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“The only way to do great work
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A B S T R AC T

Shape segmentation algorithms can be categorized into two main cat-
egories, namely part-based segmentation and patch-based segmenta-
tion. The former identifies the structural parts of a shape, much like a
human would visually classify parts, and is most suitable for natural
shapes, whereas patch-based segmentation concerns itself with parti-
tioning a shape into its quasi-flat areas which best suits man-made ob-
jects. This dichotomy poses an issue with being able to automatically
segment any input shape, as it is unknown which method to use.

Our contribution is two-fold: we first present a new part-based
segmentation method to operate on mesh shapes, derived from cut-
space segmentation as proposed by Feng et al in . Secondly,
we propose a heuristic to automatically select what segmentation is
most appropriate without introducing undesirable over-segmentation.
To accomplish this we first validate each part of the part-based
segmentation based on several structural properties a part must
satisfy, then determine for each remaining parts what patches should
be introduced.

We tested our approach on over fifty various kinds of shapes and
obtained promising results. We show some of the results and also
discuss shapes that are problematic with our algorithm. The proposed
method and results have been accepted for publication as a book
chapter.
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SA M E N VAT T I N G

Het segmenteren van vormen kan worden onderverdeeld in twee
categoriëen, namelijk onderdeel-gebaseerd (part-based) en vlak-
gebaseerd (patch-based). De eerste variant herkent de verschillende
structurele onderdelen van een vorm, gelijk aan hoe mensen dat
perceptueel zouden doen, en is toepasselijk voor natuurlijke vormen.
De patch-based variant daarintegen herkent de platte vlakken van
een vorm, een eigenschap die veel voorkomt bij door mensen
gemaakte objecten. Deze tweedeling vormt een probleem voor het
automatiseren van een arbitraire vorm, aangezien het onbekend is om
wat voor type vorm het gaat.

In deze thesis presenteren we allereerst een nieuwe methode voor
part-based segmentatie op meshes, op basis van een cut-space techniek,
in  geïntroduceert door Feng et al. Vervolgens tonen we een
methode om de twee verschillende vormen van segmentatie samen
te brengen, zodat automatisch de best passende segmentatie wordt
berekend. Dit is bereikt door eerst voor de gevonden onderdelen
te verifiëren of aan bepaalde eigenschappen wordt gedaan, waarna
wordt bepaald welke van de vlakken in het resultaat moeten worden
betrokken.

We hebben onze aanpak getest op meer dan vijftig uiteenlopende
vormen en hierbij goede resultaten gezien. Een aantal van de
resultaten worden gepresenteerd en besproken, waarbij ook een
aantal vormen worden getoond die problematisch blijken. Onze
methode en de resultaten ervan zijn geaccepteerd voor publicatie als
onderdeel van een boek.
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1
I N T R O D U C T I O N

The human ability to identify, compare and reason about shapes is
exceptionally sophisticated. Everything we see around us can be
described in terms of shapes, for which we immediately have a feeling
of their topological structure and resemblance to other shapes, only
from perceiving their surface.

This ability comes as natural to us, however it is far from trivial to
teach a computer the same abilities. To a computer, a shape is nothing
more than a set of values, structured in a certain manner such that
we may reconstruct the visual representation from it using computer
graphics techniques. To better understand how hard a computer’s task
of understanding and, more importantly, reasoning about such a set
of values is, imagine being given a page only consisting of numbers
and then having to tell what object it describes, if any.

For a computer to do something meaningful with a set of values, it has
to be aware of how such a set of values is used to represent a certain
shape. We will next see what shape representations are commonly used
in computers.

. shape representations

Several possibilities exist for the representation of a shape. First,
we can make the distinction between implicit and explicit shape
representations. The first category uses analytical expressions to
implicitly describe a shape from a set of parameters [BBB+97]. As
an example, a sphere in three-dimensional space is obtained by the
expression (x−x0)

2+(y−y0)
2+(z−z0)

2 = r2 where (x0,y0,z0) and r are
its parameters to define the sphere’s center and radius, respectively. A
benefit of this representation is that the shape is defined with infinite
precision and with little memory requirements, however it is hardly
used in practice as composing complex shapes implicitly is a hard
problem in itself. Moreover, such representations are impractical for
many processing purposes for the very reason the shape itself is only
implicitly known.

In the explicit category we can further distinguish boundary and
volumetric representations. The first is commonly used when we are
only interested in the boundary of a shape, or when data on the
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inside of the shape is unavailable. In computer graphics applications
this is the prevalent representation, in which a point-sampling of the
surface is used where the points are connected by triangles, generally
referred to as a polygonal mesh [BKP+10]. Without the connectivity
information we refer to such representation as an unstructured point
cloud, optionally with orientation information when a surface normal
is associated with each point.

Volumetric representations contain information of both the surface
and shape interior. Typically, a rectilinear grid is used to store a
uniform sampling of a multi-dimensional space, storing for each grid
cell if it is inside or outside the shape [BBB+97]. Optionally, a grid
cell may be assigned additional values to indicate all kinds of extra
features. Grid cells are referred to as pixels for two-dimensional
images, and voxels in three-dimensional volumes. From now on we
will use the term voxel for grid cells as we refer to them in the context
of three-dimensional shapes. Some processing tasks are easier to
accomplish using this representation compared to point clouds and
meshes, mostly because a voxel’s neighborhood is uniform and always
well-defined—a pixel’s  or -connected neighborhood versus a voxel’s
 or -connected neighborhood—which is useful in many shape
processing applications. Major drawbacks exist however, in terms
of accuracy and memory requirements. The accuracy is inherently
limited by the grid’s resolution, as values can only be assigned per
voxel which are of a certain size. Consequently, to represent fine
levels of detail we need very high resolution grids, which then become
unfeasible in terms of processing power and memory requirements.

Point clouds and meshes do not suffer from such issues as each point
can be positioned anywhere up to machine precision. Moreover, these
representations have an additional advantage in terms of processing
power over the volumetric grid-based approach, as they require much
less data to represent the same information. As an alternative shape
representation to the ones discussed above we will next look into the
Medial Axis and its applications.

. skeletons

An alternative way to represent a shape is by only describing its
main structure, or skeleton [Blu67]. This representation differs from
the methods discussed above, in that it does not store boundary
points explicitly but instead captures a shape’s boundary by means
of its topology and distances to the boundary. The skeleton of two-
dimensional shapes consists of D curves, whereas three-dimensional
shapes produce a collection of D manifolds, referred to as a surface
skeleton. Considering the complexities that come with processing a
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structure of D manifolds researchers have come up with methods
to extract D curve skeletons from three-dimensional shapes, thereby
vastly reducing the skeleton’s complexity. This family of skeletons
is often used in shape analysis tasks as it succinctly describes the
topology of a shape [TDS+16]. Due to the reduction in complexity
however, the original shape cannot be retrieved in full from a curve
skeleton. Moreover, the computation of curve skeletons allows for
various interpretations, as no universally accepted definition exists.

. shape segmentation

One interesting task for a computer is to extract the individual
components of a given shape, as such segmentations have a
broad array of applications ranging from shape analysis and
computer vision to compression and efficient collision detection.
In , Shamir introduced the distinction between two kinds of
segmentations, part-based and patch-based segmentations [Sha04].
Part-based segmentation methods try to identify segments that a
human would also intuitively perceive as the distinct segments of
an object, of which an example is shown in Figure .a. Such
segmentations have applications e.g. in shape matching, where
individual parts can be better matched to other objects than the whole
shape, and object morphing, in which each part can be transformed
individually from the rest of the shape.

(a) Part-based segmentation [RT08a] (b) Patch-based segmentation [RT08b]

figure . Categorization of segmentation methods, showing the
results for two volumetric datasets.

On the other hand, patch-based segmentations recognize quasi-flat
areas, separated by high curvature creases, depicted in Figure .b.
Extracting such areas is useful for mesh simplification applications,
as a patch is quasi-flat it can be represented using a relatively small
number of triangles. Stemming from this is the possibility to use
patches to optimize collision detection algorithms, by first performing
a collision test using a patch as the bounding box of a larger number
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of triangles [GWH01]. If the bounding box itself tests negatively for a
collision it is known that neither of its included triangles will collide,
therefore lifting the need to continue collision testing on a finer scale.
Strictly speaking this is true for any subset of the mesh, however
patches lend themselves well for this application as a patch generally
comprises a small volume—due to its quasi-flat nature—therefore
being more likely to test negatively in collision tests, providing a
better means of optimization compared to e.g. a part that is used as
bounding box.

Part-based Segmentations

Computing part-based segmentations can be done using a multitude
of methods. For instance, one may identify the various parts in a
shape by calculating the curve skeleton and analyzing its junctions,
as a subset of these corresponds with the distinct parts of the
shape [RT07].

Given that curve skeletons are not a complete representation of a
surface, they may not be appropriate for any kind of shape and shape
processing operation. Therefore, an attempt has been made to derive a
part-based segmentation from the surface skeleton [FJT15b]. For each
skeleton point, a shortest geodesic around the boundary connecting
both feature points is calculated to obtain the shape’s cut-space, after
which the skeleton points are categorized based on their geodesic’s
length. Finally, this is used to derive shape parts from, where the
geodesics are used as smooth segment borders. Feng’s results have
shown that such segmentation approach derived from the surface
skeleton is indeed feasible for part-based segmentations, however
its use of a volumetric voxel representation limits its usability and
scalability.

Patch-based Segmentations

For patch-based approaches, shape surface curvature may be computed
to identify creases and extract patches from that information. Such
methods however are highly sensitive to noise which limits their us-
ability, and furthermore may not have the desirable property of being
pose-invariant. An alternative technique for detecting creases is by
using the surface skeleton of a shape, of which some skeleton points
correspond with the high curvature ridges [RT08b, KJT16] Simply put,
by detecting these points and back-projecting them against the sur-
face, we have marked every crease and may obtain the patches by
connected component analysis. Using the surface skeleton is advan-
tageous as skeleton points can be assigned an importance measure
resulting in a multiscale skeleton. Such multiscale skeletons can then
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be used at a certain scale such that details which are due to noise are
ignored, giving an effective way to work around noise.

. research goals

The main goal of this research is to investigate how part- and patch-
based segmentation approaches for three-dimensional shapes may be
unified into a single combination of both methods. Such a method
may have the benefit of producing good results for all kinds of shapes,
where the current segmentation methods only produce expected
results for certain kinds of shapes. Therefore, the first research
question is as follows:

. How can we design a generalized part/patch-based segmentation
algorithm?

To avoid the inevitable downsides of volumetric methods—their
limited resolution and high memory consumption—the whole
processing pipeline must only use point cloud data or polygonal
meshes. As such, in order to experiment with how cut-space
segmentation can be applied for mesh shapes we formulate the second
research question:

. Can we use cut-space segmentation for mesh models and how does it
compare to Feng et al’s voxel-based technique? [FJT15b]

To answer these questions, we will look into existing shape
segmentation algorithms and how we may define a heuristic to unify
them. Also, we will look into redesigning the cut-space derived part-
based segmentation method [FJT15b] to work with meshes and see how
it compares to other methods. This has several challenges, as a shape’s
segmentation is not well-defined and its preferred segmentation may
depend on the application at hand.

. thesis outline

In this section we briefly discuss the structure of this thesis, as
follows.

First, Chapter  gives an overview of related work, starting with
discussing the Medial Axis in its various forms and its applications
thereof. Next, we look into a broad range of segmentation approaches
from earlier work.

Next, Chapter  shows how we re-designed Feng et al’s cut-space
segmentation approach to work with D meshes, reviewing all
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deviations from the original method that are necessary to obtain
proper results. The chapter is concluded with validation procedures
and ways of visually improving the segmentation results.

In Chapter  we go into detail about the desirable properties of a
unifying part- and patch-based segmentation method. We show how
an existing patch-based segmentation method is adapted to integrate
in a unification framework.

Having described our unified segmentation pipeline in full, Chapter 
switches to a more practical context. We give details about the
technologies that were used along with implementation details.

Chapter  continues with showing the results and limitations
for various kinds of shapes, also in comparison to related work.
Furthermore, we review common values for some of the parameters
involved, and show how they may affect the results.

Finally, Chapter  presents a discussion on the research’s conclusions
alongside possible directions for future work.



2
R E L AT E D WO R K

In this chapter we first go into detail about skeletons as they play a
central role throughout this thesis. Section . gives the mathematical
definition and skeleton notation, followed by a skeleton classification
scheme. Then, in Section . a non-exhaustive overview of related
work in shape segmentation is presented.

. medial axis

Another name for the skeleton of a shape is Medial Axis (MA),
introduced in  by Blum [Blu67]. This representation does not
store boundary points explicitly but captures a shape’s boundary by
means of maximally inscribed disks (in R2) or spheres (in R3), such
that the union of all such spheres produces the shape boundary. Blum
observed how most points inside of a shape have a unique minimal
distance to the boundary, i.e. there is only a single closest point. For
points xi on the MA, however, there exist at least two such points at
equal distance ρi ∈ R. Therefore, the MA is a shape descriptor that
captures the symmetry in a shape, by means of the set of spheres
{(xi ,ρi)}.

