform a thorough analysis of the projects; The
latter would involve a lengthy elaboration, which is out of the scope this thesis.

In order for ClonEvol to be applicable on a project, the project must use an SVN repository.
Moreover, the complete history of (a sub-directory of) the SVN repository must be retrievable.
We mention this explicitly as we have encountered repositories where revisions are missing, e.g.
because revisions were thrown away. We believe that the best way to learn to use our tool is to
apply it on a project one is already familiar with; Finding events and patterns that one expects is
the best way to obtain a feeling for the tool.

Clearly, it is impossible to find a project that everyone is familiar with. Therefore, we perform
the demonstration of our tool on two open source projects. The tool is publicly available and
hence anyone can verify our findings for themselves. We picked the projects based on the following
requirements:

• It has a publicly available SVN repository;

• It contains more than a few thousand of files;

• It contains more than a few thousand of revisions;

• It is written in C, C++, Java, or a combination of these.
Based on these properties, we have identified a few open source repositories, that we found useable
and interesting to test ClonEvol on; We encourage the reader to try ClonEvol on any of these
repositories:

• FileZilla: https://svn.filezilla-project.org/svn/FileZilla3/trunk/

• TortoiseSVN: http://tortoisesvn.googlecode.com/svn/trunk/

• Any Apache C/C++/Java project: http://projects.apache.org/indexes/

The rest of this Chapter is structured as follows: First, we explain the basics of the ClonEvol
GUI and the mandatory steps to be performed when using the tool (cf. Section 4.2). That
way reproduction of results should become easier for the reader. Next, we use FileZilla Client
(small project) for the first demonstration of the usage of ClonEvol (cf. Section 4.3). Here the
main purpose is to exemplify the basic interactions, and visualizations produced by ClonEvol.
Subsequently, we use a similar approach for TortoiseSVN, that is used as example of a large
project (cf. Section 4.4). For the latter project, the focus is set on the contents, rather than tool
operation; Here we show more elaborate approaches to obtain insight. We end this chapter with a
comparison of project statistics and the tool’s resource and time consumption (cf. Section 4.5).

53

https://svn.filezilla-project.org/svn/FileZilla3/trunk/
http://tortoisesvn.googlecode.com/svn/trunk/
http://projects.apache.org/indexes/

CHAPTER 4. APPLICATIONS 54

4.2 Analysis tool: ClonEvol
In the demonstration of ClonEvol [54], we will often refer to certain elements of the graphical user
interface (GUI). Therefore, it is useful to first explain the basics of the GUI and the mandatory
steps that must be performed to acquire data from a software repository.

4.2.1 User interface
When the user starts ClonEvol, he/she is presented the main window (cf. Fig. 4.2.1). The window
consists of 3 areas: The left side provides supportive, output related functionality; The middle
is dedicated to visualization and data-interaction; The right side covers the input and filtering of
data. For simplicity of use, only configuration parameters that are relevant for the user are shown;
Irrelevant parameters are hidden to prevent confusion. The hidden parameters are discussed in
Section 3.3.5.

Figure 4.2.1: Screenshot of ClonEvol

In Fig. 4.2.1, we have annotated all major GUI components of ClonEvol. Their functionality is as
follows:

1. The visualization represents the data by means of a radial tree;

• The ring represents the tangible structures, such as directories, files, classes, functions
etc. of the codebase chosen in (4).

• Edges between the components represent the clone relations.

Colors of the visual components are explained by the legend (2) and depend on the selected
filters (5), colormap (6) and revision range (7). The visualization provides the following
interaction features:

• Identification of visual components is performed by hovering over them; Structural
components show the fully qualified name (FQN), edges show the clone relation between
two components’ FQNs.

• Zooming and panning is performed with the mouse wheel and left mouse button respec-
tively.

CHAPTER 4. APPLICATIONS 55

• Opening of files, directories, namespaces and classes is done by double-clicking on them.
Ascending into a parent structure can be performed by pressing the fourth mouse button
or using the ‘cd..’ button provided in (3).

The build-up of the visualization and related design decisions are discussed elaborately in
Section 3.7.

2. The legend shows the meaning of the colors that are used by the different colormaps (6). It
is changed when a different colormap is selected.

3. These buttons provide supportive features that assist an user in exporting to PNG, SVG
and sequences for the purpose of rendering a real-time animation. These functionalities were
extensively used during the construction of this thesis. Furthermore, the application log can
be retrieved to inspect the progress of data acquisition and visualization rendering in more
detail.

4. Here the user can load an existing project, or start a new one by providing a project name
and repository URL, and pressing the start button. In the latter case, project contents are
saved automatically after each mining step, so that the data is not lost and can be retrieved
later. Once the start button is pressed, the application attempts to connect to the codebase
repository and acquire the changelogs, in order to render the initial overview.

5. Once a project is loaded or (partly) mined, the visualization manipulation functions can be
used to select which data components to display; They have effect on the structure of the
generated radial tree (1). The tabber widget contains the following three tabs:

• The �lters tab allows the user to select the data components that he/she wants to
visualize. The available filters depend on the chosen colormap and are enabled/disabled
accordingly.

• The visualization tab provides functionality to manipulate or show additional visual
objects (e.g. control points), to gain a better understanding of how the visualization (1)
is built up. Parameters such as aggregation, XOR path rendering and bundling strength
can be set here.

• The summary tab presents statistics about (i) the amount of rendered objects, (ii) the
amount of unique files, scopes and clones, and (iii) the total amount of these entities.

6. Colormaps are used to emphasize different aspects of the data; After project initialization,
the user can inspect the structure, differences (representing the SCM changelog) and activity
of files and scopes. Colormaps affect the color of the visual objects in (1), not the structure.
The colormaps are elaborately discussed in Section 3.8.

7. Revisions, that involve the URL provided in (4), are shown in the revision selection widget; If
the provided URL involves a sub-directory of the repository, the list of revisions will contain
gaps where the sub-directory was not modified. The sliders are used to set the range of
revisions to be color mapped. Hence, they do not influence the structure of the visualization.
Details (scopes and clones) of the selected range can be mined by pressing the ‘Get revisions’
button. Furthermore, the background color of the sliders indicates which revision ranges are
already mined in detail; Green indicates that details are available for these revisions, gray
indicates that details still must be mined.

8. The progress bar indicates which step the data mining process has reached. It displays both
the step progress (downloading, scope extraction, clone extraction) and total progress.

CHAPTER 4. APPLICATIONS 56

4.2.2 Mandatory user steps
The high-level functionality of ClonEvol is described by four steps that the user must perform in
order to visualize a project’s files, scopes and clones:

1. Project Initialization: Acquisition of the basic information;

2. Initial Overview: Visualization of the base information (files and changelogs) and selection
of a revision range to be mined in detail;

3. Detail Extraction: Acquisition of file contents, and extraction of scopes and clones in the
revision range selected in (2);

4. Exploration: Interaction with the full dataset using various filters and colormaps.

We next detail steps 1 to 3, from an user’s perspective. Step 4 is exemplified in Sections 4.3 and
4.4.

Project Initialization

When the application is started, the user can either load an existing project (which brings him/her
to step 2 or 4), or start a new project. In the latter case, the user must fill in a (SVN) repository
URL and project name. The project name is not deduced automatically from the URL, because the
user is allowed to input a sub-directory of a project. When the user presses the start button, the
tool will attempt to acquire all changelogs that relate to the provided URL. First, the application
will query the SVN server to find the last available revision. With this information, all changelogs
between the first and last revision are acquired. When log acquisition is completed, the relevant
source code file names and events (added, deleted, modified) are extracted from the changelogs.
From this information the FileTree is constructed and subsequently stored in the SQLite database.

Initial Overview

The initial overview is a visualization of the data contained in the SCM changelogs; The user can
immediately interact with the data, however the details (scopes and clones) are still to be filled in.
Nevertheless, at this point we have information about all revisions in which the chosen URL was
affected. Therefore, we can show the full revision range and inspect the files and folders using the
three colormaps.

At this point we have not acquired any files, nor extracted details from them. To do so, the
user must select a revision range of interest and press the data mining button. If the user’s purpose
is codebase verification, typically the revision range of interest is already known. However, if the
purpose is exploration, the colormaps should be used to identify a revision range of interest.

Detail Extraction

Once the user has selected a revision range to inspect in more detail and pressed the ‘Get revisions’
button, the detail mining procedure is executed, as follows:

1. For each revision in the chosen range, ClonEvol acquires the files that (1) appeared in the
changelog and (2) are relevant source files (cf. Section 3.4).

2. Once these files are downloaded to the hard disk, ClonEvol extracts scopes from them by
starting the static analysis tool (cf. Section 3.5).

3. After the scopes are available, ClonEvol extracts clones from (1) files in the same revision
(intra-clones) and (2) between files in consecutive revisions (inter-clones) (cf. Section 3.6).

