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A B S T R A C T

Oftentimes, developers need to understand a software system they are unfamiliar
with, for instance, to perform maintainance or refactoring work. Since large
software systems are hard to understand, having proper tooling can significantly
reduce the time a developer needs to get a firm understanding of the system.

Understanding the dependencies among the different components of a software
system is one of the most important and one of the most challenging tasks in
software (re)engineering. Function calls from one function to another are important
in this respect, because they represent direct, functional dependencies between
different components of the system. Having a correct and complete call graph of a
software system can be a powerful aid, since it makes these call relations explicit
and, to some extend, models the structure and behaviour of the system.

There is a lack of robust, scalable and effective support for call graph computa-
tion and visual analysis for the C++ programming language. The complex nature
of C++ and the relatively large size of C++ industrial code bases makes static
analysis difficult and the fast extraction and visualization of their corresponding
call graphs challenging. In particular, C++ allows a complex range of semantics
for function calls (operators, virtual functions, implicit calls and explicit calls). All
these have to be extracted and suitably presented to the developer for optimal
understanding.

A design and implementation is given of a new system that automatically
extracts call graphs from large C++ code bases and the problems that one faces
when building such a system are discussed. Also, a comparison is made between
three existing ways to visualize the resulting call graphs and the application of the
toolchain using the most suitable of these visualization methods is presented to
the reader.
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1I N T R O D U C T I O N

Oftentimes, developers need to understand a software system they are unfamiliar
with, for instance, to perform maintenance and refactoring tasks. Since large
software systems are hard to understand, having proper tooling can significantly
reduce the time a developer needs to get a firm understanding of the system and
do maintenance work.

Call graphs are well-known instruments for understanding complex software
systems and can be of great help in maintaining a system (see [28] and [33]). They
can, for instance, assist in identifying modularity problems, which in turn help
identify possible maintenance bottlenecks. Or, as another example, call graphs can
aid the porting of a system, by visualizing the components that depend on code
that must be rewritten or removed.

Call graph construction tools are used to compute such graphs from the source
code of existing systems. After extraction, several visualization tools can be used
to enable the interactive exploration of the extracted graphs.

However theoretically well understood, there is significant lack of robust, scal-
able and effective support for call graph computation and visual analysis for the
C++ programming language. The very complex nature of C++, and the relatively
large size of C++ industrial code bases, makes static analysis difficult and the fast
extraction and presentation of such call graphs challenging.

In the next section (1.1) we will define more precisely what type of graph we
are dealing with in this thesis. After that, in section 1.2 we will describe what we
aim to obtain and why this is such a challenging problem. The last section (1.3) of
this chapter will give an overview of the structure of the thesis.

1.1 definitions

Before we move on to explain the difficulties that arise when attempting to
construct a static call graph, we first explain the concept of a static call graph.
A static call graph is a graph in which the nodes are function definitions (or
declarations) and the edges are static call relations. For example, consider the
following trivial program:

void foo()

{

bar();

}

void bar()

{

}

int main()

{

foo();

bar();

return 0;

}

1



2 introduction

It is easy to see that the above program contains three function definitions and
three function calls. Now, the static call graph corresponding to this program is
depicted 1 in figure 1.

Figure 1: The static call graph of the example program. Nodes are function definitions and
edges are function calls.

Since this thesis is concerned with static call graphs, it is important to highlight a
number of implications that follow from that fact:

• We are interested in static call graphs, which means that the call relations we
extract correspond to occurrences of function calls in the source code.

This is opposed to a dynamic call graph, in which call relations are extracted
from actually running the program. The result is a call graph containing only
edges for those function calls that have been made during the execution of
the program. The resulting edges may be annotated with information, such
as the number of times that a call has been made, or temporal information
indicating when or in what order calls have been made. It is important to
note that in this thesis we study only static call graphs, not dynamic call
graphs.

The relevance of studying static call graphs becomes clear when one con-
siders its applications. A static call graph of a system can be an invaluable
tool to aid in, for instance, reverse engineering and software maintenance. A
significant advantage of static call graphs over dynamic call graphs is that
they can be constructed even when we are not able to run the system, which
might be the case if we do not have access to the right (hardware or software)
platform, or when we do not have a good idea of the input parameters to
run the system with. Also, a static call graph contains all call relations, not
just those that were actually executed. Having all call relations available is
ofcourse important in refactoring and re-engineering tasks and obtaining
such a complete call graph is very hard using runtime analysis, unless we
achieve a code coverage of 100%.

• In our call graph definition, we consider all types of function calls that exist
in C/C++. These include classic function calls (stemming from C), calls
to virtuals, operators, constructors and destructors. Next to that, we are

1 All images of graphs throughout this thesis have been created using Tulip [23], unless stated otherwise.
Tulip is discussed in 6.2.2.
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interested in both explicit calls (the calls that are visible at the syntactic level)
and implicit calls (which are added by the compiler but have no explicit
syntax, such as calls to default constructors from inherited classes).

• A pure call graph would consist only of function (definition and declaration)
nodes and call edges. However, C/C++ programs generally have much
more structure than just a set of functions calling each other. Functions are
typically grouped in a hierarchy of folders, files, namespaces and classes.
Virtually all understanding problems that involve call graphs hugely benefit
from a combination of the call relations with hierarchical information. As
such, we extend the model of our call graph to include this hierarchical
information. Formally, our target graph is thus a compound, directed graph, or
a graph in which two types of relations exist: call relations and containment
(hierarchical) relations. In this thesis, whenever we refer to a call graph, we
are talking about such a compound, directed, call-and-containment graph.

• A call graph in itself only describes (part of) the structure of a given system.
However, for understanding tasks, more is needed than just the call and
containment relationships between functions, files, classes and folders. For
example, necessary additional information about functions and function
calls that should be available in the graph includes the name, full signature,
location in the source code, visibility (public, protected, private) and the type
of declaration (such as static, virtual or inline). Such information is invaluable
when performing different types of analyses. We call such information
attributes. Both the nodes and the edges of the call graph can be annotated
with attributes.

1.2 problem statement

The aim of this thesis is twofold:

1. Build a (set of) program(s) that is able to construct directed, compound
containment-and-call graphs, annotated by a rich set of static attributes,
from a given C/C++ code base. The precise requirements that this (set of)
program(s) must satisfy are stated in section 2.1 and the requirements that
must be satisfied by the constructed graphs are stated in chapter 4.

2. Present a visualization method that allows a developer to visually explore
the graphs constructed by the above (set of) program(s) in an intuitive way.
The exact requirements to this visualization method are stated in section 6.1.

There are three primary reasons why constructing and visualizing such graphs
is a difficult and challenging task, namely:

1. Industrial-sized code bases are very large. Because of this, it can take a long
time to generate a call graph for such a system. Then, when the call graph
is available, there is the challenge of being able to visualize and navigate
the graph in a timely fashion. Obviously, the speed of a call graph construc-
tor/visualizer is an issue.

Also, generating a call graph for large code bases tends to be a very memory
consuming and processor intensive task. It follows that stability and scalabil-
ity are important properties of a call graph constructor. The same goes for
the program that visualizes the graph.

The most common method to keep a large software system manageable is to
split it up into smaller components. Such components can be static libraries,
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dynamic libraries or translation units. So, to be able to generate a call graph
of the complete system, the call graph constructor must be able to operate
across such component boundaries. This implies that the scope of the call
graph constructor is an important factor.

Lastly, a large code base is by itself hard to understand. Adding to that is
the fact that it is non-trivial to visualize large graphs in an understandable
fashion. So, whether the graph visualizing program is able to produce an
understandable view of the graph is a big issue.

2. C++ is a complex language. Call dependencies between functions can occur in
many different forms. Some of these types of function calls are even hidden
from sight, but they exist nonetheless. So, for a good understanding of the
program, it is important that the call graph constructor is able to detect all
of the different kinds of function calls.

A powerful feature of C++ is its ability for run-time binding of function calls
to functions. The drawback of this is that it can be very hard, and sometimes
even impossible, to pin-point call targets using only static analysis. This
shows that a call graph constructor’s completeness and accuracy in finding
the call targets of function calls are two more non-trivial aspects that must
be dealt with.

3. Call graph construction and visualization tools are hard to utilize. The reason for
this comes from a combination of factors. For instance, programs using static
analyzer technology with limited capabilities, and the variations between
C/C++ dialects make it hard to get accurate and complete results. Also, it is
often difficult to successfully apply the tools to incorrect and incomplete code
bases and complex build schemes make it hard to determine the settings
with which the tools should be run. This illustrates that the usability of a
call graph constructor is another important and complex issue.

1.3 structure of this thesis

Excluding the appendix (A), this thesis is comprised of three parts.

Part i of this thesis deals with the construction of call graphs. In chapter 2

we will first discuss what the requirements are for a call graph constructor and
what call graph constructing programs currently exist and how well they satisfy
the stated requirements. The next chapter (3) deals with the extraction of all the
information that is needed to construct a call graph and chapter 4 discusses how
to actually construct a call graph from that information. Part i is concluded by
chapter 5, which shows how we can automate the entire call graph construction
process to build graphs for systems build with the GNU compiler tools.

Part ii is concerned with the visual exploration of the call graphs we constructed
in part i. Again, we begin with discussing the requirements that any visualization
method should satisfy and investigating some well known candidates for visual-
ization (chapter 6). Then, using the most suitable visualization candidate, we will
show the application of the entire tool-chain on a non-trivial, real-world software
system (chapter 7).

Part iii of this thesis will reflect on what has been done, what requirements
of the call graph construction and visualization systems have been satisfied and
what requirements remain unsatisfied. We finish with a discussion on the future
work that remains to be done.
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2I N T R O D U C T I O N T O C O N S T R U C T I O N O F C A L L G R A P H S

For a developer to be able to quickly get a proper understanding of a software
system, the call graphs presented to him must be of good quality. Intuitively, this
means that each function call that is made in the source code, is represented in the
call graph by two nodes and a connecting edge. The first node would represent
the function from which the call is made and the second node would represent the
function to which the call is made. The edge should be directed from the calling
function to the called function. As will become clear in a later chapter, constructing
a call graph that strictly adheres to these properties is not always easy. Even worse,
since C++ supports dynamic binding ([29]), and we will only be performing static
analysis, it is sometimes even impossible to construct such a call graph. However,
as call graphs become less complete, or more inaccurate, they become less useful
for a developer. So, for call graphs to be as useful as possible, they should be as
complete and accurate as possible.

As we stated before, the C++ programming language is a relatively complex
language compared to other languages. Its standard has evolved over the years
and many different dialects are in widespread use. To be able to construct call
graphs for a large part of the C++ source code that exists in the wild, a parser is
needed that accepts a large set of the C/C++ dialects that are used in practice.
Next to that, the parser needs to have full support for the C/C++ language; it
needs to be able to handle all of the language’s features.

From these implicit requirements, it becomes clear that the call graph construc-
tion system must be robust, fast, scalable, easy to use and must deliver call graphs
that are as complete and accurate as possible. The next section (2.1) will make
these requirements explicit. That section is followed by section 2.2, giving a short
enumeration of existing call graph constructing programs and an evaluation of
how well they satisfy the listed requirements. Lastly, this introductory chapter is
concluded by section 2.3 with an overview of the steps needed to obtain a full call
graph construction system.

2.1 graph construction requirements

The requirements for the call graph construction component of the software are as
follows:

1. Scalability. The program must be able to extract call graphs of large, real-
world code bases having hundreds of thousands up to millions of lines of
code and it must be stable in doing so (i.e., it must not crash on large input).

2. Efficiency. The program must be able to extract the call graph in reasonable
time. As a rough quantification, the program must take no longer than the
order of time required to do a compilation of the code base with an efficient
C/C++ compiler.

3. Completeness. The program must be able to find all function calls. More
specifically, it must be able to find:

• Standard function calls: plain C-style function calls and C++-method
calls.

7



8 introduction to construction of call graphs

• Constructor and destructor calls: Calls to constructors and destructors
by explicitly creating or destroying an object.

• Implicit constructor and destructor calls: For example, calls to construc-
tors and destructors caused by passing an object instance as a parameter,
or returning an object instance as a return value, or an object instance
going out-of-scope.

• Pointer calls: Calls via pointer-to-function or pointer-to-member.
• Virtual calls: Calls to C++ virtual methods via a pointer to an object or

a reference to an object.
• Intializing and finalizing calls: Calls made before and after the execu-

tion of main, such as the constructor and destructor of a global object
variable.

• Operator calls: Calls to C++ overloaded operators.

Next to that, the program must be able to resolve each function call to a
function, or a set of functions in case it is not possible to determine the exact
function that is called. The latter can happen, for instance, when making
a call via a pointer-to-function. The resolved set of functions must be as
complete as possible, i.e., whenever possible it should be guaranteed that the
function that is actually called is present in the set of call candidates. Lastly,
resolving function calls to functions must be possible across translation unit
and library (both static and dynamic) boundaries.

4. Correctness. The program must resolve each function call to the correct (set of)
function(s). When there are multiple call candidates, that set of candidates
must be as small as possible. Also, all extracted call relations should actually
take place in the source code and should not be inferred by heuristics.

5. Robustness. The program must be able to accept incomplete or incorrect
source code as part of its input. That is, although it is obvious that syntac-
tically or semantically erroneous code will produce gaps in the call graph,
the program should proceed as much as possible in delivering a correct and
complete call graph from the information that is available.

6. Source code based. The program must only depend on source and header files.
That is, the program should not be dependant on executables, object files or
debug information files to be able to perform its analysis.

7. Genericity. The program must be able to handle a wide range of C/C++
dialects.

8. User friendliness. The program should be as easy to use as an equivalent
build system on the target platform. That is, a developer should be able to
run the system on large projects consisting of hundreds of files, organized
in different build targets (i.e., executables or static or dynamic libraries)
and compiled by complex build processes (such as makefiles). Running the
system on such code bases should be no more difficult than performing a
regular build of the code base.

9. Open source. The program should, preferrably though not mandatory, be
open-source. This will allow us to make modifications where required and
will easily allow further development of the tool-chain in the future.

It should be noted that, although these different types of requirements live in
isolation, none of them alone is sufficient for a program that fits our goals. To have
a truely effective and efficient call graph construction solution, all requirements
should be satisfied. It should also be noted that these requirements are very similar
to the ones discussed in [25].
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2.2 existing call graph constructors

Static call graph extraction is an old problem. Tens of different solutions exist
for this process, of which many also work for the specific context of the C/C++
languages. However, we argue that it is hard to find a solution that complies with
all the requirements that we stated in section 2.1 for our goal. In this section we
review a number of well-known C/C++ development environments and C/C++
static analyzers. Each of these tools is capable of constructing call graphs, to some
extend. They are very relevant for our review, because the requirements of a call
graph constructor will be part of the requirements of each of these tools. Here, we
will outline the limitations of these tools in the light of our requirements.

2.2.1 Eclipse CDT

The Eclipse C/C++ Development Toolkit [4] is part of the Eclipse project [3] and a
fast growing tookit for C/C++ syntactic and semantic analysis. It quickly provides
developers with local information from large code bases, while parts of that code
base undergo editing. Primarily, it provides interactive search features for C/C++
developers in Eclipse.

Eclipse CDT is fast and stable in analyzing large code bases, it is able to resolve
function calls to functions over translation unit and library boundaries and it is
easy to use. However, it does not satisfy the completeness (3) and correctness (4)
requirements. For example, it is not able to find all types of constructor calls and
it does not find any implicit function calls (e.g., caused by passing an object as a
parameter). Also, it redundantly lists all overriding functions in the case of a call
to virtual function on a non-pointer, non-reference object instance.

Next to that, Eclipse CDT utilizes a limited preprocessing step which causes
a header file to be preprocessed only the first time that it is encountered in a
project. Hence, header files whose context depends on macros, which may have
different values before inclusion, and which may be included multiple times with
different macro values set, will not be analyzed correctly. Obviously, this produces
potentially incorrect call graphs.

2.2.2 Visual Studio 2008

Visual Studio 2008 [18] is a comprehensive IDE for a range of programming
languages, including C/C++. Like Eclipse CDT, it provides developers with local
information from code bases, while they are being edited.

Also like Eclipse CDT, it is fast and stable when processing a large code
base, able to look across translation unit and library boundaries and easy to
use. Unfortunately, Visual Studio 2008 also does not satisfy the completeness
and correctness requirements (3 and 4). For example, it is not able to find any
constructor calls at all. Its limitations are inherent to the way Visual Studio 2008

extracts call graph information: Rather than using the compiler’s parser and type
checker, it uses a second, lightweight, parser to extract call information. Although
advantageous as this makes it very fast, since it does not require full parsing and
type checking, this technique is limited to finding only a subset of the syntactic
constructs which correspond to function calls. Next to that, Visual Studio 2008 is
closed source software, which makes it hard for us to adapt it to our needs.
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2.2.3 Doxygen

Doxygen [2] is a documentation system for a number of programming languages,
including C/C++. Its primary functionality is to generate understandable technical
documentation from source code. Part of this functionality is the ability to generate
call graphs for individual functions. Doxygen uses a simple parser which cannot
handle the complex lookup and scoping rules of C++, which is why it often
delivers incomplete (e.g., no constructor and destructor calls at all) and incorrect
information.

2.2.4 Rigi

Rigi [12] is a well-known toolkit for reverse engineering, with plugins for C/C++
(among others). It has a tool which extracts call graphs from C/C++ programs,
but it is rather limited in correctness and completeness, for the same fundamental
reasons that Doxygen is limited: It does not implement a full semantic analyzer.
Moreover, the C++ plugin uses the parser from the IBM VisualAge C++ [17]
compiler, which is proprietary software and is only supported on the AIX platform
and a small number of Linux distributions.

2.2.5 MCC

MCC [37] is a relatively good fact extractor for C/C++ and it works very fast.
However, it does not fully support the C++ language. For example, it cannot
analyze the sometimes more complex constructs present in typical system headers.
Also, MCC seems to have some semantic analyzer limitations. These restriction
make that it does not deliver a correct and complete call graph.

2.2.6 Columbus

Columbus [24] is an industry-strength parser and fact extractor for C/C++. It
appears to support the entire C++ language quite well, and as such it is able
to deliver correct and complete information. However, the tool is closed source,
which makes it impossible for us to adapt it in case we want to further analyze
and filter its raw output.

2.2.7 KDevelop

KDevelop [10] is a C/C++ development environment available for a variety of
platforms and it comes with a standalone C/C++ parser. The goal of the KDe-
velop parser is relatively similar to that of the CDT parser: To provide informa-
tion to developers during the development cycle, such as code completion and
symbol-to-definition relations. Overall, the KDevelop parser is fast, relatively well
documented, supports a wide class of C/C++ dialects and is robust against incor-
rect and incomplete code. However, at the time of inception of this project, the
KDevelop C/C++ parser did not provide sufficient semantic analysis information
to extract a call graph. Although recent additions added such functionality, the
semantic analysis is still under heavy development and it is expected that a mature
and stable C/C++ semantic analyzer will not available in KDevelop in the short
term.
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2.2.8 Elsa/Oink

The Elsa [35] C/C++ parser is part of the Oink [36] static analysis framework.
Elsa provides scalable, robust, correct, and complete static analysis for a wide
family of C/C++ dialects and is carefully engineered for high performance. It also
supports, up to some extend, analysis of incomplete and/or incorrect code bases.
Elsa comes with a complete and stable semantic analyzer as an open source toolkit.
It is properly documented and maintained.

2.2.9 Choosing a suitable system

The review above confirms our statement that a suitable, ready-to-run call graph
construction system for C/C++ that meets all of our requirements is not available
at this point in time. Even though it does not satisfy all of our requirements, the
system that is most suitable to our goals is Elsa/Oink. In [25], Boerboom and
Janssen give a comprehensive description of the advantages and disadvantages of
Elsa, as do Telea and Voinea in [40].

Since Elsa/Oink is not a ready-to-run call graph construction system, but rather
a general purpose C/C++ static analysis framework, we will use Elsa/Oink as the
basis of our new call graph construction system. The next section will provide an
overview of the steps that we will need to take to build a complete C/C++ call
graph construction system, based on the Elsa/Oink framework.

2.3 overview of the call graph construction pipeline

Figure 2 depicts the entire process of constructing a call graph. The white blocks
represent the individual steps that are required to get from source code to call
graph and the arrows between them represent the type of data flowing out of and
into the different steps. Each of the individual steps belongs to one of the four
major phases, each of which has its own color. The four phases are performed by
separate programs or program components, one after another:

1. The purple phase deals with preprocessing source code and is performed by
a C/C++ preprocessor.

2. In the blue phase the preprocessed source code is parsed by the Elsa C/C++
parser.

3. During the green phase all information that is required to construct a call
graph is extracted. The system responsible for the extraction of call infor-
mation is a new program (the C/C++ Call Info Extractor) presented in this
thesis.

4. Finally, in the red phase, a call graph is constructed, also using a new
program (the C/C++ Call graph Constructor) presented in this thesis.

The four different phases will be discussed in the next two chapters. The first
section (3.1) of chapter 3 is concerned with preprocessing and parsing the source
code. The remainder of chapter 3 then deals with the extraction of the information
required to construct a call graph. Then, the actual construction of call graphs from
the extracted information is dealt with in chapter 4.
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Figure 2: The complete call graph construction pipeline.



3E X T R A C T I O N O F C A L L I N F O R M AT I O N

This chapter is concerned with gathering the information from the source code
required to construct a call graph and the information that we aim to extract can
be summarized as follows:

• All functions and function calls. What exactly we mean by function is ex-
plained in 3.2.1. Not surprisingly, we need this information to construct a
graph containing function nodes and function call edges.

• Attribute data, describing the functions and function calls. Next to the
functions and function calls themselves, we are also interested in additional
information about the functions and function calls, such as their location in
the source code, the visibility of a function (i.e., public, protected or private),
and so on.

• Containment information. To be able to construct our compound graph we
need the folder, file and class hierarchy by which the functions are contained.

Please note that the actual construction of call graphs is not discussed until chapter
4.

As indicated by figure 3, this chapter is concerned with the first three phases of
the call graph construction pipeline (see figure 2). The first two of these phases
will be discussed only briefly in section 3.1, since they will be handled by existing,
third-party software. However, the extraction phase (in green) which is concerned
with the extraction of information needed to construct a call graph, is done by
a new program presented in this thesis. As such, the extraction phase will be
discussed in great detail. Below is a brief introduction to the individual steps of
the extraction phase, which constitute the majority of this chapter.

Figure 3: The preprocessing, parsing and extraction steps that will be covered in this
chapter.

13



14 extraction of call information

Extraction

After preprocessing has been done and the preprocessed source code has been
parsed using Elsa, the first thing that we will to do is gather all the information
that we need to construct a call graph that is as complete and correct as possible.
To this end, all function declarations, function definitions, function calls and all
their attribute information (such as location in the source code) are extracted from
the parsed source code using the AST traversal system provided to us by Elsa.
Section 3.2 describes in detail what information is to be extracted, where it can be
found and how we can obtain it using Elsa.

Filtering

A rather trivial fact about large software systems is that they tend to contain a
large number of functions and function calls. This makes the visual presentation
and exploration of such systems much harder, so the final call graph should ideally
only include those functions that are relevant with respect to the questions to be
answered on the system at hand. Now, in virtually all common reverse engineering
tasks, unused functions from system libraries are not of interest for analyses, so
we would like to be able to filter these out. The final call graph should ideally only
include those functions that are used by the system and discard all other functions
from system libraries. The process of filtering such unused functions is described
in section 3.3.