As is briefly mentioned in the introduction, the skeleton of two-
dimensional shapes consists of a set of D curves. By using the
same definition for three-dimensional shapes, a set of D manifolds
is obtained. Generally speaking, the skeleton of an n-dimensional
shape is of one dimension less with respect to the dimension of
the shape. Considering the complexities that come with processing
a structure of D manifolds however, researchers have come up
with methods to extract D curve skeletons from three-dimensional
shapes, thereby vastly reducing the skeleton’s complexity. Due to this
reduction in complexity not all shape information is retained; hence
only an approximation of the original shape can be reconstructed.
Curve skeletons lend themselves well as a topological descriptor
of a shape and are therefore used in many shape processing tasks,
e.g. segmentation, animation and medical imaging tasks such as MRI
and CT scans [CSM07].
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.. Definitions

Given a shape Ω ∈ Rn∈{2,3} with boundary ∂Ω we first define the
distance transform (DT) DT∂Ω : Ω→ R+ that determines the distance
to the closest boundary point for any given point in the shape:

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x− y‖ (.)

The notation ‖ · ‖ stands for Euclidean distance and this particular DT
is therefore called Euclidean distance transform. We next use the DT in
the definition of a skeleton S∂Ω:

S∂Ω = {x ∈Ω | ∃f1,f2 ∈ ∂Ω,f1 , f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)} (.)

Intuitively, f1 and f2 are two of the contact points with ∂Ω of the
maximally inscribed sphere in Ω centered around x which are known
as feature transform (FT) points [ST04]. The feature transform itself thus
assigns to any point in Ω its closest points on ∂Ω, defined as:

FT∂Ω(x ∈Ω) = argmin
y∈∂Ω

‖x− y‖ (.)

.. Skeleton Classification

In order to understand the structure of a skeleton and aiding the
reasoning about skeletal points, Giblin and Kimia introduced a
classification scheme based on the order of contact of maximally
inscribed spheres centered at the skeletal points with the shape
boundary ∂Ω [GK04]. They denote a medial point as Ank , with k
indicating the aforementioned contact order and n the number of
different k-fold tangencies.

The medial axis consists primarily of several manifolds, except for
spheres or tubular shapes. Such manifolds are commonly referred to
as medial sheets and consist of only A3

1 points, i.e. the points having
exactly two feature points. On the boundaries of these manifolds we
find medial curves, of which we may differentiate between two types.
First we can identify A3

1 points, which each have exactly three distinct
feature points on ∂Ω. Such curves occur at the intersection of three
medial sheets and together form the so-called Y-intersection curve, or
Y-network. The second type of medial curves are A3 points, which
only have a single contact point and are located on the ‘open’ sides of
medial sheets, thus represent the skeleton boundary. Such points map
to the surface curvature maxima of ∂Ω, which we will see later is key
in computing a patch-based segmentation.



. shape segmentation 

unclassified medial cloudA3  points

A
2
 points A

3
 points

A
4
 points1

1 1

figure . Classification of skeleton points [KJT16].

Finally, the end points of curves may be individually categorized in
two classes. The end points of A3

1 curves are the A4
1 points each having

four contact points on ∂Ω. Such points correspond with the internal
corners of the skeleton manifolds, i.e. the points along the boundary-
curve of such a manifold. Lastly, we may identify A1A3 points which
are the end points ofA3 curves, or the intersection ofA3 andA3

1 curves.
These points correspond with corners on ∂Ω where multiple surface
edges meet and therefore may be considered external corners.

. shape segmentation

Segmenting a shape Ω ∈ R3 means to obtain a partition of disjunct
components Ci on the surface, such that ∪iCi = ∂Ω and ∀i , j :
Ci ∩Cj = ∅. These definitions hold true for both part-type and patch-
type segmentations, the difference between the two types being the
choice of what properties a segment should have, i.e. where segment
borders are to be inserted.

When computing the segmentation of a shape several properties
are important for a good segmentation result. For example, the
segmentation should be robust to noise, i.e. introducing boundary
noise should not influence the resulting segmentation. Furthermore,
the segmentation should be pose, scale and rotation invariant such
that the segmentation stays the same as long as the shape’s topology
is not altered. Lastly, the segmentation’s level of detail should be
customizable by the end user, if so desired.

In the following subsections both part-type and patch-type shape
segmentation approaches are discussed and an overview of various
methods is provided. Please note here that although it is common in
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literature to interchangeably refer to a single unit in a segmentation
as both segments and parts, given the context of this research however
this would cause ambiguity as we discriminate between part-segments
and patch-segments. Therefore, throughout this thesis we use part
to mean a segment as a result of part-type segmentation, and patch
to indicate a segment from patch-type segmentation. When the
term segment is used, the statement is not restricted to a single
type of segmentation but applies to both part-type and patch-type
segmentation.

.. Part-type Segmentation

Part-type segmentation is most appropriate for natural shapes such as
animals, and has the goal of finding how the shape could be split up
into separate parts, corresponding with what the human brain would
typically perceive as a part. This directly leads to a challenge in that
what exactly constitutes a part may be subjective and is therefore
ill-defined, although a part is typically considered to consist of an
elongated structure that sticks out of a shape’s rump, to represent
a part-whole relation. Furthermore, one aspect of parts is that a
part is separated from the rump by a region of negative curvature,
which is known as the minima rule from [BHS89, HR84]. We will next
discuss a non-exhaustive list of methods for computing a part-based
segmentation.

Plane Sweeping

In , Li et al proposed a method that sweeps the curve skeleton of
a mesh using a plane, then identify large variations in the intersecting
area of the plane [LWTH01], as illustrated in Figure .. Such variations
are likely to represent part-whole transitions, and therefore may be
used to derive segment borders from by computing the third order
derivative. Unfortunately only a limited set of results is presented
in the paper—which arguably suffer from slight over-segmentation—
so we cannot accurately describe the characteristics of this method.
Moreover, given that the paper is over a decade old, its performance
metrics cannot accurately be compared with more recent work.
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figure . Plane sweeping may be used to detect parts [LWTH01].
The graphs show up to the third order derivatives from
which the transition points (here b) are derived.

Fuzzy Clustering

In order to overcome jaggy boundaries in the segmentation, Katz
and Tal proposed a fuzzy clustering approach for mesh shapes in
 [KT03]. Fuzzy in this regards means that the shape boundary
is assigned with probabilities of belonging to a certain segment, then
iteratively optimizing the fuzzy areas to obtain a desirable segment
boundary that properly follows the shape’s curves. Furthermore, their
segmentation is obtained from a hierarchical clustering of the shape.
This results in a multiscale segmentation such that the number of
segments may be refined by selecting a different clustering level.

Their results show promising results, notably the multiscale process-
ing produce logical segmentations with segment borders correspond-
ing closely with the shape’s curvature. In terms of performance this
method was quite expensive, where shape simplification and voxeliza-
tion was applied for some stages of the pipeline in order to accelerate
the computation.

first level third levelsecond level fourth level

figure . Part-type segmentation using fuzzy clustering [KT03],
showcasing its ability to compute a sensible multiscale
segmentation.
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The idea of assigning segmentation labels in a fuzzy manner has seen
additional usages, i.e. an interactive shape editing tool that computes
feature classifiers on the shape boundary [CGR+04] and the method by
Katz et al as discussing next.

Feature Point & Core Extraction

Only two years after fuzzy clustering was proposed, Katz et al
presented a new method for mesh-based part-type segmentation by
means of Feature Point & Core Extraction [KLT05]. Even though this
method still uses some sort of fuzzy clustering, its initial computation
of parts differs greatly from the original fuzzy clustering algorithm.
By applying a Multi-Dimensional Scaling (MDS) technique a pose-
invariant representation is obtained, from which prominent feature
points are computed, see Figure .. In this context, feature points
are not to be confused with Medial Axis feature points but simply
represent points of particular interest, each corresponding with a part
in the final segmentation. A novel technique for extracting the core
component is presented which is used to determine the segments
from.

MDS transform feature points core component segmentation

figure . Part-type segmentation using feature point & core
extraction [KLT05].

The paper shows good looking results on a set of natural shapes,
i.e. the kind of shapes for which part-type based segmentation works
well. It shows improved results upon their  method in terms
of pose-invariance and especially proportion-invariance. Running
times of the full pipeline vary from sub-minute figures for small
and medium sized shapes and increases to several minutes for larger
models.

Reeb Graphs

Tierny et al use Reeb graphs as topological descriptor of a mesh shape,
from which a hierarchical segmentation is computed [TVD07]. Given
that the Reeb graph is a topology descriptor much like curve skeletons,
it can be categorized in the same category. Surface parts are also
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derived from the graph’s junctions and through simplification of the
graph, a multiscale segmentation is computed as shown in Figure ..
The paper shows that this method provides good results that are pose-
invariant and robust to noise. In terms of performance this method
performs well, with timing figures ranging from seconds to a few
minutes.

original Reeb graph raw segmentation fine segmentationsimplified Reeb graph

figure . Part-type segmentation using Reeb graphs [TVD07].
By simplification of the Reeb graph a multiscale
segmentation is obtained.

Skeleton Junction Analysis

As was briefly discussed in the introduction, part-type segmentation
may be obtained from analyzing the junctions of a curve skeleton.
First proposed in , Reniers et al partition a shape into parts by
finding all junctions in the curve skeleton, then computing Jordan
curves on the boundary that serve as segment borders [RT07]. The
idea here is that a junction in the curve skeleton corresponds with a
protruding feature on the boundary, that is to be considered a part.

(a) -junction (b) -junction (c) -junction (d) -junction

figure . Overview of all four junction types, where magenta
represent desirable part-cuts and blue the curve skeleton.
Figure from [RT08a].
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The method described in [RT07] however suffers from over-segmentation,
as for certain junctions not all connected components as induced by
the Jordan curves should be considered as a separate part. Hence, in
 Reniers et al proposed a modified algorithm that was able to cir-
cumvent this problem [RT08a]. By categorizing each junction into four
types, as shown in Figure ., the number of parts that stem from a
junction is known, which can then be used to obtain a correct segmen-
tation from.

A further refinement to this idea was proposed by Serino et al in
 [SdBA11] In a voxel-based curve skeleton they detect three kinds
of skeletal parts, i.e. simple curves, complex sets and single points,
which are projected onto the shape surface to partition it into parts.
This part-based segmentation contains of a main rump, called kernel
with attached to it are its protruding parts, called simple regions
and bumps. By recognizing the shape from a single rump, their
approach suffers less from oversegmentation and may produce better
part boundaries. In , Serino et al present an elegant solution to
the problem of having too many skeleton junctions, and therefore
identifying too many parts [SAdB14]. By comparing the local shape
thickness, i.e. distance transform value, against the inter-junction
distances they detect spurious junctions, using which they determine
which junctions to actually derive segment from.

Shape Diameter Function

Shapira et al take a different approach to segmenting a mesh, where
they segment a shape directly from its boundary [SSC08]. In , they
introduced the Shape Diameter Function (SDF) which is an estimation of
the shape’s diameter at every boundary point. For each vertex of the
mesh several rays are projected into the shape in various directions,
according to a cone-like pattern around the inversed normal, and for
each ray the first intersection with the shape boundary is computed
to obtain the length of the ray. Next, the SDF is computed as being
the average of all ray lengths. To become pose-invariant and robust to
noise, the SDF gets smoothed by applying a small number of bilateral
filtering iterations on a small neighborhood around each vertex.

Next, a segmentation of the shape is obtained by clustering the
vertices having similar SDF values. Under the assumption that areas
of similar diameter are likely to represent a certain part, much like the
assumption used with the cut-space approach, this yields a part-based
segmentation of the shape. This method gives good results for natural
shapes as shown in the paper, but has limitations on non-cylindrical
parts of objects. In terms of performance the method performs similar
to earlier discussed methods, ranging from seconds for small shapes
to several minutes for large meshes.
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Randomized Cuts

An entirely different approach for part-type segmentation is presented
by Golovinskiy in  [GF08]. From the observation that
segmentations may differ greatly between algorithms and parameter
settings, although still often producing segment borders in the
same edges they see opportunity in sampling multiple randomized
segmentations so that the most probable segmentation may be
derived. Initially they compute multiple segmentations using existing
algorithms such as k-means clustering, then compute a partition
function that outputs the probability that an edge represents a
segment border.

random segmentations partition function

figure . Part-type segmentation using randomized cuts [GF08].
The partition function shows the likelihood of represent-
ing a segment border as computed from the four segmen-
tations in the left figure.

The paper shows that on average,  random segmentations are
necessary to obtain a stable partition function. Considering that
shape segmentation becomes more expensive as the number of mesh
faces increases, this method is quickly restricted by shape size. For
small shapes with only , faces the full pipeline already takes
several minutes to complete, which is much slower compared to
earlier methods. Although the results are visually similar to e.g. SDF
segmented shapes, the low resolution and therefore rough segment
borders diminish the results.

Cut-Space Segmentation

Where most earlier methods rely on using a topological descriptor
of a shape, e.g. the curve skeleton, the recently proposed method
by Feng et al is designed to derive a part-type segmentation from
the surface skeleton [FJT15b]. This is beneficial, as surface skeletons
capture the full details of a shape in contrast to curve skeletons, such
that any amount of detail may potentially be taken into account which
is impossible when using curve skeletons. For each surface skeleton
point, they compute the shortest path (geodesic) all across the surface



 related work

between the two feature points. These paths may all be considered as
cuts, i.e. places where segment borders may occur, hence the collection
of all cuts is called a cut-space. The cut-space segmentation approach
in this regard is similar to plane sweeping .. but uses a different
model for computing plane intersections, i.e. by means of shortest
geodesics.

Feng et al next derive parts from the cut-space by grouping
similar cuts together. Initially this was done by partitioning cut-
lengths [FJT15b] and later improved by using hierarchical clustering
of cuts based on cut-length and spatial features [FJT15a]. Having
computed a partition of the cut-space, the shortest cut among the set
of cuts having a neighboring cut in a different partition, is used as
segment border in the segmentation of the shape surface.