4. Once the raw facts are extracted and stored in RAM, ClonEvol performs data refining (cf.
Section 3.6.4).

5. Meaningless data are discarded and the (refined) facts are stored into an SQLite database
(cf. Section 3.3.4).

CHAPTER 4. APPLICATIONS 57

4.3 FileZilla Client
The FileZilla project [53] is a free, open source, and cross-platform FTP software solution, that
consists of FileZilla Client and FileZilla Server. Both FileZilla Client and Server are free, open-
source software, distributed under the (GPLv2) license. As the client application is subject of
most development effort, we exclude the server from our discussion. Further on, when we mention
FileZilla without specifying Server or Client, we refer to FileZilla Client.

4.3.1 Project statistics
Before inspecting the contents of FileZilla Client in detail, we first investigate it at project-level.
In Table 4.3.1, we show general statistics of FileZilla Client, which are harvested with svn log.

FileZilla Client [53]
SVN Repository URL: http://svn.filezilla-project.org/svn/FileZilla3/
SVN Revisions 5301 (of which 4149 affect trunk)
First SVN commit March 8th, 2004
Last SVN commit December 21st, 2013
Contributors 3
Files in trunk (last rev.) 1,023 (of which 437 contain source code)

Table 4.3.1: FileZilla Client: SVN repository statistics

The amount of revisions, files and contributors (cf. Table 4.3.1) indicate that FileZilla is a small
project. In the SVN log we see that the initial commit was “initialized by cvs2svn”, which means
that the project has more history than we are able to trace in SVN. Nevertheless, the first and
last commit indicate that FileZilla client is still actively developed/maintained. The frequency
of change commits supports this conclusion. We omit the showing of all these details, as our
statements can be easily verified by looking into the SVN log.

Before looking at the first overview, as produced by ClonEvol, we show the composition of the
contents of FileZilla Client (in terms of source code) in Table 4.3.2. This overview of contents is
produced with the open source tool CLOC (Count Lines of Code) [55].

http :// cloc. sourceforge .net v 1.60 T =1.33 s (329.8 files /s, 118464.9 lines /s)

Language files blank comment code

C++ 155 13922 2556 72391
C 61 5076 8300 33577
C/C++ Header 173 3456 3025 10914
make 24 219 42 1321
m4 8 122 106 799
HTML 2 93 2 464
XML 10 2 4 279
Bourne Shell 3 44 12 242
Teamcenter def 1 1 0 6

SUM: 437 22935 14047 119993

Table 4.3.2: FileZilla Client: File content statistics

http://svn.filezilla-project.org/svn/FileZilla3/

CHAPTER 4. APPLICATIONS 58

4.3.2 First visual overview
To produce the first overview of FileZilla client, we start ClonEvol, input the project name and
URL of the SVN repository. More specifically, we choose the trunk sub-directory. The acquisition,
processing and storage of the full-blown list of (all 5301) changelogs takes about 4 seconds.

In the first overview scopes and clones are not available, and thus it contains only changelog
information on the level of directories and files. However, it is generated very quickly and we
can use it to find revision ranges and/or locations where the sought events will probably appear.
In order to produce the visualization shown in Fig. 4.3.1, we selected the full revision range in
ClonEvol, and exported the images for all colormaps.

The first inspection of FileZilla client is performed by looking at the three colormaps, over the
whole range of revisions. The structure colormap (cf. Fig. 4.3.1a) gives an initial idea of the
structure of the files and folders. We see that the main directories in FileZilla client (based on
amount of source code files) are: /src/interface, /src/engine, /src/putty and /src/include/.
On the same level of /src, we see a small directory /tests, and a few other directories that do
not contain source code in C, C++ or Java.

Furthermore, the structure colormap gives an indication of how much of the initial files still
exist in the last revision (of the set range). We see that a limited set of files (gray) did exist at some
point in time, but does not exist anymore. This finding is confirmed by the difference colormap
(cf. Fig. 4.3.1b), where we see that these files were deleted (red). By hovering over the files, we
investigate whether they have related file names. This indeed appears to be the case; Each of the
files in the deleted group has a file name that starts with “optionspage_”.

Instead of digging into the details of the context of these file deletions, we first inspect what we
can learn from the activity colormap over the full revision range. The activity metric of a file/direc-
tory typically correlates to its significance in the project. In Fig. 4.3.1c we see that the most impor-
tant active directories are /src/engine and /src/interface. In turn, these folders contain 6 very
active files (colored red): /src/engine/ftpcontolsocket.cpp, /src/interface/LocalListView.cpp,
/src/interface/Mainfrm.cpp, /src/interface/Options.cpp, /src/interface/QueueView.cpp
and /src/interface/RemoteListView.cpp. Most of these files implement components that can
immediately be found when starting the FileZilla Client application. On the other hand, we see a
few (small) sub-directories, that are colored blue to light orange, which indicates that these are not
changed often. These include /src/putty and /src/tinyxml, which are external applications/li-
braries. This makes sense, as third party components are typically imported once and not modified
much.

src/Interface

src/engine

src/puttysrc/Interface

src/engine

src/putty

Removed files

src/include

(a) Structure (b) Differences

Highly active files

src/Interface

src/engine

src/putty

src/include

(c) Activity

Figure 4.3.1: FileZilla Client: Initial overview (revision 1 - 5301)

CHAPTER 4. APPLICATIONS 59

4.3.3 Repository exploration
Now we have inspected FileZilla Client on the highest level, we look into the file deletion events in
more detail (but we still limit ourselves to the initial information). In order to find out whether the
deleted files were deleted together, we increase the lower bound of our revision range and decrease
the upper bound, until the deletion events disappear. Next, we increase the range to the revision
where the events become visible again. We find that our supposition is indeed the case, as shown
in figure 4.3.2a; Most of the files were deleted together in revision 3228. Moreover, we see here
that a similar amount of files was added simultaneously. It seems that the set of files was moved
(or renamed) to the sub-directory /src/interface/settings.

In order to verify our supposition that the set of deleted files was actually moved, we set the
revision range to (3227, 3228) and mine the details for these revisions. The resulting visualization
is shown in Fig. 4.3.2b. We next see that file contents indeed were moved from the deleted files,
to the added files. Moreover, by manually conducting the changelog, we find that the message
of changeset 3228 is: “Move all settings dialog code into new subdirectory”. This illustrates how
ClonEvol can be used to verify suppositions that relate to one changeset. Furthermore, we see
clone removal (yellow edges) in the deleted files, and clone addition (blue edges) in the added files.
This is a good example of how intra-clones prevent the detection of inter-clones; ClonEvol is unable
to decide what moved where and hence the inter-clones are discarded.

optionspage_*

src/Interface

src/Interface/settings

(a) Initial overview: Deletion and addition

src/Interface/settings

optionspage_*

src/Interface

(b) Detailed overview: Drifts

Figure 4.3.2: FileZilla Client: Mass file deletion event

So far, we have mostly used the initial overview to inspect the FileZilla Client source code base,
and we have mined details for a pair of revisions. Next, we decide to mine the details of all revisions
because the project’s size is limited. We do so by first selecting the full revision range again (1,
5301) and subsequently pressing the ‘Get revisions’ button. This process took 7:41 hours in total,
of which 4:04 hours are spent on downloading the necessary files, 1:42 hours elapsed during mining
of scopes and 1:55 hours were needed to extract clones.

Once the process has finished, we are able to look into the details of the contents. First we
open up the /src directory, by double-clicking on it. Next, we select the structure colormap and
the clone size metric. Finally, in the scopes filter we select classes, defines, enumerations, functions
and namespaces. There is not a particular reason for performing the operations in this order; Any
other order would yield the same results.

We next see the detailed overview containing scopes and clones, as depicted in Fig. 4.3.3a. This
overview represents the results of all changes made in time, but does not show any of the changes
explicitly. Hence, it can be interpreted as a visual overview of all clones present in the last revision
of FileZilla client. We see that clone relations mostly exist between files in the same (sub-)directory,
which indicates that the software is modularized. We see that all sub-directories contain classes,
except /src/putty. After inspection, the latter appears to be written in the C programming
language, that does not support the class construct. Instead we see a lot of defines, which is
characteristic for that language. Furthermore, the image shows a strong (clone) relation between

CHAPTER 4. APPLICATIONS 60

/src/putty/unix and /src/putty/windows. Although we are not familiar with the design of
putty, we expect that these sub-directories contain the platform dependent implementations of
generic functions; Most of the clones relate to scopes with the same name (but different FQN).

The amount of information shown in the (detailed) structure colormap (cf. Fig. 4.3.3a) makes
the image hard but not impossible to read. The amount of events that appear in the difference
colormap (cf. Fig. 4.3.3b) is much greater, and makes the visualization unreadable at the selected
level of detail. The same issue arises for the activity colormap (cf. Fig. 4.3.3b), because it also
shows deleted clones. Clearly, the images in Fig. 4.3.3b and 4.3.3c are not very useful, as they
overload us with information where (groups of) edges become indistinguishable. Moreover, the
information that we obtain from differences and activity is time-dependent, so it makes sense to
compare the information between several time-slices. To produce useful images, we must reduce
(1) level of detail and (2) the revision range.