Name mangling

Large systems are nearly always split up into multiple files. Such a division
allows for a proper structuring of the system and is commonly regarded as good
practice. As a consequence, it is often the case that a function defined in one
source file is called from another source file. Obviously, the function call must
somehow be associated with the correct function definition. During a normal
build of the system, the linker is responsible for this association. That means
that, in case the parser processes one translation unit at a time, as Elsa and most
other C/C++ parsers do, this information is not directly available from the parser.
We will therefore need to do this linking ourselves. Eventhough linking itself
is not discussed until the next chapter (in section 4.3), we will be doing some
preparation for the linking process in this chapter. Namely, to make sure that
functions with static linkage are not linked to function calls in another translation
unit, the names of these functions will be mangled. This process of name mangling
will be discussed in section 3.4.

Validation

After all the necessary information gathering and manipulation steps have been
performed, section 3.5 will deal with validating the extracted information. During
validation we make sure that all function calls have a corresponding function
definition or function declaration. In the ideal case, this step is not necessary, but
it has proven its worth many times during the development of the system.

Serialization

The last step of the extraction process is serializing the output to a binary format.
Section 3.6 will describe the approach that was chosen and the options that are
available.



3.1 preprocessing and parsing 15

Complexity

At the end of each section describing a step in the pipeline, the running-time
complexity of that respective step (in terms of number of functions and number of
function calls), is presented. As a summary, the total running-time complexity of
the entire information extraction process will be presented in section 3.7.

3.1 preprocessing and parsing

Figure 4: The preprocessing and parsing steps.

As was illustrated in [25], Elsa does not have its own preprocessor. Instead
it expects a single preprocessed source code file (translation unit) as its input.
Hence, we need to preprocess source code files ourselves before we pass them
to Elsa. Luckily, most mainstream C/C++ compilers provide readily available
preprocessing functionality (either as a standalone program or integrated into the
compiler) and we can simply use that to preprocess the source code files.

It is worth mentioning that Elsa features a mechanism that allows us to retrieve
the location of a code fragment before it was preprocessed. This is convenient, since
this location information is very relevant information that we would like to be
able to present to developers using our system.

When preprocessed, each source code file is transformed into an AST during
the parsing step and this AST is then further refined during the type checking and
elaboration step: During the type checking step the AST is annotated with type
information.

Then, during the elaboration step AST nodes are inserted which correspond
to implicit (i.e., invisible) syntax, such as the invocation of a destructor when an
object goes out of scope. Also, to simplify further analysis, it normalizes the AST
so that syntactically different, but semantically equivalent constructs (such as a +

b vs. a.operator+(b)) are rendered in the AST in the same way.
At the end of the preprocessing and parsing phase, a source code file (and the

files that it includes) will have been transformed into a type-checked, annotated,
augmented and normalized AST. It is this elaborated AST that will subsequently
be used in the extraction phase.

3.1.1 Complexity

Not surprisingly, the Elsa parsing system is a very large and complex software
system. As such, it would be very difficult to determine a simple running-time
complexity for it and therefore we will simply refer to its complexity as CP from
now on. Regarding Elsa’s performance, we state, from experience, that parsing using
Elsa is roughly similar to that of compilation using an efficient C/C++ compiler.

3.2 extraction

The call graph we aim to construct will consist, for one part, of function nodes and
call edges. Apart from the functions and function calls themselves, extra information
about the functions and function calls will provide a developer with valuable
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Figure 5: The extraction step.

information needed during various types of analyses. This additional information
will be stored as attributes of the functions and function calls.

It is easy to understand why such attributes are essential for a developer to
perform his analyses. As an example, location information can be used to locate a
function or function call in the source code and knowing whether a function is a C-
style function or a C++-method can be used to determine the ’object-orientedness’
of a system. As another example, if we know whether a method is virtual we
can use that information to identify chains of calls to virtual functions, which are
potential performance bottlenecks.

The other major part of our compound graph will consist of containment nodes
and edges. These containment nodes can be folder nodes, file nodes and class nodes
and the edges between them will indicate their containment hierarchy. These
nodes and edges provide the functions and function calls in the graph with a very
natural and intuitive origanization and will allow a developer to easily navigate to
a function or function call based on the directory, file and class that contain it.

This section will first define precisely what we mean when we use the term
’function’. Next we will describe, for both functions and function calls, respectively,
what information will be extracted and where in the source code it can be found.
Third, this section will describe how the information can actually be retrieved
using the Elsa parser and finally the complexity of extracting the information will
be discussed.

3.2.1 Definition of function

In many cases, the use of the term function will not lead to much confusion as
its meaning is straightforward. However, in our context it is useful to be precise
about what we mean by function, since it might not always be clear whether we
are talking about a function declaration, a function definition, or both.

Whenever we use the term function in the remainder of this thesis, we mean
either:

1. A function declaration only, or

2. A function declaration together with its definition.

To be a bit more formal, we regard a function to be an entity that:

• Always has exactly one function declaration associated with it, and

• Always has zero or one function definitions associated with it.
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This is exactly how functions are represented in our implementation: An object
of type Function always has one reference to an object of type FunctionDeclara-

tion and it has zero or one references to an object of type FunctionDefinition.
Lastly, there are three important remarks that we must make regarding function
declarations and function definitions:

1. Whereas a definition of a function can occur only once throughout all
translation units, a function declaration can occur any number of times, even
within the same translation unit. If we encounter multiple declarations of the
same1 function within a single translation unit, we disregard all but the first
declaration that we find. The subsequent declarations, although legal, do not
provide us or the developer with any relevant information that we cannot
retrieve from the first declaration. If, within a translation unit, a function
definition exists, then that definition is also used as the function’s declaration
(i.e., one could think of a function definition as a function declaration plus
its implementation). Hence, a function always has exactly one declaration
associated with it.

2. Since, in the source code, a function definition can have any number of
function declarations associated with it, there exists a many-to-zero-or-one
relation from declaration to definition. However, since we just stated that, per
translation unit, we will only associate a single declaration with a function,
in our case there exists a one-to-zero-or-one relation from declaration to
definition.

3. Although one could argue that the declaration of a function pointer is, in
some sense, a declaration of a function, we do not regard such function
pointer declarations as function declarations. As such, the FunctionDecla-

ration reference in a Function object will never refer to a function pointer
declaration.

3.2.2 Function attributes

To be able to construct the call graph and be able to present the developer with
enough relevant information to perform his analyses, quite some information is
needed for every function. All the required function attributes are described below.

• Fully qualified name. A function’s fully qualified name (FQN) consists of its
return type, its name including any namespaces and classes in which it is
contained, and the types of its parameters. The following table gives some
examples of functions and their corresponding FQN:

Function FQN

float max(float a, float b) float (max)(float, float)

int Tree::insert(int* v) int (Tree::insert)(Tree&, int*)

int List<int>::insert(int v) int (List<int>::insert)(List<int>&, int)

static void A::s() void (A::s)()

Note that in case of non-static C++-methods, the first parameter in the FQN
is a reference to an object of the class containing the method. This stems
from the this pointer that is being passed to the method under the hood.
In line with this, you can see that such an object reference is not passed
in case of a static C++-method, since a this pointer does not exist in that
context. A second thing to note from the above table, is that for classical

1 We consider two function declarations to be the same when they are considered the same according to
the rules of the C/C++ standard [29]. Elsa/Oink supports checking for this.
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C-style functions and C++-methods, the name of the function returns in its
FQN. For C++ constructors, however, a slighlty different name is used in the
FQN, as is illustrated in the table below. For completeness, this table also
lists the FQNs generated for C++ destructors and operators.

Function FQN

A::A() (A::constructor-special)()

A::~A() (A::~A)(A&)

A & A::operator=(const A & other) A& (A::operator=)(A&, const A&)

During the construction of the call graph, function calls need to be linked to
functions across several translation units. To be able to do this, we need a
way to uniquely identify functions throughout the system. The fully qualified
name of a function does exactly that. Furthermore, this information is very
valuable to the developer, since it tells him exactly what function he is
dealing with.

• Unqualified name. A function’s unqualified name contains the name of the
function, but does not include the function return type and parameters types.
The following table lists the unqualified names of the functions from the
previous example:

Function Unqualified name

float max(float a, float b) max

int Tree::insert(int* v) insert

int List<int>::insert(int v) insert

Unqualified names are not required during the construction of the call graph
and exist merely for the convenience of the developer performing analyses:
FQNs easily become large and difficult to read, so it is convenient to also
have a short version of the name available.

• Extended function type. A function type consists of the combination of return
type and parameter types of a function. In case the function is a non-static
C++-method we extend this notion by also including the names of any
containing classes and namespaces. The table below then lists the extended
function types (EFTs) of the example functions:

Function EFT

float max(float a, float b) float ()(float a, float b)

int Tree::insert(int* v) int (Tree::)(int*)

int List<int>::insert(int v) int (List<int>::)(int)

This property is used during the linking process to associate a call via a
pointer-to-function or pointer-to-member with a set of potential call candi-
dates. The matching of call candidates is done based on the EFT of the called
function and the EFTs of the call candidates. All the details of this process of
call candidate resolution using EFTs will be discussed in section 4.3.1. EFTs
are merely required for the construction of the call graphs; they are most
likely not relevant for end users.

• Path to the file that contains the function. To be able to include folder and
file containment nodes in the call graph, we obviously need the name
of the directory and file in which the function resides. In case the def-
inition corresponding to the function is available, the directory and file
that contain that definition are used. Otherwise the directory and file
of the function declaration are used. A simple example of such a path is:
/home/hessel/development/program/main.cpp.
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• Position within the file. Next to knowing in what file the function resides, it is
interesting for a developer to know at what position in that file the function
is located. The position consists of a line number and a column number and
points to the start of the function’s definition or declaration (whichever is
relevant). The position is not required for the construction of the graph.

• Class name of the function. Similar to the file path, the class name is required
to include class containment nodes in the call graph. Of course, a class name
is only available for C++-methods, not for C-style functions. Again, we use
the example functions to illustrate:

Function Class name

float max(float a, float b)

int Tree::insert(int* v) Tree

int List<int>::insert(int v) List<int>

To be precise, we should mention that the value of this attribute actually
contains the compound scope of the function. That is, if we have a method m,
which is a member of class A, which is an inner class of class B, which is
an element in namespace N, then the name of the class of function m is set
to N::B::A. Its parent class will end up in the graph as a class name N::B.
The result of this is that nested classes are effectively flattened in the graph
hierarchy, as illustrated in figure 6. The namespace N is included in the name
of the class solely to prevent name clashes; namespaces themselves do not
appear in the hierarchy.

Since C-style function do not have a containing class, this attribute is empty
for such functions. In the case such a C-style function is contained in a
namespace we still have no reason to fill in this attribute, since its containing
namespace does not represent a class (which is what this attribute is for) and
since namespaces are not part of the hierarchy.

Figure 6: The representation of a nested class. Nested classes are ’flattened’ in the
hierarchy.

• Linker visibility. Using the ’static’ keyword, C-style functions can be made
invisible for any translation unit other than the one in which the function
is defined. In other words, a function defined with static linkage can never
be called by a function defined in another translation unit. It is not hard
to see that this information is required to prevent function calls from one
translation unit to be linked to functions with static linkage from another
translation unit. Section 3.4 contains more information on this subject. Apart
from being used during the construction of the graph, the linker visibility
might be of some interest to the end user.

• C-style function or C++-method. A function is either a C-style function or a
C++-method. This property is used to some extend during the construction
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of the graph, mainly in resolving the call candidates of a function call. Next
to that, this can be valuable information for the developer, for instance, to
determine the ’object-orientedness’ of the system.

• Virtuality. C++-methods can be declared in a class as virtual to allow them to
be overridden in derived classes. This property is very important during the
resolution of call candidates of a function call. Next to that, a developer might
also find this property interesting, for instance, when doing a performance
analysis (calls to virtuals tend to be slower than calls to non-virtuals).

• Static instance. C++-methods can be declared as static, which causes the
method to be accessible without an instance of the class. This information
is briefly needed when constructing the call graph and it might be relevant
information for end users.

• Access specifier. Access specifiers make C++-methods visible for either: every-
one (public), only the defining class and its derivatives (protected) or only
the defining class (private). This property is not used during construction of
the graph, but might be interesting for end users.

• Overridden methods. The set of methods M that this method overrides is
used to resolve the set of overriding methods, for all methods m ∈ M.
That information, in turn, is used during the resolution of call candidates.
Although this might be very relevant information for an end user, it is
currently not included explicitly in the final call graph.

• Declared inline. This property indicates whether the function is declared as
inline, either implicitly or explicitly. Note that this property does not indicate
whether a particular compiler actually inlines the function. During construc-
tion of the call graph, this property is not used. However, it is interesting for
developers that are, for instance, doing performance analyses.

3.2.3 The location of function attributes

A function declaration can always provide us with all of the function attributes
described above, whereas there are situations in which a function definition cannot.
For instance:

class A

{

virtual void m(); // Declaration of m

};

void A::m() { } // Definition of m

It is clear that the definition of m does not tell us that m is a virtual function.
Its declaration does tell us this. So, whenever possible, we extract a function’s
attributes from its declaration. Only when a declaration is not available will
we use its definition to retrieve the needed information. Do note, however, that
whenever only a definition is available, this does not give us less information than
a declaration would be able to give us (in the above example this would mean that
m would be defined in its class and that it would thus be declared as virtual by its
definition). Also note that not having a function’s definition available (e.g., in the
case of a system library) is never a problem, since all required information can be
retrieved from the function’s declaration.
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3.2.4 Function call attributes

It was stated at the beginning of this section that function calls will be represented
in the call graph by edges. As is the case with functions, it will be useful, from the
developer’s perspective, if these call edges are annotated with relevant attribute
information. The attribute information that must be extracted from function calls
is described now.

• The type of call. This property identifies what type of function call this is.
Eight different types of function calls have been distinguished, each of which
is illustrated with an example.

1. Direct function call. Represents a call to a C-style function, e.g.:

{

f();

}

2. Direct method call. Represents a call to a C++ method, on an object
instance, e.g.:

{

Object o;

o.m();

}

3. Object pointer call. Represents a call to a C++ method, on an object
pointer, e.g.:

{

Object* o = new Object;

o->m();

}

4. Object reference call. Represents a call to a C++ method, on an object
reference, e.g.:

{

Object o1;

Object & o2 = o1;

o2.m();

}

5. Constructor call. Represents a call to a C++ constructor, e.g.:

{

// a constructor call.

Object o1;

// another constructor call.

Object* o2 = new Object;

}

6. Destructor call. Represents a call to a C++ destructor, e.g.:

{

Object* o1 = new Object();

// destructor call.

delete o1;

// d-tor call because o goes out of scope.

{

Object o;

}

}
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7. Pointer-to-function call. This is a call to a C-style function, through a
pointer-to-function, e.g.:

{

void (*f)(int) = &g;

f();

}

8. Pointer-to-member call. This is a call to a C++ method, through a pointer-
to-method, e.g.:

{

Object o;

void (Object::*m)(int) = &Object::m;

(o).*(m)(1);

}

• Name of the call target. The name of the call target is used to identify the
function (or set of functions) that is the target of the function call. There are
two possibilities for what this attribute can contain, depending on what type
of function call this is. Depending on the call type, we will store and use
either the FQN or the EFT of the call target, so name in this context means
one of these two. The two possibilities are discussed below:

1. This is not a pointer-to-function or pointer-to-member call. In this
case, the name of the call target will be set to the FQN of the called function.
Obviously, the FQN is obtained from the call site, not from the call
target. Since the name of the call target contains an FQN, it will always
uniquely identify a single function. This does not mean, however, that
there will always be exactly one call target. The first example below
illustrates the case in which there is exactly one call target and the
second example illustrates the case in which there is more than one call
target.
Consider the following code snippet, which shows the scenario of a
C-style function call with exactly one call target:

void f() { }

void g()

{

// A plain and simple function call:

f();

}

The FQN of the called function, and thus the name of the call target,
for this function call is ’void (f)()’. The call graph resulting from the
small program above is depicted in figure 7. It shows that there is
indeed exactly one call target: the function f. Please note that the call
graph has been stripped of containment nodes and edges for the sake
of clarity.

Figure 7: The call graph resulting from the simple function call.
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As said, it is not always the case that there is exactly one call target
when not calling a function via a pointer: When a call is made to a
virtual function (i.e., the FQN of the called function identifies a virtual
function) and the call is made on an object pointer or object reference,
then there can be more than one call target. This is illustrated using a
the following code snippet:

class A

{

public:

virtual void m() { }

};

class B : public A

{

public:

virtual void m() { }

};

void h(A* a)

{

a->m();

}

In this case, the FQN of the called function extracted from the call site
is ’void (A::m)()’. However, since this is a call on an object pointer
to a virtual method, the function that is actually called can be either
’void A::m()’ or ’void B::m()’. Since we do not know which of the two
methods is actually going to be called, both methods are considered a
call target. Figure 8 shows the (simplified) call graph belonging to the
code snippet above.

Figure 8: The call to the virtual m yields two potential call targets.

The exact details on how function calls are linked to their corresponding
set of call targets is discussed in 4.3.1.

2. This is a pointer-to-function or pointer-to-member call. When this is
the case, the name of the call target will be set to the EFT of the call
target. Like the FQN in the former case, the EFT is retrieved from the
call site and not from the actual call target. In the case of a call via
a pointer-to-function or pointer-to-member, the EFT of the call target
might identify more than one function, and, consequently, there might
be more than one call target. Consider the following example:

void f() { }

void g() { }

void h()

{

void (*p)();

p = &f;
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p();

}

As said, the name of the call target is equal to the EFT extracted from
the call site: ’void ()()’. It is not hard to see that all functions in this
program have a matching EFT. Therefore, all these functions, including
h, are potential call candidates, as illustrated in figure 9.

Figure 9: The call via pointer-to-function yields three potential call targets.

Again, the exact details on how function calls are linked to their correspond-
ing set of call targets is discussed in 4.3.1.

• Path to the file that contains the function call. For each function call, the fully
qualified path to the file in which the call is made is available. Although not
required during construction of the graph, this might be relevant information
for the end user.

• Position within the file. Apart from the file in which the call is made, the
position in that file is also available to the end user. The position consists of
a line number and a column number and points to the start of the function
call. The position is not required for the construction of the graph.

3.2.5 The location of function call attributes

The function call attributes presented above must obviously be retrieved from the
function calls themselves, so we need to know where to look for function calls.
This is fairly straightforward, because function calls occur only in two different
types of places.

First and foremost, function calls occur within function definitions. Consider this
very trivial example:

void printHelloWorld()

{

printf("Hello World!\n");

}

int main(int argc, char** argv)

{

printHelloWorld();

return 0;

}

As you can see, the call to printHelloWorld occurs neatly within the definition
of the main function. This is the most common type of place where function calls
occur and there is little obscurity about it. The above case demonstrates function
calls made from within function definitions that have an explicit syntax. Function
calls can however, also be made from within function definitions without having
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such an explicit function call syntax. Please consider the second example in which
a constructor and destructor are implicitly called from within a function definition:

class A

{

};

void f(A a)

{

}

int main(int argc, char** argv)

{

A a;

f(a);

return 0;

}

In the above code snippet, first a call to the constructor of a is made. Then, since
instance a is passed as a parameter to function f, a copy of object a is made,
causing A’s copy-constructor to be called. Lastly, when function f returns, the
object a goes out of scope and A’s destructor is called. This illustrates how function
calls can be made from within a function definition without having an explicit
function call syntax.

The second type of place where calls can occur is somewhat more concealed.
Consider again a little example:

class A

{

public:

A() { }

~A() { }

};

A a;

int main(int argc, char** argv)

{

return 0;

}

The above code snippet defines a class A and then declares an instance of that class
in the global scope. The main function does nothing and immediately returns to
the operating system with return value 0.

At first sight, it might seem that no function calls occur in this code. A closer
look, however, reveals that the constructor and destructor of A must be called,
since an global instance of A is declared. These calls occur just before and just after
the call to main, respectively, which can be explained as follows: It can be seen
from the code that the constructor and destructor calls do no occur within the
body of main. However, object a is available throughout the entire body of main.
So, that must mean that a is constructed before main is called and is destroyed
after main returns.

Function calls that occur before the call to main are referred to as initializing
function calls and calls that occur after the call to main are referred to as finalizing
function calls.
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3.2.6 Obtaining the information from Elsa

The Elsa parser reads the source code of a translation unit (i.e., a preprocessed
source code file) and creates an annotated Abstract Syntax Tree (AST) from that.
All the information that we need resides in this annotated AST.

To retrieve the information from the AST, Elsa provides us with the ASTVisitor

class, which is an implementation of the Visitor pattern described in [30]. It allows
one to traverse the entire AST and take appropriate action when a node of interest
is visited.

Elsa defines a large number of node types, so only the ones that contain infor-
mation that is relevant in this context will be described.

• The TranslationUnit node. The TranslationUnit node is the top node in the
AST. It is the ancestor of all other nodes in the AST and, as its name suggests,
it represents the translation unit as a whole. Traversal of the AST always
starts at this node.

• The Function node. The Function node represents a function definition.

• The Declarator node. A Declarator node can represent anything that is de-
clared. For instance, declarations of variables, functions and members are all
represented by a Declarator node.

• The Expression node. All expressions in the source code are represented
by an Expression node. For instance, a function call is represented by an
Expression node.

• The TopForm node. A TopForm node represents an entity in the global scope,
or an entity at the top level of a namespace. Examples of such entities are
declarations and function definitions.

• The Initializer node. An Initializer node occurs as a descendent node of a
Declarator node. For instance, the constructor call in an object declaration is
represented by an Initializer node.

Now that the relevant types of AST nodes are known, we can explain what
information is retrieved from what nodes. The full details on Elsa’s C++ grammar
and AST node structure can be found in [35].

Function definitions are, not surprisingly, retrieved from Function nodes and
function declarations are retrieved from Declarator nodes.

Function calls are primarily retrieved from Expression nodes within Function
nodes, but also from TopForm nodes. TopForm nodes may contain Declarator
nodes representing, for instance, object declarations. Such an object declaration can
in turn contain an Initializer node, from which initializing and finalizing function
calls will be retrieved.

The process of extracting the required information is split up into three traver-
sals of the AST.

1. In the first traversal, all function definitions are retrieved from Function nodes
and at each Function node the definition’s function calls are retrieved from
the Expression nodes within the Function node. For each retrieved function
definition, a new Function object (see 3.2.1) is created and its declaration
and definition references are both set to the retrieved definition.

2. During the second traversal, all function declarations of functions for which no
function definition was found during the first traversal are retrieved from the
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Declarator nodes. For each retrieved function declaration, a new Function

object (see 3.2.1) is created and its declaration reference is set to the retrieved
declaration, while its definition reference is left empty.

3. Finally, in the last traversal, all initializing and finalizing function calls are
retrieved from the TopForm nodes.

After these traversals, all functions (as defined in 3.2.1) and function calls will
have been retrieved, since we will have searched all locations that can contain
function declarations or function definitions (3.2.3) and all locations that can
contain function calls (3.2.5).

