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A B S T R A C T

In this thesis we present a set of multi-scale visualization techniques,
with implementation, for air traffic data. The goal of our visualiza-
tions is showing attributes of spatio-temporal data for multiple levels
of detail both in geographical and temporal space, which can help
with finding anomalies in air traffic and optimizing flight paths. We
allow continuous transitions between the visualization of instanta-
neous flight positions and visually aggregated data for multiple days.
We use animation, bundling and density maps to reduce clutter and
achieve visual scalability. Implementing our algorithms on the GPU
allows us to visualize thousands of trails with millions of data points
at interactive framerates.
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1
I N T R O D U C T I O N

With the availability of relative cheap GPS-receivers and Universal
Access Transceivers, the amount of generated movement data has
vastly increased over the recent years. Movement data can be gen-
erated from vehicles (e. g. cars, ships, aircrafts), mobile phones, or
even animals [Adrienko and Adrienko, 2011].

Within this field of movement data, we will focus on flight data,
which is typically used for Air Traffic Control (ATC) and Air Traffic
Management (ATM). ATC focuses on the organization of the current
flow of air traffic to prevent accidents and minimize delays. ATM on
the other hand analyses historical flight data to improve future air
traffic flow. ATC and ATM use visualizations of air traffic for find-
ing and explaining outliers, understanding correlations between con-
gestions and weather patterns, training of air traffic controllers, and
planning of flight routes to minimize delays and fuel consumption.
Figure 1 shows the graphical display of a typical ATM system.

Movement data, as the name implies, consists of spatio-temporal
measurements, and can optionally contain other attributes (e. g. ve-
locity, status, callsign). Data points belonging to the same object can
be grouped into a trail and one or more trails can form a movement
dataset. Gathering, visualizing, and analyzing this data is a challeng-
ing and interesting field.

Visualizing movement data poses challenges for both visual and
computational scalability. Since movement datasets are larger than
their static variants, and can typically contain thousands of trajecto-
ries with millions of data points. Visualizing this in an interactive
and realtime fashion is a computational challenge. At the same time,
drawing thousands of paths on a computer screen will naturally re-
sult in visual clutter and occlusion, especially in high-density regions.
Visualizing additional attributes further increases this problem.

ATC and ATM users analyze air traffic data for the following goals:

1. understand past incidents and improve safety;

2. asses new safety systems and the resulting aircraft routes;

3. reorganize the airspace and corresponding procedures to han-
dle increasing air traffic;

4. understand weather effects on air traffic routes;

5. study profitability from a business viewpoint (number of air-
crafts on a given route, busyness of airports);

1
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2 introduction

Figure 1: The Enhance Traffic Management System (ETMS) is an ATM tool
used by the Federal Aviation Administration (FAA) to display air
traffic, weather, alerts and statistical information.

6. examine trajectories for training purposes.

Furthermore, an application that assist with these tasks should be:

1. scalable in term of data size, number of supported attributes
and computational speed;

2. easy and intuitive to use.

In this thesis we present a set of visualization techniques for mul-
tivariate attributed time-dependent air traffic data that addresses the
above mentioned ATC and ATM goals. In contrast to existing ATC
and ATM systems that focus on instantaneous flight positions or ag-
gregated (textual) data, we focus on the visualization of aircraft trails
with attribute data at different spatio-temporal levels of detail. Our
techniques allow continuous navigation between instantaneous plane
positions for a given time and visually aggregated trails over a time
window of multiple days.

The structure of this thesis is as follows. Chapter 2 discusses related
work in the field of movement data analysis (with a focus on air traf-
fic visualization) and related visualization and filtering techniques.
Our visualization techniques are explained in Chapter 3, while Chap-
ter 4 focuses on their implementations. Chapter 5 shows some visual
results for our techniques on different dataset and discusses the per-
formance and limitations. Finally, we conclude the thesis in Chapter 6

and propose some future work.
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publications

Some ideas and figures from this thesis have appeared previously in
the following publications:

• Christophe Hurter, Ozan Ersoy, S Fabrikant, Tijmen Klein, and
Alexandru Telea. Bundled visualization of dynamic graph and
trail data. IEEE Transactions on Visualization and Computer Graph-
ics, 99(PrePrints):1, 2013b. ISSN 1077-2626. doi:
http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.246.

• Tijmen Klein, Alexandru Telea, and Matthew van der Zwan.
Dynamic multiscale visualization of flight data. In VISAPP (1),
2013.

[Revision 7fcca48, Sat Nov 23 13:52:52 2013 +0100 ]



[Revision 7fcca48, Sat Nov 23 13:52:52 2013 +0100 ]



2
R E L AT E D W O R K

This chapter gives an overview of work relevant for our research. In
order to gain insight in flight traffic visualization, we analyze existing
Air Traffic Control systems and some state-of-the-art visualizations of
different movement data (e. g. ships, cars) in Section 2.1.

2.1 movement data analysis

This research focuses on the visualization of aircraft movement data.
In this context, movement data consists of several trajectories of ob-
jects (e. g. aircrafts, ships), where each trajectory, or trail, is a temporal
sequence of spatial data, optionally enriched with other attributes
(e. g. altitude, velocity, direction, origin/destination). These spatio-
temporal datasets can easily contain thousands of trails and millions
of data points. An option to gain insight in this data is to use visual-
izations, either on the raw data or on aggregated forms of the data.

2.1.1 Air Traf�c Systems

With a continuously increasing amount of air traffic, the need to reg-
ulate and analyze this traffic is larger than ever. The deregulation of
air traffic makes this task even more complex. This is the reason for
the development of Air Traffic Control (ATC) Systems: tools that help
air traffic controllers with real time decision making or analysis and
exploration of historical flight data.

There are some well known commercial-grade ATC Systems cur-
rently in use in the market. The Future ATM Concept Evaluation Tool
(FACET) [Bilimoria et al., 2001] is an air traffic simulation and analy-
sis tool developed by the NASA Ames Research Center. The purpose
of FACET is to provide a simulation environment for the exploration,
development and evaluation of ATM techniques. It uses aircraft per-
formance profiles (e. g. cruise speeds climb and climb/descend rates),
weather data, flight information and airspace models to present a 4D
(spatio-temporal) flight simulation to its users. Different 2D and 3D
views (see Figure 2) are used to display this air traffic data under
simulated or measured conditions.

In addition to being a simulation tool, FACET is currently also used
as an operational tool with real-time data. Federal Aviation Adminis-
tration (FAA) traffic flow managers and commercial airline dispatch-
ers have used FACET with integrated real-time data from the FAA
radar systems and National Weather Service [Center, 2010]. Online

5
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6 related work

Figure 2: The Graphical User Interface of FACET showing a 2D view of air
traffic data. Aircrafts are shown at their instantaneous positions
using glyphs

videos 1 show some examples of FACET visualizing USA air traffic at
various times (including September 11, 2001).

NEST [Eurocontrol, 2013] is a similar tool that has been developed
by EUROCONTROL, the European Organisation for the Safety of Air
Navigation. It is used internally by EUROCONTROL and Air Nav-
igation Service Providers and focuses on airspace structure design
and development, strategic traffic flow organization, scenario prepa-
rations and real-time simulations. It can use historical trajectory infor-
mation or calculated trajectories based on known route networks for
aircrafts. NEST is used to optimize the available resources (e. g. run-
ways, airspace, aircrafts).

Epoques [Gaspard-Boulinc et al., 2003] (see Figure 5) is developed
based on the requirements from the five French Air Traffic en route
centers, and focuses on methods and tools for ATM Safety Occur-
rences, based on instantaneous flight position analysis. It gathers
radar and audio recordings to help operators with detecting and
analyzing air traffic incidents (e. g. aircrafts who went beyond their
safety distance). These incidents happen frequently (in contrast to ac-
cidents), and serve as a useful metric to optimize flight routes.

Thales, Inc. is currently working on CoFlight, a next-generation
flight data processing open-architecture framework for the storage,
analysis, and visualization of spatio-temporal flight data [Thales, Inc.,
2013].