To investigate the evolution of FileZilla, we export a sequence of images (time-slices), by se-
lecting the whole available revision range, and pressing the ‘Export Sequence’ button in ClonEvol.
The repository contains 4149 revisions, and we want to show a sequence of 5 small images, hence
our window size is 4149/5 ≈ 830. We export a sequence for each colormap; For structure we use
a stretching window, so that the result of all changes is shown, while we use a sliding window for
the other colormaps. The resulting time-slices are shown in small multiples in Fig. 4.3.4. We have
split the differences in two views: clone addition and removal, and code movement; Despite that
showing these event types together can be useful, as illustrated by Fig. 4.3.2b, the blending of
colors becomes problematic when a large quantity of data is depicted.

src/putty
src/putty/unix
src/putty/windows

(a) FileZilla structure and clone size (detailed)

(b) Differences and clone size

(c) Activity

Figure 4.3.3: FileZilla Client: Detailed overview (revision 1 - 5,301)

CHAPTER 4. APPLICATIONS 61

From the change in structure, depicted in the top row of Fig. 4.3.4, we conclude that the amount
of files and thus amount of clones grows in time. Moreover, we see that they grow gradually, as
the structure is not increased by large, coherent groups of nodes. Exceptions are the discussed
movement of files in revision 3228, and the addition of the module /src/dbus in revision 2898.

By looking at the advancement in differences (middle two rows), we conclude that the authors
have well sustained the initially defined structure of the project, as very little movement of files
is visible (except for the movement discussed previously). Furthermore, to our best insight, the
software is becoming more stable in time: The amount of added/removed files is decreasing in
general. On the other hand, the amount of code movements is growing. The latter indicates
refactoring, which should contribute to stability of the project. A particularly interesting event
that we see see only in the third row, is that a lot of code is moved between /src/include and
/src/engine. These sub-directories appear to have more in common, than clone presence, addition
and deletion would make us believe. Hence, code movement events can reveal relations that would
otherwise stay hidden.

Finally, the advancement of activity (bottom row) verifies that our findings in Section 4.3.2
hold in all timeslices. However, we now see that /src/putty plays a big role for FileZilla client,
as it is updated/modified regularly. On the other hand, /src/tinyxml is clearly an off-the-shelf
module, as it was not updated in revisions (1400, 3761). We found the exact numbers by opening
/src/tinyxml and scrolling through revisions until we found the revisions where the directory
would obtain color. The time-slices were helpful to approximate boundaries of the range.

(a) Revision 1-825 (b) Revision 825-1661 (c) Revision 1661-2556 (d) Revision 2556-3442 (e) Revision 3442-5162

Figure 4.3.4: FileZilla Client: Detailed evolution (revision 1 - 5,301)

CHAPTER 4. APPLICATIONS 62

4.4 TortoiseSVN
TortoiseSVN is an open source (GPL) Apache Subversion client, implemented as a Windows shell
extension. Besides the SVN client, it contains a wealth of supportive tools for analysis of low-level
changes, up to visualization of repository statistics. Nowadays, TortoiseSVN is a very popular and
widely used SVN client for the Windows operating system.

4.4.1 Project statistics
Before inspecting the contents of TortoiseSVN client in detail, we first investigate it at project-level.
In Table 4.4.1, we show general statistics of TortoiseSVN, which are harvested with svn log.

TortoiseSVN [48]
SVN Repository URL: http://svn.filezilla-project.org/svn/FileZilla3/
SVN Revisions 25,086 (of which 24,215 affect trunk)
First SVN commit April 18th, 2003
Last SVN commit December 27th, 2013
Contributors 148
Files in trunk (last rev.) 12,378 (of which 5,680 contain source code)

Table 4.4.1: TortoiseSVN: SVN repository statistics

The amount of revisions, files and contributors (cf. Table 4.4.1) indicate that TortoiseSVN is a
medium to large-sized project. The first and last commit indicate that TortoiseSVN is still actively
developed/maintained. The frequency of change commits supports this conclusion. We omit the
showing of all these details, as our statements can be easily verified by looking into the SVN log.

Before looking at the first overview, as produced by ClonEvol, we show the composition of the
contents of TortoiseSVN (in terms of source code) in Table 4.4.2. From this list we have removed
23 occurrences that contained less than 5,000 lines of code.

http :// cloc. sourceforge .net v 1.60 T =21.01 s (270.3 files /s, 112171.5 lines /s)

Language files blank comment code

C 2005 138290 215621 804324
C++ 739 38042 30413 273701
C/C++ Header 1426 42435 112710 156222
Python 263 25413 31965 110576
Perl 213 11478 11080 75995
Bourne Shell 162 6485 8935 45190
HTML 124 4630 886 42993
XML 90 94 346 21276
Java 131 3725 15054 17705
make 99 1901 757 14003
Assembly 21 2340 2594 13935
Ruby 38 2327 1192 12360
m4 46 1697 1301 11642
Lisp 6 968 1164 7854
...

SUM: 5680 285048 440148 1631662

Table 4.4.2: TortoiseSVN: File content statistics

http://svn.filezilla-project.org/svn/FileZilla3/

CHAPTER 4. APPLICATIONS 63

4.4.2 First visual overview
To produce the first overview of FileZilla client, we start ClonEvol, input the project name and
URL of the SVN repository. More specifically, we choose the trunk sub-directory. The acquisition,
processing and storage of the full-blown list of (all 25,086) changelogs takes about 75 seconds. As
before, we select the full revision range (1, 25086), in order to produce the three initial visualiza-
tions, shown in Fig. 4.4.1.

From the structural colormap (cf. Fig 4.4.1a) we learn that the project consists of two major
directories, i.e. /ext and /src. Furthermore, top-level folders exist for documentation (/doc),
tests and the website (/www). The /ext folder contains libraries, including ResizableLib, openssl
(by far the largest), sqlite, zlib, among others. In the /src directory we find sub-directories for
most of the tools that are provided in the ToirtoiseSVN package. Moreover, we see missing sub-
directories (e.g. ResizableLib), that have corresponding names to ones that can be found in the
/ext folder.

The difference colormap (cf. Fig 4.4.1b) confirms the previous findings. However, we see several
occasions of sub-directories that were not added, but were modified initially. The most plausible
reason for this is that ClonEvol only supports operations of addition, deletion and modification.
The list of initially modified sub-directories includes /ext/ResizableLib, and /ext/scintilla.
By simply looking at the shape and size of these directories, we are able to quickly trace them back
to /src/ResizableLib and /src/Utils/scintilla respectively. It appears that the project was
started with the libraries embedded in the /src folder, to be moved to /ext later on. However,
the current overview does not allow us to trace whether this is actually the case.

doc

src/ResizableLib

ext/ResizableLib

src/Util/scintilla

ext/scintilla

(a) Structure

(b) Differences

src/SVN
src/TortoiseMerge src/TortoiseProc

src/TortoiseShell

(c) Activity

Figure 4.4.1: TortoiseSVN: Initial overview (revision 1 - 25,086)

CHAPTER 4. APPLICATIONS 64

By looking at the activity colormap (cf. Fig 4.4.1c), we immediately recognize that the contents of
the /ext folder show very little activity. However, the folder itself is colored red, which indicates
high activity. Our only explanation for this finding is that the folder is very large, and its activity is
equivalent to the sum of its contents’ activity values. For us, this is an indication that exploration
of the /ext sub-directory will yield us little additional insight; Instead of wasting screen-estate on
the rendering of this large part of the codebase, we should focus on the /src folder further on.

On the other hand, we see a lot of activity in /src, more specifically in /src/SVN, /src/TortoiseMerge,
/src/TortoiseProc and /src/TortoiseShell. It is possible to point out the specific high-activity
files (they are clearly distinguishable), but we omit the listing of their names. Furthermore, we see
medium activity in the /doc folder. If we take its size into consideration, we can conclude that the
documentation is updated frequently.

4.4.3 Picking a revision range
Because the TortoiseSVN repository contains approximately 25,000 revisions, it is virtually im-
possible to detect interesting events without reducing the viewed revision range. A full-blown
investigation and discussion of events in the repository would involve a complete report. As our
intention is merely to demonstrate the use of ClonEvol, we use the initial overview to find what
revision range is most likely to contain interesting events. For this purpose, we select the full
revision range (1, 25086), and instruct the application to produce a sequence of 5 images, each
containing 24215/5 = 4843 revisions. In particular, we are interested in the gradual development
of the project, hence we inspect the difference and activity colormaps, depicted in Fig. 4.4.2.

Before deciding which revision range to inspect in more detail, we verify our previous supposi-
tion; We stated that the /ext directory is unlikely to contain many interesting events, but in order
to verify this statement, we still show it in Fig. 4.4.2. Clearly, our initial impression was correct,
as /ext contains very little change events in general; Most action is happening in the sub-directory
/src .