3.2.7 Complexity of extraction

During the three traversals of the AST, information about all functions and function
calls is retrieved. The complexity of this process depends for one part on the
complexity of collecting the information and storing it in the appropriate data
structures. For the other part, however, it depends on the complexity of a tree
traversal.

Before we begin analyzing the complexities, let us first define a few symbols:

NDefn : The number of function definitions in the input.

NDecl : The number of function declarations in the input.

NF : The number of functions in the input, with

0 6 NF 6 NDefn + NDecl.

NC : The number of function calls in the input.

The complexity of the first part, collecting and storing information, is rather
straighforward. Information will be collected for all function definitions and
function declarations. Collecting information of a definition or a declaration can
be done in constant time, since Elsa has prepared the required information for us;
we merely need to get it from the AST. So, collecting all information will take at
most O(NDefn + NDecl) time.

Then, the information needs to be stored. We will store information for each
function and each function call. The functions will be stored in a hash table and
the function calls will be stored in lists. According to [27], insertion into a hash
table takes O(N) in the worst case, but can be expected to take O(1) on average.
Insertion into a list can be done in O(1) time in the worst case. So, we can conclude
that the worst-case complexity of storing the information is equal to O(N2

F + NC)

and that the expected complexity is O(NF + NC).

The complexity of the second part is, unfortunately, not so straightforward.
Because of the intricacies of Elsa, it is extremely difficult to discover a simple
complexity for the traversal process. The same was true for the complexity CP

of the parsing process (3.1). So, instead of trying to specify the dependency of
the complexity of a traversal on the size of the input, we will simply refer to the
complexity of a tree traversal as CT .

From here, calculating the total complexity of extraction CE is simply a matter
of adding the individual complexities. Thus, the worst-case complexity CE,W is:

CE,W = CT + O(NDefn + NDecl + N2
F + NC)

Likewise, the expected-time complexity CE,E becomes:

CE,E = CT + O(NDefn + NDecl + NF + NC)
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However, since 0 6 NF 6 NDefn + NDecl, this can be simplified to:

CE,E = CT + O(NDefn + NDecl + NC)

3.3 filtering

Figure 10: The filtering step.

Any real life software system will make use of libraries that help solve many
basic problems. The use of such libraries is a good thing, since it provides develop-
ers with stable, proven and often efficient implementations of commonly needed
functionality.

However, in our case the use of such libraries has some consequences. Whenever
a library header is included from a file containing user code, the code from that
header file becomes part of the same translation unit as the user code. In particular,
all code from that header file becomes part of the translation unit and thus part
of the call graph, regardless of whether it is used by the user code. For example,
consider the following simple Hello World program:

#include <stdio.h>

int main(int argc, char** argv)

{

printf("Hello World!\n");

return 0;

}

In the example the system header stdio.h is included so the printf function can
be used to print Hello World! to the screen.

Now, one might expect a call graph of this system to include only a few nodes
and edges: A node for the main function, a node for the printf function, an edge
between these two functions and, finally, a few nodes and edges for the directories
and files in which the functions are contained. Figure 11 depicts such a call graph.

However, as was stated earlier, it is not just the printf function that becomes
part of main’s translation unit. Instead, all of the functions in stdio.h become part
of the same translation unit as main. The consequence of this is that the call graph
of the Hello World program will also contain all of the functions from stdio.h.

As it turns out, the actual call graph for the Hello World program contains 180

nodes and 192 edges, which is much more than the 9 nodes and 9 edges depicted
in figure 11. Remember that only a single system header file was included; the
number of nodes and edges will continue to grow if more system headers are
included.

Figure 12 shows the actual call graph for the Hello World program. Note that
the nodes and edges from figure 11 are shown in green.
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Figure 11: The call graph one might expect for the Hello World program. The blue nodes
are folders and files, the blue edges are containment relations, the green nodes
are function and the green edges are function calls.

If the developer’s goal is to investigate the structure of the Hello World program,
then all these extra functions from stdio.h will only distract from the analysis. So,
to avoid the call graph from getting cluttered by a large amount of uninteresting
functions, we need a way to filter out functions that are not used by user code and
are not user code themselves.

Unfortunately, it is not possible to determine what is user code and what is not
without input from the user. It is possible, however, to determine a conservative
set of functions that can be called from user code. Given such a set, we could safely
filter out all functions that can never be called from user code.

Although this solution is not ideal and we will still be left with uninteresting,
cluttering functions in the call graph, it does reduce the size of the graph by
50-80%, which is still pretty good. To illustrate, the number of number of nodes
from the Hello World call graph was reduced by 70%, from 180 to 54 nodes. Figure
13 depicts this reduced call graph. Again, the nodes and edges from figure 11 are
shown in green.

The remainder of this section will describe the process of filtering function
declarations (3.3.1) and filtering function definitions (3.3.2) and their respective
running-time complexities. This section will conclude with the restrictions that
apply when one wants to guarantee that no functions are inappropriately filtered
out. conclude with an analysis of the worst-case run-time complexity of the filtering
process.

3.3.1 Filtering declarations

To understand what function declarations can be safely filtered out, it is important
to notice two things.
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Figure 12: The actual call graph for the Hello World program without filtering. The blue
and green nodes and edges form the expected call graph from figure 11. All
other nodes and edges are unexpected: Red nodes represent function, red edges
represent calls, purple nodes represent containment nodes (directories, files and
classes) and purple edges represent containment relations.

1. The first thing is the fact that a function declaration is nothing more than a
claim saying that a specific function definition exists somewhere. Obviously,
it is not a definition itself. So, no matter how many declarations we filter out,
we never loose any definitions by doing so.

2. The second thing to notice is that to be able to call a function from within a
translation unit, that function must, at least, be declared in that translation
unit. In other words, a function must be redeclared in every translation unit
in which it is called.

These two observations lead us to conclude that if a function is declared, but is
not called within a translation unit, then that declaration can safely be filtered out.
This is exactly what happens during declaration filtering and the implementation
of the filtering process is illustrated by the pseudo-code below.

We should note, however, that we leave some room for improvement here: In
short, we want to filter out all declarations that are unused and we attempt to
do so by filtering out all declarations that are never called. However, it would be
better to define the criterium for filtering as follows: All declarations that are not
called, either directly, or indirectly, from a function that is publicly visible (i.e.,
does not have static linkage), can safely be filtered out.

void filterDeclarations(Functions & F)

// F: The set of all functions extracted from the AST.

{

// Make a working copy of F.

1: F’ = CopyOfSet(F);

// Remove all functions that have a definition from the

// from the working copy.
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Figure 13: The call graph for the Hello World program after filtering. The blue and green
nodes and edges form the expected call graph from figure 11. The coloring of
the other nodes and edges is as it is in figure 12.

2: RemoveFunctionsWithDefinitionsFromSet(F’);

// Remove all functions that are called in this

// translation unit from the working copy.

3: RemoveCalledFunctionsFromSet(F’);

// The set F’ now contains all the function declarations

// that can safely be removed.

// Remove all functions in F’ from F.

4: RemoveFunctionsFromSet(F’, F);

}

To determine the worst-cast run-time complexity of this procedure, we first
define the following symbols:

NF : The number of functions in F.

NC : The total number of function calls.

For line 1 of the code it can be seen that it takes O(NF) to complete, since it
needs to make a copy of every function in F.

Line 2 potentially removes all of the functions from F ′. According to [27],
deleting an element from a hash table can be done in O(1) time. So, to remove NF

functions from a hash table takes at most O(NF) time.
In the case that no functions were removed from F ′ in line 2 and that all functions

are called in the translation unit, line 3 would need to remove all functions from
F ′. However, RemoveCalledFunctionsFromSet iterates over all function calls and,
at each iteration, removes the called function from F ′. Now, the term stemming
from the deletions from F ′ is easy: Since each function can be removed only once,
the maximum number of deletions is O(NF). Moreover, if each function would
be called exactly once, then this term would also reflect the number of function
calls we need to iterate over. Obviously, there is no such guarantee: It may very
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well be that functions are called more than once. For this reason, we introduce
another term that will reflect the extra iterations coming from functions that are
called more than once: O(NC − NF). When we add the two terms, the equation
becomes O((NC − NF) + NF), which can be reduced to O(NC). It is interesting
to see that the worst-case complexity of RemoveCalledFunctionsFromSet does not
depend on the number of functions removed; instead, it depends solely on the
number of function calls made in the translation unit.

Line 4 must, in the worst case, remove all functions from F. As before, this can
be done in O(NF) time.

When we add up the complexities of the individual lines, we come to a worst-
cast run-time complexity of O(NC + NF) for filterDeclarations.

3.3.2 Filtering definitions

Before we start explaining the problem of filtering definitions, first recall what
functions we would like to filter out. All functions that are not used by user code,
either directly or indirectly (i.e., transitively), should, ideally, be filtered out. All
such functions are imported from libraries, but are never actually used, so they
are not of interest.

Filtering function definitions is somewhat more challenging than filtering
declarations. Whereas function declarations are only visible within their own
translation units, function definitions are potentially visible to all translation units.
So, a function defined in one translation unit may very well be called from another.
Because of this, we need to be a bit more careful when filtering definitions. We
cannot simply throw out all definitions that are not used within the current
translation unit, since they could be called from within another translation unit.

Therefore, we would like to have a way to determine whether a function is
used, either from within the current translation unit, or from within any other
translation unit. Unfortunately, translation units are processed one at a time, and
we cannot see beyond the boundaries of the current translation unit; at any time,
our scope is limited to a single translation unit. This means that, at the moment of
processing individual translation units, we have no way to determine whether a
function is called from another translation unit.

Although it is not possible to determine for every function whether it is called
from another translation unit, it is possible to determine for every function whether
it can be called from another translation unit. Namely, functions that have static
linkage are only visible within the current translation unit and hence cannot be
called from another translation unit.

Obviously, when a function cannot be called from another translation unit, it
is not called from another translation unit. Unfortunately, this property is not
symmetric: It is not true that all functions that are not called, cannot be called. By
this, we mean that not all functions that we would like to filter out - the ones that
are not called - can be detected as ’filterable’ using our method. Only the ones that
cannot be called (because they have static linkage) are detected as ’filterable’ using
our method.

So, eventhough this method does not make it possible to filter out all unused
functions, it does make it possible to safely filter out some unused functions.

Recall that the goal is to filter out function definitions that are not called from
user code. The approach will be to first construct the set of function definitions
that can be called from user code. Then, the functions definitions that exist in the
set of all function definitions, but do not exist in the set we just constructed, can
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safely be removed. The algorithm that implements this approach is printed in
pseudo-code below.

void filterDefinitions(Functions & F)

// F: The set of all functions extracted from the AST, minus

// the functions filtered during declaration filtering.

{

// Begin with the set of function definitions from F

// that do not have static linkage and are thus callable

// from other translation units.

1: C = SetOfFunctionDefinitionsWithNonStaticLinkage(F);

// Next, calculate the transitive closure over the

// ’calls’ relation of C. That is, add all functions

// to C that are (transitively) called by the functions

// in C.

2: C = TransitiveClosureOverCallsRelation(C);

// Finally, remove all functions from F that are in F,

// but not in C.

3: RemoveFunctionsNotInSet(F, C);

}

In order to determine the worst-cast run-time complexity of this procedure, we
(again) define the following symbols:

NF : The number of functions in F.

NC : The total number of function calls.

The function SetOfFunctionDefinitionsWithNonStaticLinkage in line 1 of the
algorithm needs to inspect all functions in F and, in the worst case, needs to insert
all of those functions into the ordered set C. Inserting an element into an ordered
set can be done in at most O(log(NF)) time. However, [27] shows that when using
a hash table, inserting an element takes on average O(1) time. It should be noted,
though, that the worst-case complexity of insertion into a hash table is O(NF). So,
whereas the expected running time is O(NF), the worst-case running time of line
1 is O(N2

F).
In line 2, all functions that are called from globally visible code are added to

the set C. In the worst case, C contained only a single function before the call to
TransitiveClosureOverCallsRelation and contains all functions when the call
is finished. That would mean that all functions and all function calls have been
traversed, and that all functions have been added to the ordered set C. So, when
using hash tables, the expected running time of this function is O((NC −NF)+NF),
which reduces to O(NC). Again, as was the case with declaration filtering, the
term (NC − NF) stems from the fact that the same function may be called multiple
times. The worst-case running time, on the other hand, is O((NC − NF) + N2

F).
The last line of the algorithm potentially removes all functions from the set F.

As was stated in 3.3.1, this will take at most O(NF) time.

When we add up all the individual complexities, we conclude that filterDefi-
nitions has:

• An expected running-time complexity of O(NC + NF), and

• A worst-case running-time complexity of O((NC − NF) + N2
F).



34 extraction of call information

3.3.3 Restrictions in filtering definitions

The algorithm for filtering definitions presented above can, in most cases, be
safely applied. It makes sure that all functions that are callable from another
translation are not filtered out. However, there are still two possible scenarios in
which functions that can be called from another translation unit are filtered out.
An interesting note is that these functions can be called from another translation
unit, even though they are not visible from another translation unit. This can occur
in case of:

• A call via a pointer-to-function, or

• A call to a virtual method on an object reference or object pointer.

Call via a pointer-to-function

The first of the two scenarios concerns a function call via a pointer-to-function.
Consider the following collection of files.

// ----- File: library.h -----

typedef void (*FunctionPtr)();

FunctionPtr GetAddressOfFunction();

// ----- File: library.c -----

#include "library.h"

static void Function() { }

FunctionPtr GetAddressOfFunction()

{

return &Function;

}

// ----- File: main.c -----

#include "library.h"

int main(int argc, char** argv)

{

FunctionPtr f = GetAddressOfFunction();

f();

return 0;

}

// ----- End

There are two source files in the above example, so that means there are also
two translation units:

1. The Library translation unit, which consists of the contents of library.c
plus the contents of library.h.

2. The Main translation unit, which consists of the contents of main.c plus the
contents of library.h.

Now, the function named Function is defined in the Library translation unit. Its
address is ’exported’ to the Main translation unit and from there the function is
called via a pointer-to-function. Thus, we see that even though all of the criteria
formulated earlier for definition filtering are satisfied, the function can still be
called from a translation unit different from the one in which it was defined.
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If we want to be sure that absolutely no functions that can be called from another
translation unit are filtered out, the solution is to not filter out any C-style functions
at all. That is a rather extreme solution for a problem that is probably hardly ever
going to occur. Therefore, the filtering of C-style functions was made optional and
a warning will be printed during the construction of the call graph whenever a
call via a pointer-to-function is detected. That way, whenever no such warnings
are printed, the user knows that no potential call candidates were wrongfully
filtered out and still have the full benefits of filtering. Whenever such warnings
are printed, the user has the option to enable conservative filtering and then no
C-style functions will be filtered out.

Call to a virtual method on an object reference or object pointer

The second of the two scenarios involves a call to a virtual method on an object
reference or object pointer. Again, consider the following illustrating example.

// ----- File: library.h -----

class VisibleBaseClass

{

public:

virtual void m() { }

};

VisibleBaseClass* GetBaseClassPtr();

VisibleBaseClass& GetBaseClassRef();

// ----- File: library.cpp -----

#include "library.h"

class InvisibleDerivedClass : public VisibleBaseClass

{

public:

virtual void m() { }

};

InvisibleDerivedClass c;

VisibleBaseClass* GetBaseClassPtr() { return &c; }

VisibleBaseClass& GetBaseClassRef() { return c; }

// ----- File: main.cpp -----

#include "library.h"

int main(int argc, char** argv)

{

VisibleBaseClass* p = GetBaseClassPtr();

VisibleBaseClass& r = GetBaseClassRef();

p->m();

r.m();

return 0;

}

// ----- End

As in the previous example, we have two translation units: The Library trans-
lation unit and the Main translation unit. In the Library translation unit, both



36 extraction of call information

the VisibleBaseClass and the InvisibleDerivedClass classes are defined. How-
ever, in the Main translation unit, only the VisibleBaseClass class is defined.
Regardless, whenever the calls to the method m are made in the main function,
InvisibleDerivedClass::m is the method that is actually being called.

Now, the problem here is that InvisibleDerivedClass::m

1. Has static linkage: It is defined within its class and therefore has static
linkage.

2. Is never called within the translation unit in which it is defined.

Therefore, even though it is being called from the Main translation unit, Invis-
ibleDerivedClass::m will be deleted during definition filtering. The solution to
this problem is similar to the solution for the first scenario: Do not filter out any
virtual methods. Again, instead of never filtering virtual methods, the filtering of
C++ virtuals is made optional. During the construction of the call graph a warning
is printed whenever a call to a virtual on an object reference of object pointer is
detected. This way, the user can turn conservative filtering on or off, depending
on what is appropriate.

3.4 name mangling

During the linking process, which is described in 4.3.1, function calls are linked to
functions across translation unit boundaries. As was stated in 3.2, functions that
have static linkage are not visible outside the translation unit in which they are
defined and must therefore not be linked to function calls from another translation
unit.

Now, one might argue that the most obvious time to solve this problem is
during the linking process itself: When trying to link a function call to a function
definition, we could test and see whether the definition has static linkage and
whether it is defined in a translation unit different from the one in which the call
was made. If that is the case, the function call must not be linked to that function.

However, a big drawback of that approach would be that we would not have the
guarantee that an FQN identifies a single function: An FQN could very well identify
two or more functions with static linkage that have the same name and function type.
Whenever we would be using an FQN to identify a function, we would need to
check whether the function has static linkage and whether it actually identifies
more than one function. To overcome this another approach was chosen: name
mangling.

To make sure that functions with static linkage can only be linked to function
calls in the same translation unit, the FQN of these functions and all references
made to them in their translation unit will be mangled. As a result, function
definitions with static linkage from a translation unit different than that of the call
site will no longer be considered during linking.

As an illustration, consider the following code sample:

// ----- Translation unit: A -----

static void F()

{

}

// ----- Translation unit: B -----

static void F()

{
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Figure 14: The name mangling step.

}

void FunctionCallingF()

{

F();

}

// ----- End

In the sample code there are two translation units, A and B, and they both
contain a definition for F. In translation unit B, a call is made to F and that call
must obviously be linked to the F defined in B, and not to the F defined in A.
However, the FQNs of the function definitions and function call are as follows:

Element FQN

static void F() in A void (F)()

static void F() in B void (F)()

Call to F() in B void (F)()

This means that, currently, the call to F would be linked to both the definition
of F in A and the definition of F in B. To resolve this, the FQNs will be mangled
per translation unit. More specifically, the FQN of each element will be mangled
to include the file name of the translation unit in which it occurs. The result is as
follows.

Element FQN

static void F() in A void (F)(){sl:/path/to/A}

static void F() in B void (F)(){sl:/path/to/B}

Call to F() in B void (F)(){sl:/path/to/B}

As a result of this mangling, the FQN of the function call now no longer matches
the FQN of the definition of F in A and will thus only be linked to the definition
of F in B.

The major advantage of the mangling of FQNs is that a function’s FQN now
uniquely identifies it system-wide. After name mangling, there are no two func-
tions with the same FQN and we no longer need to worry about functions that
have static linkage during the linking process.

Finally, it is important to note that only the FQNs of functions that have static
linkage will be mangled. FQNs of functions that do not have static linkage will
never be mangled.
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The algorithm that performs name mangling is depicted in the pseudo-code
below.

void mangleNames(FunctionCalls & C, Functions & F)

// C: The set of all function calls.

// F: The set of all functions.

{

// Mangle the FQNs of calls to functions that have

// static linkage.

1: for(int i = 0; i < length(C); i++)

{

FunctionCall c = C[i];

if((!c.isCallViaPointerToFunction() &&

!c.isCallViaPointerToMember())

{

// Retrieve the function belonging to this

// function call.

2: Function f = F.getFunctionByFQN(c.FQN);

// If the called function has static linkage,

// the the FQN of the function call must be

// mangled.

if(f.HasStaticLinkage())

{

mangleFQN(c.FQN);

}

}

}

// Mangle the FQNs of function definitions that have

// static linkage.

3: for(int i = 0; i < length(F); i++)

{

Function f = F[i];

// If this function has static linkage, then its FQN

// must be mangled.

if(f.HasStaticLinkage())

{

mangleFQN(f.FQN);

}

}

}

Determining the worst case run-time complexity of mangleNames is rather
straightforward. First, consider the following definitions:

NC : The number of function calls in C.

NF : The number of functions in F.

Line 1 of the algorithm iterates over all function calls made in the translation
unit and line 3 iterates over all functions present in the translation unit. Both make
at most one call to mangleFQN per iteration and the first also makes at most one
call to getFunctionByFQN on line 2.

One could argue that the running-time of function mangleFQN depends on the
length of the FQN that is being mangled. However, the average length of all FQNs
will be a constant, so, the average running time of mangleFQN is also constant.
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The function getFunctionByFQN needs to retrieve an element from a hash table,
which will take O(1) expected time and O(NF) worst-case time.

Thus, we conclude that the total running-time complexity of mangleNames de-
pends on the number of functions and the number of function calls as follow:

• The expected running-time complexity is O(NC + NF).

• The worst-case running-time complexity is O(NCNF + NF) = O(NCNF).

3.5 validation

The validation phase is concerned with making sure that, after filtering and name
mangling, a function declaration or function definition has been found for every
function call that is made. It should be noted that this process exists solely for
debugging purposes, since any target (i.e., executable or library) that does not
satisfy this requirement is not a valid, compilable, target. However, having a
validation phase increases confidence in the correctness of the implementation of
the extraction, filtering and mangling phases.

Figure 15: The validation step.

Before the validation algorithm is given, it should be noted that not all function
calls need to have a corresponding function declaration or function definition.
For instance, a function that is not declared nor defined in the current translation
unit, can still be called via a pointer-to-function. So, such function calls are not
validated.

int validateFunctionCalls(FunctionCalls & C, Functions & F)

// C: The set of all function calls.

// F: The set of all functions.

{

// Iterate over all function calls and validate each

// call, if possible.

1: for(int i = 0; i < length(C); i++)

{

FunctionCall c = C[i];

if(!c.isCallViaPointerToFunction() &&

!c.isCallViaPointerToMember())

{

// Attempt to retrieve the function from the set.

// If this fails, the function is missing and we

// have a validation error.

2: Function f = F.getFunctionByFQN(c.FQN);

if(f == NULL)

{
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reportValidationError();

}

}

}

}

The loop in the above algorithm has a structure similar to the first loop of the
mangleNames function. That is, the loop iterates over all function calls and, at most,
needs to find an element in a hash table for each iteration. Consider once again
the following definitions:

NC : The number of function calls in C.

NF : The number of functions in F.

Now it is easy to conclude that the function validateFunctionCalls has:

• An expected running-time complexity of O(NC), and

• A worst-cast running-time complexity of O(NCNF).

3.6 serialization

Figure 16: The serialization step.

The last step in the process of extracting call information is to serialize the infor-
mation extraction from the translation unit. Since translation units are processed
one at a time, the results of processed translation units must be stored. That way,
when all translation units have been processed, the stored information can be used
to construct the final call graph.

During serialization really only two sets of information need to be stored:

1. All extracted functions and their attributes (3.2.2), and

2. all extracted function calls and their attributes (3.2.4).