Their results show that using a surface skeleton is a viable option
for part-type segmentation. Considering however that their method
depends on voxel shapes it can only process shapes of limited
resolution in reasonable time.

.. Patch-type Segmentation

The goal of patch-type segmentation methods is to identify quasi-
flat areas of a shape. These kind of methods are best suited for
mechanical, human designed objects as they are often constructed
using rectangular cuboids. As was the case with part-type
segmentation, there exists no exact definition of what constitutes a
patch as it depends on the application at hand. As such, we need to
visually reason about the ‘correctness’ of a given segmentation result.
Here we will give a brief overview of some techniques that have been
proposed.

Fitting Primitives

One way of finding patches on shape boundaries was proposed in
 by Attene et al [AFS06]. The method is based on Hierarchical
Face Clustering [GWH01], a technique that iteratively collapses edges
of the dual graph of a mesh in order to merge faces. By assigning
a cost function to the graph’s edges the edge with lowest cost
is removed, merging together the vertices—and therefore faces—it
connects. Attene et al propose as cost function the minimum error
of fitting a plane, sphere and cylinder through two adjacent faces. For
typical patch-type shapes the quasi-flat areas are best fit by a single
plane and would therefore be segmented in a single cluster.
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(a) (b)

figure . Patch-type segmentation by fitting primitives [AFS06].
Typical patch-type shapes as in (a) show good results,
whereas natural shapes as in (b) are suboptimal when
compared to dedicated part-type segmentation methods.

Unfortunately the paper only provides a limited set of results.
From these, we may conclude that typical patch-type shapes, as in
Figure .a, are segmented well, as well as being robust to noise.
We note however that they also present the segmentation of a horse,
for which a reasonable, but suboptimal part-type segmentation is
computed, see Figure .b. Moreover, the technique is not pose-
invariant by nature so we argue that the method is not suitable for
robust part-based segmentation. Attene et al give in their paper very
fast computation speeds, where the hierarchical clustering only takes
 seconds for a large mesh of K faces, not even on modern
hardware.

Soft Edge Detection

By definition, quasi-flat areas are separated by areas of high curvature,
or soft edges. Consequently, by performing curvature analysis on the
shape boundary such separation areas may be identified, from which
the quasi-flat areas follow. There have been numerous curvature
analysis algorithms proposed in the past, of which we discuss two
technique that both use surface skeletons. In  Reniers et al
propose a patch-type segmentation method for voxel shapes [RT08b].
They observe how the boundaries of simplified fore- and background
skeletons map to soft convex/concave edges on the shape’s boundary,
thereby identifying the areas where patches are to be separated.

Although Reniers et al’s approach produces good-looking, robust to
noise results, it comes with a disadvantage in terms of performance.
Given that a voxel-representation is used, only shapes of limited
resolution can be processed in reasonable times. For example, a shape
of about 2503 voxels takes just under minutes to compute.

Back in , a new proposal for patch-type segmentation using
surface skeletons has been presented by Kustra et al that works on
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figure . Patch-type segmentation using skeleton-based edge de-
tection [RT08b]. By simplification of the skeleton (b) and
distinction between edges vs. noise (c) actual edges are
identified.

mesh shapes [KJT16]. Their paper details a novel framework for
processing surface skeletons, with one of its capabilities is to classify
each skeletal point as discussed in Section ... Recall that A3 points
correspond with the skeleton boundary and therefore represent soft
edges. By projecting the A3 points to the surface boundary thick lines
are obtained, such that the connected components are the resulting
patch-type segmentation. The paper shows that the method produces
accurate patches, but may suffer from over-segmentation and jaggy
segment borders.



3
C U T- S PAC E S E G M E N TAT I O N

Using the cut-space for shape segmentation is a recent technique
pioneered by Feng, Jalba, and Telea [FJT15b]. As their pipeline
was based on a volumetric voxel-based shape representation, their
proposal needs to be redesigned to work with meshes or on point
cloud data. In the next section we first go into detail about Feng et
al’s method, after which we continue on how we designed a cut-space
segmentation method for mesh-based models. First, an overview
of our full pipeline is presented upfront in Figure .. Then, in
Section . we explain how the cut-space is computed, followed by
how segments are derived from the cuts. Then, Sections . and .
show how the cut-space segmentation information is transferred to
the shape surface. Next, we introduce several filters to improve
and validate the resulting segmentation in Section .. Finally, two
techniques for improving the rendering of the results are discussed in
Sections . and ..

. voxel based cut-space segmentation

Using the surface skeleton, one can derive a part-type segmentation
of a shape Ω by computing the shortest geodesics through the feature
points f1 with f2 for each skeletal point, producing so-called cuts of
which a set is referred to as a cut-space. The full pipeline of this
process is given in Figure .. Using the cut-space, shape segments
Si are identified by analyzing and categorizing the cuts based on
their length. Next, segment borders Bi are selected as being cuts
c(x) having cut c(y) among its -connected neighbors in a different
subset Sj,i . The set {Bi} of the cuts is used to translate from the cut-
space, i.e. skeleton domain, back to the shape surface, by finding the
connected components of ∂Ω being separated by the border-cuts in
{Bi}.

For each skeletal point, a cut needs to be traced connecting f1 with f2,
creating a cross-section of the shape. Feng et al designed an algorithm
to trace cuts as a combination of at least three cut parts γi , briefly
as follows. First, a shortest path γ1 between f1 and f2 is constructed
using Dijkstra’s shortest path algorithm. Given γ1, a point o on the
opposite of the shape is computed by finding the middle point m on
γ1, then finding where a ray through m with direction x−m exits shape
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figure . The pipeline as used by Feng et al [FJT15a, FJT15b].

Ω. Next the two shortest paths γ2 between f1 and o, and γ3 between
f2 and o are computed such that a full cut is given by γ1 ∪γ2 ∪γ3.

Using this method of constructing a cut, the following beneficial
properties are satisfied by all cuts:

. Tight: cuts need to be geodesics, i.e. shortest paths on ∂Ω.

. Smooth: cuts shall not contain sharp angles.

. Self intersection free: Cuts may never intersect with themselves.

. Locally orthogonal to the symmetry axis: a cut needs to be locally
orthogonal to the curve skeleton, i.e. the symmetry axis.

. Closed: no gaps occur in the cut, it is circularly connected.

Feng et al computed a partitioning of the cut-space by using a
histogram [FJT15b]. They collect all cut-lengths into a histogram, then
analyze the histogram for its valleys which are used as thresholds.
Using these thresholds the cut-space is partitioned into clusters of
similar cut-length, therefore likely to correspond with a part.

. pipeline overview

To aid in putting the upcoming sections into perspective, an overview
of our cut-space segmentation method is presented upfront in
Figure .. When compared to Figure . some differences are
introduced in order to effectively compute a part-based segmentation
from the cut-space for mesh-based shapes.

Throughout the remainder of this chapter we will include references
to the discussed stage in the above pipeline figure.

. computing the cut-space using meshes

Since the cut-space S is defined from a surface skeleton, the first
step is to compute such a skeleton. For this we use Jalba et al’s
GPU optimized skeletonization method [JKT13], which is, to date, the
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figure . Our proposed pipeline to compute part-based segmenta-
tions using surface skeletons.

fastest available framework we are aware of. The resulting surface
skeleton is an unconnected point cloud S = {xi } with skeleton points
xi . In contrast, the voxel skeletonization method that is used by
Feng et al outputs a voxel-based skeleton. The point-cloud skeleton
representation introduces several challenges that are addressed in the
next subsections.

We note that since this skeletonization method requires a mesh
representation as input, our pipeline would also require using meshes
as input shape representation. Considering the various methods to
construct a mesh from point cloud data, e.g. ball-pivoting [BMR+99],
Delaunay triangulation, and α-shapes [EKS06], it would still be
possible to process pure point cloud datasets by first applying a
conversion method to obtain a mesh. Throughout this thesis we
therefore assume a mesh is available.

.. Skeleton Regularization

Similar to Feng et al, the surface skeleton S needs to be regularized
to avoid creating cuts from unimportant skeletal points due to small-
scale noise on ∂Ω, refer to stage (b) in Section .. For this we may
want to use the MGF (Medial Geodesic Function) importance metric—
proposed by Jalba et al [JKT13] together with the skeletonization
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method we use—considering that the MGF metric is analogous to the
collapse metric that is used by Feng et al.

When actually comparing the collapse metric against the MGF variant,
we observe a significant difference near the shape’s curve skeleton,
see Figure .a. The collapse metric attains much higher values
throughout this area than its surrounding surface skeleton points.
Therefore, Feng et al’s thresholding of the collapse metric results in
skeleton points that are due to noise to be removed, while preserving
the essential curve-skeleton points near the curve skeleton.

When computed on a point-cloud skeleton however the MGF metric
does not have this property, see Figure .b. The collapse metric is not
only monotonically increasing from the outside to the inside of the
shape, as is the MGF, but is also increasing towards the shape center
where most boundary mass collapses onto, a property that does not
hold with shortest geodesics. As a consequence, thresholding this field
may cause thin areas of the shape to be removed which is undesired.

(a) Collapse metric, voxel skeleton (b) MGF, point-cloud skeleton

figure . The collapse metric for voxel-based shapes (a) is much
higher in points close to the shape’s curve skeleton, a
property that is not seen in the MGF metric (b).

The problem with thresholding the MGF is illustrated in Figure .a.
Two cuts have been highlighted, of which only the red cut is desired as
it corresponds with the main shape axis, whereas the green cut does
not and is therefore undesirable to include in the cut-space. If we were
to select a threshold τ slightly larger than the value corresponding
with the green cut, i.e. τ = 0.11, we would remove % of the surface
skeleton points, including all skeletal points that represent the ears
and legs. Even a conservative threshold τ = 0.01 eliminates detail
parts such as the ears, see Figure .a. Consequently, we have shown
that we cannot regularize the skeleton using the MGF metric, as it
cannot both keep detail parts while also eliminating badly oriented
cuts.

In search for another regularization method we note that surface
skeleton points close to the curve skeleton have larger angles between
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figure . Skeleton regularization using MGF ρ and θ-SMA fields.
Using θ-SMA captures the main axis of the shape better,
therefore letting the cuts being locally orthogonal.

their feature vectors[RvWT08]. As such, we may regularize the surface
skeleton to include only points having their FT vectors at a large angle
from each other. This method is the well-known local importance
method θ-SMA introduced by Foskey et al [FLM03]. The metric is
shown in Figure .b, which shows consistent high values in all shape
parts (rump, legs, muzzle and ears) and consistent low values near the
boundary of the surface skeleton.

We therefore define Sα as being a subset of S thresholded on θ(x) =
∠(f1,f2) using a minimum angle α ∈ [0,360]:

Sα =
{
x ∈ S | θ(x) > α

}
(.)

(a) Thresholded by ρ > 0.01 (b) Thresholded by θ > 120°

figure . Skeleton regularization using θ-SMA and ρ fields. Using
θ-SMA captures the main axis of the shape better,
therefore letting the cuts being locally orthogonal.

For α we empirically established a value of °to give good results
for all the shapes we tested. The thresholded skeleton Sα is shown in
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Figure .b. Now, undesirable cuts like the green cut in Figure . get
removed while the stable cuts that are locally orthogonal to the main
axis are retained.

Note that this skeleton is not connected, first because it is just a point
cloud, and next due to the removal of low θ-SMA points. This is of
no problem however, because we only use Sα for constructing the cut-
space.

.. Geodesic Computation

Having reduced the full surface skeleton to a stable set of skeleton
points, having arrived at stage (c) in Section ., cuts ci = c(xi) ∈ S
may be computed. We could copy Feng et al’s use of Dijkstra’s
shortest path algorithm to compute the cuts, where the mesh itself
represents the graph on which to compute the paths, as opposed
to Feng’s approach of deriving a graph from the voxels, with edges
defined by a voxel’s neighbors. However, an alternative approach to
compute shortest geodesics on meshes was proposed recently by Jalba
et al [JKT13] for their application of skeleton regularization, which
adheres to all of the cut requirements as outlined in Section ..
and does not suffer from any of the discussed drawbacks which may
occur using Feng’s method. Consequently, this method is also a good
candidate for our usage.

A straightest geodesic γS is defined as the unique solution of the
initial-value problem γS(0) = p,γ ′S(0) = v, with p ∈ ∂Ω being a
point on the shape boundary having tangent vector v ∈ Tp. Jalba et al
proposed an extension to define Shortest Straightest Geodesics (SSGs) γse
between two points s,e ∈ ∂Ω to be an accurate approximation of the
shortest geodesic from s to e [JKT13]. Their method computes multiple
straightest geodesics over tangent vectors vi ∈ Ts at s and then selects
the one with shortest length ‖γS,i‖:

γS,i(0) = s, γ ′S,i(0) = vi
γS,i(‖γS,i‖) = e

γse = argmin
i

∥∥∥γS,i

∥∥∥ (.)