1 http://www.youtube.com/watch?v=8pYiC7bTUxQ
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2.1 movement data analysis 7

Figure 3: Users can control the transition from a top-down view (latitude,
longitude) to a side-view (altitude, longitude) in FromDaDy by
dragging the mouse

One of the interesting new tools that has been developed is From-
DaDy, a visualization tool that focuses on the challenge of represent-
ing and interacting with aircraft trajectories that involve uncertainties
[Hurter et al., 2009]. FromDaDy uses scatterplots, brushing, pick and
drop, juxtaposed views and rapid visual configuration to explore mul-
tidimensional data. It allows the user to spread the data over several
linked views. These views are based om complex interactive queries in-
volving addition, removal and filtering of trajectories. Figure 4 shows
the “pick and drop” interaction that uses a brushing technique to
select data, which can be picked up and isolated for further inspec-
tion in a different view. The combination of these views can help the
user to gain new insights in the flight data. The usage of multiple
views makes this tool more visually scalable than previously men-
tioned tools. Figure 3 shows the interactive transition between one
view (top-down) to a different view (side-view) in FromDaDy.

Many other ATC systems have been developed, a comprehensive
overview of such systems is given by GAIN Group [GAIN Group,
2004].

While the previous mentioned systems and currently developed
systems emphasize the importance of visualization for ATC systems,
they all have very simplistic visualizations and focus on either in-
stantaneous positions of aircrafts or the aggregation of all aircrafts.
Specifically, there is no way to continuously navigate between these
different levels of abstractions, which makes it harder to link coarse
and fine patterns.

2.1.2 Vessel Visualization

Marine traffic shares similarities with aircraft traffic: both have great
freedom of movement (compared to road constrained vehicles), are
equipped with GPS broadcasting equipment, and are constrained to
safety regulations. Therefore it makes sense to find inspiration in ex-
isting vessel visualization techniques. Willems et al. have developed a
vessel visualization that enables operators of coastal surveillance sys-
tems to easily find the significant maritime areas and routes (anchor
points and “highways”) [Willems et al., 2009]. Their visualization is
based on Automatic Identification System (AIS) data: a systems that is
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8 related work

Figure 4: The “pick and drop” interaction in FromDaDy allows the user to
use a brush to select data and isolate this selected data in different
view

Figure 5: The Epoques system focuses on the instantaneous position of
planes based on radar and audio recordings
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2.1 movement data analysis 9

Figure 6: Multi-scale Vessel density on a logarithmic scale in front of the
harbour of Rotterdam, The Netherlands, of a single day convolved
with kernels of 100m and 1.5km.

currently equipped on my vessels; it exchanges data (unique identifi-
cation, navigation status, position, speed, direction) with other nearby
ships, AIS base stations and satellites [ITU, 2001]. Thousands of these
nautical trajectories are visualized using density fields that are com-
puted from a convolution of the dynamic vessel positions and a ker-
nel. The density field is shown as a illuminated height map (see Fig-
ure 6). A combination of a large and small kernel is used to provide
overview and detail; a large kernel provides overview and is able to
show vessel highways, while a small kernel can focus on the instan-
taneous positions of vessels. Willems et al. compared their method
against well-known trajectory visualizations (e. g. animation of mov-
ing dots) and tested these visualizations with tasks that are common
for maritime analysis: find stopping vessels, fast moving vessels and
estimate the busiest routes. They claim that their methods is the best
for finding stopping objects and performs equally to the other meth-
ods for the other tasks [Willems et al., 2011]. The overview and detail
combination that is provided by this method would be a nice addi-
tion to existing ATC systems. However, it is limited to static trajectory
analysis (no animation) and not capable of quickly changing the level
of detail or overview.

Riveiro and Falkman argue that visualization and user input are
the critical challenges for maritime anomaly detection, since fully au-
tonomous anomaly detection is rarely used in the real world due to
their complexity and high amount of false alarms [Riveiro and Falk-
man, 2011]. Anomaly detection should therefore focus on providing
adequate support for the human decision makers. This can be con-
firmed by the fact that multiple coastal administrations have collabo-
rated with scientist to develop visual analytics systems that aid with
the interpretation of historical AIS data. The Norwegian Coastal Ad-
ministration had specific questions about potential shipping lane op-
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10 related work

timizations and used a Kernel Density Estimation (KDE) based tech-
nique to help them answering these questions [Lampe et al., 2010].
The U.S. Coast Guard’s Ninth District and Atlantic Area Commands
worked together with Malik et al. to develop a system that helps with
the analysis of historic response operations and assessment of the po-
tential risks in the maritime environment. This shows that air traffic
visualizations should probably follow a similar route.

2.1.3 Other Movement data

Aircrafts and vessels make up for most of the current movement vi-
sualizations, which can be explained by the ease of traceability due
to required GPS equipment and economical impact. However, all pre-
viously mentioned techniques can also be applied to other forms of
movement data (e. g. cars, scooters, animal migrations, tourist routes).
Adrienko and Adrienko show that reducing visual clutter by means
of abstraction and spatial generalization can be an effective tool in
massive movement visualization [Adrienko and Adrienko, 2011].
Their method divides the trajectories into aggregate flows between
areas. These areas are not predefined, but are calculated using signif-
icant points from the trajectories. While an effective way to show a
course flow of routes, this method discards other attributes and over-
simplifies the trajectories.

Searching for the diversity of routes with a fixed origin and desti-
nation (based on taxi routes) again shows the importance of clutter
reduction and information filtering [Liu et al., 2011]. The analysis of
route diversity can be used to find potential bottleneck for transporta-
tion management.

MoleView is a technique for interactive exploration of multivariate
data with a spatial embedding. It defines a semantic lens which se-
lects a specific spatial and attribute-related data range, and keeps the
selected data in focus while continuously deformed the unselected
data to maintain the context [Hurter et al., 2011]. TrajectoryLenses is
an interaction technique that extends the exploration lens metaphor
to support complex filter expressions and the analysis of long time pe-
riods. It allows both temporal and spatial filters, and can be used with
interactive map to find geospatial areas of interest. Combining differ-
ent lenses allows for more complex and aggregated queries [Krüger
et al., 2013]. These focus + context techniques can be an important
tool in reducing the visual clutter even further.

2.2 conclusion

The systems mentioned in this chapter do not fulfill all requirements
that ATC users have. First, the ability to handle and visualize multi-
variate data is often limited. Systems focusing on the instantaneous
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2.2 conclusion 11

positions of aircrafts have very limited (visual) scalability. And finally,
many of the analyzed systems suffer from large amounts of visual
clutter. Therefore, we have developed a set of multi-scale visualiza-
tion techniques for air traffic data. These techniques help to reduce
clutter and achieve visual scalability.
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3
I M A G E - B A S E D V I S U A L I Z AT I O N

This chapter introduces our image-based visualization techniques for
aircraft trails, based on the requirements mentioned in Chapter 1.

3.1 overview

This section provides a bird’s-eye view of our visualization techniques
and pipeline, which is illustrated in Figure 7

We have used 2 data sources for the development and testing of
our application. One originates from the French ATC authorities and
contains one week of flights above the French airspace. Our second
dataset is scraped from the Planefinder [PlaneFinder, 2013] website,
and contains a month of worldwide user-collected flight data. Both of
these datasets consist of a collection of aircraft trails, where each trail
contains an ordered sequence of points along the flight path. Our
main visualizations are based on the concept of a sliding time-window,
which selects all points within a given time-range. The visualization
components within our system use this sliding time-window to con-
struct an animated visualization. The last component adds interaction
to our system, which allows the user to directly manipulate the visu-
alization with instant feedback.

Section 3.2 further explains the datasets and how we can formally
model the data and how this data relates to dynamic graphs. Our
aggregated trail visualization, based on density maps, is introduced
in Section 3.3. We further extend this visualization on the temporal-
scale in Section 3.4. Section 3.5 discusses our enhanced color mapping
techniques based on transfer functions. In Section 3.6 we introduce
various bundling techniques for static and dynamic graphs, and how
we can apply bundling to our datasets. Our visualization to find con-
gested flight areas is explained in Section 3.7. Finally, we conclude
this chapter in Section 3.8.