The information is serialized to a straightforward, size-prefixed, binary format.
That is, before all function calls are serialized, first the number of function calls is
serialized. Then, when serializing the attributes of an individual function, the size
of an attribute is serialized before the attribute itself is serialized. Such a format
is easy to serialize to, easy to deserialize from and relatively efficient in terms
of storage size and serialization/deserialization speed when compared to, for
instance, an XML format.

The algorithm that does this is depicted below.
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void serialize(FunctionCalls & C, Functions & F)

// C: The set of all function calls.

// F: The set of all functions.

{

// Serialize all function calls.

1: for(int i = 0; i < length(C); i++)

2: serializeFunctionCall(C[i]);

// Serialize all functions.

3: for(int i = 0; i < length(F); i++)

4: serializeFunction(F[i]);

}

The complexity of this algorithm is as straightforward as the algorithm itself.
Consider the definitions of NC and NF to be as before.

Line 1 iterates over all function calls, while line 2 serializes the function call in
the current iteration. Serializing a function call will take, on average, constant time.
Therefore, performing the first loop will take O(NC) time in the worst case.

Lines 3 and 4 are similar to lines 1 and 2, only they deal with functions instead
of function calls. So, performing the second loop will take at most O(NF) time.

In all, the worst case running-time complexity of serialize is O(NC + NF).

3.7 complexity

The last thing that remains to be done is to determine the total complexity of the
extraction of call information. Luckily, the complexity of the individual phases has
already been determined. Furthermore, all the different phases of extraction of
call information are performed consecutively, which means that the complexity of
the entire process is equal to the sum of the complexities of the individual phases.

As a reminder, the complexities of the different individual phases are:

Phase Worst-case complexity Expected complexity

Parsing CP CP

Extraction CT + CT +

O(NDefn + NDecl + N2
F + NC) O(NDefn + NDecl + NC)

Filtering decls O(NC + NF) O(NC + NF)

Filtering defs O((NC − NF) + N2
F) O(NC + NF)

Name mangling O(NCNF) O(NC + NF)

Validation O(NCNF) O(NC)

Serialization O(NC + NF) O(NC + NF)

Table 1: The worst-case and expected-time complexities of the different phases of the
extraction process.

When we add up a these individual terms we end up with two equations: one
total worst-case complexity and one total expected-time complexity.
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3.7.1 Total worst-case complexity

Adding all the worst-case complexities in Table 1 gives the following equation
for the total worst-case running-time complexity CE,W of the entire extraction
process:

CE,Worst = CP

+ CT + O(NDefn + NDecl + N2
F + NC)

+ O(NC + NF)

+ O((NC − NF) + N2
F)

+ O(NCNF)

+ O(NCNF)

+ O(NC + NF)

Some quick simplification brings us to the final equation for the worst-case running-
time complexity of the extraction process:

CE,Worst = CP + CT + O(NDefn + NDecl + NF(NF + NC))

3.7.2 Total expected-time complexity

When we add all the expected-time complexities in Table 1, we end up with the
following equation for the total expected-time complexity CE,Exp:

CE,Exp = CP

+ CT + O(NDefn + NDecl + NC)

+ O(NC + NF)

+ O(NC + NF)

+ O(NC + NF)

+ O(NC)

+ O(NC + NF)

Removal of duplicate terms now yields:

CE,Exp = CP + CT + O(NDefn + NDecl + NF + NC)

If we recall that 0 6 NF 6 NDefn + NDecl, the equation can be simplified even
further to:

CE,Exp = CP + CT + O(NDefn + NDecl + NC)

This is a very acceptable expected complexity: When we disregard Elsa’s com-
plexities of parsing (CP) and AST traversal (CT ) the expected running time of the
extraction process depends only linearly on the number of function definitions,
function declarations and function calls.
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In the previous chapter it was discussed how all the information that is required
to construct a call graph is gathered. This chapter will explain how a call graph
is constructed from that information. But before that is done, we first determine
what properties the resulting call graph should satisfy and what the capabilities
of the call graph construction program should be.

The final call graph should satisfy the following call graph requirements. It should:

1. Contain one node for each function in the source code and contain one or
more edges for each function call in the source code. Function nodes should
be annotated with function attributes (3.2.2) and function call edges should
be annotated with function call attributes (3.2.4). These annotations will
make a wealth of information available to the developer, which can be used
to perform analyses.

2. Contain edges for function calls across translation units and libraries, not just
for function calls made to functions within the same translation unit. Being
able to see function calls across translation unit and library boundaries will
give developers extremely valuable information on dependencies between
different components of a system. Satisfying this requirement is non-trivial,
since functions and function calls are extracted per translation unit. So, we
will need a way to associate function calls to functions across translation unit
boundaries.

3. Contain as little false positive function calls as possible, while remaining
conservative. In other words, an effort must be made to make sure that the
actual call target is present in the set of call candidates, while, at the same
time, the size of the set of call targets is kept as small as possible. The reason
for this requirement is twofold:

a) A function node in the graph that only has function call edges to the
wrong function nodes is useless, and maybe even misleading, to the
developer. This is because the graph will not contain the information
the developer is looking for.

b) A function node which does have a function call edge to the correct
function, but which also has a very large number of function call edges
to wrong function nodes, is also useless to the developer. This is because
the graph will contain so much clutter that it becomes very difficult for
the developer to find the information he is looking for.

It should be noted that it is more important for the graph to contain the
correct function call edge, than it is for the graph to be very small. The reason
for this is straightforward: Whenever the graph does not contain the correct
function call edge, it immediately becomes less valuable to the developer.
On the other hand, the graph can very well contain some amount of clutter
without becoming significantly less valuable to the developer. 2

4. Contain the relevant containment nodes for every function node in the graph.
That is, for every function node, nodes should be present in the graph that
represent the function’s containing class, file, and directories. Containment
edges should be present between these containment nodes and also between
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the function node and the containment node that directly contains it. The
great advantage of this for the developer is that he will be able to find
functions, and groups of functions, according to the way they are organized
on the filesystem and according to the way they are organized into classes.

The call graph constructor should satisfy the following call graph constructor
requirements. It should:

1. Be able to construct a call graph, with the aforementioned properties, of
a complete build target. That is, whenever a target consists of multiple
translation units, a graph must be generated of all functions and function
calls in those translation units (excluding any filtered functions, obviously).
The result may be a graph consisting of multiple, disconnected sub-graphs.
Having a complete view of the system allows the developer to inspect the
function call relations between the different components of the system.

2. Be able to construct a call graph, with the aforementioned properties, of part
of a build target, starting in a particular function. As an example, the user
should, for instance, be able to generate a call graph starting in the target’s
main function. The resulting graph must then contain all functions that are
called, either directly or indirectly, by that main function. In any case, the
result is a connected graph. Being able to generate a partial call graph allows
the developer to more specifically investigate a particular part of the system,
with as little clutter as possible.

Now that it is clear what properties the call graph constructor and the graphs
that it constructs should satisfy, it is time to elaborate on the different steps
that will be taken. As was the case with the extraction of call information, the
construction of a call graph is divided into a number of steps. Figure 17 gives an
overview of these steps.

Figure 17: The call graph construction steps of the pipeline.

The first step is deserialization, as is depicted in figure 17. The needed functions
and function calls (and their attributes) that were written to file in 3.6, are read
from file in this step. At the end of this step, the original function and function call
datastructures that were composed during the extraction will have been restored.

In the second step, three maps are constructed that are needed in the next step.
These maps translate FQNs and EFTs to functions or sets of functions and are
needed during the construction of the call graph. Section 4.2 describes exactly
what these maps are for and how they are created.

The third step, described in section 4.3, is the most interesting part of this
chapter as it deals with the actual construction of the call graph. It will discuss
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linking, how to construct full call graphs and partial call graphs and how to add
the containment nodes to the call graph.

Finally, section 4.4 deals with writing out the constructed call graph, with all
its fully annotated nodes and edges, to one of the available graph formats.

4.1 deserialization

Figure 18: The deserialization step.

Functions and function calls and their attributes were written to file during the
serialization step (3.6) of the extraction pipeline. Before the call graph construction
program can operate on the extracted data, those data need to be read from file and
the original data structures need to be restored. The deserialization step does ex-
actly that. So, input to the deserialization step are the files containing the serialized
data and output of the deserialization step are the restored datastructures.

The algorithm that performs the deserialization is rather straightforward and
very similar to the serialization algorithm from 3.6. The similarity makes sense,
since the data need to be read by the deserialization algorithm in the same order
they were written by the serialization algorithm. The pseudo-code of the algorithm
that deserializes the functions and function calls from a file is as follows:

void deserialize(File & f, FunctionCalls & C, Functions & F)

// C: The set that will contain all read function calls.

// F: The set that will contain all read functions.

{

// Deserialize all function calls.

int nC = readNumberOfFunctionCalls(f);

1: for(int i = 0; i < nC; i++)

{

2: FunctionCall c = deserializeFunctionCall(f);

3: C.push(c);

}

// Deserialize all functions.

int nF = readNumberOfFunctions(f);

4: for(int i = 0; i < nF; i++)

{

5: Function f = deserializeFunction(f);

6: F.push(f);

}

}

To determine the complexity of deserialize we declare the following symbols:
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NC,f : The number of function calls in file f.

NF,f : The number of functions in file f.

NC : The total number of function calls in all files.

NF : The total number of functions in all files.

From lines 1 to 3 it can be seen that exactly NC,f function calls will be read
from file f. We will assume that reading a function call from disk can be done, at
least on average, in O(1) time and we know from [27] that insertion into a hash
table can also be done in O(1) time. Therefore, the loop at line 1 will take at most
O(NC,f) time to complete.

Similar arguments can be made for lines 4 to 6, so we conclude that the loop at
line 4 will take at most O(NF,f) time to complete.

When we put the complexities of both loops together, the worst-case running-
time complexity of deserialize comes to O(NC,f + NF,f). That means that the
worst-case running-time complexity of deserializing all functions and function
calls in all files is O(NC + NF).

4.2 function mapping

Figure 19: The building of functions maps.

To be able to properly link function calls to functions (or sets of functions) in the
next step (4.3), some preparation is needed. More specifically, we will be needing
the three maps listed below. Why exactly these maps are needed will become clear
in 4.3.1. Before you read on, you might want to go back to section 3.2.2 to review
the definitions of fully qualified name (FQN) and extended function type (EFT).

4.2.1 FQN to matching function

This mapping will translate an FQN to the function that it represents. Remember
that an FQN always represents at most one function, so this will indeed translate
each valid FQN to its corresponding function. To construct this set we merely need
to iterate over all functions and add an entry to the map for each function. The
following pseudo-code gives the algorithm:

void mapFQNToMatchingFunction(Functions & F,

map<FQN, Function> & M)

// F: The set of all functions.

// M: The map that will translate an FQN to a function.

{

1: for(int i = 0; i < length(F); i++)

{
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Function f = F[i];

2: M[f.FQN] = f;

}

}

Determining the complexity of the algorithm is about as simple as the algorithm
itself. Line 1 shows that the algorithm iterates over each function in F exactly once.
Line 2 then shows that each function is added to the map M. Now, we know
from [27] that insertion into a hash table can be done in at most O(1) time. So,
the worst-case running-time complexity of mapFQNToMatchingFunction is O(NF),
where NF is the total number of functions.

4.2.2 EFT to set of matching functions

This second mapping will translate an EFT to a set of zero or more functions. Each
of the functions in this set will have an EFT that is equal to the EFT key of the
entry of the mapping. Composing this mapping is simply a matter of iterating
over all functions and putting each function in the set behind the correct key. The
following pseudo-code illustrates this.

void mapEFTToMatchingFunctions(Functions & F,

map<EFT, Functions> & M)

{

// F: The set of all functions.

// M: The map that will translate an EFT to a set of functions.

1: for(int i = 0; i < length(F); i++)

{

Function f = F[i];

2: M[f.FQN].push(f);

}

}

From the little code snippet it can be seen that the algorithm iterates over all
functions (line 1) and inserts each function into a hash table (line 2). This means
that mapEFTToMatchingFunctions will run in at most O(NF), just like mapFQN-

ToMatchingFunction.

4.2.3 FQN to set of overriding functions

The last mapping translates the FQN of a function f to a set of zero or more
functions. Each function in this set overrides function f. To compose this mapping,
we need to iterate over all the functions and, for each function, iterate over the
functions that it overrides (which we know). For each of those overridden functions,
we then add an entry in the mapping. The following algorithm illustrates:

void mapFQNsToOverridingFunctions(Functions & F,

map<FQN, Functions> & M)

// F: The set of all functions.

// M: The map that will translate an FQN to the set of functions that

// override it.

{

// Iterate over all functions.

for(int i = 0; i < length(F); i++)

{

Function f = F[i];



48 call graph construction

// Iterate over all the functions om that the

// function f overrides.

for(int j = 0; j < length(f.overriddenMethods); j++)

{

Function & om = f.overriddenMethods[i];

// Insert an entry in the map indicating that

// function om is overridden by function f.

Functions & overridingMethods = M[om.FQN];

overridingMethods.insert(f);

}

}

}

It should be noted that the set f.overriddenMethods contains the set of methods
that function f overrides, either directly or indirectly. That means, that if there
are NF functions, in the worst case each function overrides on average 1

2NF other
functions. Adding to that the fact that insertion into a hash table takes at most
O(1) time, we come to a worst-case run-time complexity of the above algorithm
of O(1

2N2
F). However, since oftentimes most functions will not be overridden nor

override another function, the running-time will in practice be much lower than
this.

4.3 constructing call graphs

Figure 20: The call graph construction step.

After extracting the information we need from the source code in the previous
chapter and doing some preparation in this chapter, finally we have come to the
good part: The actual construction of call graphs.

In this section we will describe how call graphs can be constructed of a complete
target or part of a target and how we can include containment nodes and edges in
these graphs. The first thing that will be discussed, however, is how function calls
are linked to functions.

4.3.1 Linking

To be able to construct a call graph we need to be able to associate function
function calls with the functions they call. Furthermore, we need to do this both
for calls and functions within a single translation unit, as for calls and functions
across translation units. This process is called linking.

Linking is performed using two properties of function calls and functions.
Firstly, for function calls that are made through a pointer-to-function or a pointer-
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to-member, linking is performed on EFTs. Secondly, for all other function calls,
linking is performed on FQNs.

Different linking properties of types of function calls

We can distinguish roughly three types of function calls with different linking
properties, which will now be discussed. After that, we will go into more detail
on exactly what situations can occur.

1. In the case of a call to a plain C-style function, the name of the call target
(which can be retrieved from the function call), will contain the FQN of the
function that is called (see 3.2.4). For that function call, this FQN will be used
to look up the function to which the call must be linked. It is obvious that
there is only a single call target, which is also guaranteed to be the correct
call target. So, this situation perfectly satisfies call graph requirement 3.

2. When a call via a pointer-to-function or pointer-to-member is detected,
the EFT of the called function can be extracted from the function call. All
functions that have an EFT matching this extracted EFT are now potential
call candidates. Call graph requirement 3 states that it is more important
that the actual call target is included in the set of call targets then it is to
have the smallest possible set of call targets. Therefore, every function that
has a matching EFT is then linked to the function call.

3. Whenever a function call is made to a virtual method, the method matching
the FQN of the call site is linked to the function call. If, however, the call
is made on a pointer to an object, or a reference to an object, then there
are more potential call candidates than just the method with the matching
FQN. Namely, all methods that override the matching method are also call
candidates. Now, we have no way to determine with absolute certainty
whether a function from the set of call candidates is the actual call target.
Since call graph requirement 3 states that we must make a best effort to
make sure that the actual call target is present in the set of call candidates,
all call candidates will be linked to the function call.

Now that we have a feeling for what will happen during linking, it is time to
analyze more precisely what situations we can encounter. Table 2 below lists all
the different types of call targets a function call can have. It also indicates how
many functions the call can be linked to.

The last column in the table says something about the conservativeness of the
set of call targets. A set of call targets is conservative when it contains the function
that is actually called at the call site. Of course it is not known what function in
the set that is; if we did, we would have only a single call target. So, the next best
thing is to be certain that the called function is in the set of call targets. The last
column in the table indicates whether or not it is certain that the called function is
present in the set of call targets, or, in other words, whether or not we are certain
that the set of call targets is conservative. Note however, that even if we cannot
guarantee that the set of call targets is conservative, it often still is conservative in
practice.

Note that the first column in table 2 refers to the three scenario’s listed above
and that the second column contains exactly the types of function calls that were
discussed in 3.2.4.

For calls of type ’direct function’ it is easy to see that they can only call C-style
functions and that there is always exactly one call target. The same goes for calls
of type ’direct method’, regardless of whether the method is virtual.
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Scn. Type of call Type of target # of targets Consv.

1 Direct function C-style function 1 Yes

1 Direct method C++-method 1 Yes

1 Object pointer non-virtual C++-method 1 Yes

3 Object pointer virtual C++-method 1 or more No

1 Object reference non-virtual C++-method 1 Yes

3 Object reference virtual C++-method 1 or more No

1 Constructor C++-method 1 Yes

1 Destructor C++-method 1 Yes

2 Pointer-to-function C-style function 0 or more No

2 Pointer-to-member non-virtual C++-method 0 or more Yes

2 Pointer-to-member virtual C++-method 0 or more No

Table 2: The different types of functions calls that exist and their properties.

It is also true for calls of type ’object pointer’ and ’object reference’ in case their
call target is non-virtual. When their call target is virtual though, then there can
be more than one call target. This is because the function that is called can be the
one referred to by the FQN of the call target, or any of the functions that override
it. The reason why we cannot be certain that we can find the actual call target was
explained in 3.3.3.

Calls to constructors and destructors are similar to calls of type ’direct method’:
There is always exactly one call target and we know for sure that its the correct
call target.

Calls via a ’pointer-to-function’ only have C-style functions and static class
methods as call targets. Any C-style function and any static class method in the
system that has an EFT that matches the EFT of the call target is a call candidate.
So, if no functions are found that match, then there are no call candidates. Hence,
such function calls can have zero or more call targets. Also, we can never be sure
that the function that is actually called can be detected. Again, the reason for this
is explained in 3.3.3.

The last case is a function call via a ’pointer-to-member’. Now, to be able to
declare a pointer-to-member variable, the class of the member to which will be
pointed must be known. So that means, that the only call candidates are the
non-static members of that class that have a matching EFT. In the case that none
of the matching methods is virtual, we known for sure that the actual call target is
one of the methods of that class. If one or more of the matching methods is virtual,
however, then any methods overriding those methods are also call candidates.
Also, we then no longer know for sure that the actual call target is detectable, for
the same reason as was the case with ’object pointer’ and ’object reference’.

The linking algorithm

At this point it is clear what we can expect from the different types of function
calls, so it is time to investigate the algorithm that links a function call to a set of
functions. The algorithm handles the three different scenarios discussed earlier,
each of which handles a number of the function call types listed in table 2. Each
scenario, in turn, handles a number of the function call types listed in table 2.
Table 2 also shows which scenario handles which call types. Together, these three
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scenarios handle all of the different types of function calls that may be encountered.
The pseudo-code below illustrates the algorithm:

void linkToFunctions(FunctionCall & c,

Functions & F,

map<FQN, Functions> & M,

map<EFT, Functions> & P,

Functions & T)

// c: The function call for which to resolve call

// candidates.

// F: The set of all functions.

// M: The mapping of FQN to overriding functions.

// P: The mapping of EFT to matching functions.

// T: Will contain all detectable call targets of c on

// return.

{

// Scenario 1

// If we know for sure that the function call has exactly

// one call candidate, simply insert that into T.

if(c.isDirectFunction || c.isDirectMethod ||

c.isConstructor || c.isDestructor)

{

1: Function f = F.getFunctionByFQN(c.FQN);

2: T.push(f);

}

// Scenario 2

// If the type of function call is object pointer or

// object reference, then insert the call target t

// identified by the call’s FQN into T. Next to that,

// insert all call targets that override t.

else if(c.isObjectPointer || c.isObjectReference)

{

3: Function f = F.getFunctionByFQN(c.FQN);

4: T.push(f);

// Note that if function f is not virtual, then

// M[f.FQN] below will be empty and f will be the only

// call target inserted into T.

5: Functions & overridingMethods = M[f.FQN];

6: for(int i = 0; i < length(overridingMethods); i++)

{

7: Function om = overridingMethods[i];

8: T.push(om);

}

}

// Scenario 3

// If the type of function call is pointer-to-function or

// pointer-to-member, then insert all functions that have a

// matching EFT into T.

else if(c.isPointerToFunction || c.isPointerToMember)

{

9: Functions & matchingFunctions = P[c.EFT];

10: for(int i = 0; i < length(matchingFunctions); i++)
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{

11: Function mf = P[i];

12: T.push(mf);

}

}

}

Note that the function call c can, in principle, be linked to any function in F. Since
the set F contains the functions from all translation units, the linkToFunctions

algorithm satisfies call graph requirement 2.

Complexity of the linking algorithm

We will now analyze the complexity of linking a single function to its call targets.
The code the three different scenarios, all of which seem to have a different
complexity. So, we will simply determine the complexity of each scenario and state
that the worst of those complexities is the worst-case running-time complexity of
linkToFunctions. First, though, consider again the following symbols:

NF : The number of functions in F.

NM : The number of elements in M, with NM 6 NF.

NP : The number of elements in P, with NP 6 NF.

1. Scenario 1. We know for sure there is exactly one call target. In line 1 a search
is performed on a hash table, which takes O(NF) time in the worst case, but
is expected to take O(1) time. Immediately afterwards, in line 2, the found
function is inserted into a list, which takes at most O(1) time.

2. Scenario 2. We are dealing with a call on an object pointer or object reference,
so there are one or more call targets. Lines 3 and 4 are similar to lines 1 and
2 and have equal complexities. At line 5, the functions overriding function f
are retrieved from hash table M, taking at most O(NM) time. In the worst
case, every function in F overrides f (except, of course, f itself). In that case,
lines 7 and 8 will run NF − 1 times. Line 7 retrieves an element from an array
and line 8 inserts an element into a list. Both take at most O(1) time, so the
loop at line 6 will never take more than O(NF) time to complete.

3. Scenario 3. In this case, we are dealing with a call via pointer-to-function or
pointer-to-member, which means that there can be zero or more call targets.
The number of call targets depends on how many functions in F have an EFT
that matches the EFT extracted from the call site. Obviously, in the worst
case, all functions in F have a matching EFT. So, the complexity for this
scenario comes to O(NP) for line 9 and O(NF) for the loop at line 10, since
lines 11 and 12 are similar to lines 7 and 8.

Now, when we list the complexities for each of the three scenarios, we come to
the following table:

The table above shows complexities that are, at first glance, hard to compare:
How do we now which is bigger, NM or NP? However, if we refer again to the
definitions of NM and NP it can be seen that NM 6 NF and NP 6 NF. So, that
means we can conclude that the worst-case running-time complexity of each of the
three scenarios is O(NF). That, in turn, leads us to conclude that the worst-case
running-time complexity of linkToFunctions is also O(NF), regardless of the
three scenarios.
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Scenario Complexity

1 O(NF)

2 O(NM + NF)

3 O(NP + NF)

Table 3: The complexities of the possible scenarios of linkToFunctions.