For the proposed application of computing an importance measure
for skeleton regularization purposes, the SSG between feature points
f1 and f2 is computed. For our purpose of computing shortest cuts
however, we require the geodesic to start and end in f1 and pass f2
somewhere in-between. As such, we redefine γS,i as follows:

γS,i(0) = f1, ∃x ∈Z : γS,i(x) = f2, γS,i(‖γS,i‖) = f1 (.)
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To compute γse using Equations (.) and (.), we proceed similarly
to Jalba et al [JKT13]. For each skeleton point x ∈ S, we trace M =

30 straightest geodesics γS,i ,1 ≤ i ≤ M, with starting directions vi
uniformly distributed in Ts. For each direction vi , we compute γS,i
by intersecting the mesh ∂Ω with the plane with normal ni = f1 × vi
that passes through s, and select the shortest intersection amongst the
directions. In contrast to Jalba et al, we continue tracing until having
found an intersection with both f2 and finally arrive back at f1. Finally,
we gather all such SSGs to construct the cut-space

Sα = {γf1f2
|(f1,f2) ∈ FT∂Ω|Sα }, (.)

i.e. all cuts generated by points of the simplified skeleton Sα.

. cut-space partitioning

Once the cut-space Cα has been computed, the next step is to identify
how to partition the cut-space to obtain the shape’s parts. In the
pipeline image Section . this stage is indicated as (d). We use
a similar approach as Feng et al by means of a histogram of cut
lengths, in which peaks indicate cuts with similar lengths that occur
often and are therefore likely to represent specific shape parts. With
this assumption we may obtain a partitioning of the cut-space by
determining all peaks, such that the valleys in between these peaks
are used as partition thresholds. Figure . shows a sample histogram
of cut-lengths of a horse shape.

.. Histogram Valley Detection

In order to automatically and robustly detect histogram peaks
and valleys, we need to analyze the histogram’s bins and their
interrelationships. We first apply the mean shift algorithm [CM02]
to attenuate the differences between peaks and valleys. Feng et al
proposed an algorithm that first searches for a bin high enough for
it to be considered as peak, then continues searching for the next bin
smaller than a certain quantity which is considered a valley. Although
this does give an indication of where peaks and valleys are located, it
suffers from not finding the valley which is smallest because of its
greedy search for valleys. Moreover, what one would consider a valley
is dependent on the neighboring bins and we would therefore like to
make the search for valleys take into account its surroundings.

To accomplish this, we start searching for a peak with height hp
that represents at least λp = Hpeak · ‖Sα‖ cuts. We then continue
with subsequent bins and update hp as even higher peaks are found.
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figure . Histogram of cut-lengths of a horse shape in which
two valleys, indicated by red lines, are detected using
the algorithm as given in Section ... The cuts in
range [0,0.06) represent the horse’s legs, range [0.06,0.1)
corresponds with the neck and longer cuts correspond
with the torso of the horse.

Using the value of hp we determine the threshold for valleys to be
λv = Hdecrease · hp such that valley detection becomes dependent on
the peak it corresponds with. Once a bin not exceeding the threshold
λv is encountered, we do not immediately accept it as a valley but
instead remember its height hv .

As subsequent bins may be even smaller and therefore preferred as
valley, we need to continue searching for bins smaller than hv and
updating hv accordingly. Once a bin exceeding λp is encountered a
new peak has been reached, so that we now have two peaks and know
which bin in-between is smallest, and therefore our desired valley.
The cut-length represented by the ith valley results in threshold τi ,
later used in partitioning Sα.

We established that typical parameter choices are Hpeak = 0.01 and
Hdecrease = 0.25, such that a peak should represent at least % of all
cuts and a valley is smaller than a quarter of its accompanying peak.

An alternative method of computing thresholds based on a histogram
would be to fit k ∈ Z Gaussian curves over the histogram, as used by
Shapira et al for partitioning of their shape diameter function [SSC08].
A problem with this approach is that the algorithm only uses a
single parameter k which directly corresponds with k − 1 thresholds
being found, while the number of thresholds should preferably be
determined automatically, and therefore the parameter k is unknown.
This problem could potentially be solved by choosing an optimum
value for k based on the gap statistic [TWH00] but we preferred
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selecting thresholds using a method that simulates the human
approach of detecting peaks and valleys, as described above.

.. Histogram Limitations

We should note that using a histogram for partitioning the cut-space
has several limitations. As a histogram is a global aggregation of the
cut-space, spatial information is lost which may result in both over-
segmentation and under-segmentation. Consider having a cone with
in the center of its base having a cylinder mounted on, only halve
the radius of that of the cone’s base, much like a D arrow as shown
in Figure .a. For such a shape we would like the segmentation to
contain two parts, namely the cone itself and the cylinder. We can
however show that this desired result cannot be obtained using the
histogram approach, as follows.

(a) Arrow shape in D
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(b) Cut-space histogram for arrow shape

figure . An arrow shape cannot be segmented into its two parts
using a histogram approach.

Given the histogram that would be created for this shape, see
Figure .b, our algorithm for determining thresholds will not detect
any. Consequently, the full cut-space is assigned a single partition
resulting in only a single part, instead of the desired two parts. Hence,
under-segmentation can be an issue when using histograms.

We can use the same shape to illustrate how over-segmenting may
occur due to an issue we refer to as threshold aliasing. Assume that
using the histogram in Figure .b, a threshold is inserted just to
the right of the spike. Then, the cylinder will be separated from the
cone as desired, however the cone itself will also be partitioned into
two parts as the cuts close to the cone’s apex are assigned the same
partition as the cylinder.

Things get even more interesting when a threshold is inserted to the
left of the spike, instead of to the right. Now, the cylinder will be in the
same partition as the large area of the cone, and only towards the apex
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will a different partition be assigned. While this does in fact result in
the desired number of parts, the parts themselves are incorrect.

Above issues are inherent to using a histogram due to its global
nature. An alternative approach is necessary to avoid aforementioned
problems and one such alternative is briefly discussed under Future
Work in Section .. Despite these issues we still choose to
continue using histograms, as the alternative was only proposed when
finalizing this work.

.. Partitioning Using Thresholds

Using the set of thresholds T = {τi } that has been determined, we may
now partition Sα. A naive method to do so would be to iterate over all
cuts and then compare its length with all thresholds, resulting in a
complexity in O(‖Sα‖ · ‖T‖). Although ‖T‖ is small, we can reduce
the complexity to be only linear in ‖Sα‖ by reusing the histogram
once more. Recall that the thresholds correspond with histogram
bins, therefore we know that a single bin represents only cuts in the
same partition. Consequently, we may assign per bin the partition it
represents and iterate over all cuts to determine its partition using a
constant time lookup.

Having now a partition of the cut-space, note that each partition does
not necessarily translate directly into a part, as parts in the same
partition may be disconnected. Therefore, the next step is to cluster
each partition into its connected components. Whereas Feng et al used
the neighborhood relation as imposed by the regular grid to determine
connectivity, our skeleton lacks such a connectivity relation, being an
unconnected point cloud. Therefore, we first define the neighborhood
Ni of a skeleton point xi to be the set of skeleton points within a radius
r of xi :

Ni =N (xi) =
{
xj ∈ S | ‖xi − xj‖ < r

}
(.)

An appropriate choice for r depends on the shape’s dimensions. We
have established that using % of the longest edge of the shape’s
bounding box works well in general.

Finally, in order to eliminate any noise in the partitioning, i.e. areas
where cuts within a radius do not agree on an unambiguous part, a
mode filter for all cuts ci is applied to filter out the noise, with the
mode being computed over all cuts c ∈ Ni . Whereas noise reduction
applications commonly use a median filter, using the most frequently
occurring label is preferred as the part labeling is categorical.
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. extending partition to full surface skeleton

In Section .. we defined the cut-space Sα to be a subset of
the full surface skeleton. Consequently, the partitioning has only
been applied on skeleton points that are in Sα, the partition of
all other skeleton points is unknown. We require all skeleton
points to be assigned a label however, in order to detect where part
transitions occur. It is therefore necessary to fill in these points
using the established labeling, which corresponds with stage (e) in
Section ..

Our initial approach to accomplish this was to use a nearest neighbor
algorithm, to assign for each unknown skeleton point the label of its
closest labeled skeleton point. This approach however has several
downsides making it unsuitable, which we detail next. First, using
the nearest neighbor does not take into account the shape’s boundary,
which may cause issues as shown in Figure ., a shape of a dog. The
surface skeleton points which have not been assigned a label, due to
not being part of Sα, are shown in gray, of which a single skeleton
point is outlined in red. The arrows show that for the point outlined in
red, the closest labeled point is in the ear, whereas the desired labeled
point is further away in the neck of the dog. Therefore, the segment
of the ear would leak into the neck when using a nearest neighbor
approach.

x x
1

x
2

figure . Using a nearest neighbor approach for assigning labels to
gray, unassigned, points results in undesirable results, as
the shape boundary is not taken into account.

Yet another deficiency of using a nearest neighbor approach is that
narrow parts may percolate into broader parts, as using nearest
neighbors implies that part transitions occur halfway between parts
and the wider parts have the skeleton points further into the shape,
and therefore further away from the shape boundary. An example of
this problem is shown in Figure . of the torso and two front legs of
the dog shape, where the torso is much wider than the legs. As can be
seen, the skeleton points in the legs reach close to the torso, whereas
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the torso part’s skeleton points are only situated deeply in the torso’s
center. Now, when using a nearest neighbor approach, many of the
skeleton points clearly inside of the torso are still assigned to be part
of the leg, as the leg skeleton points are closest.

(a) Labeling of Sα (b) Nearest Neighbor (c) Distance Transform

figure . Assigning labels from the nearest neighbor causes
undesired results as part transitions are then established
halfway between parts, causing the legs and neck to be
pushed into the torso. Using the Distance Transform
avoids this issue.

In conclusion, using the nearest neighbor for assigning labels is
not desirable and a different approach is required. To solve the
problem of always having part transitions occur halfway in-between
the labeled skeleton points, we note that skeleton points should be
given some sort of weight to represent their range. By letting a
skeleton point’s range be the minimum distance to the boundary,
we may use the distance transform as defined for the skeleton to
represent the weights.

To apply the concept of using the distance transform as weights
to assign a part to unlabeled skeleton points, the approach of
determining a label for each unlabeled surface point is inverted so
that labeled skeleton points xi perform a neighbor search in the
radius defined by DT∂Ω(xi) and then propagate its label over to all
these neighbors. It is important to note that even already labeled
points xj are reassigned their label if DT∂Ω(xj) < DT∂Ω(xi), such
that skeleton points with larger range become dominant. Having
the skeleton points p with largest range be dominant may improve
the segmentation, as doing so may eliminate another part that would
otherwise occupy surface area that is also in reach of p, and therefore
should also be considered to be in the same part as p.

Skeleton points that are still unlabeled after this operation are being
assigned the label of their nearest neighbor, to ensure all points have
been assigned a label. Finally, to find now the connected components
in the established partitioning of the cut-space, several flood fills from
within each partition, again using the neighborhood relation Ni , are
started until all points have been assigned a part label.
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(a) Using Distance Transform (b) Using Nearest Neighbors

figure . Using the Distance Transform as weights shows a much
better final segmentation of the horse than when just
using a nearest neighbor approach.

Using this algorithm for filling in all unlabeled skeleton points
resolves the issues of the nearest neighbor approach and has
a significant effect on the final segmentation, as is shown in
Figure ..

. translating skeleton partition to surface

Having now a part labeling defined on all of the skeleton points, the
next step is to translate the segmentation from the skeleton back to the
shape surface; see stage (f) in Section .. In Section . we discussed
how Feng et al used a set of border candidates {Bi } to select the most
appropriate cut from, and then use that cut to represent the actual
segment border between two parts. Since cuts are constructed having
certain desirable properties, this yields clean segment transitions.

While Feng et al’s approach proved feasible for volumetric representa-
tions, we encountered several issues with their method when applied
on mesh models. To understand these issues, we show next how we
redesigned their approach to operate on a point cloud skeleton.

.. Selecting Cuts from Border-Sets

Instead of being able to use the well-defined neighborhood relation
as imposed by a volumetric representation, we again need to rely on
using Ni as defined in Equation (.). Each point with part label
p = p(xi) is included in border-set

{
Bp,q

}
if ∃xj ∈ Ni : p(xi) , p(xj) = q.

Then, analogous to Feng’s method, the shortest cut among each Bp,q
is selected as most appropriate cut, to be used as a transition between
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the parts p and q. Now, the issues of this method are twofold, one of
which also applies to volumetric shapes as used by Feng et al.

The first issue of this approach is that it is not known if a cut actually
corresponds with the desired segment border. Moreover, given that
the cuts we trace are SSGs in a single plane they are totally straight,
which may not fit well with the desired segment border. In Figure .
the shape of a dog shows several situations where an undesirable cut is
selected among the candidates in each Bp,q, e.g. the torso-to-tail border
is a very small cut which does not separate the tail from the torso, at
all. Now in this example it may even be possible to determine that
the cut does not agree with the expected length so that it is filtered
out, however we also observed situations where the selected cut was
of proper length, while still not representing the actual transition
between parts p and q. It is extremely important that proper borders
are always selected, as incorrectly chosen cuts directly cause under-
segmentation or otherwise totally incorrect results.

figure . Selecting the shortest cut (red skeleton points) from
border set

{
Bp,q

}
(green skeleton points) works well in

trivial cases such as the four legs, but fails in more
difficult situations, e.g. near the tail.

The second issue with Feng’s approach is that two adjacent parts p
and q having border candidates in Bp,q may require multiple cuts to
be selected from the border candidates. Now, one may attempt to
partition Bp,q into sets of connected components, for example using
hierarchical clustering, so that a border cut may be selected from each
component. This however is not sufficient in all cases and may still
cause missed segment borders, again resulting in under-segmentation.
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An example of a situation that cannot be resolved in this way is
shown in Figure . where the ears are considered to represent a
single part and Bp,q cannot be partitioned into multiple components.
This results in only a single cut being selected where two cuts are
required, therefore only separating one ear from the torso causing
under-segmentation of the shape.

figure . In order for the horse’s ears to be considered as two
separate parts, two borders are necessary. As the torso-
to-ears border-set consists of only a single connected
component, one ear will not be separated from the torso.