(a) Revision 1-4917 (b) Revision 4917-9988 (c) Revision 9988-15074 (d) Revision 15704-20126 (e) Revision 20126-25086

Figure 4.4.2: TortoiseSVN: Initial evolution (revision 1 - 25,086)

CHAPTER 4. APPLICATIONS 65

We want to explore a revision range in which changes occurred, after the project was more or less
stable. In order to find the stable versions, we inspect the evolution as depicted by the differences
colormap (top row). Clearly, the least stable revision range is the initial one (cf. Fig. 4.4.2a). We
see that the most stable revision range is (15704, 20126), depicted in Fig. 4.4.2d. The last revision
range suits our previous requirement best, but we find that the amount of changes in /src is too
limited. Because of the remaining ranges, the middle one (9988, 15074) is the least stable (cf. Fig.
4.4.2c), we choose to inspect that range in more detail.

In order to produce the detailed overview, we select the range (10000, 15000), and press the
‘Get revisions’ button. The downloading of files is finished after 8:25 hours, clone extraction takes
an additional 7:21 hours, and clone extraction lasts 2:01 hours. Altogether the downloading and
extraction of these (approximately) 5,000 revisions takes 17:47 hours.

4.4.4 Repository exploration
After completion of the mining process, we first open /src. The intermediate result, where only files
and directories are visible, is shown in Fig. 4.4.3a. We next add classes and functions to the filter,
which results in Fig 4.4.3b. From the latter image, we learn that all components or TortoiseSVN
contain classes and hence are written in an object-oriented language (more specifically: C++).
However, in terms of clone relations, Fig 4.4.3b provides no added value; Fig. 4.4.3a shows a
structure that is virtually identical, that moreover allows us to more easily distinguish edge groups
(that relate to modules/sub-directories).

(a) Files only, edge metric: clone size

(b) Detailed overview, edge metric: clone size

(c) Files only, edge metric: none, XOR path, β = 0.3

Figure 4.4.3: TortoiseSVN: Detailed structure of /src (revision 10,001 - 15,000)

CHAPTER 4. APPLICATIONS 66

In both Fig. 4.4.3a and 4.4.3b it is hard to distinguish relations between the different modules;
Many edges cross the center of the image, which results in occlusion. In order to emphasize
relations between modules, we reduce the amount of visualized data, and tweak the rendering: We
disable all constructs, set the clone metric to ‘none’, configure the visualization parameters to use
XOR path rendering, and reduce the bundling strength to 0.3. Usage of the XOR path diminishes
occlusion that is caused by low-level clones (e.g. files in the same directory). This effect is increased
by reduction of bundling strength, but the more important effect is that edges are pulled out of
clutter. Although the hierarchical structure is lost this way, the resulting image (cf. Fig. 4.4.3c)
shows relations between modules more clearly.

In order to inspect the changes made, we revert all parameters to their default value, and select
the difference colormap. The result is shown in Fig. 4.4.4a. We see many code movements (as
anticipated from Fig. 4.4.2c), but it is virtually impossible to see what moved where. To better
distinguish the various events, we enable the XOR path visualization parameter. The resulting
image (cf. Fig. 4.4.4b), where common edge control points are omitted, allows us to clearly
distinguish the code movements. To find out whether these movements occurred at the same time,
we apply the clone age metric. However, the clone age metric makes all edges very opaque and
hence limits distinguishability. As we are looking into code movement, we disable the showing of
clone additions and deletions. From the resulting image (cf. Fig. 4.4.4c), we can conclude that
there is an significant amount of revisions between the movements. To trace the revisions at which
large events occurred, we use the clone age metric; The edges of interest become more opaque
when we move the revision sliders in the right direction. This way, we have related the largest drift
events to revisions 10,247; 12,269; 14,279 and 14,942.

(a) Difference and clone size

(b) Difference and clone size, XOR path

Recent Events

'Old' Events
(c) Movement and clone age, XOR path

Figure 4.4.4: TortoiseSVN: Detailed differences of /src (revision 10,001 - 15,000)

CHAPTER 4. APPLICATIONS 67

4.4.5 Directory inspection
Next, we inspect the most recent movement events, seen in the right top of Fig. 4.4.4c, in more
detail. First we disable to XOR path option, next we open the directory /src/LogCache, and
eventually we enable all constructs. The resulting of these operations is shown in Fig 4.4.5a.
Although the image is very cluttered, we can learn several things from it.

Clearly, most of the events that appear in this folder, cross the root of the directory. This is
different from folders that we have inspected before but the reason is simple: We have descended
into a low level of the hierarchy, that contains only one level of sub-directories. Moreover, the more
constructs we enable, the larger the distance between the source and target of an edge becomes;
As result, many edges cross the root node. Because all constructs are enabled, we do not see any
self-clones. For the same reason, many hidden clones have become visible (edges that appear in a
dashed pattern). The self-clones are still relatively easy to find, by looking at the ‘layers’ in the
inner of the ring: They are the edges that appear on the lowest level.

In order to reduce clutter and see what more can be learned from this overview, we enable the
XOR path (cf. Fig. 4.4.5c). Clearly, it is now much easier to trace the origin and destination of
code movements; We can now trace the three of the four movements visible in Fig. 4.4.4c back to
the large bundles. More interestingly, we now see that several lower-level edge bundles split and
merge. Although these events are not emphasized by ClonEvol, it is not hard to spot them as they
show a visually distinguishable pattern.

(a) Default

(b) Without edge bundling

Merge
(c) XOR path

Figure 4.4.5: TortoiseSVN: Detailed differences of /src/LogCache (revision 10,001 - 15,000)

CHAPTER 4. APPLICATIONS 68

As we still have not found all events of movement, we finally reduce the edge bundling strength to
0. The result is shown in Fig. 4.4.5b. At this point, most edges have disappeared, which allows us
to easily distinguish all events that we found previously in Fig. 4.4.4c. Nevertheless, one should
be aware that fully disabling the bundling of edges is a bad idea in general; The visibility of edges
becomes coherent to the distance of nodes, which depends on the (1) construct name and (2)
construct type. Obviously, the latter properties do not usefully define the importance of a node.
However, in this particular image we expect the edges to appear between the red and green node
groups. These are indeed spread well enough to yield the result we were looking for.

4.4.6 File inspection
So far, we have explored TortoiseSVN using the structure and difference colormaps. Next, we
reset all visualization parameters, disable all constructs in the filter, navigate back to the /src
folder, and choose the activity colormap. The result of these operations is shown in Fig. 4.4.6. In
the latter image, we find several pairs of files that have a clone relation, and are often modified
together. Clearly, the latter concerns stubborn clones. We also see that the amount of stubborn
clones is low, compared to the total amount of clones. Furthermore, we are able to identify 2
files that are highly active and contain stubborn clones: /src/TortoiseProc/LogDlg.cpp and
/src/SVN/SVNStatusListCtrl.cpp.

In order to find whether any refactoring is applied to these files, we open them and enable
all constructs. We find that the /src/SVN/SVNStatusListCtrl.cpp shows the most interesting
events. Hence, we limit our discussion to the latter file. Because the amount of hierarchy levels
appears to be only 1, we enable XOR path visualization, to easily distinguish the edges. Next, in
order to obtain a basic understanding of the contents of the file, we apply the three colormaps,
which are shown in Fig. 4.4.7.

From Fig. 4.4.7a. we learn that this file mostly contains functions and furthermore some
defines. Because activity of the file and its contents (cf. Fig. 4.4.7b) is defined by the amount
of times that they were present in the changelogs, activity can now be used to find how recently
the constructs and clones were added; High activity indicates old entities (they were present many
times), while low activity indicates that it was added recently. The reason for this discrepancy
between file contents and files is that ClonEvol does not take into account the actual changes in
files (also known as diffs). From this we conclude that approximately a quarter of the total amount
of constructs was added in the revision range (10001, 15000).

(a) Default (b) XOR path

Figure 4.4.6: TortoiseSVN: Detailed activity of /src (revision 10,001 - 15,000)

CHAPTER 4. APPLICATIONS 69

We confirm the previous conclusion by comparing it with the difference colormap (cf. Fig. 4.4.7c).
The image indeed shows a virtually identical pattern for newly added constructs. Related to clones,
we see that: 5 Clones were added and all of them relate to newly added constructs; 5 Clones were
deleted, but here we cannot identify whether it involves recent or old clones.

The code movement plot (cf. Fig. 4.4.7d) shows that most movements relate to the addition of
new constructs. A clear merge event can be identified in the bottom part of the image. Further-
more, one code movement (top left) can be related to a clone that was added and subsequently
removed. Although code movement and clone addition/removal involves the same pair of functions,
we are unable to verify whether these events involve the same lines of code, as ClonEvol does not
provide means to do so.

In order to verify whether the clone additions and deletions are related, we use the difference
colormap, set the range to (10001,10001) and repeatedly increase the maximum until events show
up. Once clone events appear, we increase the minimum until we have isolated the revision in
which the events happen. This approach results in the event sequence depicted in Fig. 4.4.8.

From this sequence we conclude that the effort with most impact on the file was performed in
revision range (12750, 12897). Because many constructs were added in this range, it appears that
the effort relates to introduction of new features. The latter is supported by the function names,
that we do not mention here. Furthermore, we see that the previously mentioned merge is result
of changes in two revisions, namely 12,750 and 12,753. Finally, we see that a clone added in 12,897
was deleted much later in 14,469.