4.3.2 Constructing full call graphs

Now that it is clear how function calls are to be linked to functions, we will
use that information to construct the algorithm that builds an actual call graph.
First we focus on how to build a call graph of the complete system (call graph
construction requirement 1) and then on how to build a call graph of part of the
system (call graph construction requirements 2). Before the code of the algorithm
that constructs a full call graph is given, we will first describe the idea behind the
algorithm.

As we are constructing a graph of the complete system, that means all functions
and all function calls from the system must be present in the call graph. So, a
natural approach to make sure all functions and calls are included in the graph is
to simply iterate over all functions and calls and add them to the graph one by
one.

For the functions (i.e., the nodes), this is extremely simple: Just add a node to
the graph for each function.

For the function calls (i.e., the edges), this is a bit more complex, since we need
to figure out what pairs of nodes to connect by edges. Luckily, given a function
call, we can use the linkToFunctions function to determine the set of functions
that are possibly invoked by the function call. We can then insert an edge from the
calling function to each of the possibly invoked functions into the graph.

Then, using the calling function and the set of called functions, an edge from
the calling function to each of the called functions can be inserted into the graph.

Another problem that needs to be solved, comes from the initializing and
finalizing function calls (see 3.2.5). These calls occur before and after the call to the
main function, respectively. So, the question that arises is, which function makes
these initializing and finalizing calls? The answer is that there is no function in
the source code that makes these function calls, just like there is no function in the
source code that calls the main function. However, to be able to include edges in
the graph for these calls we need a source node at which these edges can start. This
problem is solved by introducing a fictional node into the graph called the Root
node. This node represents a function that is not called by any other function, but
that makes calls to the initializing and finalizing functions and the main function.
As an example, consider the following code snippet:

class A { };

A a;

int main(int argc, char** argv)

{

return 0;

}
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The small program above calls, respectively, the constructor of A, the main

function and finally the destructor of A. The call graph, including the fictional Root
node (but excluding containment nodes), is depicted in figure 21 below.

Figure 21: The call graph including the fictional Root node.

A question that might come to mind is what containment node (i.e., directory, file
or class) contains this Root node? The answer is simple: The Root node is always
contained by the file node representing the file that defines the main function.
The respective initializing and finalizing call edges are, however, annotated with
attributes which point the developer to the file and position where the call is made
in the source code. Now, from the answer above immediately a new question rises.
What happens if there is no main function, for instance, in case we are investigating
a library? Again, the answer is simple: In that case there is no Root node and there
will be no initializing and finalizing edges present in the graph. The rationale for
this is that when a developer is investigating a library on its own, then that library
on its own will never be able to make these initializing and finalizing calls; it needs
a main function (or actually, a program with a main function linking to the library)
to define where the initializing and finalizing function calls are made. In line with
this is the following: As soon as the library is used by a program which does have
a main function, then the location of the initializing and finalizing function calls is
defined and they will be present in the graph.

So, in summary, to make sure that all function calls are inserted into the graph,
we take the following three steps:

1. Iterate over all functions and insert a node into the graph for each function.

2. Iterate over all function nodes in the graph. Since we already inserted all
functions into the graph, it is guaranteed that by iterating over the function
nodes in the graph we will encounter all functions. For each function we
find in the graph, the list of function calls that it makes is retrieved. Using
that list, we iterate over all function calls made by the current function node
and we insert edges from the current function node to each of the functions
in the set calculated by linkToFunctions.

3. Insert the fictional Root node into the Graph, if a main function exists.

4. Insert a call edge from the Root node to the main function. That is, if there is a
main function: Libraries, for instance, generally do not have a main function.

5. Iterate over all initializing and finalizing function calls and insert the appro-
priate edges, beginning in the Root node, into the graph.
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The full call graph construction algorithm

Below is the pseudo-code of the algorithm that builds a full call graph.

void buildFullCallGraph(Functions & F,

FunctionCalls & Ini,

FunctionCalls & Fin,

map<FQN, Functions> & M,

map<EFT, Functions> & P,

Graph & G)

// F: The set of all functions.

// Ini: The set of all initializing function calls.

// Fin: The set of all finalizing function calls.

// M: The mapping of FQN to overriding functions.

// P: The mapping of EFT to matching functions.

// G: The graph that will contain the result.

{

// Insert nodes into the graph for all functions in F.

1: insertAllNodes(F, G);

// Insert edges into the graph for the function calls made

// by the functions just inserted into G.

2: insertEdges(F, M, P, G);

// Insert the fictional root node into the graph, if a main

// function exists.

3: Function root = insertRootNode(G);

// Insert the call edge from the Root node to the main

// function, if a main function exists.

4: insertCallEdgeFromRootToMain(root, F, G);

// Insert edges into the graph for the initializing

// function calls.

5: insertEdgesFromNode(root, Ini, M, P, G);

// Insert edges into the graph for the finalizing

// function calls.

6: insertEdgesFromNode(root, Fin, M, P, G);

}

void insertAllNodes(Functions & F, Graph & G)

{

// Insert a node into the graph for each function in F.

7: for(int i = 0; i < length(F); i++)

{

Function f = F[i];

8: insertNode(f, G);

}

}

void insertEdges(Functions & F,

map<FQN, Functions> & M,

map<EFT, Functions> & P,

Graph & G)
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{

// Iterate over all function nodes in the graph and

// retrieve the function calls that each function makes.

// Then, insert edges for those function calls.

9: for(int n = 0; n < length(G.nodes); n++)

{

Function source = G.nodes[n];

FunctionCalls C = source.calls;

10: insertEdgesFromNode(source, C, F, M, P, G);

}

}

void insertEdgesFromNode(Function & source,

FunctionCalls & C,

Functions & F,

map<FQN, Functions> & M,

map<EFT, Functions> & P,

Graph & G)

{

// Iterate over all function calls in C and add edges for

// each of them.

11: for(int e = 0; e < length(C); e++)

{

FunctionCall c = C[e];

Functions T;

// Retrieve the set of call targets T for function.

// call c

12: linkToFunctions(c, F, M, P, T);

// For each call target, add an edge from the source

// node to the call target to the graph.

13: for(int t = 0; t < length(T); t++)

{

Function destination = T[t];

14: insertEdge(source, destination, G);

}

}

}

Function & insertRootNode(Graph & G)

{

Function root = new Function("Root");

15: insertNode(root, G);

return root;

}

void insertCallEdgeFromRootToMain(Function & root, Functions & F,

Graph & G)

{

// Try to find the main function.

16: Function main = F.findMain();
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// If there is a main function, insert an edge from the root

// node to the main function into the graph.

if(main != NULL)

{

17: insertEdge(root, main, G);

}

}

Duplicate nodes for functions with static linkage

The above algorithm inserts a node into the graph for each function. However,
before we conclude on how the above algorithm satisfies call graph requirement
1, we should note that our name mangling approach has some consequences at
this point. Recall that we apply name mangling (3.4) to prevent functions with
static linkage to be linked to function calls from other translation units. The idea
is to make the FQN of the functions in question globally unique with respect to
the translation unit in which they are defined. This means, however, that for every
translation unit we actually generate a new copy of those functions. This is, in some
sense, correct, since function calls are never linked to incorrect functions and one
could argue that, by being visible only in their own translation units, these copies
are indeed separate functions. Regardless, this is not how a developer will perceive
these functions: The functions occur only once in the source code, so a developer
will expect to see these functions only once in the call graph. This is in line with call
graph requirement 1, which states that the call graph should contain one node for
each function in the source code.

The solution to this issue is to merge all copies of a function with static linkage into
a single node during the construction of the call graph. We will call such nodes
shared nodes. In other words, a shared node in the call graph represents all (i.e.,
one or more) copies of a function with static linkage.

To realize this we need a way to determine when a function must be represented
by a shared node, which is easy: All functions that have static linkage must be
represented by a shared node. Some of these shared nodes will consequently
represent only a single copy, but that poses no problems.

The second thing we need is a way to determine by what shared node a function
must be represented. This required a bit more attention. Let us first define when
two functions are copies of each other. Two functions are copies of each other iff:

• Both functions have static linkage, and

• both functions are defined in the same source file, at the same location, and

• both functions have equal unmangled FQNs.

The approach will be as follows. During construction of the graph, we will keep a
mapping that translates the triplet (source file name, location, unmangled FQN) to the
corresponding shared function node. Now, when a node is inserted into the graph
for a function with static linkage, we determine its information triplet (source
file name, location, unmangled FQN) and we use that to lookup the corresponding
shared function node in the mapping. If no such node exists yet, it is created and
inserted into the mapping and into the graph. If it does exist, we do nothing.

Lastly, when an edge is inserted into the graph and the edge has at least one
static function node as an endpoint, we again determine its information triplet
and retrieve the corresponding shared node from the mapping. The shared node
is then used as the endpoint of the edge.

It is not hard to see that using shared nodes does not increase the complexity of
the overall graph construction algorithm: The graph nodes are stored using hash
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tables, so the use of another hash table (which will contain information of only a
subset of the graph) will not increase the computational complexity.

The solution presented above ensures that for each function in the source code
precisely one node ends up in the call graph and that one or more call edges are
inserted into the graph for each function call in the source code (insertEdges,
insertEdgesFromNode). Furthermore, function and function call attributes are
easily available from the inserted nodes and edges because references to the
corresponding functions and function calls which are annotated with the required
attributes are included with the nodes and edges. Hence, buildFullCallGraph
satisfies call graph requirement 1. Besides that, by being able to construct a
complete call graph of a build target, buildFullCallGraph also directly satisfies
call graph constructor requirement 1.

Complexity

The last thing to do is to determine the complexity of buildFullCallGraph. The
code above shows that the algorithm consists of several functions, so we begin by
defining the symbols for the complexities of these individual functions:

CBFG : The complexity of buildFullCallGraph.

CIAN : The complexity of insertAllNodes.

CIED : The complexity of insertEdges.

CIRN : The complexity of insertRootNode.

CIEM : The complexity of insertCallEdgeFromRootToMain.

CIEN,5 : The complexity of insertEdgesFromNode, called from line 5.

CIEN,6 : The complexity of insertEdgesFromNode, called from line 6.

CIEN,10 : The complexity of insertEdgesFromNode, called from line 10.

Now, lines 1 through 6 are simply calls to each of the other functions from the
algorithm, so we can calculate the complexity of buildFullCallGraph by adding
the complexities of the functions it calls. Therefore:

CBFG = CIAN + CIED + CIRN + CIEM + CIEN,5 + CIEN,6 (4.1)

Finally, before we define the complexities of the other individual function,
consider the following symbols:

NF : The total number of functions.

NC,I : The number of initializing function calls.

NC,F : The number of finalizing function calls.

NC,Avg : The average number of function calls per function.

NC : The total number of function calls.

Please note that the total number of function calls NC can be expressed in terms
of NF, NC,I, NC,F and NC,Avg as follows:

NC = (NC,AvgNF) + NC,I + NC,F (4.2)

Complexity of insertAllNodes

Lines 7 and 8 show that insertAllNodes iterates over all functions, and inserts
a node into the graph for each function. Now, there are NF functions to iterate
over and the internal datastructures used to store the graph are hash tables. That
means that the worst-case running time complexity of insertAllNodes is:

CIAN = O(NF)
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Complexity of insertEdges

From line 9 we can see that insertEdges iterates over all nodes in the graph. Since
insertAllNodes just inserted all functions into the graph, we know that there are
exactly NF nodes to iterate over. Then, during each iteration of the loop, a call is
made to insertEdgesFromNode at line 10. So, we can conclude that:

CIED = CIEN,10O(NF)

Complexity of insertRootNode

From line 15 it is quickly obvious that

CIRN = O(1)

Since inserting a new node into the graph can be done in at most O(1) time.

Complexity of insertEdgesFromNode

The function insertEdgesFromNode iterates over a set C of function calls. How
many function calls are in C, however, differs. When called from line 10, the size
of C will be NC,Avg, but when called from line 5 there will be NC, I elements in C

and when called from line 6 there will be NC,F elements. To resolve this, we will
explicitly state a different complexity for each of these cases, respectively called
CIEN,10, CIEN,5 and CIEN,6.

During each iteration of the loop, a call is made to linkToFunctions, which has
a worst-case running-time complexity of O(NF). In the absolute worst-case that
every function is a call target of the current iteration’s function call, then the loop
at 13 will also having a running-time complexity of NF, since inserting an edge
into the graph at line 14 can be done in O(1) time.

So, for the different calls we have the following different complexities:

CIEN,5 = O(NC,INF)

CIEN,6 = O(NC,FNF)

CIEN,10 = O(NC,AvgNF)

Complexity of insertCallEdgeFromRootToMain

As we noted before, [27] show us that doing a lookup operation on a hash table
takes, in the worst case, O(NF) time. Since line 17 will complete in O(1) time, we
conclude that:

CIEM = O(NF)

Total complexity

We now know the complexities of the individual functions, which means we can
now calculate the total complexity of building a full call graph using equation
4.1. When we substitute the symbols in equation 4.1 for the complexities that we
calculated, we end up with the following expression for CBFG:

CBFG = CIAN + CIED + CIRN + CIEM + CIEN,5 + CIEN,6

= O(NF) + CIEN,10O(NF) + O(1) + O(NC,INF) + O(NC,FNF)

= O(NC,AvgNFNF) + O(NC,INF) + O(NC,FNF)

= O(NF(NC,AvgNF + NC,I + NC,F))
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Now, when we look again at equation 4.2, it becomes clear that we can simplify
this equation as follows, to arrive at the final equation for the complexity of
buildFullCallGraph:

CBFG = O(NFNC) (4.3)

4.3.3 Constructing partial call graphs

Partial call graphs represent only part of the build target that is being analyzed.
More specifically, the partial call graph Gf is that part of the full call graph G

that is reachable from a given function node f, the starting point. To illustrate that
partial call graphs can be extremely useful, please consider again the code of the
Hello World program presented in section 3.3:

#include <stdio.h>

int main(int argc, char** argv)

{

printf("Hello World!\n");

return 0;

}

The problem descibed in section 3.3 was that when a build target makes use of
libraries, all functions from those libraries are included in the call graph of the
build target, regardless of whether the functions are actually used in the build
target. As an alternative to calculating the entire graph of the Hello World program,
we can calculate only that part of the graph that starts in the main function of the
program. Figure 22 depicts the resulting partial call graph Gmain.

Figure 22: The partial call graph starting in the main function of the Hello World program.

Now compare the graph from figure 22 with the call graph shown in figure 11,
which is the graph that was originally expected for the Hello World program. It
can be seen that the partial call graph Gmain exactly matches the graph that one
would intuitively expect for the Hello World program.
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The partial call graph construction algorithm

The algorithm for calculating a partial call graph strongly resembles the algorithm
for calculating a full call graph. The only difference between the two algorithms is
we do not want to add all functions to the graph, but only those functions that
are reachable from the starting point, including the starting point itself. After the
correct nodes have been added, the remainder of the algorithm is identical to the
full call graph construction algorithm.

To determine what functions are reachable from the starting point f, the al-
gorithm retrieves the function calls made by f and links those calls to their call
targets. Then, all the call targets are added to the graph and each call target is
recursively processed to make sure all functions reachable from those functions
are also added to the graph. The pseudo-code of the algorithm is given below.
Please note that the code for the functions called in lines 2 through 6 was already
given in the full call graph construction algorithm.

void buildPartialCallGraph(Function & f,

Functions & F,

FunctionCalls & Ini,

FunctionCalls & Fin,

map<FQN, Functions> & M,

map<EFT, Functions> & P,

Graph & G)

// f: The function in which the call graph must start.

// F: The set of all functions.

// Ini: The set of all initializing function calls.

// Fin: The set of all finalizing function calls.

// M: The mapping of FQN to overriding functions.

// P: The mapping of EFT to matching functions.

// G: The graph that will contain the result.

{

// Insert nodes into the graph for those functions in F that

// are reachable from f, including f itself.

1: insertNodesStartingAt(f, F, G);

// Insert edges into the graph for the function calls made

// by the functions just inserted into G.

2: insertEdges(F, M, P, G);

// Insert the fictional root node into the graph, if a main

// function exists.

3: Function root = insertRootNode();

// Insert the call edge from the Root node to the main function,

// if a main function exists.

4: insertCallEdgeFromRootToMain(root, F, G);

// Insert edges into the graph for the initializing

// function calls.

5: insertEdgesFromNode(root, Ini, M, P, G);

// Insert edges into the graph for the finalizing

// function calls.

6: insertEdgesFromNode(root, Fin, M, P, G);
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}

void insertNodesStartingAt(Function & f, Functions & F, Graph & G)

{

7: insertNode(f, G);

FunctionCalls C = f.calls;

8: for(int i = 0; i < length(C); i++)

{

FunctionCall c = C[i];

Functions T;

// Retrieve the set of call targets for function call c.

9: linkToFunctions(c, F, M, P, T);

// Recursively process each call target.

for(int t = 0; t < length(T); t++)

{

Function target = T[t];

// If this function is not yet present in the call

// graph, process it.

if(!G.nodes.Contains(target)

{

insertNodesStartingAt(target, F, G);

}

}

}

}

The buildPartialCallGraph function inserts a node into the graph for each
function that is reachable from function f (insertNodesStartingAt) and inserts
one or more edges into the graph for each function call (insertEdges, insert-
EdgesFromNode). Again, function and function call attributes are easily available
from the inserted nodes and edges since function and function call references
(which are annotated with the required attributes) are included with the nodes
and edges. Therefore, buildPartialCallGraph satisfies call graph requirement 1.
Ofcourse, since buildPartialCallGraph constructs a call graph of part of a build
target starting in function f, it directly satisfies call graph constructor requirement
2.

Determining the complexity of buildPartialCallGraph can be done relatively
quickly, since complexities have already been determined for all but the insertN-

odesStartingAt function. So, all we need to do is determine the complexity CISA

of insertNodesStartingAt and then replace the CIAN term from equation 4.1
with CISA. We then end up with the following equation for the complexity CBPG

of constructing a partial call graph:

CBPG = CISA + CIED + CIRN + CIEM + CIEN,5 + CIEN,6 (4.4)
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To aid in calculating its complexity, consider the following definitions:

NF : The total number of functions.

NF,f : The number of function nodes in the partial call graph Gf,

with NF,f 6 NF.

NC : The total number of function calls.

NC,f : The number of function calls that have at least one corresponding

edge in the partial call graph Gf, with NC,f 6 NC.

Also, recall from 4.3.1 that the worst-case running time complexity of linkToFunc-
tions is O(NF). There are two observations here that are important to make:

1. Function insertNodesStartingAt will be called once for every function that
is part of the partial call graph. That means that line 7 will run exactly NF,f
times.

2. After the algorithm finishes, line 8 will have iterated once over all function
calls for which one or more edges have been inserted into the graph. Thus, it
will have iterated over NC,f function calls, meaning that line 9 will also have
run exactly that many times.

The remainder of the algorithm, that is after line 9, deals with recursively calling
insertNodesStartingAt. Since the above two observations talk about the total
number of times that lines 7 and 9 are executed, and the part of the algorithm
after line 9 has a complexity of O(1), we can disregard everything after line 9 from
the complexity analysis.

Now, using the above two observations we can conclude that the worst-case
running-time complexity CISA of insertNodesStartingAt is:

CISA = O(NF,f + NC,fNF)

However, since NF,f 6 NF, this equation can be reduced to:

CISA = O(NC,fNF)

The last step is to plug this equation into equation 4.4:

CBPG = CISA + CIED + CIRN + CIEM + CIEN,5 + CIEN,6

= O(NC,fNF) + CIEN,10O(NF) + O(1) + O(NC,INF) + O(NC,FNF)

= O(NC,fNF) + O(NC,AvgNFNF) + O(NC,INF) + O(NC,FNF)

= O(NC,fNF) + O(NF(NC,AvgNF + NC,I + NC,F))

Just like we did before, this can be reduced to the following, because of 4.2:

CBPG = O(NC,fNF + NFNC)

Finally, because NC,f 6 NC we come to the following final equation for the
worst-case running-time complexity of linkToFunctions:

CBPG = O(NFNC)

When we compare this with the complexity of buildFullCallGraph (4.3), we see
that both algorithms have the same worst-case running-time complexity. This
makes sense, since in the worst-case for buildPartialCallGraph the constructed
partial call graph is equal to the full call graph constructed by buildFullCallGraph.
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4.3.4 Inserting containment nodes

All requirements have been satisfied, except one: call graph requirement 4. This
requirement states that the resulting call graph should include the relevant con-
tainment nodes and edges for its function nodes and function call edges. There
are three types of containment nodes:

1. Class nodes. These nodes represent classes from the source code. Every class
from the source code should have exactly one corresponding class node in
the graph. A class node has outgoing containment edges to the methods that
belong to the class it represents.

2. File nodes. Not suprisingly, file nodes represent files on the file system. A file
is represented as a file node in the graph if it contains at least one class or
function that is represented in the graph as a node.

3. Directory nodes. Similar to file nodes, directory nodes represent directories
on the file system. Like file nodes, directories are only included in the graph
if they contain at least one file that is represented in the graph.

As an example, please consider the following calculator program, which performs
some basic arithmetic operations:

// ----- File: Calculator.h -----

#ifndef CALCULATOR_H

#define CALCULATOR_H

class Calculator

{

public:

float Add (float a, float b) { return a + b; }

float Subtract(float a, float b) { return a - b; }

float Multiply(float a, float b) { return a * b; }

float Divide (float a, float b) { return a / b; }

};

#endif

// ----- File: Main.cpp -----

#include "Calculator.h"

int main(int argc, char** argv)

{

Calculator calc;

calc.Add (1.0f, 2.0f);

calc.Subtract(1.0f, 2.0f);

calc.Multiply(1.0f, 2.0f);

calc.Divide (1.0f, 2.0f);

return 0;

}

The calculator program consists of two files:

• Calculator.h, containing the implementation of the Calculator class.

• Main.cpp, containing the main function, which uses the Calculator class to
perform some calculations.
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When we look at the call graph belonging to this program (figure 23), it can
be seen that it has six containment nodes (blue) and eight containment edges
(also blue). Closer inspection reveals that the top three containment nodes are
directory nodes: They represent the path /home/hessel. The two nodes below
that represent the Main.cpp and Calculator.h files, which are located in the
/home/hessel directory. Finally, there is the Calculator containment node, which
represents the Calculator class, located in the Calculator.h file.

Figure 23: The containment nodes and edges of the Calculator program (in blue). The
function nodes and function call edges are shown in green.

The containment node insertion algorithm

It is clear that the final graph should only contain those directories, files and
classes that contain, either directly or indirectly, functions that are already present
in the graph. The natural way of implementing this is to insert the appropriate
containment nodes and edges whenever a new function node is inserted into the
graph. The code below shows the implementation of the insertNode function used
by the buildFullCallGraph and buildPartialCallGraph algorithms.

Next to actuall adding a function node to the graph, the implementation of
insertNode makes sure that the appropriate containment nodes and edges are
inserted into the graph. To realize that, there are four functions that help with the
insertion of the appropriate nodes and edges:

• getContainmentNode. Returns the containment node belonging to the speci-
fied function f. If f is a C++-method, then the returned node will represent a
class, otherwise it will represent a file. If the requested node does not yet
exist in the graph, getContainmentNode will insert it into the graph.