3.2 data

The flight visualization application discussed in this thesis is devel-
oped around 2 datasets.

3.2.1 Radar recordings

The first is the data used by Hurter et al. and consists of radar record-
ings above the territorial airspace of France, and is obtained directly

13
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14 image-based visualization

Figure 7: System diagram of our system

from the French ATC authorities. This data is recorded between the
6th and 12th of april 2008 (one week) and contains 52,547 flights with
a total of 870,880 sample points. Since it is based on radar information,
each sample point only contains the basic minimal information: flight
id, position (latitude and longitude) and altitude. Other attributes
(e. g. speed and direction) can be calculated from this information.

3.2.2 Plane�nder

The second dataset is originating from http://planefinder.net/, a
website that continuously gathers Automatic Dependent Surveillance
Broadcast (ADS-B) plane feeds [PlaneFinder, 2013]. ADS-B is used
by aircrafts to transmit their identification, position, altitude, veloc-
ity, callsign and status to other airplanes, satellites and ADS-B base
stations [ADS-B, 2013]. The workings of ADS-B are explained in Fig-
ure 8: aircrafts communicate with GPS satellites to determine their
own position, and use on-board equipment to measure their altitude
and velocity. This information, bundled with their identification and
callsign, is broadcast with the ADS-B out equipment. This informa-
tion is not only picked up by base stations on the ground, but also by
communication satellites and other aircrafts, which helps to increase
airspace security.

[Revision 7fcca48, Sat Nov 23 13:52:52 2013 +0100 ]
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3.2 data 15

Figure 8: Aircrafts use GPS satellites to determine their position. ADS-B
equipment is used to broadcast this position to other airplanes,
communication satellites and ADS-B base stations.

Figure 9: Planefinder showing worldwide aircraft positions at a given time.

Base stations are often placed by governments and ATC’s, but any-
one is free to listen to ADS-B signals. Hobbyist with ADS-B equip-
ment can submit their gathered information to projects like Plane-
finder, which acts as a central server and merges all gathered data.
The Planefinder website displays this gathered information, but is
only capable of showing the instantaneous plane positions at a given
time (see Figure 9). This form of display is only useful with a low
density of flights.

ADS-B is very similar to the AIS systems used by ships discussed
in Section 2.1.2, and is gradually replacing radar as the most efficient
method for air traffic control. ADS-B is more precise than radar both
in temporal as in spatial aspect since it broadcasts every second and
uses GPS for positioning.

Most commercial aircrafts are already equipped with ADS-B equip-
ment, and this will only increase in the future. The United States is
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16 image-based visualization

rolling out a network of ADS-B base stations and will require all air-
crafts flying in airspaces of class A, B or C to broadcast via ADS-B
by 2020 [Department of Transportation, 2010]. The European Union
is working on similar rules: aircrafts with a weight above 5700 kilo-
grams or a maximum cruise speed above 250 knots that want to fly
in the single European sky will be required to have ADS-B equipment
from 2017 [EU, 2011]

We gathered one month of data (June 2013) from the Planefinder
website, which contains 748,057 flights with a total of 14,711,646 sam-
ple points.

3.2.3 Data model

In order to compare our data with similar datasets, relate to other
work, and discus possible visualization methods, we model the pre-
viously introduced datasets at a more fundamental level. The path of
a single flight, or trail, can be modeled as sequence of points pi

T = 〈pi = ((latitude, longitude) ∈ R2, t ∈ R+,an ∈ R)i〉 (1)

which is ordered along increasing values of ti, which depicts time.
Next to the latitude, longitude and time, each point pi holds an at-
tribute vector an, where n is the number of additional attributes per
point. Examples of additional attributes are height, speed and direc-
tion. Attributes can either be measured (e. g. flight id, height) or de-
rived (e. g. acceleration, climb rate). These attributes can vary per sam-
ple point (e. g. height, speed), or per trail (flight id, airplane model,
average speed).

At a global datamodel we have a multivariate trail-set

TS = {Tj} (2)

that consists of a collection of trails. This trail-set can be considered
as a particular case of a multivariate dynamic graph [Hurter et al.,
2013]. If we consider the start and end point of a trail as nodes, and
the trail itself as an edge, then our dataset can be considered as a
graph. Naturally, edges have a lifetime [tmin, tmax] (the period in
which this flight is active) and a duration d = tmax − tmin (the dura-
tion of the flight). Nodes also have a lifetime, based on the lifetimes
of its corresponding edges. Note however, if we would convert TS
to a graph, none of the nodes would have more than a single edge
connected to it. This is because the data in TS does not have any
explicit information about shared end-points (airports). A distance-
based clustering could in theory group nearby end-points (nodes)
into a single node. However, this would be a change of data and
not a fully automatic operation. The outcome of this operation and
the original TS would not be interchangeable.
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3.3 aggregated trail visualization 17

The attribute vector an of each point maps to the edge attributes
of a graph. However, edge attribute do not change along the edge
in a typical graph, while our point attributes can vary per sample
point (e. g. height, speed). This makes edge attributes not very well
suited for our per-point varying attributes. Our trail-based attributes
(flight id, average speed) on the other hand, map naturally to edge
attributes.

It is also possible to compute node-attributes based on TS, end-
notes get the aggregated values of their matching trail-attributes. This
could, for example, be the average duration of flights. However, in or-
der to make note-attributes useful, we would have to apply the previ-
ously mentioned clustering to group geographically close nodes. Oth-
erwise, node-attributes would be identical to the attributes of their
single edge.

In terms of time, temporal graphs are known for having two varia-
tions: sequence graphs and streaming graphs [Hurter et al., 2013]. A
sequence graph consists of a time-ordered set of graphs Gi = (Vi,Ei),
where each graph Gi contains a snapshot of a time-dependent system
at time i, for a total of N moments in time. Streaming graphs, on the
other hand, are defined on a vertex set V and edge set E, where edges
are defined by their lifetime and nodes. Streaming graphs are a natu-
ral form when there is no predefined sequence or when dealing with
live data sources [Andrienko and Andrienko, 2005]. Unfortunately,
sequence and streaming graphs do not allow interchangeable visual-
izations. Our trail-set TS is much more like a streaming graph than a
sequence graph, since we have no notion of discrete snapshots.

3.3 aggregated trail visualization

Drawing all trails in the trail-set TS is a viable solution for only the
most trivial (and sparse) versions of TS. In more realistic cases, draw-
ing everything from TS at once will result in a lot of visual clutter,
and limit our visual scalability. Therefore, we propose a multiscale
visualization. Our first scale parameter is the spatial one. We use
a scale-space approach that groups trails which are spatially close
and numerous into a single visual abstraction. Similar to Scheepens
et al. and Willems et al. we use density maps as the prime ingre-
dient for this visualization. However, in contrast to previous work,
in order to achieve a dynamic temporal visualization we use ani-
mation. All our visualization techniques are centered around a time
tmin 6 tcurrent 6 tmax that always falls within the range of times de-
fined in TS, and every animation step tcurrent is increased with a user
defined animation speed tspeed.

One way to aggregate this data is using density estimation, which
can be displayed as a density map [Andrienko et al., 2011, 2012;
Marzuoli et al., 2012]. A popular density estimator is the Kernel
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18 image-based visualization

Density Estimation (KDE) [Silverman, 1986; Rosenblatt, 1956; Parzen,
1962], which given a series of samples x from a distribution with den-
sity f can be estimated as:

f̂h(x) =
1

nh

n∑
i=1

K
(x− xi

h

)
(3)

where K is the kernel and h is the smoothing parameter (or band-
width). Typical kernel choices are Gaussian functions and Epanech-
nikov (quadratic) functions.

Lampe and Hauser use KDE to display an interactive density map
with streaming data from various sources (AIS ship data, monetary
contributions to the Obama campaign, traffic in the Bay Area, air
traffic above the USA). Due to their GPU-based implementation of
KDE, they are able to achieve interactive framerates. Implementing
our density map on the GPU is therefore an obvious choice to achieve
computational scalability.