(a) Structure (b) Activity (c) Differences (d) Drifts

Figure 4.4.7: TortoiseSVN: Details of /src/SVN/SVNStatusListCtrl.cpp (10,001 - 15,000)

(a) Revision 10,260 (b) Revision 12,526 (c) Revision 12,750 (d) Revision 12,753

(e) Revision 12,759 (f) Revision 12,831 (g) Revision 12,897 (h) Revision 14,469

Figure 4.4.8: TortoiseSVN: Detailed evolution of /src/SVN/SVNStatusListCtrl.cpp

CHAPTER 4. APPLICATIONS 70

4.5 Resource and time consumption
So far our focus was set on demonstrating the usage of ClonEvol. In this Section we compare the
resource and time consumption. Besides the small and large projects (FileZilla and TortoiseSVN),
we also use statistics of Apache Tomcat [56] in this comparison. We first provide a summary
of project contents, followed by measurements, that are discussed in the order of acquisition by
ClonEvol.

In order to be able to put the results in perspective, it is important to describe the used envi-
ronment (hardware) for this ‘benchmark’: The used internet connection, which primarily relates
to the acquisition of changelogs and files, provided an 150Mbit down-link and a 15Mbit up-link;
The machine, on which the mining was performed, contained an Intel Core i7 4770K @ 4.5GHz,
16GB DDR3 RAM @ 1600MHz CL8 and an Samsung 840 Pro 256GB SSD, attached to an SATA
3.0 port. Other hardware components are not listed as they should not have affected the results.

4.5.1 Project contents
A summary of project/repository contents is shown in Table 4.5.1. We used CLOC [55] to find
which languages are used for the projects. The amount of revisions in /trunk was measured by
loading the directory in ClonEvol and using the summary tab to find the amount of revisions.
The total amount of revisions is determined by opening the repository URL in a web-browser;
Here the total amount of revisions in the repository is shown. The amount of directories and files
is determined using Windows explorer folder properties, where we omitted the .svn sub-folder.
Finally, the amount of source files and LoC is measured using CLOC.

We have described FileZilla and TortoiseSVN repositories in Section 4.3 and Section 4.4 re-
spectively. Because we omitted an elaboration of Apache Tomcat, it is noteworthy that all Apache
projects are managed from the same SVN repository; The total amount of revisions involves all
projects and not only Apache Tomcat. For that reason we omit its total amount of revisions.
Based on the LoC, we see that FileZilla is the smallest project; Apache Tomcat is considerably
larger and falls in the range of small-to-medium-sized; TortoiseSVN is by far the largest project.

FileZilla Client Apache Tomcat TortoiseSVN
Languages C, C++ Java C, C++, Java

Total Revisions 5,301 N/A 25,086
Revisions of /trunk 4,149 21,501 24,215

Directories in /trunk 45 524 1,511
All Files in /trunk 1,023 3,006 12,379

Source Files in /trunk 437 2,578 5,680
LoC in /trunk 119,993 348,309 1,631,662

Table 4.5.1: Comparison of project contents and size

4.5.2 Initial overview
Statistics about loading the initial overview of the projects is shown in Table 4.5.2. ClonEvol
provided the time-measurements for log acquisition and rendering of the initial overview. The
latter amount represents the total time used between the pressing of the ‘Start’ button and the
visualization being presented on screen. The amount of revisions, FileNodes and unique files were
adopted from the summary tab in our tool.

We notice an increasing amount of time is needed to acquire the logs as the project size increases.
Because the SVN servers essentially provide a list of revisions and FileNodes, the server throughput
can be approximated by dividing the sum of these, by the time needed for log acquisition. Clearly,
the throughout relates to the project size.

It is interesting to see that Apache Tomcat has significantly more FileNodes than TortoiseSVN,
particularly because we have seen that the latter is a much larger project. A FileNode is created

CHAPTER 4. APPLICATIONS 71

for each file and (sub-)directory that occurs in the changelog of a revision. When inspecting the
structure of the two projects, we see that the maximum depth of Apache Tomcat’s file hierarchy
(12) is greater than that of FileZilla (8). Moreover, the average tree-depth is much greater for
Apache Tomcat, due to the Java-style file-folder hierarchy, which explains the higher amount of
FileNodes. The amount of FileNodes is coherent to the amount of requests that is sent to the SVN
server during file acquisition, hence we expect it to be reflected in the next step.

FileZilla Client Apache Tomcat TortoiseSVN
Log acquisition 3 s 40 s 74 s

Server Throughput 10,842 records/s 4,888 records/s 2,207 records/s

Revisions 4,149 21,501 24,215
FileNodes 28,379 174,036 139,151

Unique Files 497 3,739 4,056

Database size (initial) 2.4 MB 22.0 MB 13.1 MB

Initial overview 4 s 43 s 86 s

Table 4.5.2: Comparison of initial time and resource consumption

4.5.3 Detailed overview
Next, we compare the time and resource consumption of detail mining for these projects. To easily
compare resource consumption, we have limited the revision range for FileZilla and TortoiseSVN
to approximately 5,000. Because all Apache projects are contained in the same repository, the
amount was increased for Apache Tomcat to approximately 200,000 revisions. This resulted in
4,568 actually acquired changesets. An overview of the results and measurements is shown in
Table 4.5.3.

The time elapsed during download, clone and scope extraction is obtained from ClonEvol’s log
window; After completion of the mining process, ClonEvol outputs the amount of time elapsed
during the various mining steps. Because the tool currently only gives a summary about all contents
of the database, the amount of acquired Revisions, FileNodes, ScopeNodes and ScopeClones is
determined by manually querying the database. Other values are calculated from this base data.
One exception is the compressed database size, that relates to a zip archive of the file.

During our tests, we noticed that the file acquisition bottleneck was at the SVN repository
servers. As all projects contain files that are small on average, we conclude that the download
speed is limited by the amount of requests, rather than file size. Previously we have shown that
the server throughput (in log records/second) is coherent to the project size, however we clearly
see a different pattern here: Apache has by far the fastest repository, FileZilla Client has an
average performing server, and TortoiseSVN clearly has the slowest server. Furthermore, we see
that Apache Tomcat contains a large amount of FileNodes per revision, which is caused by the
high depth of its file hierarchy.

As explained in Section 3.5, the scope extraction procedure’s complexity depends on the amount
of header files. This dependency becomes very clear when we compare the time needed for scope
extraction: Mining scopes from a Java project (Apache Tomcat) takes 9 minutes, while several
hours are needed to mine C/C++ projects. The amount of scopes extracted from TortoiseSVN is
38% larger than that of FileZilla Client, but the extraction takes roughly four times longer.

The clone extraction procedure operates only on acquired files, and the differences here are too
small to be meaningful. The low amount of clones extracted from TortoiseSVN is extraordinary.
We have repeated the mining procedure to verify the first measurement, that appeared correct.
Even more interesting are the differences in the amount of added and deleted clones, and drifts;
The ratio between addition and deletion is negatively correlated to the project size; Larger projects
have a smaller addition/deletion ratio, meaning that more clones are cleaned up. This makes sense,
as it is crucial to keep code highly coherent and loosely coupled in large projects. We believe that

CHAPTER 4. APPLICATIONS 72

the quality of a project/codebase is coherent to this ratio, but this hypothesis should be tested
in future work; The most important is that, as result of our current work, we finally are able
to perform the measurement. Furthermore, we see that the amount of drifts is roughly 10 times
larger for Apache Tomcat than for the other projects. However, we do not have a substantiated
explanation for this observation.

FileZilla Client Apache Tomcat TortoiseSVN
Revision range (1; 5,301) (1,000,000;

1,200,047)
(10,001; 15,000)

Acquired Revisions 4,149 4,568 4,760
Acquired Directories 13,233 26,579 12,807

Acquired Files 15,146 11,339 12,881
Total Size 366 MB 255 MB 338 MB

FileNodes / Revision 6.8 8.3 5.4

Download 246 min. 160 min. 745 min.
Acquired FileNodes 28,379 37,918 25,688
Unique FileNodes 497 3,739 4,056

Server Throughput 115
FileNodes/min.