• getClassNode. Returns the class node belonging to the specified function. If
the requested class node does not yet exist in the graph, getClassNode will
insert it into the graph.
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• getFileNode. Returns the file node belonging to the specified filename. If the
requested file node does not yet exist in the graph, getFileNode will insert
it into the graph.

• getDirectoryNode. Returns the directory node belonging to the specified
path. If the requested directory node does not yet exist in the graph, getDi-
rectoryNode will insert it into the graph.

void insertNode(Function & f, Graph & G)

// f: The function for which to insert a node into the graph.

// G: The graph into which the node must be inserted.

{

// Get the containment node of function f.

Node n = getContainmentNode(f, G);

// Insert a containment edge from the containment node

// to the function f into the graph.

insertEdge(n, f, G);

// Finally, insert the function into the graph.

G.insertNode(f);

}

Node getContainmentNode(Function & f, Graph & G)

{

Node n;

if(f.isMethod)

{

// Get the class node belonging to method f.

n = getClassNode(f, G);

}

else // f is a C-style function

{

// Get the file node belonging to C-style function f.

n = getFileNode(f, G);

}

// Return the containment node of function f.

return n;

}

Node getClassNode(Function & f, Graph & G)

{

// Try to get the requested class node from the graph. If

// the class node does not yet exist in the graph, then

// create it and insert it into the graph.

string className = f.className;

Node cn = G.getClassNode(className);

if(cn == NULL)

{

// Insert a new class node into the graph.

cn = new ClassNode(className);

G.insertNode(cn);

// Get the file node corresponding to the file in which



4.3 constructing call graphs 67

// the current class is defined.

Node fn = getFileNode(f.classFileName, G);

// Insert an edge from the file node to the class node

// into the graph.

insertEdge(fn, cn, G);

}

// Return the requested class node.

return cn;

}

Node getFileNode(string fileName, Graph & G)

{

// Try to get the requested file node from the graph. If

// the file node does not yet exist in the graph, then

// create it and insert it into the graph.

Node fn = G.getFileNode(fileName);

if(fn == NULL)

{

// Insert a new file node into the graph.

fn = new FileNode(fileName);

G.insertNode(fn);

// Get the directory node corresponding to the directory

// in which the current file is stored.

string path = getPathFromFileName(fileName);

Node dn = getDirectoryNode(path, G);

// Insert an edge from the directory node to the file

// node into the graph.

insertEdge(dn, fn, G);

}

// Return the requested file node.

return fn;

}

Node getDirectoryNode(string path, Graph & G)

{

// Try to get the requested directory node from the graph.

// If the directory node does not yet exist in the graph,

// then create it and insert it into the graph.

Node dn = G.getDirectoryNode(path);

if(dn == NULL)

{

// Insert a new directory node into the graph.

dn = new DirectoryNode(path);

G.insertNode(dn);

// If we are not dealing with the root directory of the

// file system, then make sure this directory is properly

// contained by its parent directory.

if(path != "/")
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{

// Get the parent directory of the current directory.

string parentPath = getPathFromFileName(fileName);

Node pn = getDirectoryNode(parentPath, G);

// Insert an edge from the parent directory node

// to the directory node into the graph.

insertEdge(pn, dn, G);

}

}

// Return the requested directory node.

return dn;

}

Complexity of the insertion algorithm

We can be quick about the complexity of insertNode: There are no loops in
the algorithm, only a single recursive call in getDirectoryNode. The depth of
the recursion depends on the depth d in the file system tree of the directory
that holds the file in which the supplied function f is located. Furthermore, the
algorithm performs lookup and insertion operations on a hash table, both of
which can be done in O(1) expected time. The worst-case running-time of a
lookup in a hash tables with NF elements is O(NF), however. Since a lookup
occurs within the recursively called function getDirectoryNode, the worst-case
running-time complexity of insertNode is O(dNF), whereas the expected running-
time complexity is O(d). When we consider d to be a constant, the complexities
are reduces to O(NF) and O(1) respectively.

It is obvious that insertNode will be called once for every function in the
graph. That means, that all calls to insertNode collectively contribute O(N2

F) to
the complexity of the call graph construction algorithms in the worst case and
O(NF) in the expected case. As before, NF is the number of functions in the graph.
When we compare this to the complexity of the call graph construction algorithm
we calculated before (O(NFNC)), we see that in the expected case the insertion of
containment nodes does not increase the overall running-time complexity.

4.4 serialization

Figure 24: The serialization step.

Once the call graph has been constructed it must be serialized, so it can be
visually explored using another program. The Call Graph Constructor supports
three different output formats:
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1. Graphviz DOT format. This is the format used by the Graphviz graph layout
tools. Please refer to [31] for the specification of the format.

2. Tulip format. This is the format used by the Tulip graph visualization tool.
Please refer to [23] for the specification of the format.

3. SolidSX sqlite format. This format is used by the DepView dependency viewer
tool. Please refer to [33] for a discussion of this tool.

Even though these three different formats require three different serialization
backends, their global approach is the same. All formats sequentially write all
nodes and their annotations and all edges and their annotations to a file. So,
in general, the graph serialization algorithm can be described by the following
pseudo-code:

void serializeCallGraph(Graph & G)

{

// Serialize the graph’s nodes.

1: for(int i = 0; i < length(G.nodes); i++)

2: serializeNode(G.nodes[i]);

// Serialize the graph’s edges.

3: for(int i = 0; i < length(G.edges); i++)

4: serializeEdge(G.edges[i]);

}

The complexity of this algorithm can be determined rather easily. If NN is the
number of nodes in the graph and NE is the number of edges in the graph, then
line 1 loops NN times and line 3 loops NE times. This means that lines 2 and 4

are executed NN and NE times respectively. We assume that serializing a node
or an edge can be done in constant time. So, we conclude that the worst-case
running-time of serializeCallGraph is O(NN + NE).

The above gives us the complexity of serializeCallGraph in terms of NN and
NE. It would, however, be much more useful to have the complexity expressed
in terms of the number of functions NF and the number of function calls NC,
since this is how we expressed all complexities. Well now, nodes in the graph can
be either function nodes or containment nodes. So, if NN,Cont is the number of
containment nodes in the graph, we can say that:

NN = NF + NN,Cont

Furthermore, in the very worst case, every single function call causes an edge to
every function in the graph (this is the case for instance, when every function in
the program has the same EFT and a call via a pointer-to-function is made to some
function in the program). So, we can say that NCNF is an upper bound for the
number of call edges in the graph. Then, if NE,Cont is the number of containment
edges in the graph, we obtain the following expression for the number of edges
NE in the graph:

NE 6 NCNF + NE,Cont

If we plug the above two equations back into the complexity equation, we obtain
as the worst-case running-time complexity of serializeCallGraph:

O(NN + NE) = O(NF + NN,Cont + NCNF + NE,Cont)

= O(NCNF + NN,Cont + NE,Cont) (4.5)
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Now, the containment part of the graph (directories, files and classes) is actually
a tree, so that means that if there are NN,Cont containment nodes, there must
be exactly NN,Cont − 1 containment edges connecting the containment nodes.
Next to that, every function is also connected to exactly one containment node by
exactly one containment edge. So, the total number of containment edges NE,Cont

comes to:

NE,Cont = NN,Cont − 1 + NF (4.6)

Finally, when we merge equation 4.6 with equation 4.5, we end up with the final
complexity of serialization:

O(NN + NE) = O(NCNF + NN,Cont + NN,Cont − 1 + NF)

= O(NCNF + NN,Cont)

4.5 complexity

At this point the only thing left to do is determine the total complexity of con-
structing a call graph. As before, the different phases of the construction process
are performed consecutively and the complexities of the individual phases have
already been determined. We merely need to add these complexities together to
obtain the total complexity of constructing a call graph.

As a reminder, the complexities of the different individual phases are:

Phase Worst-case complexity Expected complexity

Deserialization O(NC + NF) O(NC + NF)

Function mapping O(1
2N2

F) O(1
2N2

F)

Graph construction O(NCNF + N2
F) O(NCNF)

Serialization O(NCNF + NN,Cont) O(NCNF + NN,Cont)

Table 4: The worst-case and expected-time complexities of the different phases of the graph
construction process. Here, NF is the number of functions, NC is the number of
function calls and NN,Cont is the number of containment nodes in the graph.

When we add these individual terms we again end up with two equations: one
total worst-case complexity and one total expected-time complexity.

4.5.1 Total worst-case complexity

Adding all the worst-case complexities in Table 4 gives the following equation
for the total worst-case running-time complexity CE,Worst of the entire graph
construction process:

CE,Worst = O(NC + NF)

+ O(
1

2
N2

F)

+ O(NCNF + N2
F)

+ O(NCNF + NN,Cont)

Some quick simplification brings us to the final equation for the worst-case running-
time complexity of the construction process:

CE,Worst = O(NCNF + N2
F + NN,Cont)
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4.5.2 Total expected-time complexity

When we add all the expected-time complexities in Table 4, we end up with the
following equation for the total expected-time complexity CE,Exp:

CE,Exp = O(NC + NF)

+ O(
1

2
N2

F)

+ O(NCNF)

+ O(NCNF + NN,Cont)

A little simplification yields:

CE,Exp = O(NCNF + N2
F + NN,Cont)

Remember that the N2
F comes from the case that all functions are virtual functions

that override, on average, 1
2N other functions. Whenever virtuals do not override

such an extreme amount of functions and every function overrides, on average, r

functions, then the complexity would be:

CE,Exp = O(NCNF + rNF + NN,Cont)

Whenever r does not take on an extreme value (i.e., a value close to 1
2NF), then

the complexity of constructing a call graph primarly depends on the number of
functions times the number of function calls in the program.
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5.1 retrieving preprocessor parameters and build targets

Up until now, we discussed how call information can be extracted from source
code and how this information can be used to construct a call graph. However,
before a developer can easily use the system on his own source tree, there are a
couple of problems left to solve. What these problems are will become clear when
we take a closer look at what we have at this point and what exactly our goals are.
At the moment, the system is comprised of two executable programs:

• The C/C++ Call Info Extractor (CCIE): The CCIE program takes a single
preprocessed source code file as input, and outputs a single call information
file.

• The C/C++ Call graph Constructor (CCC): The CCC program takes a set of call
information files as input, and outputs a single graph file.

Now, when we go back to the graph construction requirements in section 2.1,
in particular, to the user friendliness requirement (8) it becomes clear what our
goals should be at this point: Be able to use the instruments created so far (i.e.,
the C/C++ Call Info Extractor and the C/C++ Call graph Constructor), in an easy
manner, to construct call graphs of actual targets in a real-life software system that
has a complex build configuration. Specifically, using our instruments should be
no more difficult than performing a regular build of the code base.

From the program descriptions above and the stated goals we can now distill
two unsolved problems:

1. The CCIE program expects preprocessed source code as its input. For small
systems, manually preprocessing source code files using the compiler’s
preprocessor might not be such a big issue. Oftentimes, however, parameters
are passed to the preprocessor when the system is build, to ensure that the
source code is preprocessed in a way appropriate for the target being built.
So, the first problem is that we do not know the correct parameters to pass to the
preprocessor.

2. The CCC program takes multiple call information files as input and uses
them to produce a graph file. The question that rises is what files should be
given to CCC as input. Again, for simple systems this is a trivial question:
Just feed all call information files as input to CCC. However, picture a code
base that produces two targets: A standalone command line program and a
static library. The library exposes the functionality of the standalone program
for other developers to use in their own programs. In this case, it is not so
obvious anymore what call information files should be fed to CCC: What
kind of graph will we obtain when we feed both the standalone and library
call information files to CCC? We would then attempt to generate a graph
using the information extracted from the library twice, resulting in linking
errors. So, the second problem is that we do not know what call information files
need to be fed to CCC when constructing the graph corresponding to a build target.
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5.1.1 Requirements to the solution

Before we continue to present the solution to the problems above, we first formalize
the problems by translating them into a series of requirements.

The solution to problems 1 and 2 must satisfy the following requirements:

1. To solve the first problem, we need some way to preprocess the source code
files with the correct parameters. The ’correct’ parameters are, obviously, the
parameters that the build system would pass to the preprocessor during a
normal build. So, the solution must make sure that each call information file
is constructed from a source file that is preprocessed in the same way that
the build system would preprocess that source file.

2. The solution to the second problem must supply CCC with the correct call
information files when constructing a call graph corresponding to a build
target. Let us first determine what the ’correct’ call information files are.

A build target may produce different types of files as output. For us, only
three types of output files are interesting: Static libraries, dynamic libraries
and executables. It must be possible to construct a separate call graph for
each of such output files: It would not make sense to generate one grand call
graph of all produced binaries, since there is no guarantee that the binaries
are related to each other.

The question that now rises is what call information files we need to supply
to CCC when constructing the call graph for a particular target. Let’s consider
this for each of the three types of targets that are relevant to us.

• A static library is nothing more than a collection of object files, packed
into an archive. So, the call graph of a static library should consist of
all functions and function calls present in the object files of the library.
Therefore, all call information files corresponding to those object files
(that is, the call information files corresponding to the translation units
from which the object files have been build) should be input to CCC.

• The call graph of a dynamic library should consist of all functions and
function calls present in the object files that are linked into the dynamic
library. If the dynamic library uses functions from other dynamic libraries,
then all functions and function calls present in their call graphs should
be present in the call graph as well. Input to CCC should thus be the
call information files corresponding to those object files and dynamic
libraries.

• The call graph of an executable should consist of all functions and
function calls present in the object files that are linked into it. If the
executable uses functions from dynamic libraries, then all functions
and function calls present in their call graph should be present in the
call graph as well. Input to CCC should be the call information files
corresponding to those object files and dynamic libraries.

5.2 a solution using compiler wrapping

In this section a solution to the problems stated above is presented to the reader.
The implementation of this solution is, however, specific to the GNU Compiler
Collection (GCC) [8] and the GNU Binutils [7] compiler utilities. Nonetheless, it is
expected that it is possible, with reasonable effort, to implement a similar solution
for other compiler utilities.
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The key to solving the problems stated in the previous section is this observation:
When doing a normal build of the system, the code base’s build system is giving
the GNU compiler tools the following information by passing parameters:

1. What source files are to be preprocessed and compiled, and with which
parameters (using GNU gcc, g++, c++),

2. What binary object files are to be archived into a static library (using GNU
ar),

3. What binary object files, static libraries and dynamic libraries are to be linked
into an executable or dynamic library (using GNU ld).

This is exactly the information we need to solve our two problems. If we can
somehow intercept the calls to the relevant GNU compiler tools, then the build
system will give us exactly the information we need to properly preprocess the
source files (requirement 1) and to associate the correct call information files with
the appropriate target (requirement 2). Intercepting calls to the GNU compiler
tools can be done using a technique called compiler wrapping, which is descibed
in [39]. The remainder of this section will first briefly explain the concept of
compiler wrapping and will then illustrate a solution to the problems using this
technique.

5.2.1 Compiler wrapping explained

Basically, this technique works by using an executable file that impersonates the
original compiler. Then, whenever the compiler is called during a build of the code
base, the impersonating program will be called instead of the original compiler.
This way, it is possible to intercept all the arguments that the build system passes to
the original compiler, simply by looking at the arguments that the impersonating
program receives from the build system.

In essence, the following steps are required to setup compiler wrapping, for
say, the GNU g++ compiler:

1. Create an executable file called ’g++’. The impersonating program must have
the same name as the program that is being impersonated. This way, the
impersonating program can be called by the build system without having to
make changes to the build system.

2. Make sure the program intercepts the parameters passed to it. The parameters
passed to the program are the parameters that the build system is trying to
pass to the original compiler. We will want to inspect these parameters and
use them in an appropriate way.

3. Make sure the program calls the original compiler. While this step may not
be intuitively obvious, it is important that the original compiler is called,
because the build system might depend in some way on the output produced
by the compiler. If after the build system makes the call to the compiler
(which we intercepted) the expected output is not present, the build system
may terminate (or do something else we do not want).

4. Make sure the program exits with the exit code returned by the original compiler.
The reason why the original compiler’s exit code must be returned to the
build system is similar to the reason why the original compiler must be
called: The build system may depend in some way on the exit code returned
by the compiler. If the actual exit code is not returned, the build system
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GNU gcc/g++/c++ : Translate C/C++ source code files to binary

object files.

gcc/g++/c++ wrappers : Translate C/C++ source code files to call

information files.

GNU ar : Archives a set of binary object files into a static

library archive file.

ar wrapper : Archives a set of call information files into a

call information archive file.

GNU ld : Takes a set of binary object files, static

libraries and dynamic libraries and produces a

final binary executable or a dynamic library.

ld wrapper : Takes a set of call information files and call

information archive files and produces a call

information archive file.

Table 5: The relevant GNU compiler tools and their corresponding wrapper scripts.

might react in an unwanted way (it may, for instance, keep on building after
the compiler produced an error, making it much harder to track the error).

5. Modify the PATH environment variable. The last thing to do to make sure
that the impersonating program is called instead of the original compiler, is
modify the PATH environment variable. The path in which the impersonating
program resides should be present in the PATH variable before the path to
the original compiler. That way, when ’g++’ is invoked, the operating system
will find and invoke the impersonating ’g++’ instead of the original one.

5.2.2 Wrapping the GNU compiler tools

Earlier we stated that we need to create a wrapper script for each of the relevant
GNU compiler tools. The table below lists each of the tools with their correspond-
ing wrapper script. For both the tools and the wrapper scripts a description of their
input and output is given. Note that ’input’ here does not mean the parameters
passed to the respective program: Each pair of tool and wrapper program receives
the exact same parameters when invoked. What files they then consume as input
is determined by the respective program, depending on the parameters received.

Note that the GNU compiler tools and the wrapper scripts have a high concep-
tual similarity with respect to what they take as input and what they produce as
output.

Wrapping gcc, g++, c++

The main purpose of the scripts wrapping GNU gcc, g++ and c++ is to make sure
that CCIE receives properly preprocessed source code files as input. To ensure this
is the case, each of these scripts will perform the following steps:

• Each wrapper script will first invoke the original compiler with the param-
eters passed to the wrapper script. This will make sure that the original
compiler gets called in exactly the same way that the build system intended.
These is only one small difference: The -save-temps switch is added to the
list of parameters. By adding this argument the compiler will not delete
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the preprocessed source file, which is exactly what we need. If the compiler
exits with an error code then the wrapper script will terminate, returning
the compiler’s exit code to the build system.

• If the compiler returns success, then the preprocessed source file will be
fed to CCIE, which will generate the appropriate call information file. If
for some reason CCIE fails, the script will still return success to the build
system to make sure that the behaviour of our script exactly mimics that of
the original compiler.

It is easy to see that requirement 1 is satisfied by the above solution, since we
feed source files to CCIE that were preprocessed by the original build system.
To illustrate, the complete source code of the g++ wrapper script is printed in
appendix A.1.

Wrapping ar and ld

At this point, we have a mechanism to automatically create call information
files from source files. To satisfy requirement 2, we need to associate those call
information files with the correct targets. To that end, we will create wrapper
scripts for the GNU ar and ld tools.

The wrapper script for ar performs the following steps:

• First, the original GNU ar tool is invoked with the arguments supplied by the
build system. If ar returns an error, then the script will terminate, returning
the exit code to the build system.

• If ar returns success, the name of the generated static library archive, and the
names of all object files that were put into that archive, are extracted from
the supplied parameters. Next, the script puts all of the call information files
corresponding to the archived object files into a new call information archive.
The name of that call information archive is derived from the name of the
static library archive. This call information archive now contains all the call
information files needed to construct a call graph of the static library that
was just created. Again, the script will return success regardless of whether
the call information archive was successfully created.

The wrapper script for ld is similar to the ar wrapper script, though it is slightly
more complex. It performs these steps:

• Like before, the first thing the script does is call the original GNU ld program
with the supplied arguments. However, the -trace parameter is added to
force the linker to print out the names of all the files that are currently being
linked. These file names are intercepted and used in the next step. If ld
returns an error, then the script terminates and returns the error code to the
build system.

• If ld returns success, then the name of the dynamic library or executable
that was just created is retrieved from the parameters supplied by the build
system. After that, all of the call information files corresponding to the object
files that were printed out by ld are archived into a new call information
archive A. The name of the new archived is derived from the name of the
dynamic library or executable that was just created. Now, ld can be used
to link three different types of files and each of these types of files has a
different set of call information files corresponding to it:
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1. If a dynamic library is being linked, then we need to include all the call
information files in the call information archive corresponding to that
dynamic library into archive A.

2. If a file f from a static library is being linked, then we need to include
the call information file corresponding to file f in the call information
archive corresponding to the static library, into archive A.

3. If an object file is being linked, then we need to include the call infor-
mation file corresponding to that object file into archive A.

As before, the script will return success regardless of whether the call infor-
mation archive was successfully created.

As was stated in table 5, the output of the wrappers of ar and ld is a call
information archive file. Such an archive contains all of the call information files
that correspond to the static library, dynamic library or executable that was created
by ar and ld. In other words, by using compiler wrapping, we now know for each
static library, dynamic library or executable produced by the build system what
call information files correspond to it. That means that requirement 2 has been
satisfied, by which problem 2 has been solved.

At this point there is only one small step left to be automated: We still need a
way to feed all of the files in a call information archive as input to the call graph
constructor. For this, we use a simple script which extracts the complete archive
and then calls CCC, supplying it with the names of the extracted files.
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At this point we have a fully functional toolset that can be used to construct large
call graphs of real-world systems. The next thing we want to accomplish is to
visualize these graphs to support the actual analysis of the systems. In the first
section (6.1) of this chapter, we discuss what requirements the visualization system
must satisfy. Then, in section 6.2, we test three readily available systems against
these requirements and we conclude on which one of these systems is the most
suitable for our purpose. In the next chapter (7) our entire toolset, including the
chosen visualization system, will then be applied to several large, real-world code
bases.

6.1 graph visualization requirements

The requirements for the call graph visualization component of the software are
as follows:

1. Scalability. The program should be able to visualize very large call graphs of
potentially hundreds of thousands of elements. The different operations on
such graphs, like reading, navigating and searching elements or attributes
should work in near real-time, even for very large datasets.

2. Overview. The program should be able to produce views of very large graphs
in such a way that they contribute to the understanding of the program.
Specifically, the visualization program should be able to display a large
number of calls with limited clutter. Also, it should be able to show both the
containment and the call relations in the same view and it should be able to
present the different types of attributes in an intuitive way to the user.

3. Navigation. The program should be able to visually navigate the graph to
allow many different views of the call graph.

4. User friendliness. The program should be able to search the call graph for
specific nodes and edges by searching their attributes. Furthermore, the
program should be readily usable for developers with minimal configuration.
Ideally, developers should be able to simply load a dataset and then use the
full capabilities of the program without having to configure any settings.

5. Ready to use. Our goal is not to create new visualization system, so we
strongly prefer an existing system which is ready to be used and requires no
or minimal modifications.

6.2 visualization candidates

There are obviously many visualization systems around for software containment
and dependency relations. Our goal here is not to provide an exhaustive overview
of all these system, but to present a short list of well known and/or promising
candidates. The visualization candidates that will be discussed are:

• Graphviz [31],

• Tulip [23],
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• SolidSX [14]

All of the above are existing graph visualization systems and each of them will
be tested for suitability for our purposes in this section. It should be noted that a
more in-depth, side-by-side comparison of Tulip and SolidSX is given in [33].