In order to provide contextual information, we first define the col-
lection

TC1 = {T ∈ TS | T0(t) 6 tcurrent 6 Tn(t)} (4)

as all trails T that contain tcurrent and create a density map

ρ(x) =
∑
T∈TC1

∫
p∈T

K

(
x − p
h

)
(5)

by convolving the selected trail-collection with a kernel K of width
h. Similar to the work of Scheepens et al. and Willems et al. we dis-
play the density ρ directly. However, in contrast to previous work,
this density map only serves as contextual information in our appli-
cation. Fine-grained visualization can later be added on top of this
density visualization to provide focus. In order to serve as context
and maintain distraction free, ρ is mapped to a black-to-white (lumi-
nance) colormap that is drawn below all other elements.

Figure 10 shows the density map for the French airspace dataset,
and displays the full trails for all flights that were active at a certain
time. Bright areas indicate places where a lot of this currently ac-
tive air traffic passes. Because of the definition of the selected plains
and the construction of the density map, a location where 2 trails
cross each other will show up brighter than the rest of the trail, al-
though the passing does not necessarily need to happen at the same
time. Darker areas indicate regions where few flights are active dur-
ing this time, while black areas means that there were no aircrafts at
all. This Figure already clearly shows some dense flying areas near
larger cities (e. g. Paris, Toulouse, Bordeaux, Lyon); but also, interest-
ingly, dense flying routes such as between Toulouse and Lyon.
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Figure 10: Contextual density map for the French airspace dataset using a
black-to-white grayscale colormap

Clearly, spatial aggregation works very well for removing high-
frequencies and similar-scale clutter, while maintaining the coarse-
scale occupancy patterns. We can clearly distinguish the dense flying
routes and airports, and thus answer questions like: “which spatial
zones have been most flown over during the period of interest?”. Ma-
nipulating the filter-size allows us to control the degree of simplifica-
tion. On the other hand, spatial aggregation is quite aggressive and
may oversimplify our data. We lose the information of our attributes,
this visualization only shows spatial density for a given time period.
It is not possible to distinguish individual flight ids, height, direc-
tion and speed from this visualization. It is also hard to gain time-
dependent insights based on this visualization. Therefore, we keep
this visualization as a general overview technique, and add more de-
tails on top of it for more fine-grained insights.

3.4 multiscale time visualization

The visualization discussed in Section 3.3 is good for aggregating
spatial information, but lacks information in the temporal domain.
Therefore, this section introduces the second scale parameter, time,
for our multi-scale visualization. We apply the same concepts from
the previous section (filtering and aggregation) in the time domain,
to show time-dependent information.
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(a) w(t) = [t, t+∆] (b) w(t) = [t−∆, t] (c) w(t) = [t−∆, t+∆]

Figure 11: Modifying the sliding time window w(t) to either show front,
back or both sides of the trail segment. Height is mapped to color,
and ∆ = 2 minutes. The contextual density map is used as a back-
ground.

Sliding Time Window

In order to expand our visualization, we first define a sliding time
window w(t) = [t, t+∆] which moves at constant speed tspeed. Next,
similar to the contextual density map, we define the collection

TC2 = {T ∈ TS | T0(t) 6 tcurrent +∆, tcurrent 6 Tn(t)} (6)

as all trails T that contain a point pi ∈ w(t). Rather than drawing the
whole trail, as we did with the contextual density map, we now focus
on trail segments T∆(t) that contain only the part of T that fall within
w(t). These trails are drawn with a transparency (alpha) texture that
is fully opaque at t and fully transparent at t + ∆. This results in
arrow-like shapes, that, when combined with the animation effect of
the sliding winding w(t) and a low value of ∆ are capable of showing
the instantaneous positions of the aircrafts and the paths along their
respective trails (see Figure 11a).

The default behavior of w(t) is to show the front of the trail. How-
ever, w(t) can also be modified to show the back of the trail, or both
parts, as is demonstrated in Figure 11. Using a sliding time window
w(t) = [t − ∆, t] results in reversed arrows (comet-like shapes),that
show the current position (similar to w(t) = [t, t+∆]) and the previ-
ous positions of the aircraft (see Figure 11b). Combining both w(t)’s
results in w(t) = [t− ∆, t+ ∆] (see Figure 11c), which shows the in-
stantaneous airplane position fully opaque and gradually becomes
more transparent both in the future and past direction.

Due to the construction of the sliding time window w(t), the veloc-
ity of the aircraft is reflected in the length of the trail segment. The
trail segment shows the part of trail that is covered within the time
period w(t) = [t, t + ∆], a long trail segment indicates that a large
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distance was covered during this time, while shorter trail segments
indicate a short distance. Since the average velocity

v̄ =
∆x

∆t

is the displacement (∆x) during a time interval ∆t and all trail seg-
ments share the same ∆t, we can conclude that the length of the trail
segments correspond to the average velocity in the time windoww(t).

Smooth time-based �ltering

By gradually increasing ∆ we can smoothly transition from instanta-
neous aircraft position to more global and aggregated views. Addi-
tive alpha blending is used to enable visual aggregation of the dif-
ferent trail segments. This effect is demonstrated in Figure 12, which
shows a continuously increasing ∆ ranging between 2 minutes and
16 hours for our one week dataset above France. Due to the aggre-
gation effect of longer trails, the contextual background trails are not
necessary anymore; in fact, they would only increase clutter for large
values of ∆. Low values of ∆ enable us to pick out individual aircrafts
and their respective attributes at the current time. Slightly larger val-
ues of ∆ can be used to see transitions of attributes for flights, e. g. as-
cending or descending flights, which can be observed when carefully
examining Figure 12b. Further increasing ∆ means that we can no
longer track individual flight paths.

However, it allows us to see global patterns in routes and attributes.
Figure 12c to Figure 12f clearly show us that the aircrafts above France
mostly fly in certain predefined paths during this time period. Using
∆ = 1 hour still shows individual outliers to these paths, while the
higher aggregation factor of ∆ = 16 hours makes these outliers nearly
invisible. Altitude is mapped to color in Figure 12, blue spots indicate
low flights, while warm colors show us in-flight routes. Large blue
zones in the aggregated images are near the large airports of France.
Looking at the warm colored in-flight routes, we see little variation
in cruising altitude, which correlates with the flight rules for civic
aircrafts above France and optimal cruising conditions.

Transparency texture length

Next, we introduce a user-set parameter δ that determines the length
of our transparency texture. Setting δ = ∆ would change nothing
to our previous visualizations: the texture is stretched along the full
length of trail segment that spans ∆. However, setting δ < ∆ results
in a repeating texture along the trail segment, which visually looks
like a “train” of short arrow-like trail segments. This effect is demon-
strated in Figure 13, where δ = 1 minute and ∆ = 10 minutes: each
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(a) ∆ = 2 minutes (b) ∆ = 15 minutes

(c) ∆ = 1 hour (d) ∆ = 4 hours

(e) ∆ = 8 hours (f) ∆ = 16 hours

Figure 12: Gradually increasing ∆ allows smooth transitioning from in-
stantaneous positions to aggregated trail segments. Altitude is
mapped to color
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Figure 13: Short trail segments can be shown using δ < ∆.

transparency texture is repeated 10 times per trail segment. The ad-
vantage of this technique over δ = ∆ = 10 minutes, is that the train of
short trail segments is still capable of clearly showing a direction, due
to the arrow-like shape.

These trails are color mapped with one of the attributes of the
points pi, e. g. height or direction. Height is color mapped using a
traditional rainbow color map (see Figure 11 and Figure 12), for di-
rection however, this would be very hard to interpret. Therefore, we
developed a directional hue based color map; hue naturally maps to
an angle (as happens with a color wheel) and therefore is a logical
candidate to map the directions of the airplanes. Figure 14 shows
en example of such a color map, and allows us to easily find paths
that are close to each other and parallel, but go in opposite direc-
tions (e. g. yellow/blue: northeast/southwest, pink/green: northwest-
/southeast). From these images we can conclude that parallel but op-
posite flight routes often are close to each other, but do not overlap.
We chose to use additive blending, white areas can therefore be inter-
preted as regions where aircrafts fly in many (or at least: opposite)
directions. This happens, for example, above Paris; but interestingly,
a white path can be seen between Mallorca/Minorca and Sardinia:
apparently opposite flying planes share the same overlapping path
for this route.