Above issues are to such extent that we concluded Feng et al’s
approach would never work reliably for mesh models. Hence, a
different approach is required which is discussed next.

.. Using the Feature Transform

Per the definition of a skeleton, a mapping from skeleton points
back to so-called feature points on the surface is defined as its feature
transform FT, as given in Equation (.). For each skeleton point xi
this transform yields the points on the shape boundary, so all that
is necessary to translate the skeleton labeling back to the surface is
to copy the skeleton labeling over to the feature points as given by
the FT. After having applied this transformation, all still unlabeled
surface points get assigned the same part as their nearest neighbor.
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(a) Clustered skeleton. (b) Derived parts using FT.

figure . A single cluster in the skeleton may result in multiple
disconnected “parts”, which do not actually resemble a
part.

In Section . we discussed how each partition of the skeleton
is further split up into its connected components, as a single
partition may represent multiple parts. We note however that after
having applied the transform from the skeleton to the surface, the
labeling that was connected in the skeleton-domain may no longer be
connected on the surface, an example of which is shown in Figure ..
Therefore, an additional connected component pass needs to be
employed on the surface itself.

. part validation

Now having a part labeling available on the surface, the connected
components represent a supposed part. As has been shown in
Figure . however, it may occur that there exist connected
components that do not qualify as a part, according to what humans
would perceive as a part. In order to detect such invalid parts
and reject them from the segmentation, we must first define the
characteristics a part should have for it to be considered an actual part,
according to human perception. This stage concludes the pipeline
along with the remaining refinements are included in stage (g) of
Section ..

From our cut-space, we observe that actual parts are covered by their
associated cuts. On the other hand, the cuts from which non-part like
components are derived only partially cover the component, which
is an indication that the component does not represent an actual
part and shall be rejected. In essence, the surface area inside of a
component, as covered by its associated cuts, compared to the surface
area outside of that component is an indication of how well the cuts
actually agree with the part, and therefore if it should be kept or
not.
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To estimate the surface area inside and outside of the component, we
compute the number of cuts that only cover the component itself,
versus the number of cuts that also cover some other components.
If less than % of all associated cuts cover only the component
itself, then the component is rejected and merged with one of its
neighbors.

(a) Undesirable corner parts. (b) Accompanying cut-space.

figure . Even parts that do correspond with their cuts are not
necessarily desirable, considering that patches fit much
better in this case.

Although above test is able to effectively filter out non-part like
components, it is insufficient in situations as shown in Figure ..
We would prefer such parts to be disregarded as patch-based
segmentation is more sensible in such cases. To also detect these
occurrences we observed that for actual parts, their Gauss maps span
at least half the map’s surface, i.e. there exist at least two normals
in an angle of at least °, or what we refer to as opposing normals.
Determining if a Gauss map adheres to such a property is not simple
and more importantly is it sensitive to noise, as a single normal outlier
may incorrectly result in the property to be considered satisfied. To be
able to cope better with outliers to be present we compute the angle
between all available normals, then take the median angle and require
the median to be at least °. These validation procedures together
have shown to be effective in ensuring the part-based segmentation is
meaningful.

. deriving cell labels from vertex labels

Having now established and validated the part labels for all vertices,
we next need to display the results. Each part label may be associated
a color so that all vertices get assigned a color, however rendering this
directly does not give desirable results. To actually display the mesh
it is necessary to color all of its cells, and a GPU normally fills in cells
by interpolating the colors assigned to a cell’s vertices. In our case
however this approach is invalid, as the associated colors represent
categorical data and must therefore not be interpolated. Deriving a
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single part label per cell from its neighbors is problematic when not
all vertices agree on the same part, and simply selecting the mode
part yields unsatisfiable results. Therefore, in such cases the cell
needs to be split up into sub-cells, each of which then get assigned
an unambiguous part label.

We have to distinguish three cases regarding a cell’s vertices’ labels.
Firstly, if all three vertices represent the same part the whole cell can
be retained as is and be assigned that part. The second case occurs
when only two vertices agree on a part and the third vertex differs,
then the cell is divided into two sub-cells as shown in Figure .b.
Thirdly, all three vertices may all represent different parts, in which
case the cell is split into three sub-cells according to a Voronoi
diagram, seen in Figure .c.

(a) Do not split (b) Halfway split (c) Voronoi split

figure . The colors associated with a cell’s vertices determine
how to split a cell in order for unambiguously assigning
colors to a cell.

. laplacian smoothing of segment borders

After having applied cell splitting to obtain unambiguous cell labels,
we observe that the border between segments is very rough for many
shapes as can be seen in Figure .a. Therefore, the desired property
smooth, as given in Section .., is not satisfied so we have to mitigate
it. In order to reduce the amount of noise that may be present
in a border, each border’s points are filtered using three Laplacian
smoothing iterations. In each iteration, points are back-projected onto
the surface to keep the points located on the shape surface. After
having computed the Laplacian smoothed points, the mesh itself is
updated to reflect the changes by computing the intersections between
the smoothed border and the cells and splitting the cells accordingly,
then updating the cell labeling to match. Figure .b shows what the
segmentation looks like after the smoothing has been applied.
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(a) Before smoothing (b) After smoothing

figure . Laplacian smoothing of segment borders reduces noise
significantly.

After having smoothed the segment borders, we end up with a
robust segmentation of which the identified parts all meet the
requirements.

. summary

In this chapter we have presented a part-type segmentation method
for mesh shapes based on the idea of cut-space segmentation, as
introduced for voxel shapes by Feng et al [FJT15b]. Several adaptations
of their original proposal were required for the cut-space method to
work using meshes, but in the end we reach similar results while
benefiting from the high resolution that mesh shapes offer. Detailed
results of our cut-space segmentation method for mesh shapes are
presented in Chapter . Moreover, we presented a part verification
approach in order to make sure that the results are sensible according
to human perception. This property becomes important in the
next chapter, as we show there how we introduce patches into the
segmentation in order to obtain a unified part-patch segmentation.
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PA R T A N D PAT C H U N I F I C AT I O N

In the previous chapter we have discussed a method to compute
part-type segmentations. This chapter expands on that work by
introducing a novel segmentation model, which is a combination of
both part-type and patch-type methods, which we refer to as a unified
segmentation method. In Section . we first define the properties
such a unification method preferably satisfies, then consider the
various strategies we may employ to obtain a unification of both part-
type and patch-type segmentations in Section .. Then, the strategy
that fits best is further discussed in Sections . and ..

. properties

To be able to select an appropriate strategy we must first define
desirable properties, in order to weigh the various strategies against
each other and make an advised decision on which strategy to
choose. We define the following properties to be of importance for
a unification method:

. Hybrid: shapes that contain both part-like areas and areas
where patches are a better fit, should incorporate both types as
appropriate.

. Robust: the unified segmentation should make sense according
to human perception.

. Configurable: the extend of unification should be configurable.

. Balanced: unified segmentations should not be over-segmented
due to incorporating both types.

Next, several strategies are discussed with respect to above proper-
ties.

. strategies

One of the most simple approaches to support both part-type
and patch-type shapes would be to compute both segmentations
separately and then assessing which of the two methods yielded the
most appropriate result, then choosing that single segmentation as
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figure . Our proposed pipeline to compute unified part-patch
segmentations. (a-g) Proposed cut-space segmentation
for mesh shapes. (h-k) Patch-type segmentation by
Kustra et al [KJT16], with additional patch refinements. (l)
Unification of both part- and patch-type segmentations.

final result. Such an approach however would fail to satisfy the
properties hybrid and configurable. Furthermore, in order to satisfy
the robust property, a stable voting system must be designed which
in itself is not trivial. In conclusion, such an approach would fail to
meet most of the desired properties and is therefore not considered
further.

Instead of using a voting system to choose just a single segmentation
outcome, we may overcome the inability of being hybrid by selectively
combining the results in a meaningful way. By designing heuristics
to determine how the segments are chosen it would then be possible
to design a method that satisfies all of the desirable properties, as
such heuristics could then be tweaked to yield desirable results.
Furthermore, such an approach allows for tuning both the part-
type and patch-type segmentation separately and one may even use
completely different methods for any of the two types. Therefore, we
may reuse the cut-space segmentation method as was introduced in
Chapter  and combine it with an existing patch-type segmentation
method.

Pipeline Overview

To put the upcoming forthcoming sections into context, a diagram of
the full unification pipeline is presented in Figure ..
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In Chapter  we have given an overview of several patch-type
segmentation approaches, of which the one by Kustra et al [KJT16]
stands out in particular. Their method has shown to give good results
and an additional benefit is that the core of their method is also
based on surface skeletons, therefore it fits well into the pipeline we
designed in Chapter .

.. Patch-type Segmentation Using Surface Skeletons

We briefly discuss Kustra et al’s [KJT16] method here, firstly to be able
to understand how it works and secondly to show what its results are
like for different kinds of shapes. Understanding the characteristics
of when and how it works is important for designing merge heuristics,
as will be seen in the next section.

As per the definition of a patch, the border between two patches
should occur at high surface curvature areas, because such areas
interrupt the quasi-flatness of the surface and should therefore be
segmented into different patches. Hence, finding the high-curvature
areas and inserting patch borders in those areas yields a patch-type
segmentation. In the work by Kustra et al, high-curvature areas are
computed using the surface skeleton as an improvement on earlier
work by Reniers et al that worked on voxel shapes [RT08b].

Computing Patches

Given the surface skeleton, recall from the skeleton classification in
Section .. that A3 points correspond with high positive curvature
areas on the surface. Note that the negative curvature areas, or
creases, are not represented by A3 points; they may be found using
the complement’s shape skeleton, or background skeleton [RT08b]. In
their paper, Kustra et al show how to classify skeleton points as A3
by computing the number of clusters in a dilated, or fuzzy, feature
set FTτ(x), which is different from FT (x) (see Equation (.)) in that
it also includes all other surface points within a radius of DT (x) + τ
from skeleton point x and therefore contains all feature points. They
then define a cluster C ⊂ FTτ(x) as

C = {f ∈ Fτ(x) |max
f∈C

min
g,f∈C

‖f− g‖ <min
f∈C

min
g,f∈C

‖f− g‖} (.)

i.e. all points which are closer to each other than to any point from
another cluster [KJT16]. If ‖C‖ = 1 then a skeleton point is classified
as being of type A3.

Using the classified skeleton points, actual high curvature areas on
the surface are computed by projecting each A3 point x over its
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extended feature transform FTτ(x), i.e. they define a set of surface
points E =

{
p ∈ FTτ(x) | x ∈ SΩ ∧ type(x) = A3

}
. Since FTτ(x) has

been computed to contain all surface points the set E results in thick
borders on the surface. Then, connected components are computed
for surface areas ∂Ω \ E, i.e. all remaining surface area is segmented
by means of connectivity. All points in E get assigned the label of
the closest established patch, thereby obtaining a segmentation with
patches being a partition of ∂Ω.

Result Characteristics

We show here results of Kustra et al’s patch segmentation method
to showcase its characteristics, so that we may take these into
consideration when next designing the merge heuristics. Figure .a
shows an example of where their method gives a very good result
on a typical patch-type shape, whereas Figure .b shows a poorly
segmented typical part-type shape. The reason for this poor output
can be explained, as follows. Finding high-curvature areas is
dependent on computing stable A3 points, which in the case of
Figure .b fails due to the cylinder-like shape of many of the
horse’s parts. This may potentially be mitigated by fine-tuning of the
involved parameters, however doing so is a delicate task and may not
always result in an improved segmentation.

(a) (b)

figure . Showcasing two shapes for which Kustra et al’s method
works very well on a typical patch-type shape (a), but
very poorly on a typical part-type shape (b).

. merge heuristics

In order to combine the parts and patches that are separately
computed by cut-space segmentation and Kustra et al’s method
respectively, we must determine which are most appropriate to use
in a unified result. This means that for areas which are quasi-flat or
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consist of high curvature transitions, it would be preferred to have
a patch in such area, whereas part-like areas should preferably be
represented by a dedicated segment. To be able to satisfy the property
of being robust we must verify that the computed parts and patches
themselves are logical according to human perception, such that the
final result will also be logical.

Considering that parts should be recognized as dedicated segment, we
may simply choose to use all parts from the cut-space segmentation
for the unification model. Given that parts computed by the cut-
space method have all been validated as described in Section ., they
have already been verified to represent an actual part as considered
by human perception. Therefore, using all parts as is in the unified
model is a natural choice.

We should next decide on how to introduce patches into the
unified segmentation. Considering the characteristics as discussed
in Section .. we cannot just merge the patches into each part, as
doing so would cause over-segmentation given the patch-type result
shown in Figure .b. Therefore, we must first ensure patches are
validated according to a certain criteria, similar to our approach for
part validation. The next sections discuss how to identify false patches
and how they are filtered out. We will see that doing so will ensure
that our method satisfies all four properties.

. patch validation

To be able to detect patches that are undesirable, we must establish
the criteria that differentiate proper patches from the undesirable
patches. When considering the examples shown in Figure . we
note that patch transitions occur in high curvature areas in the case of
the desirably segmented fandisk (.a), whereas the same is not true
for the patches in the horse (.b). Therefore, computing the surface
curvature in a patch transition may indicate if a patch should be kept
or not.