We will use these three systems to (attempt to) generate overviews of the four
software programs listed below. To give an impression of their relative sizes, the
number of lines of code (LOC) of each of program has been calculated using the
CCCC code counting system [34]. For the same purpose, the number of nodes and
edges (both containment and function/call nodes and edges) in their respective
call graphs is also listed.

1. Fibonacci. A tiny, trivial program that computes the n-th number of the
Fibonacci sequence. Fibonacci has 22 LOC, 15 nodes and 19 edges. See
section A.2 in the appendix.

2. Precalc. A small calculator program that calculates the result of simple
prefixed-operator arithmatic expressions. Precalc has 413 LOC, 148 nodes
and 264 edges. See section A.3 in the appendix.

3. Bison [1]. An average/large sized open-source general-purpose LALR(1) and
GLR parser generator. Bison has 13628 LOC, 3214 nodes and 14382 edges.

4. Mozilla Firefox [5]. A very large open-source web browser. Mozilla Firefox has
1479817 LOC, 102969 nodes and 809272 edges. We must note, however, that
the LOC metric is biased, since it was calculated from the complete Mozilla
code base, which contains the source code for a number of applications, one
of which is Firefox. Since Firefox is the largest of those applications and
much code is shared between the applications, the order of magnitude of the
LOC metric is still relevant. Nonetheless, the reader should be aware that
the actual value for the LOC metric is lower than the value presented here.
The number of nodes and edges is accurate, though.

Then, after using the visualization candidates to generate overviews of these
programs, we conclude on what system is the most suitable for our purposes.

6.2.1 Graphviz

Graphviz [31] is a well known graph visualization system that has fine tuned,
stable algorithms and is used by hundreds of different information visualization
applications. It is well-tested, readily available and maintained on many platforms.

On the downside, it does not provide any interaction features: it simply generates
static images of graphs. The figures 25, 26 and 27 show that the Graphviz programs
are really only suitable for investigation of the smallest of call graphs. Even the
small Precalc program is somewhat hard to understand when we look at figures
26 and 27. The call graph of Bison depicted in figure 27 clearly demonstrates
that Graphviz is not suitable for the visualization of call graphs of real-world
programs.

6.2.2 Tulip

Tulip [23] is also a well known visualization framework, with fine tuned, stable
algorithms. It is actively maintained, well documented and available for a range
of platforms. Tulip comes with a variety of layout algorithms and allows the user
to interactively explore the graphs, using search and navigation functions that
are exposed through the user interface. Tulip is a mature and ready-to-use graph
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Figure 25: The tiny Fibonacci program layed out with the dot algorithm.

Figure 26: The small precalc program layed out with the dot algorithm.

visualization framework and a big improvement over Graphviz with respect to
our goals.

As expected the tiny Fibonacci program is clearly visible in figure 28. On the
right hand side of this figure it can be seen that the hierarchy and call relations of
the small Precalc program are much more easy to understand than they were in
figures 26 and 27 using Graphviz.

However, on a real-world sized program like bison, Tulip’s layout algorithms
start failing, as is clearly visible in figure 29: Call edges clutter the layout of both
the Improved Walker algorithm and the GEM algorithm. At this point we are no
longer able to easily distinguish individual call edges and we are at best able to
make some comments on what components are heavily interconnected. Although
it is still possible to perceive hierarchy (most notably when using the Improved
Walker layout algorithm), that too starts to suffer from the clutter of the call edges.

When we take a look at the call graph of the very large Mozilla Firefox program
(figure 30), we see that our display is mostly clutter. It becomes nearly impossible
to base any relevant analysis on the displayed results. Only the layout using the
Improved Walker algorithm is shown here, because the GEM layout algorithm
does not yield results for graphs of this size in reasonable time. This clearly
demonstrates that Tulip, even though it performs much better than Graphviz, is
also not a viable candidate for the visualization of large call graphs.

6.2.3 SolidSX

SolidSX [14] is a relatively new, not so well-known, graph visualization system. In
contrast to the previous visualization tools, SolidSX offers only a single type of lay-
out. It allows the visualization of a compound directed graph, consisting of a tree
representing the containment hierarchy, and a graph representing the adjacency
edges (the call edges in our case). It does so by placing the containment nodes on
concentric rings and allowing the user to interactively expand and collapse those
hierarchy nodes. The adjencency edges are visualized using the Hierarchical Edge
Bundles (HEB) technique of Holten [32], which bundles groups of edges based
on their containment hierarchy. This technique significantly reduces the clutter
of adjacency edges and effectively emphasizes the containment hierarchy of the
nodes of those edges. Like Tulip, it enables the developer to search for particular
nodes and edges based on their attributes, using the user interface.
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Figure 27: The small precalc program (left) and the average/large Bison program (right).
Both call graphs are layed out with the fdp algorithm.

A notable difference between SolidSX and the previous candidates, is that
SolidSX has been specifically designed to visualize the type of graph that we are
using (compound digraphs), whereas Tulip and Graphviz have been designed to
visualize a wide range of types of graphs.

When we look at figure 31, we see that small programs pose no problem for
SolidSX. All nodes and adjacency edges are clearly visible. The right hand side
of the figure nicely illustrates the effectiveness of the HEB approach: Edges are
bundled based on containment and the bundles hierarchically fan out at the end
points. The left hand side of figure 32 shows all the nodes and all call edges of the
average/large sized bison program. Although it becomes rather difficult to follow
individual edges, the overview still provides us with much more information than
the overview of Tulip (figure 29) did. It is relatively easy to see what components
are heavily used and what components are sparsely used. Furthermore, when we
wish to investigate the incoming and outgoing call edges of a single node (i.e.,
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Figure 28: The tiny Fibonacci program (left) and the small Precalc program (right). Both
call graphs are laid out with the Improved Walker algorithm

Figure 29: The average/large sized Bison program. On the left the call graph layed out with
the Improved Walker algorithm. On the right the call graph layed out with the
GEM algorithm.

a directory, class, file or function), all visual clutter can easily be eliminated by
selecting the concerned node (right hand side of figure 32).

We are able to perform our analyses without restriction even on the largest
of the code bases investigated here: That of Mozilla Firefox. The image on the
left in figure 33 instantly shows us that all but a few components are heavily
interconnected. When digging down the containment hierarchy a little further
(right hand image of figure 33), we see that Firefox’s main function actually makes
very little function calls: Apparently, the real action happens somewhere in those
called functions.

SolidSX allows us to interactively explore and visualize very large call graphs
while minimizing clutter of call edges. We thus state that it is the best candidate
for our purposes. This statement is confirmed in [41], which shows (by means of a
user study) that SolidSX’s approach is indeed perceived by developers as the most
effective of the approaches investigated here.
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Figure 30: The very large Mozilla Firefox program. The call graph has been layed out with
the Improved Walker algorithm.

Figure 31: The tiny Fibonacci program (left) and the small Precalc program (right).

Figure 32: The average/large sized Bison program. On the left the call dependencies be-
tween all functions. On the right the calls made in the main function.
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Figure 33: The very large Mozilla Firefox program. On the left, the call dependencies of all
directories of the code base’s root directory. On the right the call dependencies
of the main function.





7A P P L I C AT I O N O F T H E T O O L C H A I N

At this point we have a complete call graph construction and exploration tool
chain, consisting of an information extractor (CCIE), a call graph constructor
(CCC) and a call graph exploration tool (SolidSX). When we sequentially apply
these tools, we have the ability to quickly and accurately investigate numereous
interesting properties of a C/C++ code base.

In this chapter, we will demonstrate the application of the entire tool chain on a
large, real-live C/C++ code base. We will apply the tool chain to Mozilla Firefox
[5] and use it to attempt to find some interesting properties of Mozilla Firefox
by exploring its call graph. We will not specifically define characteristics we are
looking for up front; instead, we will freely explore the call graph and comment
on what we find as we go.

7.1 running ccie and ccc

The first thing to do is to run the C/C++ Call Info Extractor on the source code
of Mozilla Firefox. To this end, we set up our compiler wrapping environment
and issue a make command on the code base. This will both compile Firefox and
extract the information we need to construct a call graph.

On a mid-range machine, this process will take approximately three hours to
complete, as opposed to the approximately one hour that is needed to just compile
Firefox on the same machine. It is interesting to see that the extraction process
thus takes roughly twice as long as a normal compilation run. This seems to
confirm our statement in 3.1.1 that the performance of the Elsa parser is roughly
equal to that of an efficient C++ compiler (GNU GCC in this case). Moreover, if we
assume this is correct, then it also seems to confirm that our information extraction
component does not add significant computational complexity.

When the extraction process is finished we have a collection of call information
archive files (see table 5 in section 5.2.2), which are ready to be processed into
call graph files. We are now able to generate a call graph for each of the binary
targets that were build while compiling Firefox. These binary targets include, next
to the Firefox executable, a collection of shared libraries representing separate
subsystems of Firefox. In this case we are interested in the complete call graph of
Firefox, but if, for some reason, we would like to investigate a single subsystem of
Firefox in isolation, we would be able to do so by generating the call graph for the
respective target.

Running the C/C++ Call graph Constructor is just as easy as running the C/C++
Call Info Extractor: Using the scripts we created we simply specify that we want
to create a SolidSX compatible graph file from the call information archive file
representing the firefox-bin executable. Creating the requested graph takes little
over one minute and it results in a graph file of little under 200 megabytes in size.

7.2 visual exploration using solidsx

Loading the generated call graph file in SolidSX takes approximately five minutes.
After that, we are presented with a fully collapsed directory structure, as depicted
in the left hand image of figure 34. When we expand the root directory two
subdirectories appear: home and usr (center image of figure 34). This is expected,
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since the Firefox code base resides in the /home/hessel/Thesis/Repositories/

directory, whereas the system header files reside in /usr/include. At this point,
we are not interested in the usage of system headers, so to minimize clutter we
hide the usr subdirectory. Double-clicking a few more times expands the root of
the Firefox code base which enables us to see the directories of the subsystems
that reside there (right hand image of figure 34).

Figure 34: Left: The initial presentation of the call graph of Mozilla Firefox. Center: The
first subdirectories of the root directory. Right: The contents of the root directory
of the Firefox code base.

The right hand image of figure 34 shows us that there are quite a number of
subsystems, so let us choose one to focus on. Let us focus on the subsystem that
appears most connected to the other subsystems, i.e., the subsystem that shares
an edge with the most other subsystems. Since the most connected subsystem is
likely to be an important, much used component it would be interesting to find
out more about what it is and how it is used.

To determine what subsystem is most connected, we brush the mouse cursor
over the different subsystem directories. This will show the edges that the brushed
subsystem shares with the other subsystems and will allow us to determine the
most connected subsystem by simply counting the number of edges.

Figure 35: The connectedness of the XPCOM (left), parser (center) and security (right) sub-
systems.

It turns out that XPCOM is the most connected subsystem, sharing edges with 22

of the 24 other subsystems. Figure 35 shows the edges of the XPCOM subsystem
and the less connected parser and security subsystems. So, we will focus on the
XPCOM subsystem.

7.2.1 Exploring the XPCOM subsystem

A little research on the internet quickly reveals that XPCOM is a technology similar
to Microsoft’s COM [11]:
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“XPCOM is a cross platform component object model, similar to
Microsoft COM. It has multiple language bindings, letting the XPCOM
components be used and implemented in JavaScript, Java, and Python
in addition to C++.” [19]

From our own experience with Microsoft’s COM and the above quotation we
can conclude that the XPCOM subsystem allows the developers of Firefox to create
and use well-defined, platform independent subsystems that can be written in,
and used from, a multitude of programming languages and which are easily
reusable between applications. Now, to be able to assess the degree in which
Firefox leverages the potential advantages of XPCOM we would like to know more
about how exactly XPCOM is used thoughout Firefox. Specifically, we would like to
know:

1. How functionality is being exposed via XPCOM:

a) How many subsystems are exposing functionality via XPCOM?
b) How many XPCOM objects are exposed in total?
c) What subsystems are exposing the majority of the functionality?

2. How functionality exposed via XPCOM is being used:

a) How many subsystems are using functionality exposed via XPCOM?
b) How many of the exposed objects are being used in total?
c) What subsystems are using the highest number of exposed objects?

First, we will attempt to answer these questions using SolidSX. Then, we will
use the answers to conclude on the impact that the use of XPCOM has on Firefox
and on its development.

How functionality is being exposed via XPCOM

A little more research shows us ([21]) that for an object to expose functionality via
XPCOM it must implement the QueryInterface method. This method is to provide
information about what functionality (i.e., what interface) is implemented by that
object. Other methods can then call this method to determine, at run-time, what
functionality the object exposes.

Translating this observation to our problem reveals that finding an occurence of
the QueryInterface method indicates that an object is being exposed via XPCOM.
So, to answer the first three questions we use SolidSX to find and highlight all
functions named QueryInterface. The result is depicted in figure 36.

SolidSX indicates that 264 nodes exist which are named QueryInterface. Now,
since counting the number of selected nodes in each subsystem is somewhat
difficult using figure 36, we simply expand the individual subsystems one at a
time and count the selected nodes in each of them. After that, we have the answers
to the first three questions:

How functionality is being exposed via XPCOM:

1. 17 of the 25 subsystems expose functionality via XPCOM,

2. In total 264 objects are exposed via XPCOM, and

3. Approximately 65% of the exposed functionality resides in the security (55),
toolkit (35), modules (34), widget (20) and extensions (20) subsystems.
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Figure 36: All implementations of QueryInterface.

How functionality exposed via XPCOM is being used

Doing once more a small amount of research on how to use XPCOM quickly intro-
duces ([22]) us to the nsCOMPtr template class. The nsCOMPtr class is a variation of
the Counted Pointer software pattern from [26] and provides developers with a
convenient and safe way to handle pointers to XPCOM interfaces; it encapsulates the
use of the QueryInterface, AddRef and Release methods and makes sure that all
requested references are also released again. It is regarded as good practice to use
this template class instead of directly accessing the QueryInterface, AddRef and
Release XPCOM methods, since it eases the use of XPCOM objects and prevents mem-
ory leaks. Since this is regarded to be good practice, we will make the assumption
that (at least the majority) of XPCOM object usage is done using this method.

So, using the above assumption it seems that we have found a way to translate
our original problem of finding out how functionality exposed via XPCOM is being
used, into a much more concrete problem: Finding all calls to the nsCOMPtr class.

The first thing to do is to find the nodes representing the instances of the
nsCOMPtr template class. Unfortunately, at the time of writing SolidSX does not
support partial matching of search queries. That is, only nodes that exactly match
the search query will be highlighted. As a consequence, to find where the instances
of the nsCOMPtr template class reside we need to know the exact name of one
of the instance, or, alternatively, the name of the file containing them. Again, a
quick search on the internet reveals ([20]) the, rather obvious, name of the file
that contains the template class instances: nsCOMPtr.h. Searching for this exact file
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name yields the results depicted in 37, which show that two files with the name
nsCOMPtr.h were found.

Figure 37: All edges coming from the subsystems and going to the various instances of the
nsCOMPtr template class.

Some investigation of the code base reveals that one of these nodes represents
a symbolic link to the file represented by the other node. So, even though we
have two nodes called nsCOMPtr.h and they do represent two different file system
entities (a file and a symbolic link), ultimately, they represent the same source
code entity.

Regardless, it turns out that the template class instances of nsCOMPtr reside
in only one of the two nodes that we found. When we show only the nodes
representing the nsCOMPtr template class instances, together with the collapsed
nodes of the remaining subsystems, we end up with the image on the left hand
side of figure 38.

Now that we found where the different nsCOMPtr instances reside, we can use
them to answer our last three questions.

When we brush an edge with our mouse cursor, SolidSX diplays summary
information about that edge. Doing so reveals that both edges coming from the
subsystems and edges going to the subsystems are being displayed. The edges
coming from the subsystems are what we are looking for: The calls to the nsCOMPtr

classes, made in the subsystems. The edges going to the subsystems, are, however,
not what we are looking for: Since the nsCOMPtr classes are wrapper classes for
the functionality implemented (and then exposed via XPCOM) in the subsystems, it
is no surprise that the nsCOMPtr classes are making calls to the QueryInterface,
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Figure 38: Left: All edges between the subsystems and the various instances of the nsCOMPtr

template class. Right: Only the edges coming from the subsystems and going to
the various instances of the nsCOMPtr template class.

AddRef and Release methods implemented by the subsystems. Although expected,
these latter edges are not what we are looking for and we would like to hide
them, since they clutter our display. Luckily, there is an easy way to achieve this:
The QueryInterface, AddRef and Release methods are all virtual methods. This
makes that calls (edges) to these methods are also marked as virtual, through their
call_is_virtual attribute. So, when we instruct SolidSX to only display edges
that have their call_is_virtual attribute set to false, all of the unwanted edges
are effectively filtered out and we are left only with calls to the nsCOMPtr classes.
The right hand side of figure 38 illustrates this.

At this point we have the ability to determine what subsystems are using objects
exposed via XPCOM and what subsystems are not by simply brushing the subsystem
nodes. The effect is depicted in figures 39 and 40. It turns out that 5 of the 25

subsystem are not using XPCOM objects through one of the nsCOMPtr classes.

Figure 39: The usage of XPCOM objects by the security (left), rdf (center) and widget (right)
subsystems.

Then, to find out how many of the exposed XPCOM objects are actually used
by the other subsystems, we simply select the subsystem nodes in SolidSX. As a
result, all functions that are called by the selected subsystems are highlighted as
well, as can be seen from figure 41. This gives us a really nice overview of what
XPCOM exposed objects are used and which ones are unused and it allows us to
conclude that 36 of the 443 XPCOM exposed objects are unused.
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Figure 40: The usage of XPCOM objects by the editor (left), db (center) and parser (right)
subsystems.

Finally, the question what subsystems are using the highest number of exposed
objects is also easily answered using the current view: We select the subsystems
one by one and then simply count the number of distinct XPCOM objects they call.
This approach tells us that the toolkit subsystem relies most heavily on the
exposed XPCOM objects by calling 149 different objects. A distant second is the
extensions subsystem with 73 different objects, followed by the modules (71),
embedding (67) and security (66) subsystems.

To summarize the answers that we have just found:

How functionality exposed via XPCOM is being used:

1. 20 of the 25 subsystems are using functionality that is exposed via XPCOM.

2. 407 of the 443 exposed objects are actually used.

3. The subsystems that are using the highest number of XPCOM exposed ob-
jects are: toolkit (149), extensions (73), modules (71), embedding (67) and
security (66).

Some missing pieces

Before we move on to analyze the impact of XPCOM on Firefox, we first discuss
something that caught our attention while we were attempting to answer the
questions we posed in the previous section: We found a total of 264 implementations
(i.e., implementation of the QueryInterface method) of XPCOM exposed objects,
whereas we found a total of 443 available XPCOM objects. Obviously, we would like
to know where this difference comes from and we find the answer in the quotation
from [19] that we made earlier:

“XPCOM is a cross platform component object model, similar to
Microsoft COM. It has multiple language bindings, letting the XPCOM
components be used and implemented in JavaScript, Java, and Python
in addition to C++.”

This suggests that the implementations that we are missing may still exist, but we
were unable to detect them since they were not written in C/C++! A quick text
search on the code base reveals that many XPCOM objects are indeed implemented
in JavaScript, which explains the gap between the number of implementations and
the number of available objects that we found. Furthermore, this potentially also
explains why 36 of the 443 available objects appear unused: Although they are
not used from any C/C++ source code, they may still be used from source code
written in JavaScript.
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Figure 41: All nsCOMPtr instances that are used by the subsystems are selected.

The impact of XPCOM on Firefox

After the analyses that we did in the previous sections it is time for us to conclude
on what insights our investigation has provided us with.

First, since many core components of Firefox are implemented as XPCOM
objects, much of the functionality they provide can easily be reused to create new
applications. This is exactly what has happened: Mozilla provides an integrated
code base containing the source code for multiple applications, like:

• Firefox ([6]),

• Thunderbird ([16]),

• Sunbird ([15]),

• SeaMonkey ([13]).

Second, since many core components are implemented as XPCOM objects,
porting issues are reduced to local (i.e., component level) problems. Hence, the
dependencies between subsystems pose no difficulties during porting and staying
portable. Since Firefox is available for a range of platforms, this is a really non-
trivial property.

Next, supporting implementation and use of XPCOM objects from multiple
languages allows the utilization of needed language features (performance, ease-of-
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implementation, security) where appropriate. For instance, it allows performance
critical subsystems to be implemented in a high-performance/native language,
like C++ and non-performance critical subsystem to be implemented in a more
high level language, like JavaScript, to support maintainability, robustness (no
memory leaks), and security (no buffer overflows).

Lastly, since XPCOM has language bindings for JavaScript, it provides a mecha-
nism for websites to use all of the functionality exposed via XPCOM. This makes
Firefox a potentially very powerful application platform. Do note, however, that
the use of XPCOM objects from untrusted webpages will obviously be restricted
to some extend, for security reasons.
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8C O N C L U S I O N S A N D F U T U R E W O R K

In this chapter we will briefly reflect on what has been done. We will talk about
which of the requirements that we formulated (in 2.1 and 6.1) have been met and
which requirements have not been met and what is future work that can be done
to further improve the results.

8.1 evaluation

Initially, what we set out to do was to create a set of tools which would allow us
to create and explore the call graph of a large C/C++ code base. We aimed for the
tools to be scalable, efficient, robust, user-friendly and open-source. Additionally,
we stated that the call graph construction tool should produce complete and
correct call graphs, require only source code as input, be generic enough to handle
a wide range of C/C++ dialects and preferably be open source (see 2.1). Similarly,
the exploration tool should produce clear overviews of very large graphs and be
capable of visual navigation to support many different views of the graph (see
6.1).

8.1.1 What has been accomplished

When we look back at what has been done throughout this thesis, we can say
that we have presented a complete toolchain that constructs containment-and-call
compound directed graphs from C/C++ code bases. When we look to see to what
extend we have been able to satisfied the requirements, we can say the following.

The toolchain that we presented scales well to very large C/C++ code bases,
consisting of hundreds of thousands up to millions of lines of code, as was required
by graph construction requirement 1. At the same time, the toolchain performs
efficiently when applied to a large, real-life code base such as Mozilla Firefox ([5]),
taking roughly three times as long as an efficient C/C++ compiler (GCC, [8])
would take to process the entire code base (graph construction requirement 2).

The call graphs that it delivers are complete in that they contain all of the
explicit and implicit function calls that can exist according to the C/C++ language
specification ([29]), which was required by graph construction requirement 3. Also,
the delivered call graphs are correct in that they are guaranteed to be conservative
whenever possible and, whenever it is not possible to guarantee this, an effort is
made to deliver call graphs that are conservative nonetheless (graph construction
requirement 4).

As required by graph construction requirement 6, the toolchain is not dependent
on the presence of executables, object files or debug information files in order to
be able to operate correctly. Also, as preferred by graph construction requirement
9, the graph construction component of the toolchain is provided as open source
software, to allow and encourage its future development.