Conclusion

By applying two different filters (∆ and δ) in the temporal domain
we are able to show dynamics at different time scales. We can show
the emergence and disappearance of trails over specific time periods
(e. g. hours or days), but also spatial occupancy of some region by
trail fragments, up to the detail of the actual instantaneous positions
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Figure 14: Directional color map above France using additive blending, δ =
∆ = 8 hours

of airplanes. By using a combination of different visualization tech-
niques, we are able to map 3 attributes at the same time. The velocity
is encoded in the length and shape of the trail segments (1), the in-
stantaneous aircraft positions are shown as their geological position
above a map (2), and color can be used to map a remaining attribute
(e. g. color) (3). Animation is used to show the changes of these at-
tributes over time.

3.5 mapping attributes to colors

In the previous parts of the chapter, we showed how color mapping is
used to show different types of attributes. Section 3.3 uses grayscale
mapping to show the spatial occupancy. Luminance is used, via color
blending, in Section 3.4 to show the same occupancy signal, but at
a different temporal scale. Moreover, texture (by luminance modula-
tion) and hues are used to add supplementary data attributes, such
as height and flight direction.

While our current color mappings are useful, they have to be fur-
ther refined to become truly effective for the requirements of ATC
users. There are a few reasons why these color mappings need op-
timizations. First of all, our datasets are large and have many occlu-
sions. At these dense areas, color mapping has to be carefully de-
signed to show the interesting aspects and not to convey false in-
sights. Furthermore, the combination of animation and texturing cre-
ates more high-frequency signals than a colormapping based on lumi-
nance alone. Interpreting high-frequency signals can be challenging,
so our color maps need to be optimized for these tasks.

Our challenge therefore is: how can we design a set of colormaps
that are able to create clear, clutter-free visualizations, while showing
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the largest possible number of attributes at different time and space
scales. This should happen in an intuitive way, so that events of inter-
ests are easy to spot.

Transfer Functions

When using large values of ∆, we can aggregate information from
multiple trails. However, this does come at a cost: we are no longer
able to see individual aircrafts, and (therefore) not able to filter out
specific trails. For example, when looking at the Paris area, we see all
flights above this region and are not able to focus on either landing
planes or fly-over planes. Focusing on these areas is crucial for certain
ATC tasks [Letondal et al., 2013; Hurter et al., 2009]. While the first of
these costs is a direct consequence of aggregation, we are able to offer
a solution for the second problem by means of transfer functions.

First, instead of using a fixed kernel width, we introduce a pa-
rameter kwidth that we use for our width transfer function: f(w) =

( h
hmax

)kwidth , where h and hmax are the altitude and its maximum
value respectively. Setting kwidth = 0 renders all trail segments with
the same width, while kwidth = 1 linearly scales the width of the trail
segment according to the height (aircrafts at ground level get a near 0

width, while aircrafts near the maximum height get maximum width).
Setting kwidth < 0 or kwidth > 0 results in an exponential distribution
between the minimum and maximum width.

Next, we introduce an alpha transfer function: f1(h) = ( h
hmax

)kα that
is based on the user-set parameter kα. Our pulse texture φi is mod-
ulated with f(h). This allows for an alternative way (by means of
transparency) to focus on higher altitude aircrafts. Alternatively, we
can use f2(h) = (hmax−hhmax

)kα to focus on low altitude trail segments.
Setting kα = 0 will not modify the original alpha level, while increas-
ing kα > 0 will gradually render more trail-segments transparent,
allowing us to focus on the values of interest.

Finally, our color transfer function allows us to apply more dynamic
range to a certain range of the color mapped attribute. For example,
when focusing on low altitude aircrafts with f2(h), we would also like
to see the variation on height within this focused range. To achieve
this, we apply the transfer function f(x) = xkcolor to the normalized
value of the attribute that we use for color mapping (in this example:
altitude). Values of kcolor > 1 emphasize high altitude ranges. Values
kcolor < 1, in contrast, emphasize low altitude ranges.

Figure 15 demonstrates how these transfer functions can be applied
to our French airspace dataset. We use a fairly large ∆ = 8 hours in
order to get some aggregation and a fair amount of clutter, and we
map the height attribute to color. The basic result of this can be seen
in Figure 15a, where we can see some low-altitude ranges (near Paris)
and a lot of cruising routes. By setting kwidth = 2.0 as in Figure 15b,
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(a) No transfer functions (b) kwidth = 2.0

(c) kα = 2.0, kwidth = 0.0 (d) kα = 2.0, kwidth = 0.0, kcolor = 0.25

Figure 15: Applying transfer functions allows us to focus on specific altitude
ranges

we decrease the width of the lower trail segments, which results in
less cool-colored areas. This allows us, for example, to focus on the
flights that fly above Paris, without being distracted by flights that
land there. Figure 15c shows the effect of setting kα = 2.0. The high-
altitude trail segments become more transparent, which makes it eas-
ier to focus on the airport zones (areas with low altitudes). These
areas, containing many take-offs and landings, can be seen as cool
colored (blue/green) areas. While the Paris area clearly shows many
low-altitude traffic, we can now also spot other airports that were not
apparent without transfer functions (e. g. near the coast). However,
we can still not see much variance in height during the take-off and
landing trajectories; almost all colors are in the “cool”-range. This can
be solved by setting kα = 2.0 and kcolor = 0.25, of which the results
can be observed in Figure 15d. By applying more dynamic range to
the low altitude flights, it becomes easier to see the ascending and
descending of the aircrafts around Paris. Ascending and descending
flights now use the blue-to-yellow part of our rainbow color map. Air-
crafts at cruising altitude can still easily be distinguished due to their
very warm (red) color.

By using a combination of different transfer functions, we are able
to optimize our colormapping process for specific ATC tasks, such
as comparing the traffic at different airports. Our transfer functions
allow the users to focus on specific events of interest, without the
distraction and clutter of the other air traffic.
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3.6 bundling

The previously shown techniques focus on multiple levels of detail
at the temporal and spatial scale. However, we would like to have a
different abstraction on the spatial scale, an abstraction that allows
us to reason about groups of trails that are close in space and have
similar start and end points. For this spatial abstraction, we will need
a form of topological aggregation.

Currently, we can show the instantaneous positions of aircrafts and
gradually increase ∆ to increase the length of the trail segments and
aggregation level. When we observe the nature of our trail data, we
see that our trails closely follow a set of predefined routes. This effect
can clearly be observed in Figure 14. We can exploit this behavior of
trail data to create our topological abstraction. Trail segments that are
parallel and closely spaced can be grouped together in order to sim-
plify the visualization. There is a relatively recent technique that does
precisely this: bundling. This makes bundling very well suited for
these grouping tasks. While the output of these bundling algorithms
does not preserve the route information, it can help us to better un-
derstand the connectivity between different airports [Lambert et al.,
2010].

3.6.1 Static Bundling

Bundling techniques can be used to reduce clutter in the visualiza-
tion of graphs by grouping spatially similar edges. These bundling
techniques are capable of showing the coarse scale connectivity of
large graphs. Many bundling algorithms have been proposed. Force-
directed edge bundling (FDEB) creates bundles by attracting control
points that are placed along the edges [Holten and van Wijk, 2009].
A Delaunay-based technique called geometry-based edge bundling
(GBEB) is capable of creating curved edges [Cui et al., 2008]. Skeleton-
based edge bundling (SBEB) uses a skeleton of the graph as bundling
hints to create bundles with a lot of branches [Ersoy et al., 2011; Telea
and Ersoy, 2010]. Kernel Density Estimation-based Edge Bundling
(KDEEB) is one of the most recent and promising techniques, it is
computationally efficient and the algorithm is very well suited to be
implemented on a GPU. This parallelization makes it well suited to
bundle very large graphs [Hurter et al., 2012].