237
FileNodes/min.

34.5
FileNodes/min.

Scope Extraction 102 min. 8:39 min. 439 min.
Unique Header Files 173 0 1,426

Extracted ScopeNodes 594,527 460,835 821,531
Unique ScopeNodes

Clone Extraction 115 min. 111 min. 121 min.
Extracted ScopeClones 278,150 388,263 102,791

Unique ScopeClones 3,165 16,915 4,920

Additions 8,850 6,737 4,938
Deletions 1,391 2,156 2,907

A/D Ratio 6.36 3.12 1.70
Drifts 12,240 143,492 16,798

Writing to Database 89.7 s 123.1 s 96.9 s
Database size 228.4 MB 780.2 MB 269.7 MB

Compressed size 31.7 MB 45.9 MB 37.9 MB

Table 4.5.3: Comparison of mining resource and time consumption

4.6 Conclusion
As we have shown, ClonEvol has a simple GUI and is easy to start using (cf. 4.2). Obtaining the
first overview can be done quickly, and is helpful to identify (un)interesting parts of the codebase
(cf. Section 4.3.2, 4.4.2). Also, it can be used to find revision ranges that are likely to contain
interesting clone events without the immediate need to mine scopes and clones (cf. Section 4.4.3).
To verify assumptions about expected events, the detailed overview is proven useful (cf. Section
4.3.3). We have shown that drift events can uncover relations between codebase parts, which are
otherwise undetectable. Revisions in which heavy refactoring was performed have been identified by
inspecting evolution related clone-events. The provided visualization parameters are proven helpful
to retain overview on levels of detail (cf. Section 4.4.3 - 4.4.6). All in all, we have illustrated that
ClonEvol is usable and useful from project level to file level. Ultimately, we have substantiated
that ClonEvol scales to large real-world codebases (cf. Section 4.5).

Chapter 5

Conclusion

5.1 Introduction
Our main goal was to design and implement a visualization tool for clone-related patterns in
software, that allows software designers and developers to obtain insight into code base evolution.
This is achieved with the presented solution, which we implemented in the tool ClonEvol. In
this last chapter, we first discuss how our work covers the research question (cf. Section 5.2).
Subsequently, we handle the limitations of the presented solution (cf. Section 5.3). Finally, we
present several ideas for future work (cf. Section 5.4).

5.2 Discussion
We will first discuss the sub-questions presented in Section 1.3, in order to elaborate on our main
research question.

Q1: How to define a clone at different levels of detail, or granularity?

In order to define clones at several levels of detail, we have chosen to first increase the granularity
of code base contents, that will be used to extract clones from. This is achieved with static analysis
of source code files, which gives us structural information about their contents. We have explained
the two major approaches used by static analyzers, namely lightweight and heavyweight extraction,
and we have discussed several static analysis tools (cf. Section 2.2).

Based on our initial requirements ease of use and scalability, we chose to use lightweight
static analysis for our solution; Indeed, this type of extraction requires little to no configuration,
and is moreover very fast in performing the task. For our purpose, heavyweight static analysis
would not provide any added value, as correctness of the inspected code is not important for the
type of analysis we want to perform eventually.

Instead of implementing static analysis ourselves, we chose to use a third-party tool. Before
picking a particular tool, we formulated additional requirements to which the tool must comply in
order to be usable for our solution (cf. Section 3.2.3). Based on these requirements, we chose to
integrate Doxygen as the third-party static analysis component in our solution. This design decision
is discussed elaborately in Section 3.5, where we also explain how the additional requirements are
fulfilled. There we have shown that our initial requirements genericity and extensibility are
fulfilled by Doxygen’s support many programming languages and possibility to easily add new
languages respectively.

Q2: How to extract clones from existing revisions of a code base?

We have seen that code clones can be defined in several ways (cf. Section 2.3); They range
from Type-1 clones, that are identical copies of code, to Type-4 clones, that are implemented by
syntactically different pieces of code, which perform the same computation. Moreover, we have
seen that the used clone extraction approach confines the type of clone that can be extracted;

73

CHAPTER 5. CONCLUSION 74

Lexical approaches identify only the first two clone types, while syntactic approaches detect also
sophisticated clone types. Furthermore, we saw that the performance of the approaches is inversely
correlated.

Based on our initial requirements ease of use, scalability and genericity, we chose to use
lexical clone extraction; Indeed, lexical clone extraction typically requires little to no configura-
tion, and is able to handle many different languages. Moreover, being the simplest form of clone
extraction, it implies that the extraction can be done quickly.

Instead of implementing clone extraction ourselves, we chose to use a third-party tool. Before
picking a particular tool, we formulated additional requirements to which the tool must comply in
order to be usable for our solution (cf. Section 3.2.3). Based on these requirements, we chose to
integrate Simian as the third-party clone extraction component in our solution. This design decision
is discussed elaborately in Section 3.6, where we also explain how the additional requirements are
fulfilled. The tool gives us clones on the level of lines of code, which are then matched against the
logical components (scopes/constructs).

Q3: How to define ‘interesting’ evolution events involving clones?

The latter step results in so called ScopeClones, which are used to detect clone-related events. This
is achieved by first dividing clones into two categories: Intra-clones relate to code duplicates in
the same revision, and inter-clones relate to duplicates between consecutive revisions (cf. Section
3.6.4). We defined the interesting evolution events involving intra-clones to be clone addition and
deletion. We have shown that presence of intra-clones impedes the useful detectability of inter-
clones. Furthermore, we used inter-clones to identify code movement (drifts). The drifts were
defined even further as code splits and merges.

Q4: How to visually present all above information in a way which is scalable and easy to use for
the typical software engineer?

We have seen that no generic solution exists for the purpose of visualizing software change. To
come to a solution, we inspected several hierarchy visualizations and their applicability for our
purpose (cf. Section 2.4). From the investigated visualizations, the mirrored radial tree was the
only one that explicitly handles association edges. In order to achieve a scalable visualization,
we investigated basic guidelines of multi-scale visualizations, and dug into data and visual aggre-
gation techniques (cf. Section 2.5). The edges of the mirrored radial tree are nicely accompanied
by hierarchical edge bundling, which made a combination of these techniques the best solution for
our purpose.

In order to present time-dependent information, we inspected dynamic graph techniques (cf.
Section 2.6). Mental map preservation appeared an important property for comprehensibility,
independent from the used dynamic graph technique. We achieved mental map preservation by
generating a generic (unified) hierarchy for all revisions, which is altered depending on the user
selected revision range. Animation and visualization by small multiples are two techniques to
show time-slices, and are both integrated into our tool; Animation is consolidated with user in-
teraction, and small multiples visualization is made possible by exporting a sequence of time-slices.

How can we e�ciently and effectively provide insight into the change of clone-related
patterns during the evolution of a software code base?

We have shown that the proposed solution allows us to easily and quickly get a first overview for
both small and large projects; Even for large projects the needed amount of time is not much more
than a few minutes. User configuration was needed only to supply an URL of the repository and
set the revisions to be mined. This illustrates that the tool is indeed easy to use and scalable
computationally and data-wise.

The first overview allowed us to obtain insight into the structure, changes and activity of
files and directories in the codebase. With this information we were able to: (1) Identify most
important files and interesting parts of the codebase (cf. Section 4.3.2, 4.4.2); (2) Use the evolution
of a project to find an interesting range of revisions (cf. Section 4.4.3).

The detailed overview allowed us to perform analysis on the level of the project, directories, and

CHAPTER 5. CONCLUSION 75

files. In combination with the structure colormap, we were able to identify software modules and
see relations between them (cf. Section 4.3.3, 4.4.4). The difference colormap allowed us to verify
assumptions about code movement and find large code movement events. Moreover, with drifts
we were able to find unexpected relations between modules, that to our best knowledge cannot be
discovered with any other technique or tool. On the level of files and directories, we were able to
identify splits and merges (cf. Section 4.4.5). Furthermore, we have shown that ClonEvol lets us
track the order of events and isolate the revision in which a particular event occurred (cf. Section
4.4.6). Last, we were able to identify stubborn clones using the activity colormap (cf Section 4.3.3).
This illustrates that the tool indeed provides effective means to obtain insight into the evolution
of a software code base.

Fact extraction of only differences between revisions is the core tactic that makes ClonEvol a
very e�cient and scalable tool (cf. Section 3.3); If we consider the amount of revisions that
can be mined per hour, the amount of time needed is very modest compared to other tools. The
ability of ClonEvol to quickly mine thousands of revisions of a project of any size, provides analysis
capabilities that were unheard of.

5.3 Limitations
We have split the discussion of limitations on the basis of the sub-questions presented in Section 1.3.

Q1: How to define a clone at different levels of detail, or granularity?

Before scope and clone extraction can be performed, files must be downloaded from the SCM. When
using Subversion as intended, each (sub-)directory must be acquired separately for each revision
(cf. Section 3.4). Therefore the file acquisition complexity is O(|R| ∗ depth(F∪)). This results
in longer extraction times for projects that have a deep file/folder structure, which is typical for
software written in Java. The issue can be resolved by creating all (sub-)directories locally, and
subsequently acquiring the files manually (by avoiding the use of SVN executables). However, we
believe that the impact of the issue is limited and moreover the implementation of a work-around
falls outside the scope of our work.

The main performance bottleneck of the data mining procedure is the scope extraction step (cf.
Section 3.5). In particular, this is the case when importing C/C++ projects; To be able to process
the contents of implementation files (.c and .cpp), Doxygen requires the forward declarations
of classes (typically located in header files). However, the issue is not limited to Doxygen, as
any static analyzer needs the forward declarations (contained in header files) to properly identify
constructs. The issue is resolved by acquiring all headers for the first revision of interest, and
processing them for each following revision. As result, complexity of the scope mining procedure
is O(|R| ∗max(1; h)), where h is the total amount of headers in the explored (sub)directory and
|R| the amount of revisions to analyze. The effect is clearly illustrated in the comparison of mining
resource and time consumption (cf. Section 4.5.3).