.. Computing Surface Curvature

Readily available methods exist for the computation of curvature
measures on a shape surface, i.e. mean curvature or Gaussian curvature
as shown in Figure .. As the purpose of computing the surface
curvature is to find undesirable patches, we must use a curvature
measure that corresponds well with how humans perceive curvature.
When considering the examples given in Figure . it is immediately
clear that neither Gaussian nor mean curvature works as desired,
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i.e. in the case of the top row the Gaussian curvature measure is
preferred, whereas the bottom row clearly benefits from the mean
curvature measure. Therefore, neither of the two curvature measures
may be used for our goal.

(a) Mean curvature (b) Gaussian curvature

(c) Mean curvature (d) Gaussian curvature

figure . Curvature results for two shapes, computed using
ParaView. The top row shows the preferred result using
Gaussian curvature, whereas for the shape in the bottom
row mean curvature is preferred. In both cases, the non-
preferred method is unusable for our goal.

An intuitive way to assess a shape’s curvature would be to look at the
shape’s normals. Given the vertices V = {xi ,ni }Ni=1, and their normals,
of the mesh representation of ∂Ω, and E =

{
(x,y)

∣∣∣x ∈ V ,y ∈ V
}

as the
mesh edges, we may compute an approximation of the curvature K by
taking the maximum angle between all neighbors:

K(xi) = max
{
∠(ni ,nj)

∣∣∣xj ∈ Ni } (.)

withNi being the vertices within a radius r, with the distance ‖· · · −‖ E
representing the shortest path distance over the edges in E:

Ni =
{
xj ∈ V

∣∣∣‖xi − xj‖E < r } (.)

A drawback of using this formula however is that it may give
unexpected results for corner vertices where the approximated
curvature is far smaller than expected, as can be seen in Figure ..
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For our purpose of the curvature this poses a problem, given that the
corner vertices, shown in red in aforementioned figure, are most likely
to be on a patch transition and should therefore produce results that
are in line with expectations.

(a) α = 45° (b) α = 90°

figure . The red arrow represents the vertex’s normal that is
evaluated, the green arrows represent the normals that
are compared against. For the corner vertex in (a) we
find an angle of °, whereas the vertex just offset of the
corner (b) unintuitively gets assigned a larger angle of
°.

To circumvent this issue, we propose an alternative curvature
measure that is computed from surface normals. For the proposed
computation of K(xi) we first find a set of verticesN K

i that are on the
border ofNi , as follows:

N K
i =

{
xj ∈ V \Ni

∣∣∣∃xk ∈ ξj ,Ni } (.)

with ξi being the connected vertices of xi :

ξi =
{
xj ∈ V

∣∣∣∃(i, j) ∈ E }
(.)

Then, we approximate the curvature by computing the mean-angle of
all combinations ofN K

i :

K(xi) = mean
{
∠(ni ,nj)

∣∣∣ (xi ,xj , xi) ∈ N K
i ×N

K
i

}
(.)

with × denoting the Cartesian product. Figure . shows how this
proposal finds an expected angle of ° for the corner vertex. The
resulting curvature does not suffer from unexpected drops for corner
vertices and therefore becomes more predictable. Figure . shows the
differences on a box shape, where our proposed curvature measure is
more uniform and shows no curvature dips.
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(a) α = 90° (b) α = 90°

figure . Proposed method of approximating surface curvature,
where the green normals are all compared against each
other, but not against the red normal. Doing so ensures
that an angle of ° is computed for both vertices.

(a) Naive method: using a direct
comparison to neighbors

(b) Proposed method: comparing
neighbors to each other

figure . Only comparing a vertex’s normal to its neighbors results
in lower than expected curvatures in high curvature areas.
Our proposed curvature measure solves this issue.

Applying the proposed curvature measure to the shapes for which
Gauss and median curvature gave unsatisfactory results, we refer
back to Figure ., we now find a result that is suitable for assessing
whether or not a patch should be kept, see Figure .. An additional
benefit of our proposed curvature approximation is that the radius
in which the curvature is evaluated becomes configurable, using
an intuitive parameter. Empirical testing has shown that using a
radius of –% of the maximum dimension of the shape’s bounding
box—a common parameter normalization strategy [CGR+04]—gives
satisfactory results.
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(a) Proposed curvature measure (b) Comparing neighbors to each other

figure . Showing the curvature approximation as proposed for
the shapes in Figure .

.. Removing Undesirable Patches

Using the computed surface curvature field we may next determine
which patches are undesirable. Recall that patch borders should
occur in high curvature areas, so we propose to evaluate the surface
curvature per patch-border as those are the critical areas. Doing
so essentially results in determining undesirable borders rather than
invalid patches, which directly provides us with the most appropriate
neighboring patch to merge with. This is beneficial compared
to reassigning the patch-label of all vertices in the invalid patch
according to the closest vertex in neighboring patches, as in that case
all borders that were imposed by the invalid patch will be shifted
inwards of the invalid patch. This is highly undesirable as it may cause
patch borders that originally corresponded with a high curvature area
to become unaligned.

Define patch Px as the set of vertices that have been assigned patch
label x:

Px =
{
xi ∈ V

∣∣∣patch(xi) = x
}

(.)

We next define the border Bx,y that connects patches x and y:

Bx,y =
{
xi ∈ Px

∣∣∣∃xj ∈ ξi ,Py }∪ {
xi ∈ Py

∣∣∣∃xj ∈ ξi ,Px } (.)

To determine now if a border should be eliminated we evaluate the
median curvature of all vertices in each border Bx,y , according to the
curvature K(xi) from Equation (.):

K′(Bx,y) = median
xi ∈Bx,y

{
K(xi)

}
(.)
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Each border with K′(Bx,y) being smaller than a certain threshold β
should be eliminated, resulting in patches x and y being merged:
Px ← Px ∪ Py ,Py ← ∅. As merging patches may cause remaining
borders to be merged as well, we should eliminate borders using a
deterministic ordering as not doing so may give unpredictable, but
also undesirable behavior. Therefore, we keep track of a list of borders
sorted on K′ and iteratively eliminate borders, beginning with lowest
median surface curvature K′.

. merging segmentations

After removing undesirable patches, we have both a validated part-
based and patch-based segmentation. As stated in Section . we
introduce all segments from part-based segmentation into the unified
model, as it ensures that all parts will be represented in the final
unified segmentation. Next, each part Px is further partitioned by
merging in the patches it contains. Note that a patch Py may extend
across the boundaries of Px, i.e. it may occur that ∃xi ∈ Py \ Px is true.
Consequently, unified patches may have become too small—according
to a given threshold for the number of patch vertices with respect to
the total number of vertices ‖V ‖—and such patches will be replaced
by the neighboring patches. This avoids the possibility of having
patches smaller than the desired threshold.

. summary

In this chapter we presented a method of computing a unified
part-patch segmentation for mesh shapes, using the cut-space
segmentation method as introduced in Chapter  combined with the
patch-based segmentation method by Kustra et al. Because of the
validation procedures that are presented for both parts and patches
we ensure the validity of segments, such that we may easily combine
the two by simply merging them together. Considering the desirable
properties as were outlined in Section . we find that our proposed
strategy satisfies all these properties. First, the procedure has
shown to effectively prevent over-segmentation and therefore allow
for meaningful unified segmentations that match human perception.
Second, by allowing for separate configuration of the part-based and
patch-type segmentation, we enable tweaking the results according
to a specific goal. Finally, because of how patches are added to parts
we may also get hybrid segmentations. In Chapter  we present the
unified segmentation result of various shapes, to see how our proposal
works in practice.



5
I M P L E M E N TAT I O N

In this chapter, we provide a quick overview of the technologies
that were used in Section ., followed by several implementation
details such as the algorithms and data structures that were used in
Section .. The chapter is concluded in Section . by a look at the
User Interface we implemented.

. technologies

At the start of the project we inherited the codebase from Kustra et al’s
earlier research project [KJT16], which contained the implementation
and infrastructure for computing SSGs and classification of surface
skeleton points. Their project is implemented in C++ and uses the
VTK library for several mesh algorithms and data structures. For
fast computation of nearest neighbors, the ANN library is used,
which supports both k-NN and searching within a radius, using k-D
trees internally for efficient spatial searches. For parallelization, both
pthreads and OpenMP have been used. The pipeline has been scripted
and parameterized through the use of scripting language Lua.

. implementation details

The cut-space segmentation steps (a-g) have been implemented from
scratch, as detailed next, whereas the patch-type segmentation is
computed using the existing implementation from [KJT16]. Finally,
the validation and refinement of segments has also been implemented
for the purpose of this thesis.

.. Cut-Space Segmentation

For computing the cut-space segmentation, the surface skeleton
computation was used as is. The algorithm for SSG tracing was
available for computing an importance measure, but has been altered
according to the definition given in Equation (.) in order to compute

 The Visualization Toolkit: http://www.vtk.org
 Approximate Nearest Neighbor: https://www.cs.umd.edu/~mount/ANN/
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the cut-space. This is accomplished by changing the stopping criteria
in the original code, we now only stop after having reached the initial
feature point itself. Note that only the CPU implementation of this
method is used, whereas Kustra et al also have a GPU implementation
available that would offer significant speedup.

For median filtering we use the QuickSelect algorithm for real-
valued sets, and a histogram—like in counting sort—for integer-
valued sets, in order to compute median values in linear complexity
(on average). Depth-first searches, e.g. for connected component
detection, is implemented using stacks.

Where necessary, special care has been taken for handling duplicated
vertices. This usually occurs in meshes as it allows for assigning
different normals at the same point, however when considering
adjacent vertices and identifying edges it is important for such
vertices to be merged together. This has no effect on the output shape
because only the parts that rely on this connectivity immediately
transfer their results back to the original mesh. De-duplication of
vertices is accomplished using VTK mesh cleaning algorithm, after
which we create a mapping between the vertices of both meshes, in
order to transfer information back-and-forth.

.. Patch Validation and Refinement

Computing the patch-type segmentation in itself has not changed
from Kustra et al’s implementation that we started with, however
additional filtering of the result has been added. For curvature
analysis, the connected neighborhood Ni for vertex vi , refer back
to Equation (.), is not computed using a nearest neighbor search as
it would not take into account the connectivity of the mesh. Therefore,
a breadth-first search algorithm is used that greedily assigns with each
neighbor its distance to vi over the edges of the mesh. Although
this may overestimate the distance due to not necessarily following
the shortest paths, the use of a breadth-first approach minimizes the
error.

Once the median curvature has been computed in all vertices that are
on a patch-border, a border-curvature-matrix is build. This symmetric
matrix contains for each combination of adjacent patches the median
curvature between the patches. When considering to merge patch Py
into Px, first the curvature value δx,y stored in the matrix for (Px,Py)
is checked against the threshold β. The merge is committed only if
δx,y < β. After merging, the matrix is updated to reflect the fact that Py
no longer exists, therefore all of Py ’s adjacent patches have to become

 Fast Median Search C implementation: http://ndevilla.free.fr/median/median/

http://ndevilla.free.fr/median/median/
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adjacent to Px. If such a patch was already adjacent to Px we use the
maximum curvature value. Doing so ensures that we never merge
two patches if they have at least one border that is significant (i.e. has
a curvature larger than β) such that the significant border will stay
intact.

.. Part-Patch Unification

Given the separate part-type and patch-type segmentations, with
all segments having been validated, the unification process is fairly
simple. For each vertex vi we determine its segment unified(xi) by a
constant factor lookup into a D structure: labels[part(vi)][patch(vi)].
If either of the keys does not exist, the next available segment label is
stored in labels.

.. Segment Border Smoothing

After the unified segmentation has been computed, the segment
borders are smoothed using Laplacian smoothing, as discussed in
Section .. During the transformation from vertex labels to cell labels
(see Section .), the newly inserted vertices are linked together and
stored per border. These linked lists are then consistently sorted by
swapping previous/next pointers if necessary. With the ordered list of
vertices we then perform several Laplacian smoothing iterations, back-
projecting the vertices onto the surface boundary in each iteration.
An additional constraint on the vertices near the start/end of the
border is necessary. Since those vertices would otherwise be pulled
inwards—due to the absence of vertices on one side—the endpoints
of borders would shift apart from each other, something that is
structurally impossible. For this reason, we reduce the pull factor to 0
for the first/last vertex and linearly for subsequent n− 1 vertices. We
found however that only locking the first vertex using n = 1 works
satisfactory.

After having applied the Laplacian smoothing iterations, we have yet
to incorporate the changes into the mesh itself. This is complicated,
given that vertices may have moved over the surface’s boundary freely.
In essence, we need to compute the intersection between the shifted
borders and the mesh in order to find the points on existing edges.
An algorithm similar to that for cut-space computation has been
implemented, but with some additional handling of edge-cases that
occur due the changes of direction along the border.

We note that we have looked into a method by Lawonn et al [LGRP14]
for more robust smoothing of borders on a mesh, unfortunately
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however the implementation of given method would be complex and
the author was not in possession of the source code anymore. Their
proposed solution for curve smoothing seems more robust and better
customizable.

. graphical interface

We provide a simple Qt application for interacting with the results
and being able to quickly switch between the part-type, patch-type
and unified segmentation results. It allows for capturing screenshots
of all segmentations and coloring options in a single operation, along
with the parameters that were used, to easily obtain a set of results
from the same orientation.

figure . A user interface is provided to interact with the
segmentation results.