Figure 16 gives an example of a possible outcome for different
bundling techniques (FDEB, SBEB and KDEEB). It shows the result
of applying bundling to a dataset containing movement data: flights
above the USA. Bundling helps to show the coarse-scale flight pat-
terns during a week.
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(a) FDEB

(b) SBEB

(c) KDEEB

Figure 16: Overview of different bundling techniques applied to a dataset
containing flights above the USA (235 nodes, 2099 edges).
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3.6.2 Bundling for Dynamic Graphs

Applying bundling to dynamic graphs introduces a new question:
which part of we graph should we bundle? The bundling algorithm
can be applied to the graph as a whole, or a (temporal) subset of
the graph. For the latter case, Hurter et al. have recently extended
the KDEEB algorithm to handle both streaming and sequence graphs
[Hurter et al., 2013]. As explained in Section 3.2.3, our datasets have
more resemblance with streaming graphs than with sequence graphs.
Hurter et al. bundle streaming graphs by iteratively applying the bun-
dle operation over a time window that slides through the time range
of the graph. This offer a computational advantage, since the origi-
nal KDEEB algorithm requires up to 10 iterations to bundle a single
static graph. Furthermore, moving the time window for each iteration
ensures smooth transitions within the bundled graph.

3.6.3 Applying Bundling

The KDEEB bundling algorithm has been successfully applied on air-
craft routes by Hurter et al., but their implementation always shows
the full trails and is not able to visualization additional attributes
such as direction, altitude and velocity. We extend this method with
our multivariate trail segment visualization. While recent implemen-
tations of this bundling algorithm are heavily parallelized and com-
putationally efficient, it is still not feasible to bundle very large graphs
for real time applications. Therefore, we chose to apply the KDEEB
bundling algorithm on our data during a pre-processing step. We use
our set of trails, without additional attributes, as the input of KDEEB
and get a set of bundled trails as output. These bundled trails are then
matched against the original trails, and the additional attributes are
piecewise linearly interpolated over the length of the trails. Finally,
we save both the original positions poi and the bundled positions
pbi for each trail and use these, in combination with the additional
attributes, as the input for our application. A user-defined bundle-
factor Wb is used to linearly interpolate between the unbundled and
bundled positions:

pi =Wb ∗ pbi + (1−Wb) ∗ poi. (7)

The final pi’s are visualized using the same techniques as described
in Section 3.4.

Figure 17 shows the results of bundling our dataset above France
for various values of Wb, all with ∆ = 8 hours. As can be seen, geo-
graphical information is lost in the bundling process, bundled trails
indicate a connection between 2 airports, rather than the actual flying
routes. Since we use the original attributes for color coding, using our
directional color map still makes sense: the colors indicate the direc-
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(a) Wb = 0.00 (b) Wb = 0.33

(c) Wb = 0.66 (d) Wb = 1.00

Figure 17: Bundling the French airspace dataset for various values of Wb

tion of the original unbundled paths, not the direction of the bundled
paths. Paths that show up in white in Figure 17d contain flights that
go in multiple (often opposite) directions. The bundled paths that con-
tain a single color are the interesting finds, apparently most flights in
these bundles are flying in roughly the same direction. This happens,
for example, in the yellow/orange path in the west. Spotting this uni-
formity of direction in the unbundled variant (Figure 17a) is much
harder. While the aggressive bundling of Wb = 1.00 can be useful in
some cases, setting Wb to a somewhat lower value will often result
in a more informative image. This can be seen in Figure 17c, that has
Wb = 0.66. This image shows almost the same level of spatial ab-
straction as setting Wb = 1.00, while we can still distinguish parallel
trails moving in opposite direction (e. g. the blue/yellow paths flying
in northeast and southwest direction).

Figure 18 shows the result of applying our bundling step to a part
of our worldwide dataset, where the height attribute is mapped to
color. We can clearly see the main connections in this figure and are
able to spot the different patterns concerning ascending and descend-
ing of the aircrafts around airports.

We can conclude that bundling can help us to create a topological
abstraction of our flight data, and that while it does not preserve
geological information, it does help us to understand connectivity
between airports.
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Figure 18: Bundling above a part of Europe, with height-based colormap-
ping. Trail segments have a length of 2 hours.

3.7 congestion detection

The detection of congestion areas is an important task within move-
ment data analysis [Scheepens et al., 2011; Hurter et al., 2009]. Con-
gestion areas can be defined as spatial region with a high density of
passing traffic within a certain time window. When the airspace gets
congested, aircrafts have to wait for each other due to safety regu-
lations, which results in delays and higher fuel consumptions. On a
smaller spatial scale, highly congested zones have an increased risk
of incidents and accidents. Reducing the amount of congestion zones
can therefore result in reduced costs and risks, which makes it an
interesting subject for ATC.

At the very basic level, we can use the density map from Equation 5

to detect zones with a high density of traffic. A similar technique was
used by Scheepens et al. for ship data, that suggested a static density
map for the entire studied time period. While this method is capa-
ble of showing areas where a lot of traffic passes during a large time
period, this traffic does not necessarily pass within close temporal
range. If two airplanes would collide on an otherwise sparsely popu-
lated area it would not be visible in this density map.

In order to circumvent these limitations we first construct a density
map (similar to Equation 5) based on trail segments TC2 within w(t),
which allows us to dynamically define the temporal scale for which
we look for congestions.

The result of rendering this density map texture for our dataset of
France can be seen in Figure 19. It allows the same transfer functions
as our regular trail segment visualization, which enables us to focus
the density map on the high altitude flights. For this result we chose
kα = 1.0, since we are only interested in in-flight congestions, rather
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Figure 19: A 32 bit floating point precision density map is used for our con-
gestion detection, it focuses on higher flights by setting kα = 1.0.
∆ = 30 minutes

than congestions on airstrips. While this Figure does indeed show
density, it is very hard to visually find the congested areas. This hap-
pens because the areas with density > 1 are all visible as pure white;
we can see no variation for the high density zones. At the same time,
the dark gray areas are of no interest when looking for congested
areas, while they clutter up the visual space.

In order to spot the truly congested areas more easily, we propose
an extra rendering step after the generation of the density map. In-
stead of showing the original density ρ between 0 and 1, we render
the congestion texture so that it shows the range between 1 and a user
defined maximum ρthreshold. We are only interested in ρ > 1 since, by
definition, the density ρ = 1 at the instantaneous position of a single
plane, and values of ρ > 1 indicate overlapping trail segments. This
extra step is similar to the tone-mapping phase of HDR-rendering,
that reduces the dynamic range to fit within the limited range of the
medium that is used for display. In our case, the dynamic range of ρ
(normally between 0 and ρmax) is reduced to the range [1, ρthreshold]

Figure 20 shows the results of reducing the range of Figure 19 to
the range [1, 5], and color mapping this with an alpha-based rain-
bow color map. In this case, we consider a zone to be minimally con-
gested when 2 aircrafts pass the same location at 30 minutes from
each other. Warmer colored and opaque areas show us the emerging
congestion patterns quite clearly. Spotting these areas using any of
the previously-used visualization is not a trivial task. We can see that
most congestion areas line up with the major flight routes, which is
not an unexpected find. However, we also see a few interesting small
red areas on this map that do not follow the long structured routes.
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Figure 20: The final congestion detection map is constructed by a “tone
mapping”-like step that reduces the 32 bits float texture to a 8

bit integer texture.

These congested areas must therefore be caused by intersecting trails
that do not follow a single path.

3.8 conclusion

This chapter has shown the various visualization techniques that we
use in our application. Our main visualization techniques are den-
sity maps, animation and bundling. We can use our congestion de-
tection visualization for more complex ATC tasks. Chapter 4 gives
an in-depth explanation of the implementation of the techniques dis-
cussed in this chapter.
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4
I M P L E M E N TAT I O N

In the previous chapter, we explained the theory behind our visualiza-
tion techniques. In this chapter we give the important implementation
details for some of these visualizations.

4.1 shader pipeline

In order to achieve interactive framerates for our previously defined
visualizations, we have implemented the majority of our algorithms
as OpenGL GLSL shaders. An overview of our shader pipeline is
given in Figure 21, and is further explained below.