Q2: How to extract clones from existing revisions of a code base?

If we omit the complexity of the scope detector, the clone extraction pipe has complexity of O(|R|).
This assertion is supported by the time consumption measurements for the example projects (cf.
Section 4.5.3). Although performance and scalability are not of concern, we have detected that
Simian’s stability of output is questionable at best; By elaborate testing, we found that certain
clones are not detected anymore, after we add files to a folder. As result, sometimes clone addition
and/or removal events are detected that cannot be traced in the source code changes. The issue
might be resolved by using a different clone extractor. However, to select the right clone detec-
tor, we would need a comparison of several tools on the aspect stability of output. To our best
knowledge, such comparison of clone detectors has not been performed yet.

Q3: How to define ‘interesting’ evolution events involving clones?

Although we have elaborated the detection of splits and merges as derived drift types (cf. Section
3.6.4.2), these events are not explicitly emphasized by our solution; The viewer has to visually dis-

CHAPTER 5. CONCLUSION 76

tinguish them from regular drifts (cf. Section 4.4.5). The reason is that splits and merges, unlike
other clone-related events, depend on the (zoom) level of inspection. As example, we picture the
following scenario: A file fsource is deleted, whereat half of the contained functions are moved to
ftarget1 and the other half are moved to ftarget2. If we inspect the changes on file level, we conclude
that fsource was split. However, if we inspect the changes on function level, the functions were
simply moved. Hence, we cannot identify splits and merges without additional (user-provided)
context. Clearly, detection of splits and merges cannot be performed in the mining procedure, but
must be done in a post-processing step of the mapping procedure. However, such feature depends
on several environment variables, which must be identified and addressed. Hence, a solution is
non-trivial to achieve and could involve future work.

Q4: How to visually present all above information in a way which is scalable and easy to use for
the typical software engineer?

The most apparent limitation of the visualization is the absence of node (folder/file/scope) names
(cf. Section 3.7). In order to limit the size of nodes, we have chosen to show the node name when
the user hovers with the mouse pointer. We believe that is it not an issue when the viewer is able
to interact with the visualization; When many nodes are shown, the names would be unreadable
anyway. However, when presenting the visualization without the ability to interact with it, an-
notations become necessary to explain the images. On the other hand, if node names would be
shown, the amount of data that can be visualized usefully in one image would be limited. We
remain in doubt about the severity of the issue, as the presented solution is explicitly designed to
interact with.

We have seen that the structure of the visualization changes when the constructs are filtered
(cf. Section 4.4.4); Depending on the fluctuation of the amount of constructs per file, codebase
parts are moved when constructs are shown/hidden. The resulting change in size of nodes has
negative impact on mental map preservation. Although the severity of the issue is limited, we
believe that a better solution is achievable: The size of nodes could be based on the amount of
leafs, or average size in lines of code. However, such approaches introduce new issues such as nodes
that become to small to see. Hence, a proper solution is not trivial to achieve, and should be
investigated elaborately.

5.4 Future extensions
During the development of our solution, we have focused on making the tool fast and scalable.
Because scalability lies in the essence of our method (cf. Section 3.3), we expect that use of
heavyweight static analysis and clone detection should be possible without severe negative impact
on scalability. More precisely, the performance requirement can be removed from the third-party
component requirements. The latter should allow us to acquire and present more detailed data
than currently possible.

In the demonstration of ClonEvol (cf. Section 4) the data was displayed in a file-oriented
fashion, which is typical for source code analysis tools. A feature that falls outside the scope of
this research is a scope-oriented view on the contents, which builds the tree starting from the
scopes instead of files/directories. Such view is expected to be of additional value, in particular
for software (re-)designers; They are often not interested in the complexity of code but rather in
that of ‘logical’ components.

In the comparison of resource and time consumption of the different projects (cf. Section 4.5),
we have shown several statistics about the project contents. To us the most interesting value was
the clone addition/deletion ratio (the value was manually calculated, but ClonEvol could show
it after minor modification). We believe that the ratio, that as result of this project is easy to
measure, strongly relates to the quality of a software codebase. Although the hypothesis relates
more to software quality analysis than to software visualization, it would be very interesting to
investigate how code quality relates to the clone addition/deletion ratio. If a relation can be proven,
the clone addition/deletion ratio could extend the set of software quality metrics (such as coupling
and cohesion).

Bibliography

[1] C. K. Roy, J. R. Cordy, and R. Koschke, �Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach,� Science of Computer Programming, vol. 74,
no. 7, pp. 470�495, 2009.

[2] A. Telea and D. Auber, �Code flows: Visualizing structural evolution of source code,� in
Computer Graphics Forum, vol. 27, no. 3. Wiley Online Library, 2008, pp. 831�838.

[3] M. O. Ward, �Multivariate data glyphs: Principles and practice,� in Handbook of data visu-
alization. Springer, 2008, pp. 179�198.

[4] S. Diehl and C. Görg, �Graphs, they are changing,� in Graph Drawing. Springer, 2002, pp.
23�31.

[5] A. Abuthawabeh, F. Beck, D. Zeckzer, and S. Diehl, �Finding structures in multi-type code
couplings with node-link and matrix visualizations,� in Software Visualization (VISSOFT),
2013 First IEEE Working Conference on. IEEE, 2013, pp. 1�10.

[6] N. B. Harrison and P. Avgeriou, �Leveraging architecture patterns to satisfy quality at-
tributes,� in Software Architecture. Springer, 2007, pp. 263�270.

[7] A. Telea and L. Voinea, �An interactive reverse engineering environment for large-scale c++
code,� in Proceedings of the 4th ACM symposium on Software visualization. ACM, 2008, pp.
67�76.

[8] SDML. (2012) Sdml: srcml. [Online]. Available: http://www.sdml.info/projects/srcml/

[9] M. L. Collard, H. H. Kagdi, and J. I. Maletic, �An xml-based lightweight c++ fact extractor,�
in Program Comprehension, 2003. 11th IEEE International Workshop on. IEEE, 2003, pp.
134�143.

[10] D. van Heesch. (2013) Doxygen: Source code documentation generator tool. [Online].
Available: http://www.doxygen.org/

[11] A. J. Malton. (2001) Cppx home page. [Online]. Available: http://www.swag.uwaterloo.ca/
cppx/

[12] F. Boerboom and A. Janssen, �Fact extraction, querying and visualization of large c++ code
bases,� Ph.D. dissertation, MSc thesis, Faculty of Math. and Computer Science, Eindhoven
Univ. of Technology, 2006.

[13] S. McPeak and D. Wilkerson, �Elsa: The elkhound-based c/c++ parser,� 2005.

[14] A. Telea and L. Voinea, �Solidfx: An integrated reverse engineering environment for c++,� in
Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference on.
IEEE, 2008, pp. 320�322.

[15] SolidSourceIT. (2013) Solidfx - fact extractor for c/c++. [Online]. Available: http:
//www.solidsourceit.com/products/SolidFX-static-code-analysis.html

[16] S. Harris. (2011) Simian: Similarity analyser. [Online]. Available: http://www.harukizaemon.
com/simian/

77

http://www.sdml.info/projects/srcml/
http://www.doxygen.org/
http://www.swag.uwaterloo.ca/cppx/
http://www.swag.uwaterloo.ca/cppx/
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
http://www.solidsourceit.com/products/SolidFX-static-code-analysis.html
http://www.harukizaemon.com/simian/
http://www.harukizaemon.com/simian/

BIBLIOGRAPHY 78

[17] S. Lee and I. Jeong, �Sdd: high performance code clone detection system for large scale
source code,� in Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. ACM, 2005, pp. 140�141.

[18] C. K. Roy and J. R. Cordy, �Nicad: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization,� in Program Comprehension, 2008. ICPC
2008. The 16th IEEE International Conference on. IEEE, 2008, pp. 172�181.

[19] B. S. Baker, �A program for identifying duplicated code,� Computing Science and Statistics,
pp. 49�49, 1993.

[20] T. Kamiya. (2009) Ccfinder official site. [Online]. Available: http://www.ccfinder.net/
ccfinderx.html

[21] H. A. Basit and S. Jarzabek, �Efficient token based clone detection with flexible tokenization,�
in Proceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering. ACM, 2007,
pp. 513�516.

[22] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, �Clone detection using ab-
stract syntax trees,� in Software Maintenance, 1998. Proceedings. International Conference
on. IEEE, 1998, pp. 368�377.

[23] R. Koschke, R. Falke, and P. Frenzel, �Clone detection using abstract syntax suffix trees,�
in Reverse Engineering, 2006. WCRE'06. 13th Working Conference on. IEEE, 2006, pp.
253�262.

[24] C. Ammann and T. D’Arcy-Evans. (2013) Duplo c/c++/java duplicate source code block
finder. [Online]. Available: http://duplo.sourceforge.net/

[25] S. Ducasse, M. Rieger, and S. Demeyer, �A language independent approach for detecting
duplicated code,� in Software Maintenance, 1999.(ICSM'99) Proceedings. IEEE International
Conference on. IEEE, 1999, pp. 109�118.