6
R E S U LT S

In this chapter we first show the results of the part-type segmentation
in Section ., including the method’s limitations and a discussion on
how changing parameters affects the resulting segmentation. Next,
Section . is similar in structure but focuses on the results of
our unification proposal. Then, Section . briefly discusses the
parameters that are available for tweaking the results. Finally in
Section . a listing of execution times is presented to indicate the
performance of the various stages of the pipeline

In order for the results to show the benefits of using a unified
segmentation approach, we have selected a broad range of various
kinds of shapes. These include some typical natural shapes that
are often used for showcasing part-based segmentation methods, but
also more challenging anatomical shapes are included. Such shapes
have complex geometries and contain both parts and patches and are
therefore well suited for our unification approach. Furthermore, by
not focusing on certain kinds of shapes we can assess the robustness
of our method and see under which circumstances our methods may
fail to work as desired.

. cut-space segmentation

We first give a comparison of our cut-space results with those of Feng
et al in Figure .. We find that the results are similar in most cases,
with a few notable exceptions. We notice for the cow shape how
our method arguably suffers from over-segmentation, which we may
attribute to threshold aliasing as explained in Section ... In the next
section we will see some more shapes that show this limitation. Next is
the screwdriver for which our method produces a more natural result,
although we note Feng et al may produce a similar result by changing
its threshold selection procedure.
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horse dog cow

bird pig screwdriver mask

figure . Comparing our part-based cut-space segmentation re-
sults with Feng et al segmentation results.

Continuing with Figure ., another notable difference is seen for the
scapula and tooth shapes where our mesh based method produces
more parts compared to Feng’s results. In the case of scapula we may
argue that the additional part is undesirable, in which case we may
choose to eliminate it by increasing the minimum size criterion. In
the case of the tooth shape it really depends on the application which
result should be preferred, as both are equally valid. For all other
examples we notice only few differences, indicating that our mesh-
based translation of Feng’s voxel-based method behaves similarly.
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scapula vertebra heptoroid kidney

hand rhino tooth

figure . Comparing our part-pased cut-space segmentation re-
sults with Feng et al segmentation results.

We include another set of shapes that shows how our method handles
non-part-like shapes in Figure .. For each of those shapes we note
that our method did result in the whole shape being considered as a
single part, which is important for suitable unified segmentations, as
we will look at in the next section.
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manubrium spleen cube fandisk

xiphoid sternum gyrus frontal bone

figure . Patch-like shapes result in no parts to be found.

.. Comparison

To evaluate the results of our proposed part-based segmentation
method we include a quick comparison against related work.
Figure . shows the results of the horse shape, an example that is
widely used in shape segmentation papers. The figure differentiates
between non skeleton-based methods in the top row (a–d) and
skeleton-based methods in the bottom row (e–h). We observe that the
skeleton-based methods produce more natural results, considering
the segment border quality and over-segmentation that occurs when
using non skeleton-based methods. This is due to the skeleton’s
ability to capture the shape’s main axis, around which parts are then
identified. Recall from Section .. that the θ-SMA measure was
used as regularization measure in order to only consider skeleton
points that approach this main axis, thereby satisfying the local
orthogonal property of cuts.
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a) spectral clustering

e) curve skeletons

b) primitive fitting d) Reeb graphs

f) curve skeletons g) surface skeletons h) our method

ti c) algebraic multigrid
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figure . Comparison of eight part-based segmentation methods.
(a) Liu and Zhang [LZ04] (b) Attene et al [AFS06] (c)
Clarenz et al [CGR+04] (d) Tierny et al [TVD07] (e) Lien et
al [LKA06] (f) Reniers et al [RT08a] (g) Feng et al [FJT15a] (h)
our method.

From Figure .we may not draw the conclusion that surface skeleton
methods—or curve skeletons for that matter—produce generally
better results when compared to other approaches, given that only
a very restrictive comparison is presented. We only note that our
method performs similarly to the curve skeleton methods in (e–f), so
we find that using surface skeleton is a viable approach for shape
segmentation.

.. Limitations

We show here several examples of how threshold aliasing, see
Section .., may result in undesirable segmentations. This
phenomenon occurs due to our usage of histograms to derive
thresholds and is not an inherent issue of cut-space segmentation in
itself. In Figure .we show several examples where this phenomenon
occurs. The green circles show the segment borders that are desirable,
whereas the red circles designate borders that are introduced because
they occur at the same threshold-value.
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ba c

figure . Threshold aliasing causes over-segmentation.

A solution to this problem may be found in using hierarchical
clustering of the cut-space. Feng et al have already shown that
replacing histogram based clustering with hierarchical clustering
works well, while preventing above problems [FJT15a].

. unified segmentation

From the shapes in Figure . it becomes clear that a part-based
segmentation method is unsuitable for certain kinds of shapes. In
this section we show how such shapes are segmented meaningfully
using our unified approach, and show how the part-type shapes are
affected.

The results for typical patch-type shapes is shown in Figure .. These
results are actually identical to the patch-type results as given by
Kustra et al [KJT16], because all patches are considered to be valid
and therefore no additional filtering has taken place. In Section .
we detail how changing parameters may influence the granularity of
patches.
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figure . Segmentation result of typical patch-type shapes.



. unified segmentation 

In Figure . several shapes are shown for which the unified results
include both parts and patches, a characteristic that has not been
possible with earlier methods. The screwdriver now includes patches
on the handle and the top and bottom of the wings of the bird are
considered to be separate patches. The hip bone and scapula shapes
are more examples where adding patches to the part-based result
gives a richer, but still sensible, segmentation.
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screwdriver bird hip bone scapula

figure . Several shapes show the benefit of using a unified
segmentation method.

Although the patches we find are computed using Kustra et al’s
method, the derived unified result may show differences due to our
additional filtering stages. Figure . gives a comparison between
Kustra et al’s raw results versus the unification method as presented
here. The scapula shape shows how an insignificant border has been
detected and removed, resulting in an improved segmentation. The
xiphoid shape shows well the effect of smoothening segment borders,
and finally for the frontal bone we notice how our method has reduced
the number of patches, due to its detection strategy for insignificant
borders.
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gyrus scapula xiphoid spleen

sternum frontal bone hip bone
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figure . Comparison with results from Kustra et al.

.. Limitations

Although our unification method has given good results for many
shapes, it does come with some limitations. The strategy of always
copying parts into the unified segmentation assumes that detected
parts are always desired in the final result, whereas it may occur
that using patches is more appropriate. An example of such a case
is presented in Figure ., which shows a similar case as was given
before in Figure .. The difference now is that a larger threshold was
selected, such that the edges have started to meet. Once this happens,
our validation procedures fail and the unification result is far from
desired.

A limitation that is inherent to our usage of the point-cloud-
skeletonization by Jalba et al [JKT13] is that we rely on a regularly
and densely sampled input shape, because the surface skeleton would
otherwise be of low quality and unsuitable for further processing.
By computing a dense supersampling of such shapes it is however
possible to mitigate this problem.
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figure . Undesirable parts may not be detected, in which case our
unification approach yields unsatisfiable results.

. parameters

Our method comprises a large number of parameters that may
be individually tweaked to obtain desirable results. We present
here the few parameters that have the largest influence on the
resulting segmentation, alongside a discussion of how changing these
parameters affects the final results.

Cut-Space Segmentation

For the cut-space segmentation, the number of segments can be
influenced by tweaking the histogram analysis parameters Hpeak and
Hdecrease. The value of Hpeak is 0.01 by default, meaning that the
minimum number of cuts in a single histogram bin should be at least
% of the total number of cuts in order to qualify as a histogram peak.
Increasing this value may therefore cause less peaks to be found and
as such produce fewer segments. For some of the results that were
presented earlier we used a slightly higher value of up to 0.01 in order
to prevent over-segmentation.

The default value for Hdecrease was set at 0.25, indicating that a valley
bin must not exceed % of the number of cuts as represented by the
corresponding peak. Hence, increasing this threshold allows for larger
bins to be considered as valley, therefore allowing for more thresholds
to be introduced. This causes the number of segments to increase. In
our experience, both Hpeak and Hdecrease are often tweaked in unison
in order to obtain the desired segmentation.

Unification

Considering that the unification procedure is just merging the part-
based and patch-based results, it does not involve any parameters. We
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may however influence to what extend patches are introduced into
the part-based segmentation by adjusting the neighborhood radius r
that is involved in the curvature measure from Section .., and by
changing the threshold β that is used for controlling the minimally
required angle on a patch boundary.

For the neighborhood radius r we selected a default value of .%
of the shape’s maximum dimension, whereas the threshold β is set
to 53° by default. In Figure . we present a cube with slightly
rounded edges, ow which the four edges in the side have a slightly
larger radius than the edges towards the top and bottom. From this
example it can be seen that we may choose to segment only the bottom
and top in their own patch—because they are separated by edges that
are slightly more sharp compared to the side edges—or all of the sides
separately.

(a) r = 0.025,β = 53° (b) r = 0.025,β = 36° (c) r = 0.05,β = 36°

figure . Tweaking the parameters r and β in unison in order to
influence to what extend patches are introduced into the
unified segmentation.

Note that we may obtain the result in Figure .b from multiple
distinct configurations: either the neighborhood radius r is changed
such that the blunt edges do not fit in that neighborhood while
the sharper edges do, such that the curvature differs enabling us to
discriminate between the two kinds of edges. Analogous, we may
choose to only adjust β to be in-between the curvature measures of
the two kinds of edges.

. performance

To see how our method performs in terms of processing time, Table .
gives an overview of various shapes and their execution times, broken
down into the several stages. These results have been established on
a MacBook Pro with an Intel Core i HQ processor and GB
of memory. It is clear from this table that performing the cut-space
segmentation is rather costly, especially when compared to patch-
based segmentation. We note here however that most of the cut-
space time is spent on computing the shortest straightest geodesics,
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for which we currently only use a CPU implementation. A GPU
implementation for computation of SSGs has been presented by Jalba
et al [JKT13] and may show significant performance improvements,
as their GPU implementation shows speed-ups of circa % when
compared to a multi-threaded CPU implementation.

#vertices #cuts tskel tcuts tpatch tunification

(in seconds)

Bird , , . . . .

Cow , , . . . .

Hand , , . . . .

Heptoroid , , . . . .

Horse , , . . . .

Hound ,  . . . .

Kidney , , . . . .

Pig ,  . . . .

Scapula , , . . . .

Vertebra , , . . . .

table . Performance figures of our segmentation pipeline.

. summary

In this chapter we have presented the results of our cut-space
segmentation method for mesh shapes along with our unification
method to compute part-patch segmentations. Our cut-space method
shows good results which are similar to the results of the original
proposal by Feng et al. The unification approach shows to effectively
segment both typical part and patch shapes without suffering from
over-segmentation. The set of parameters allow for tweaking the
results while a default set of parameters gives mostly good results. In
terms of performance our method is somewhat slow, but we note that
several optimization possibilities are still possible.
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C O N C LU S I O N S

This chapter brings this thesis to a conclusion. In Section . we
present an answer to the research questions as they were given in
Chapter , followed in Section . with a discussion on our findings.
Next, we include a reference to a book chapter publication this work
has led to in Section .. Lastly, we see the possibility of future work
in several directions, of which an overview is given in Section ..

. conclusion

Recall from Chapter  that we presented two research questions to be
answered by this research project. The first research question is as
follows:

. How can we design a generalized part/patch-based segmentation
algorithm?

In this thesis we presented such an algorithm in Chapter  that
satisfies the desirable properties we set out, i.e. hybrid, robust,
configurable and balanced. Although our proposed unification
approach in itself boils down to the merging of both a part-type and
patch-type segmentation together, it requires that the vailidy of parts
and patches has been verified in order to prevent over-segmentation
and visually unexpected results. We have shown this strategy to work
well using our proposed cut-space algorithm for mesh shapes together
with Kustra et al’s patch-based segmentation method [KJT16].

We believe however that our proposed algorithm is also valid when
other segmentation algorithms are used to compute the two base
segmentations, as long as their results have been validated to be
believed sensible. Key in this validation process is our proposed usage
of a Gauss map to quantify a part’s correctness, see Section .. Also
for the validation of patches we have presented an effective and robust
curvature measure Section .. Both of these validation procedures
are essential for allowing any shape to result in a sensible unified
segmentation, thereby our proposal is indeed capable as a generalized
part/patch-based method.

We continue with presenting an answer to the second research
question:





 conclusions

. Can we use cut-space segmentation for mesh models and how does it
compare to Feng et al’s voxel-based technique? [FJT15b]

We focused on answering this question in Chapter . A method for
computing the cut-space was presented in Section . that uses SSGs
for the computation of cuts. Because of the characteristics of these
SSGs and difficulties with selecting the cuts on segment borders, we
choose a different approach for segmenting the mesh surface based on
the cut-space than was proposed by Feng et al, refer back to Section ..
With these adaptations of the voxel-based method we have shown that
it is indeed possible to use the cut-space segmentation method for
mesh shapes.

In the comparison we did against Feng et al’s results we found that
our method for meshes yields similar results as the voxel-based
approach. Because of the usage of meshes however, our method does
not have the resolution limitations that are inherent to voxel-based
representations.

. discussion

In this thesis we have explored a method for computing a unified part-
patch segmentation for mesh shapes. To our knowledge the proposed
framework is the first in its kind, allowing for computing a sensible
segmentation that may either describe parts, patches, or possibly both
as appropriate for the shape at hand.