Figure 21: Shader Pipeline

All points pi from TS are stored in a single Vertex Buffer Object
(VBO) that is uploaded (and kept) on the video card. All points are
stored in the same order as in TS and T , i. e. points are grouped per
trail, and ordered by increasing values of ti within these trails. The

35
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(a) Incorrect (b) Correct

Figure 22: Constructing a triangle strip from a line strip

resulting VBO contains one massive line strip, that will be split in
separate lines further down the pipeline. The advantage of using one
VBO, instead of a VBO per trail, is that there is no need to continu-
ously switch the active VBO. When having a massive amount of trails,
switching between all these VBO’s becomes a considerable cost.

Our vertex shader does some standard transformations, and fur-
thermore interpolates between the bundled and unbundled paths.
This allows us to do the actual bundling offline, and only perform
a very fast interpolation step in our application. The interpolation
happens linearly based on a user-defined bundling factor.

Filtering of the points based on the sliding time window w(t) to
construct the collection of trails from Equation 6 happens in the ge-
ometry shader. The parameters tcurrent and ∆ are passed as uniforms to
the geometry shader, which only emits vertices for the points pi that
we need further in the pipeline (the fragment shader). This filtering
technique, that is executed in parallel, drastically reduces the amount
of data that needs to be processed by our fragment shader. Further-
more, our geometry shader splits the large line strip into triangle
strips per trail. Doing the conversion from line strip to triangle strip
on the fly reduces the size of our VBO. The geometry shader emits
2 vertices that are perpendicular to the original line segment. Setting
the endpoints vertices parallel to the original endpoint of line strip
will lead to incorrect results (see Figure 22a). Therefore, we need to
align the vertices based on the neighboring vertices (see Figure 22b).

The execution of our transfer functions from Section 3.5 happens
in the fragment shader. This means that our transfer functions are
executed for every fragment (potential pixel), and not for every ver-
tex. Applying the transfer functions on the vertices would be more
computationally efficient, but would lead to incorrect results. This is
due to the non-linear nature of our transfer functions, that would get
linearly interpolated if they were applied on the vertex level. Color
mapping the user-specified attribute and applying the right alpha
texture based on δ also happens in the fragment shader.
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4.2 congestion detection

We reuse our shader pipeline to generate the density map for our con-
gestion detection visualization. However, instead of color mapping an
attribute, we save the density values in in 32 bit floating point texture.
This allows us to save the high-precision density values which we can
further process.

The second step of our congestion detection, where we apply a
tone-mapping step to reduce the dynamic range of our 32 bit texture,
is implemented as a separate shader pipeline. The fragment shader in
this pipeline is responsible for the tone-mapping and applying color
mapping and texturing.

4.3 performance

Our application is implemented in Python with OpenGL visualiza-
tions, all performance critical parts are implemented as shaders. This
allows us to render thousands of trails with millions of measure-
ments in an interactive way. When using our largest dataset from
Planefinder (14,711,646 sample points), we are able to maintain inter-
active framerates when we render up to 1 week of aggregated data.
This is done on high-end consumer hardware (Intel Core i7 2.6 GHZ
processor, 16 GB RAM, GeForce GTX 690 video card).
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5
R E S U LT S

We use our visualization techniques to analyze two dataset (French
airspace and Planefinder) for different time periods and locations.
Our application is analyzed based on different ATC use cases. For
each use case, we first introduce the use case, then discuss how our
application handles this and outline the results and findings. The dis-
cussed use cases are generic, they are not evaluated with ATC con-
trollers, but are based on previous experience with ATC/ATM work-
flows.

5.1 weather influences

ATC operators and analysts are interested in analyzing the effects of
weather, e. g. storms and strong wind currents, on air traffic [Hurter
et al., 2013]. Therefore, we would like to ask the question: “how are
observed traffic patterns correlated with wind currents?”.

Figure 23 shows a cutout of our French airspace dataset for differ-
ent days in the week, where each Figure spans a full day (∆ = 24

hours). When watching the animation for these snapshots, one can
easily spot the changes of patterns between the different days. The
snapshots for Sunday and Monday (Figure 23a and Figure 23d) very
clearly show different take-off and landing paths in comparison to
Tuesday and Wednesday (Figure 23b and Figure 23d). In order to ex-
plain this interesting find, we looked up weather data for the given
dates [Underground, 2013]. Figure 23g shows the wind direction for
the time that is spanned by our French airspace dataset, which clearly
indicates that Sunday and Monday had a different average wind di-
rection (approximately West) than Tuesday and Wednesday (approx-
imately North-East). This can explain the different take-off and land-
ings paths, since air traffic controllers use wind as a factor when de-
termining these paths. An other interesting phenomenon can be seen
on Friday and Saturday: a vast increase in traffic, when compared
to the other days. This is probably because an increased amount of
holiday-related flights during the weekends.

In order to verify our assumptions about the influence of wind
direction on take-off and landing routes, we also examined our Plane-
finder dataset for similar patterns. When looking at Figure 24, we see
3 snapshots zoomed in on the Netherlands, all with a ∆ = 24 hours.
We can see that Sunday (Figure 24a) and Monday (Figure 24b) had
similar routes near the airport, and indeed, both days had a Northern
wind direction. Thursday (Figure 24c) however, has different routes
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(a) Sunday 6th of April (b) Tuesday 8th of April (c) Friday 11th of April

(d) Monday 7th of April (e) Wednesday 9th of April (f) Saturday 12th of April

(g) Corresponding wind directions for the studied time period [Underground, 2013]

Figure 23: Direction-colored trails over a duration of 24 hours during April
2008 (all starting at 00:00) with an alpha-based emphasis on low
flights (and airports). We see a clear difference in landing direc-
tions between Sunday/Tuesday and Monday/Wednesday. Friday
and Saturday show a significant increase in traffic around Paris.
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(a) Sunday 9th of June (b) Monday 10th of June (c) Thursday 13th of June

(d) Corresponding wind directions for the studied time period [Underground, 2013]

Figure 24: Direction-colored trails over a duration of 24 hours during June
2013 (all starting at 00:00) with an alpha-based emphasis on low
flights (and airports), based on a zoom-in of the Netherlands in
our Planefinder dataset. Thursday shows different landing and
take-off routes when compared to Sunday and Monday, which
can be correlated to the wind direction during this period.

around the airport, which correlates with the different (Southwestern)
wind direction of that day. This confirms the finding in our previous
dataset.
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5.2 timezones

While our developed congestion map can be used to find zones with a
high risk, it is also able to serve other uses. To optimize flying routes,
air traffic controllers need to be aware of the congested zones for a
given moment. Therefore, we ask ourself the question: “how does
congestion vary over the day for a given territory?”.

In Figure 25 we show the congestion map for different times of
a single day above the USA, which clearly shows the different time-
zones. The first snapshot (Figure 25a) is taken at 12:00 UTC (07:00

Eastern Standard Time (EST), 04:00 Pacific Standard Time (PST)), and
only shows intense traffic at the east coast. These are some incoming
flights from Europe, flights that stay on the East coast, and a few
flights on their way to the west. Gradually increasing the time until
15:00 UTC (10:00 EST, 07:00 PST), which can be seen in Figure 25b
to Figure 25d, shows us an increase of traffic towards the west of
the USA that stabilizes around 15:00 UTC. The last two snapshots
(Figure 25e and Figure 25f) only show intense traffic near the west
coast.
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(a) 12:00 (b) 13:00

(c) 14:00 (d) 15:00

(e) 05:00 (f) 06:00

Figure 25: Congestion map for the USA, all times in UTC, intermediate
times not shown for conciseness
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5.3 directions above europe

To evaluate our directional color map and arrow-like glyphs, we ask
the question: “can we spot directional changes in highly dense ar-
eas?”