[26] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, �Very-large scale code clone analysis and
visualization of open source programs using distributed ccfinder: D-ccfinder,� in Software
Engineering, 2007. ICSE 2007. 29th International Conference on. IEEE, 2007, pp. 106�115.

[27] N. Sheth, K. Börner, J. Baumgartner, K. Mane, and E. Wernert, �Treemap, radial tree, and
3d tree visualizations,� IEEE InfoVis Poster Compendium, pp. 128�129, 2003.

[28] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, �The solid* toolset for software visual analyt-
ics of program structure and metrics comprehension: From research prototype to product,�
Science of Computer Programming, 2012.

[29] A. Telea and L. Voinea, �Case study: Visual analytics in software product assessments,�
in Visualizing Software for Understanding and Analysis, 2009. VISSOFT 2009. 5th IEEE
International Workshop on. IEEE, 2009, pp. 65�72.

[30] D. Holten, �Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data,� Visualization and Computer Graphics, IEEE Transactions on, vol. 12, no. 5, pp. 741�
748, 2006.

[31] J. Heer, M. Bostock, and V. Ogievetsky, �A tour through the visualization zoo.� Commun.
ACM, vol. 53, no. 6, pp. 59�67, 2010.

[32] M. C. Chuah, �Dynamic aggregation with circular visual designs,� in Information Visualiza-
tion, 1998. Proceedings. IEEE Symposium on. IEEE, 1998, pp. 35�43.

[33] K. Andrews and H. Heidegger, �Information slices: Visualising and exploring large hierarchies
using cascading, semi-circular discs,� in Proc of IEEE Infovis 98 late breaking Hot Topics,
1998, pp. 9�11.

http://www.ccfinder.net/ccfinderx.html
http://www.ccfinder.net/ccfinderx.html
http://duplo.sourceforge.net/

BIBLIOGRAPHY 79

[34] T. Jankun-Kelly and K.-L. Ma, �Moiregraphs: Radial focus+ context visualization and in-
teraction for graphs with visual nodes,� in Information Visualization, 2003. INFOVIS 2003.
IEEE Symposium on. IEEE, 2003, pp. 59�66.

[35] J. Stasko and E. Zhang, �Focus+ context display and navigation techniques for enhancing ra-
dial, space-filling hierarchy visualizations,� in Information Visualization, 2000. InfoVis 2000.
IEEE Symposium on. IEEE, 2000, pp. 57�65.

[36] N. Elmqvist and J.-D. Fekete, �Hierarchical aggregation for information visualization:
Overview, techniques, and design guidelines,� Visualization and Computer Graphics, IEEE
Transactions on, vol. 16, no. 3, pp. 439�454, 2010.

[37] S.-L. Voinea, �Software evolution visualization,� 2007.

[38] S. Moreta and A. Telea, �Multiscale visualization of dynamic software logs,� in Proceedings
of the 9th Joint Eurographics/IEEE VGTC conference on Visualization. Eurographics Asso-
ciation, 2007, pp. 11�18.

[39] D. Archambault, H. Purchase, and B. Pinaud, �Animation, small multiples, and the effect of
mental map preservation in dynamic graphs,� Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, no. 4, pp. 539�552, 2011.

[40] C. Hurter, O. Ersoy, and A. Telea, �Smooth bundling of large streaming and sequence graphs,�
2013.

[41] E. R. Tufte, �Envisioning information,� Optometry & Vision Science, vol. 68, no. 4, pp. 322�
324, 1991.

[42] P. Avgeriou and U. Zdun, �Architectural patterns revisited - a pattern language,� 2005.

[43] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Soft-
ware Architecture Volume 1: A System of Patterns, 1st ed. Wiley, 1996.

[44] A. Telea, Data Visualization: Principles and Practice, ser. Ak Peters Series. Taylor & Francis
Group, 2008.

[45] T. Halpin, �Object-role modeling (orm/niam),� Handbook on architectures of information
systems, pp. 81�102, 2005.

[46] The ORM Foundation. (2013) Norma - the software! [Online]. Available: http:
//www.ormfoundation.org/files/folders/norma_the_software/default.aspx

[47] D. R. Hipp and D. KENNEDY, �Sqlite,� 2007. [Online]. Available: http://www.sqlite.org/

[48] Tigris. (2013) Tortoisesvn - the coolest interface to (sub)version control. [Online]. Available:
http://tortoisesvn.tigris.org/

[49] S. Andrade, �libgraphicstreeview,� 2012. [Online]. Available: http://liveblue.wordpress.com/
2012/05/

[50] Digia. (2013) Qt project. [Online]. Available: http://qt-project.org/

[51] C. Twigg, �Catmull-rom splines,� Computer, vol. 41, no. 6, pp. 4�6, 2003.

[52] A. R. Forrest, �Interactive interpolation and approximation by bézier polynomials,� The Com-
puter Journal, vol. 15, no. 1, pp. 71�79, 1972.

[53] T. Kosse. (2013) Filezilla - the free ftp solution. [Online]. Available: http://filezilla-project.org/

[54] A. Hanjalic, �Clonevol: Visualizing software evolution with code clones,� in Software Visual-
ization (VISSOFT), 2013 First IEEE Working Conference on. IEEE, 2013, pp. 1�4.

[55] A. Danial. (2013) Cloc � count lines of code. [Online]. Available: http://cloc.sourceforge.net/

[56] The Apache Software Foundation. (2013) Apache tomcat. [Online]. Available: http:
//tomcat.apache.org/

http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx
http://www.ormfoundation.org/files/folders/norma_the_software/default.aspx
http://www.sqlite.org/
http://tortoisesvn.tigris.org/
http://liveblue.wordpress.com/2012/05/
http://liveblue.wordpress.com/2012/05/
http://qt-project.org/
http://filezilla-project.org/
http://cloc.sourceforge.net/
http://tomcat.apache.org/
http://tomcat.apache.org/

	Contents
	Nomenclature

	1 Introduction
	1.1 Software configuration management
	1.2 Analyzing change
	1.3 Software clones
	1.4 Requirements
	1.5 Structure of the thesis

	2 Related work
	2.1 Introduction
	2.2 Static analyzers
	2.2.1 Structure and relationships
	2.2.2 Static analysis approaches
	2.2.3 SrcML toolkit
	2.2.4 Doxygen
	2.2.5 CPPX
	2.2.6 Elsa
	2.2.7 SolidFX

	2.3 Code clone detectors
	2.3.1 Clone types
	2.3.2 Clone extraction techniques
	2.3.3 Duplo
	2.3.4 Simian
	2.3.5 CCFinder(X)

	2.4 Hierarchy visualizations
	2.4.1 Node-link diagram
	2.4.2 Icicle plot

	2.5 Multi-scale visualizations
	2.5.1 Aggregation constraints
	2.5.2 Data aggregation
	2.5.3 Visual aggregation
	2.5.4 Edge bundling

	2.6 Dynamic graphs
	2.6.1 Mental map preservation
	2.6.2 Small multiples visualizations
	2.6.3 Animated visualizations

	2.7 Conclusion

	3 Solution Design
	3.1 Introduction
	3.2 Requirement refinement
	3.2.1 Functional requirements
	3.2.2 Non-Functional requirements
	3.2.3 Third-party component requirements

	3.3 Baseline architecture
	3.3.1 Fact types
	3.3.2 Visualization pipeline
	3.3.3 Data mining & refining
	3.3.4 Fact database
	3.3.5 Data mapping & visualization

	3.4 Repository extraction
	3.4.1 Output requirements
	3.4.2 Subversion (SVN)
	3.4.3 Processing: Changelogs & FileTree
	3.4.4 Data refining: FileNode events

	3.5 Scope extraction
	3.5.1 Output requirements
	3.5.2 Doxygen
	3.5.3 Processing: ScopeTree & Compound Graph
	3.5.4 Data refining: ScopeNode events

	3.6 Clone extraction
	3.6.1 Output requirements
	3.6.2 Simian
	3.6.3 Processing: CodeClones & ScopeClones
	3.6.4 Data refining: ScopeClone events

	3.7 Visualization base
	3.7.1 Inner radial tree
	3.7.2 Outer radial tree
	3.7.3 Edges

	3.9 User interaction
	3.9.3 Visualizing software evolution

	3.10 Conclusion

	4 Applications
	4.1 Introduction
	4.2 Analysis tool: ClonEvol
	4.2.1 User interface
	4.2.2 Mandatory user steps

	4.3 FileZilla Client
	4.3.1 Project statistics

	4.4 TortoiseSVN
	4.4.1 Project statistics

	4.5 Resource and time consumption
	4.5.1 Project contents
	4.5.2 Initial overview
	4.5.3 Detailed overview

	4.6 Conclusion

	5 Conclusion
	5.1 Introduction
	5.2 Discussion
	5.3 Limitations
	5.4 Future extensions

	Bibliography