In the process of implementing this framework we have also presented
an adaptation of cut-space segmentation by Feng et al [FJT15b] to
work on mesh shapes instead of voxel-based shapes. This kind of
segmentation method uses a surface skeleton which is favorable to
the usage of curve skeletons, given that surface skeletons are shape
descriptors that capture the full shape as opposed to only the main
topology of a shape. We found that our mesh-based implementation
produces results that are similar to Feng et al’s voxel-based results.

In terms of results, we have shown that our proposed method
produces good results, also in comparison to related work. Our
method produces visually similar results in most cases. We have
not been able to do a qualitative comparison given that assessing
a segmentation’s quality is hard for many shapes, because each
segmentation method may have different applications and therefore
different characteristics; none of which can be considered the ground
truth. Another problem is that most related work focuses only on
the kind of shapes that it is designed for, i.e. part-based segmentation
methods only deal with natural shapes and vice-versa for patch-based
approaches that only show their capability of extracting patches from
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e.g. a mechanical shape. This leaves a gap in showcasing their ability
to be robust against a kind of shape that it is not primarily designed
for.

As outlined earlier in this work, we see some limitations of our
work. We have presented shapes for which the unified result is not
ideal, or cases where cut-space segmentation suffers from threshold
aliasing. Furthermore, we recognize a limitation in terms of speed
which currently is suboptimal, although we could turn to using a GPU
implementation for SSG computation to see significant speedup.

Lastly, we have not presented examples that show our method’s ability
to be pose-, scale- and rotation-invariant, hence we cannot comment
on this desirable feature of a segmentation algorithm. The evaluation
of the results we did is however typical for these kind of shape
segmentation papers.

. publication

The results of this thesis have been accepted for publication as a
book chapter in “Skekelonization: Theory, Methods and Applications” by
Elsevier, in collaboration with C. Feng, A.C. Jalba and my supervisors
J.L. Kustra and A.C. Telea [KFJ+16].

. future work

We see a couple of possible directions this research could be followed
up with, as described next.

Clustering-based Partitioning

In a recent extension of Feng et al’s initial work on cut-space analysis,
in order to solve the inherit problems of using a histogram as
discussed in Section .., they were able to obtain significantly
improved part-based segmentation results by using a hierarchical
clustering method to find segments, instead of a histogram [FJT15a].
By defining a dissimilarity function to compare cuts, computed from
the cuts’ lengths and Euclidean distance between skeleton points,
the inherit problems of using a histogram were avoided and in turn
resulted in better results. We foresee that using a similar approach
would allow for similar improvements, as this step in the pipeline
is independent of the shape’s representation. Therefore, future work
could focus on experimenting with replacing the histogram with
clustering-based partitioning.
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Unification Using Alternative Segmentation Approaches

In this work we proposed a part-type segmentation approach derived
from Feng et al’s cut-space segmentation method [FJT15b] and used
Kustra et al’s patch-type segmentation approach [KJT16] to ultimately
compute a unified segmentation using a combination of the two
methods. Further research could experiment with using alternative
segmentation methods to see how the results compare against our
proposal.

Quantifying Segmentation Quality

The results as presented in this thesis were tweaked according to
what looked good in the eyes of the author. Given the subjectivity
involved, comparing results with different methods also becomes
a subjective process. There currently is no way of measuring the
quality of a given segmentation results, as no ground truth has been
established. A database of shapes and their generally accepted
desired segmentation would enable objectively comparing different
segmentation methods and selecting the best choice among differently
configured parameters.

GPU Optimization

Given that the methods described in this thesis are designed for mesh
representations, we anticipated to optimize the implementation using
GPGPU technologies as meshes are generally very well handled by
GPUs. For this work however, the segmentation pipeline is fully
implemented on the CPU as several stages contain data dependencies
that do not scale well to the architecture of a GPU. Therefore,
additional work is required in order to efficiently execute the
proposed methods on a GPU.



B I B L I O G R A P H Y

[AFS06] M. attene, B. falcidieno, and M. spagnuolo. “Hierar-
chical mesh segmentation based on fitting primitives”. In:
The Visual Computer . (), pp. – (, , ).

[BBB+97] J. bloomenthal, C. bajaj, J. blinn, M.-P. cani, A.
rockwood, B. wyvill, and G. wyvill. Introduction to
Implicit Surfaces. Morgan Kaufmann,  (, ).

[BHS89] M. braunstein, D. hoffman, and A. saidpour. “Parts
of visual objects: and experimental test of the minima
rule”. In: Perception  (), pp. – ().

[BKP+10] M. botsch, L. kobbelt, M. pauly, P. alliez, and B. lévy.
Polygon Mesh Processing. A K Peters,  ().

[Blu67] H. blum. “A Transformation for Extracting New Descrip-
tors of Shape”. In: Models for the Perception of Speech and
Visual Form (), pp. – (, ).

[BMR+99] F. bernardini, J. mittleman, H. rushmeier, C. silva,
and G. taubin. “The Ball-Pivoting Algorithm for Surface
Reconstruction”. In: Visualization and Computer Graphics
. (), pp. – ().

[CGR+04] U. clarenz, M. griebel, M. rumpf, M. schweitzer,
and A. telea. “Feature sensitive multiscale editing on
surfaces”. In: The Visual Computer . (), pp. –
 (, , ).

[CM02] D. comaniciu and P. meer. “Mean Shift: A Robust
Approach Toward Feature Space Analysis”. In: Pattern
Analysis and Machine Intelligence . (), pp. –
().

[CSM07] N. D. cornea, D. silver, and P.min. “Curve-Skeleton Prop-
erties, Applications, and Algorithms”. In: Visualization and
Computer Graphics . (), pp. – ().

[EKS06] H. edelsbrunner, D. kirkpatrick, and R. seidel. “On
the Shape of a Set of Points in the Plane”. In: IEEE
Transactions on Information Theory . (), pp. –
 ().

[FJT15a] C. feng, A. C. jalba, and A. C. telea. “Improved
Part-Based Segmentation of Voxel Shapes by Skeleton
Cut Spaces”. In: Mathematical Morphology – Theory and
Applications . (), pp. – (, , , , ).





 Bibliography

[FJT15b] C. feng, A. C. jalba, and A. C. telea. “Part-Based
Segmentation by Skeleton Cut Space Analysis”. In:
Mathematical Morphology and Its Applications to Signal and
Image Processing. , pp. – (, , , , , ,
, , ).

[FLM03] M. foskey, M. C. lin, and D. manocha. “Efficient
Computation of a Simplified Medial Axis”. In: Solid
Modeling and Applications. ACM, , pp. – ().

[GF08] A. golovinskiy and T. funkhouser. “Randomized cuts
for D mesh analysis”. In: vol. . . , pp. – ().

[GK04] P. giblin and B. B. kimia. “A formal classification of D
medial axis points and their local geometry”. In: Pattern
Analysis and Machine Intelligence . (), pp. –
().

[GWH01] M. garland, A. willmott, and P. S. heckbert. “Hierar-
chical Face Clustering on Polygonal Surfaces”. In: Sympo-
sium on Interactive D graphics. , pp. – (, ).

[HR84] D. hoffman and W. richards. “Parts of recognition”. In:
Cognition  (), pp. – ().

[JKT13] A. C. jalba, J. L. kustra, and A. C. telea. “Surface and
curve skeletonization of large D models on the GPU”. In:
vol. . . , pp. – (, , , , , ).

[KFJ+16] J. koehoorn, C. feng, A. C. jalba, J. L. kustra, and A. C.
telea. “Unified Part-Patch Segmentation of Mesh Shapes
using Surface Skeletons”. In: Skekelonization: Theory,
Methods and Applications. Elsevier, forthcoming  ().

[KJT16] J. L. kustra, A. C. jalba, and A. C. telea. “Computing
Refined Skeletal Features from Medial Point Clouds”. In:
Pattern Recognition Letters . (), pp. – (, , ,
, , , , , ).

[KLT05] S. katz, G. leifman, and A. tal. “Mesh segmentation
using feature point and core extraction”. In: The Visual
Computer . (), pp. – ().

[KT03] S. katz and A. tal. “Hierarchical mesh decomposition
using fuzzy clustering and cuts”. In: , pp. –
().

[LGRP14] K. lawonn, R. gasteiger, C. rössl, and B. preim.
“Adaptive and robust curve smoothing on surface meshes”.
In: Computers & Graphics  (), pp. – ().

[LKA06] J. lien, J. keyser, and N. amato. “Simultaneous shape
decomposition and skeletonization”. In: Solid and Physical
Modeling. , pp. – ().



Bibliography 

[LWTH01] X. li, T. W. woon, T. S. tan, and Z. huang. “Decompos-
ing polygon meshes for interactive applications”. In: Inter-
active D Graphics. , pp. – (, ).

[LZ04] R. liu and H. zhang. “Segmentation of D meshes
through spectral clustering”. In: Proc. Pacific Graphics.
, pp. – ().

[RT07] D. reniers and A. C. telea. “Skeleton-based Hierarchical
Shape Segmentation”. In: Shape Modeling and Applications.
IEEE, , pp. – (, , ).

[RT08a] D. reniers and A. C. telea. “Part-type Segmentation of
Articulated Voxel-Shapes using the Junction Rule”. In:
Computer Graphics Forum . (), pp. – (,
, , ).

[RT08b] D. reniers and A. C. telea. “Patch-type Segmentation
of Voxel Shapes using Simplified Surface Skeletons”. In:
Computer Graphics Forum . (), pp. – (,
, , , ).

[RvWT08] D. reniers, J. J. van wijk, and A. C. telea. “Computing
Multiscale Curve and Surface Skeletons of Genus  Shapes
Using a Global Importance Measure”. In: Visualization and
Computer Graphics . (), pp. – ().

[SAdB14] L. serino, C. arcelli, and G. S. di baja. “From skeleton
branches to object parts”. In: Computer Vision and Image
Understanding  (), pp. – ().

[SdBA11] L. serino, G. S. di baja, and C. arcelli. “Using the
skeleton for D object decomposition”. In: Image Analysis.
, pp. – ().

[Sha04] A. shamir. “A formulation of boundary mesh segmenta-
tion”. In: D Data Processing, Visualization and Transmis-
sion. IEEE, , pp. – ().

[SSC08] L. shapira, A. shamir, and D. cohen-or. “Consistent
mesh partitioning and skeletonisation using the shape
diameter function”. In: The Visual Computer  (),
pp. – (, ).

[ST04] R. strzodka and A. telea. “Generalized Distance
Transforms and Skeletons in Graphics Hardware”. In:
Proceedings of the Sixth Joint Eurographics - IEEE TCVG
Conference on Visualization. VISSYM ’. Eurographics
Association, , pp. – ().

[TDS+16] A. tagliasacchi, T.delame, M. spagnuolo, N. amenta,
and A. telea. “D Skeletons: A State-of-the-Art Report”.
In: Computer Graphics Forum . (), pp. – ().



 Bibliography

[TVD07] J. tierny, J. vandeborre, and M. daoudi. “Topology
driven D mesh hierarchical segmentation”. In: Shape
Modeling and Applications. , pp. – (, , ).

[TWH00] R. tibshirani, G. walther, and T. hastie. “Estimating
the number of clusters in a dataset via the Gap statistic”.
In: Statistical Methodology: Series B . (), pp. –
 ().


	Dedication
	Abstract
	Samenvatting
	Acknowledgments
	Dankwoord
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Shape Representations
	1.2 Skeletons
	1.3 Shape Segmentation
	1.4 Research Goals
	1.5 Thesis Outline

	2 Related Work
	2.1 Medial Axis
	2.1.1 Definitions
	2.1.2 Skeleton Classification

	2.2 Shape Segmentation
	2.2.1 Part-type Segmentation
	2.2.2 Patch-type Segmentation


	3 Cut-Space Segmentation
	3.1 Voxel Based Cut-Space Segmentation
	3.2 Pipeline Overview
	3.3 Computing the Cut-Space Using Meshes
	3.3.1 Skeleton Regularization
	3.3.2 Geodesic Computation

	3.4 Cut-Space Partitioning
	3.4.1 Histogram Valley Detection
	3.4.2 Histogram Limitations
	3.4.3 Partitioning Using Thresholds

	3.5 Extending Partition to Full Surface Skeleton
	3.6 Translating Skeleton Partition to Surface
	3.6.1 Selecting Cuts from Border-Sets
	3.6.2 Using the Feature Transform

	3.7 Part Validation
	3.8 Deriving Cell Labels From Vertex Labels
	3.9 Laplacian Smoothing of Segment Borders
	3.10 Summary

	4 Part and Patch Unification
	4.1 Properties
	4.2 Strategies
	4.2.1 Patch-type Segmentation Using Surface Skeletons

	4.3 Merge Heuristics
	4.4 Patch Validation
	4.4.1 Computing Surface Curvature
	4.4.2 Removing Undesirable Patches

	4.5 Merging Segmentations
	4.6 Summary

	5 Implementation
	5.1 Technologies
	5.2 Implementation Details
	5.2.1 Cut-Space Segmentation
	5.2.2 Patch Validation and Refinement
	5.2.3 Part-Patch Unification
	5.2.4 Segment Border Smoothing

	5.3 Graphical Interface

	6 Results
	6.1 Cut-Space Segmentation
	6.1.1 Comparison
	6.1.2 Limitations

	6.2 Unified Segmentation
	6.2.1 Limitations

	6.3 Parameters
	6.4 Performance
	6.5 Summary

	7 Conclusions
	7.1 Conclusion
	7.2 Discussion
	7.3 Publication
	7.4 Future Work

	Bibliography