We demonstrate our directional colormap on a part of the Plane-
finder dataset in Figure 26. We see the same closely spaced parallel-
but-opposite trails that we saw in our French airspace dataset. Fur-
thermore, due to the directional colormapping and arrow-like shaped
trails, we can easily spot temporal changes. For example, during the
night, almost all flights that connect the USA to Europe are incoming
flights from the USA (see Figure 26a). There is a time-zone difference
of 5 hours between the east coast of the USA and the United King-
dom, and a flight from New York to London takes approximately 7

hours, which means that flights that land around 05:00 (local time) in
London departed around 17:00 (local time) from New York, which is
not a strange time to depart. However, a flight departing at 05:00 (lo-
cal time) in London would probably not be the most popular choice.
In contrast, when we look at Figure 26b, we see that at 14:00 UTC
there are only outgoing flights to the USA, no incoming. This also
makes sense, a plane landing at 14:00 (local time) in London would
need to depart at 02:00 (local time) from New York.

[Revision 7fcca48, Sat Nov 23 13:52:52 2013 +0100 ]



5.3 directions above europe 45

(a) 05:00 UTC, incoming Flights from the USA

(b) 14:00 UTC, outgoing Flights to the USA

Figure 26: Flights above Europe captured by Planefinder. Trail segments are
color coded by direction, and use ∆ = 1 hour and δ = 5 minutes
to emphasize directions over a longer time period with reduced
clutter.
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5.4 bundling using kdeeb

If there is a flight going from location A to location B, then a flight
returning from B to A will probably also exist. It is interesting to
analyze such pairs of linked flights. For example, we would like to
know “how are flights in opposite directions balanced over a given
time-and-space interval”, and furthermore, we ask “are opposite and
paired flights separated spatially, or do they follow the same route?”.

In Figure 27 we show the Planefinder dataset above Europe, bun-
dled using the KDEEB algorithm. A light bundling (Figure 27b) can
still show the closely spaced opposite-but-parallel trails at various lo-
cations. However, when using strong bundling, most of these trails
get merged. Due to our additive blending method and hue-based
directional coloring, this results in white trails. Since Figure 27b con-
tains mostly white trails, we can conclude that when looking at Eu-
rope for a longer time period (∆ = 8 hours), most routes have nearly
equal trail amounts in both directions. However, there are some in-
teresting outliers to this general rule. For example, in France we can
see a bright red/pink path going from Paris to the southeast, which
mostly contains flights moving away from Paris. There are some other
regions where similar effects occur, e. g. the blue path above Paris and
the green and pink paths left of the United Kingdom.
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(a) Lightly Bundled

(b) Strongly Bundled

Figure 27: Bundled flights above Europe, color coded by their direction, ∆ =

8 hours.
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5.5 worldwide dataset

Finally, we evaluate the scalability of our application. Here, our ques-
tion is “how does our application scale visually and computationally
for very large worldwide datasets”.

When we zoom out even further, as we did in Figure 28, we can
see the whole global dataset that is collected by Planefinder. When
looking at Figure 28a we immediate spot a problem: due to the irreg-
ularities of global flights patterns, we have a few very dense zones
that are almost completely white (e. g. Europe, USA), while it is hard
to spot the traffic in the sparser areas. While it is impossible to see
any details within Europe, this level of detail is still very useful. For
example, we can distinguish the different lanes of traffic between Eu-
rope and the USA, and we can conclude that during this time window
there is a lot more traffic going from Australia to Indonesia than the
other way around.

We can significantly reduce the amount of clutter by decreasing ∆,
as is demonstrated in Figure 28b. With these settings, we can identify
individual airplanes at the sparse locations, while the dense zones
are not too cluttered with white regions.
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(a) Long trail segments, ∆ = 16 hours

(b) Short trail segments, ∆ = 20 minutes

Figure 28: Worldwide dataset using directional color coding
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6
C O N C L U S I O N A N D F U T U R E W O R K

There are many existing visualizations for air traffic data, some of
which we have discussed in Section 2.1. However, most of these tech-
niques focus on either showing instantaneous aircraft positions or
aggregated data and often suffer from a lack of scalability and high
amounts of clutter. We have presented a combination of visualization
techniques that cover this gap. The introduction of a sliding time win-
dow allows us to continuously navigate between local detail (instan-
taneous positions) and global patterns (aggregation). Image-based vi-
sualization techniques based on density maps are used to show the
amount of flights while maintaining visual scalability, animation is
used to show the movement of aircrafts and change of flight patterns
over time, and graph bundling is used show coarse-scale patterns be-
tween endpoints. Our glyph design uses shape, position and color to
present several attributes at the same time. Computational scalabil-
ity is achieved by our OpenGL shader based pipeline that is able to
process many trails in parallel, this allows us to visualize thousands
of trails with millions of data points at interactive framerates. We
demonstrated our visualization techniques on several datasets rang-
ing from hours over a single country to one month over the entire
world.

6.1 limitations

One of the limitations within this project had to do with our datasets.
While our French airspace dataset is provided by the government, it
is based on radar recordings, and not on modern fine grained tech-
niques like ADS-B. This makes the French airspace dataset relatively
coarse, both spatially and temporally, for the limited geographical
space that is covers. On the other hand, our Planefinder dataset is
based on ADS-B and consists of worldwide data, but this data is
collected by ground stations that voluntarily submit their data to
Planefinders website. As a result of this, rich and dense populated
areas (e. g. Western Europe, coastal regions of the USA) have way
higher coverage than poor and/or sparse populated areas (e. g. parts
of Africa, Siberia). Furthermore, while ADS-B signals are broadcast
every second, Planefinder only collects sample points for every 5 min-
utes. This means that our data could be up to 300 times more detailed
in the temporal domain.

Next, although we were able to decrease the amount of overlap-
ping flights in comparison to previous work [Hurter et al., 2009, 2013;
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Krüger et al., 2013] by means of transfer functions, bundling and low
values of δ, our application still suffers from a certain amount of vi-
sual clutter for dense flight areas viewed at a coarse scale or large
values of ∆. There are solutions to decrease the amount of overlap
even further, as is shown by Scheepens et al.. However, we choose to
allow clutter in order to show individual outliers and enable contin-
uous navigation between the different levels of detail. Running the
application on a large high-resolution screen makes it easier to splot
fine-grained patterns.

Finally, our application is limited in the amount of trail-attributes
that can be visualized simultaneously. We currently exploit shape,
length, position, and color in order to show 3 attributes at the same
time. Showing more attributes is an open challenge to all similar re-
search.

6.2 future work

While our method is more scalable both in visual space and computa-
tional complexity than current methods for the same types of datasets
and analyses, our visualization still suffers from clutter due to the
high amount of information that is shown. Improving the image-
based visualization could help to reduce this clutter even further in
the future. Our application could be further enhanced by adding in-
teractive (visual) queries, e. g. lenses, that allow the user to compare
and search spatio-temporal patterns of interest. For example, this
would allow the user to search for flights departing from, or pass-
ing over a certain region.

Furthermore, it would be interesting to optimize our shader pipe-
line for even better temporal scalability. This would allow us to use
even larger datasets and look at even coarser patterns, for exam-
ple comparing different months of the year, or comparing the same
month for different years.

To address the coverage issues of our Planefinder dataset, we could
try to obtain ADS-B data from official authorities. Some governments
have a nationwide array of base stations, and airlines collect all the
data of their own airplanes.

Finally, our application can also be used for other movement data,
such as the AIS-data that is broadcast by ships. As a small test, we col-
lected 6 days of ship-data around the Netherlands (13,255 ships with
3,776,781 data points) from Shipfinder [Shipfinder, 2013], a website
similar to Planefinder that is dedicated to the collection of AIS-data.
Figure 29 shows a snapshot that is focused on the harbor of Rotter-
dam, with ∆ set to 16 hours, and already gives us a nice impression of
patterns of the nautical traffic. For instance, we can see an incoming
(purple) and outgoing (green) lane for the harbor, and we can spot a
continuously maneuvering pollution measuring vessel (the “Scheur-
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Figure 29: Visualizing ships with directional color coding, ∆ = 16 hours

rak”) to the northwest of Rotterdam. However, in order to be useful
for maritime traffic planners, our application will need to be adjusted
to their specific requirements and use-cases.
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