The user friendliness requirement for the graph construction component is
well satisfied, since it requires no more effort to construct a call graph from
the code base using the toolchain than it does to build the code base using its
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own build system (graph construction requirement 8). The same requirement
for the graph visualization component is also well satisfied by the easy, intuitive
and configurationless interface that SolidSX ([14]) provides (graph visualization
requirement 4). Since SolidSX is a ready-to-use, actively developed and well
maintained software system that allows developers to visually navigate and
explore our call graphs, while providing them with a clear overview of the
containment and adjacency relations at any level of the containment hierarchy, we
conclude that graph visualization requirements 5, 3 and 2 are also satisfied.

8.1.2 What has not or only partially been accomplished

Though we can be pleased with the capabilities and properties of the presented
toolchain, there are still some requirements that go, perhaps partially, unsatisfied.

First, even though we made a significant effort to make the resulting call graphs
as accurate as possible, we could further improve on the correctness requirement
(graph construction req. 4) in the context of calls via pointers-to-function and
pointers-to-members and calls to virtual functions on object references and object
pointers (see section 8.2 on how this can be done). Hence, we conclude that this
requirement has been largely, but not completely, satisfied.

Second, we should note that the C/C++ Call Information Extractor indeed
accepts, to some extend, incomplete or incorrect source code. Also, the system has
been setup in such a way that a missing or incorrect translation unit merely causes
a gap in the call graph, instead of terminating the entire process. However, the
latter is only true if the code base’s original build system also accepts this faulty
code and does not terminate. If it does terminate on this faulty code, which is not
uncommon, then our toolchain will terminate as well. This behaviour is due to the
nature of the compiler wrapping approach and is, in our case, by design, since it
is very likely that forcing the build system to continue the build is only going to
propagate the error, and will probably make debugging the errors more difficult.
As such, we must conclude that the robustness requirement (graph construction
req. 5) has only been satisfied to a limited extend.

The last thing that we should note is on the range of supported C/C++ dialects.
Even though we set out to support a wide range of C/C++ dialects, we have
only implemented the compiler wrapping approach for the GCC compiler, which
means that, at current, it is not possible to analyze code bases that cannot be build
using GCC. For this reason we conclude that the genericity requirement (graph
construction req. 7) has only partially been satisfied. We should note, on the other
hand, that the design of the toolchain allows the range of supported dialects to be
expanded relatively easily (again, see section 8.2 on how this can be done).

8.2 future work

Although a large portion of the initial requirements have been satisfied, the
effectiveness of the toolchain can still be improved on a number of points. This
section will first discuss what these points are and how the toolchain can be
improved on these points. Then, we will briefly discuss what room for future
improvement exists on points that we did not initially set out to accomplish during
this thesis.
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8.2.1 Improvements to the current toolchain

The improvements that can be made to the current toolchain, with respect to the
requirements that we initially set out to satisfy, can be summed up as follows:

• The accuracy of the toolchain in the context of calls via pointers-to-function
and pointers-to-member and calls to virtual functions on object references
and object pointers can be increased by utilizing data-flow analysis (see [38]
for a comprehensive discussion of data-flow analysis). This would allow us
to significantly reduce the size of the set of call candidates in many common
scenarios within this context.

• By introducing namespace nodes and their corresponding containment
edges it would be possible to provide developers with insight into how
code bases are structured in terms of namespaces. On would, however,
need to find a solution to the problem that namespaces cannot be modelled
together with files using a tree-like datastructure without making some sort
of compromise as to who-contains-who: The C/C++ language specification
allows a namespace to span multiple files, while at the same time a single
file is allowed to contain multiple namespaces.

• Currently, the call graph only displays adjacency relations in the form of
call edges. It is possible though, to extend the call graph with edges that
represent inheritance and overrides relations between classes and functions,
respectively. This would allow developers to, for instance, reason about the
’abstractness’ of a code base.

• By implementing compiler wrapping support for other compiler platforms,
such as the Intel C++ compiler [9], the range of C/C++ dialects to which
the toolset can be applied can be extended without having to modify any
components of the toolchain other than the compiler wrapping scripts.

• At current, when analyzing a library target in isolation, it is not possible to
inspect the initializing and finalizing function calls (see 3.2.5) that the library
would cause in the context of an executable application. However, it is not
hard to understand that this would be a desirable feature when, for instance,
developing a library. A possible solution to this would be to insert a Root
node for library targets, similar to the Root node that is currently inserted
for executable targets (see 4.3.2). The only difference would be that the Root
node for library targets does not make a function call to an entry point, as is
the case with the Root node for executable targets (which makes a call to the
program’s main function).

Implementing this feature would also be rather straightforward, since one
would one need to slightly modify the graph construction algorithm to
include the Root node for library targets, along with the corresponding
initializing and finalizing function calls. The implementation of this would
not be much different from that of the Root node for executable targets,
which already exists.

8.2.2 Future improvements

Here we will briefly discuss points of improvement for both the graph construction
component as well as the visualization component of the toolchain that are beyond
the scope of this thesis, but which could significantly improve the usefulness of
the toolchain.
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Add support for multiple programming languages

As we have seen during the analysis of the Mozilla Firefox code base in section 7, it
is not uncommon for large code bases to be written in more than one programming
language. Also, having some form of binding between the different languages,
enabling their interoperation, is a very conceivable situation: One could think, for
example, of an application written in C++ that exposes the core of its functionality
via a scripting language like Python. If we would extend the toolchain to include
call information extraction support for other programming languages, then we
would be able to analyze such code bases in their entirety and see, for instance,
via what interfaces the core functionality is exposed to the scripting language.
Obviously, it goes without saying that we would then also be able to analyze code
bases that are completely written in the newly supported languages.

However, considering the amount of effort it takes to implement support for a
single language, as we did, we must note that adding support for new languages
can be a difficult and time-consuming task. On the other hand, only part of the
toolchain would require to be extended, while the call graph constructor (ccc)
and SolidSX need no modification or extension in any way to support these new
languages. Also, adding support for other programming languages is the way to
increase the number of code bases to which the toolchain can be applied, indicating
that the potential pay-off for such effort is, like the effort required to realize the
support, large.

Extend SolidSX to allow visualization of the exploration path by branching

At current, SolidSX provides the developer with a single view of the graph, at any
point in time. That is, if the developer wants to get a different view of the graph,
he needs to navigate away from the current view to the view that he wishes to
obtain. Although this is a very natural way of exploring, it would be of great value
if the developer would be able to branch the current view, allowing the original
view to remain intact, while the developer keeps on exploring using the branched
view. By presenting the developer with several of such branches side-by-side, he
is effectively able to construct and view his exploration path, instead of only the
currently explored site.

An example of an application that would greatly benefit from this, is iterative
hypothesis validation, whereby one would continuely pose, verify and reject new
hypotheses by digging deeper into the presented data. In such a case, the developer
could branch the current view when he wishes to verify a new hypothesis he
formed based on the current view. Then, when the hypothesis is verified, he could
continue to branch it further during a next iteration, or, when the hypothesis is
rejected, he can simply throw away the branched view and continue his research
using the original view.

8.3 final words

Even though relevant and useful work is being done, there is still a long way to go
towards significantly easing the task of program understanding for the purpose of
reengineering or maintenance tasks. The tools currently available, including the
one presented here, though powerful and useful, are in most cases not yet able
to alleviate a developer of his program understanding related tasks. Rather, they
are only able to support a developer by presenting him with information that is
relevant to the task at hand. Because of this, program understanding remains a
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difficult and time-consuming activity that continues to require the knowledge and
expertise of experienced developers.





Part IV

A P P E N D I X





AA P P E N D I X A

a.1 the g++ wrapper script

#! /bin/bash

###########################################################################

# Copyright (C) 2009 by Hessel Hoogendorp #

# bugs.ccc@gmail.com #

# #

# This program is free software; you can redistribute it and/or modify #

# it under the terms of the GNU General Public License as published by #

# the Free Software Foundation; either version 2 of the License, or #

# (at your option) any later version. #

# #

# This program is distributed in the hope that it will be useful, #

# but WITHOUT ANY WARRANTY; without even the implied warranty of #

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #

# GNU General Public License for more details. #

# #

# You should have received a copy of the GNU General Public License #

# along with this program; if not, write to the #

# Free Software Foundation, Inc., #

# 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. #

###########################################################################

# -----------------------------------------------------------------------------

# This script wraps g++.

#

# First, it makes the original call to g++, and, if that succeeds, then calls

# the call information extractor with the same parameters.

# -----------------------------------------------------------------------------

# -----------------------------------------------------------------------------

# Call the original g++ compiler.

# -----------------------------------------------------------------------------

# Find the installation path of g++.

CXX=$(whereis g++)

CXX=${CXX#*: } # Strip off ’g++: ’.

CXX=${CXX%% *} # Strip off any secondary paths.

# Test whether we found an existing, executable program.

if [ ! -x $CXX ]; then

echo "ERROR: The g++ wrapper script could not find a usable C++ compiler."

exit 1

fi

# Reconstruct the arguments passed to this script; sometimes a -D option is

# passed to the compiler, with escaped quotes in the argument. The original
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# command line may look like this:

# -DSOMENAME="\"SomeText to be quoted in the source file.\""

# To make sure this gets passed properly to the actual compiler, we need to

# reconstruct such arguments. That is, we need to manually put back the outer

# pair of quotes, since they have been interpreted by the shell (to form a

# single argument). The next step will be to write out the reconstructed command

# line to a temporary file and source that file. This will then properly call

# the compiler.

NEWARGS=

EXECBYSOURCING=0

for ARG in "$@"; do

case $ARG in

-D*=\"*\")

EXECBYSOURCING=1

ARG="${ARG/=\"/=}"

ARG="${ARG/\"/\\\"\"}"

ARG="${ARG/=/=\"\\\"}"

;;

esac

NEWARGS="$NEWARGS ""${ARG}"

done

# Supply the compiler with all arguments passed to this script, but add the

# -save-temps switch. This will cause the compiler to save the preprocessed

# source code. The extractor will then use this preprocessed source code to

# extract the call information.

if [ $EXECBYSOURCING -eq 0 ]; then

CMD="$CXX $@ -save-temps"

$CMD

exitCode=$?

else

CMD="$CXX"" ""$NEWARGS"" -save-temps"

# Generate and store the name of a temporary file.

TMPFILE="ccc-$RANDOM.$RANDOM.$RANDOM-ccc"

# Output the command line to the temporary file.

echo "$CMD" > $TMPFILE

# Source the temporary file.

. $TMPFILE

exitCode=$?

# Remove the temporary file.

rm $TMPFILE

fi

# Check whether the call to g++ was successful. If not, return with the
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# compiler’s exit code.

if [ $exitCode -ne 0 ]; then

exit $exitCode

fi

# -----------------------------------------------------------------------------

# Extract call information.

# -----------------------------------------------------------------------------

# Call the call information extractor with the same arguments that were

# supplied to this script.

CMD="ccc-extract $@"

$CMD

# The compiler returned success, so return success regardless of the output of

# the extraction script.

exit 0

a.2 source code of the fib program

a.2.1 File main.cc

#include "fib.h"

int main(int argc, char** argv)

{

Fib f;

f.Calculate(20);

return 0;

}

a.2.2 File fib.h

#ifndef FIB_H

#define FIB_H

class Fib

{

public:

int Calculate(unsigned int n);

};

#endif

a.2.3 File fib.cc

#include "fib.h"

int Fib::Calculate(unsigned int n)

{

switch(n)

{
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case 0: return 0;

case 1: return 1;

default: return Calculate(n - 1) + Calculate(n - 2);

}

}

a.3 source code of the precalc program

a.3.1 File pc_main.cc

// ------------------------------------------------------------------

// PreCalc - A simple prefixed-operator calculator

// ------------------------------------------------------------------

// GRAMMAR:

//

// <EXPRESSION> ::= <OPERATOR>(<EXPRESSION>,<EXPRESSION>) | <NUMBER>

// <OPERATOR> ::= + | - | * | /

// <NUMBER> ::= <NUMBER><DIGIT> | <DIGIT>

// <DIGIT> ::= 0 | 1 | 2 | 3 |4 | 5 | 6 | 7 | 8 | 9

// ------------------------------------------------------------------

// EXAMPLE INPUT: *(+(5,3),2)

// ------------------------------------------------------------------

#include "pc_printing.h"

#include "pc_lexer.h"

#include "pc_parser.h"

#include "pc_ast.h"

#include "pc_astvisitor.h"

#include <stdio.h>

int main(int argc, char** argv)

{

if (argc != 2)

{

printError("Illegal number of arguments.");

printUsage();

return 1;

}

Lexer lexer(argv[1]);

Parser parser(&lexer);

ASTNode* pNode = parser.Parse();

ASTVisitor visitor;

int result = visitor.VisitAST(pNode);

delete pNode;

printf("Result: %i\n", result);

return 0;

}
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a.3.2 File pc_printing.h

#ifndef PC_PRINTING_H

#define PC_PRINTING_H

void printError(const char* error);

void printUsage();

#endif

a.3.3 File pc_printing.cc

#include "pc_printing.h"

#include <stdio.h>

void printLine(const char* line)

{

printf("%s\n", line);

}

void printError(const char* error)

{

printf("ERROR: ");

printLine(error);

printLine("");

}

void printUsage()

{

printLine("Usage: precalc EXPRESSION");

printLine("Calculates the values of simple prefixed-"

"operator arithmatic expressions.");

printLine("");

printLine("Example: Invoking precalc with expression"

" *(5,-(3,2)) calculates");

printLine("the value of the infix expression 5*(3-2)");

}

a.3.4 File pc_lexer.h

#ifndef PC_LEXER_H

#define PC_LEXER_H

enum TokenType

{

OP_ADD,

OP_SUBTRACT,

OP_MULTIPLY,

OP_DIVIDE,

OL_BEGIN,

OL_END,

COMMA,

NUMBER

};
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class Lexer

{

public:

Lexer(char* expr);

public:

bool Next();

TokenType GetTokenType();

int GetNumber();

private:

char* m_expr;

int m_pos;

TokenType m_tokenType;

int m_number;

};

#endif

a.3.5 File pc_lexer.cc

#include "pc_lexer.h"

#include "pc_printing.h"

#include <string.h>

Lexer::Lexer(char* expr)

{

m_expr = expr;

m_pos = 0;

}

bool Lexer::Next()

{

if (m_pos >= (int)strlen(m_expr)) return false;

switch(m_expr[m_pos])

{

case ’+’:

m_tokenType = OP_ADD;

break;

case ’-’:

m_tokenType = OP_SUBTRACT;

break;

case ’*’:

m_tokenType = OP_MULTIPLY;

break;

case ’/’:

m_tokenType = OP_DIVIDE;

break;

case ’(’:
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m_tokenType = OL_BEGIN;

break;

case ’)’:

m_tokenType = OL_END;

break;

case ’,’:

m_tokenType = COMMA;

break;

case ’0’:

case ’1’:

case ’2’:

case ’3’:

case ’4’:

case ’5’:

case ’6’:

case ’7’:

case ’8’:

case ’9’:

m_tokenType = NUMBER;

m_number = 0;

while (m_expr[m_pos] >= ’0’ && m_expr[m_pos] <= ’9’)

{

m_number = (m_number * 10) + (m_expr[m_pos] - 48);

m_pos++;

}

return true;

default:

printError("Unknown token.");

return false;

}

m_pos++;

return true;

}

TokenType Lexer::GetTokenType()

{

return m_tokenType;

}

int Lexer::GetNumber()

{

return m_number;

}

a.3.6 File pc_parser.h

#ifndef PC_PARSER_H

#define PC_PARSER_H

#include "pc_lexer.h"

class ASTNode;

class OperatorNode;
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class Parser

{

public:

Parser(Lexer* pLexer);

ASTNode* Parse();

private:

ASTNode* ParseExpression();

bool ParseOperandList(ASTNode** ppOperand1, ASTNode** ppOperand2);

bool ParseOperandListBegin();

bool ParseOperandListEnd();

bool ParseComma();

bool TryNext();

bool TestToken(TokenType expected);

private:

Lexer* m_pLexer;

};

#endif

a.3.7 File pc_parser.cc

#include "pc_parser.h"

#include "pc_lexer.h"

#include "pc_ast.h"

#include "pc_printing.h"

Parser::Parser(Lexer* pLexer)

{

m_pLexer = pLexer;

}

ASTNode* Parser::Parse()

{

return ParseExpression();

}

ASTNode* Parser::ParseExpression()

{

if (!TryNext()) return 0;

ASTNode* pNode = 0;

ASTNode* pOperand1 = 0;

ASTNode* pOperand2 = 0;

switch(m_pLexer->GetTokenType())

{

case OP_ADD:

if (!ParseOperandList(&pOperand1, &pOperand2)) return 0;

pNode = new AddNode(pOperand1, pOperand2);

break;
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case OP_SUBTRACT:

if (!ParseOperandList(&pOperand1, &pOperand2)) return 0;

pNode = new SubtractNode(pOperand1, pOperand2);

break;

case OP_MULTIPLY:

if (!ParseOperandList(&pOperand1, &pOperand2)) return 0;

pNode = new MultiplyNode(pOperand1, pOperand2);

break;

case OP_DIVIDE:

if (!ParseOperandList(&pOperand1, &pOperand2)) return 0;

pNode = new DivideNode(pOperand1, pOperand2);

break;

case NUMBER:

pNode = new NumberNode(m_pLexer->GetNumber());

break;

default:

printError("Unexpected token in input. Expected operator or number.");

return 0;

}

return pNode;

}

bool Parser::ParseOperandList(ASTNode** ppOperand1, ASTNode** ppOperand2)

{

if (!ParseOperandListBegin()) return false;

if ((*ppOperand1 = ParseExpression()) == 0) return false;

if (!ParseComma()) return false;

if ((*ppOperand2 = ParseExpression()) == 0) return false;

if (!ParseOperandListEnd()) return false;

return true;

}

bool Parser::ParseOperandListBegin()

{

return TryNext() && TestToken(OL_BEGIN);

}

bool Parser::ParseOperandListEnd()

{

return TryNext() && TestToken(OL_END);

}

bool Parser::ParseComma()

{

return TryNext() && TestToken(COMMA);

}

bool Parser::TryNext()

{

if (!m_pLexer->Next())

{

printError("Unexpected end of expression.");

return false;
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}

return true;

}

bool Parser::TestToken(TokenType expected)

{

if (m_pLexer->GetTokenType() != expected)

{

printError("Unexpected token found");

return false;

}

return true;

}

a.3.8 File pc_ast.h

#ifndef PC_AST_H

#define PC_AST_H

enum NodeType

{

TP_ADD,

TP_SUBTRACT,

TP_MULTIPLY,

TP_DIVIDE,

TP_NUMBER

};

class ASTNode

{

public:

virtual ~ASTNode();

virtual NodeType GetType() = 0;

};

class OperatorNode : public ASTNode

{

public:

OperatorNode(ASTNode* pOperand1, ASTNode* pOperand2);

virtual ~OperatorNode();

ASTNode* GetOperand1();

ASTNode* GetOperand2();

protected:

ASTNode* m_pOperand1;

ASTNode* m_pOperand2;

};
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class AddNode : public OperatorNode

{

public:

AddNode(ASTNode* pOperand1, ASTNode* pOperand2);

virtual NodeType GetType();

};

class SubtractNode : public OperatorNode

{

public:

SubtractNode(ASTNode* pOperand1, ASTNode* pOperand2);

virtual NodeType GetType();

};

class MultiplyNode : public OperatorNode

{

public:

MultiplyNode(ASTNode* pOperand1, ASTNode* pOperand2);

virtual NodeType GetType();

};

class DivideNode : public OperatorNode

{

public:

DivideNode(ASTNode* pOperand1, ASTNode* pOperand2);

virtual NodeType GetType();

};

class NumberNode : public ASTNode

{

public:

NumberNode(int number);

virtual NodeType GetType();

int GetNumber();

private:

int m_number;

};

#endif

a.3.9 File pc_ast.cc

#include "pc_ast.h"

ASTNode::~ASTNode()

{

}
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OperatorNode::OperatorNode(ASTNode* pOperand1, ASTNode* pOperand2)

{

m_pOperand1 = pOperand1;

m_pOperand2 = pOperand2;

}

OperatorNode::~OperatorNode()

{

if (m_pOperand1 != 0)

{

delete m_pOperand1;

m_pOperand1 = 0;

}

if (m_pOperand2 != 0)

{

delete m_pOperand2;

m_pOperand2 = 0;

}

}

ASTNode* OperatorNode::GetOperand1()

{

return m_pOperand1;

}

ASTNode* OperatorNode::GetOperand2()

{

return m_pOperand2;

}

AddNode::AddNode(ASTNode* pOperand1, ASTNode* pOperand2)

: OperatorNode(pOperand1, pOperand2)

{

}

NodeType AddNode::GetType()

{

return TP_ADD;

}

SubtractNode::SubtractNode(ASTNode* pOperand1, ASTNode* pOperand2)

: OperatorNode(pOperand1, pOperand2)

{

}

NodeType SubtractNode::GetType()

{

return TP_SUBTRACT;

}
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MultiplyNode::MultiplyNode(ASTNode* pOperand1, ASTNode* pOperand2)

: OperatorNode(pOperand1, pOperand2)

{

}

NodeType MultiplyNode::GetType()

{

return TP_MULTIPLY;

}

DivideNode::DivideNode(ASTNode* pOperand1, ASTNode* pOperand2)

: OperatorNode(pOperand1, pOperand2)

{

}

NodeType DivideNode::GetType()

{

return TP_DIVIDE;

}

NumberNode::NumberNode(int number)

{

m_number = number;

}

NodeType NumberNode::GetType()

{

return TP_NUMBER;

}

int NumberNode::GetNumber()

{

return m_number;

}

a.3.10 File pc_astvisitor.h

#ifndef PC_ASTVISITOR_H

#define PC_ASTVISITOR_H

class ASTNode;

class NumberNode;

class OperatorNode;

class ASTVisitor

{

public:

int VisitAST(ASTNode* pAST);

private:
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int VisitNode(ASTNode* pNode);

int VisitNumber(NumberNode* pNumber);

int VisitOperator(OperatorNode* pOperator);

};

#endif

a.3.11 File pc_astvisitor.cc

#include "pc_astvisitor.h"

#include "pc_ast.h"

#include "pc_printing.h"

int ASTVisitor::VisitAST(ASTNode* pAST)

{

NodeType nt = pAST->GetType();

if (nt == TP_ADD || nt == TP_SUBTRACT ||

nt == TP_MULTIPLY || nt == TP_DIVIDE)

{

return VisitNode(pAST);

}

else

{

printError("The supplied AST node is not an Operator node.");

return 0;

}

}

int ASTVisitor::VisitNode(ASTNode* pNode)

{

if (pNode->GetType() == TP_NUMBER)

return VisitNumber((NumberNode*)pNode);

return VisitOperator((OperatorNode*)pNode);

}

int ASTVisitor::VisitNumber(NumberNode* pNumber)

{

return pNumber->GetNumber();

}

int ASTVisitor::VisitOperator(OperatorNode* pOperator)

{

int operand1 = VisitNode(pOperator->GetOperand1());

int operand2 = VisitNode(pOperator->GetOperand2());

switch(pOperator->GetType())

{

case TP_ADD:

return operand1 + operand2;

case TP_SUBTRACT:

return operand1 - operand2;

case TP_MULTIPLY:
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return operand1 * operand2;

case TP_DIVIDE:

return operand1 / operand2;

}

return 0;

}
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