

AUTOMATICALLY REDUCING CODE
DUPLICATION

Finding code duplication and eliminating it by method extraction

Liewe Kwakman

	

	

	

	

	

	

	

	

September 2010

Thesis supervisors:

prof. dr. A. C. Telea

prof. dr. P. Avgeriou

2

0 Index
0	 Index .. 2	

1	 Abstract ... 6	

2	 Introduction ... 7	

3	 Related work .. 10	

3.1	 Code clone detection .. 10	

3.1.1	 Text based code clone detection ... 10	

3.1.2	 Token based code clone detection .. 10	

3.1.3	 Pattern matching based code clone detection 11	

3.1.4	 AST based code clone detection ... 11	

3.1.5	 Slicing based code clone detection .. 11	

3.2	 Code refactoring .. 11	

3.2.1	 Extract method .. 12	

3.2.2	 Metric based refactoring suggestions .. 12	

3.2.3	 Slicing based code clones refactoring .. 12	

4	 Code analysis ... 13	

4.1	 Project analysis ... 13	

4.1.1	 Project file structure ... 14	

4.1.2	 Source code files .. 15	

4.1.3	 Root namespace .. 15	

4.1.4	 Project Id .. 15	

4.1.5	 References .. 15	

4.1.6	 Imports .. 16	

4.2	 Lexical analysis ... 16	

4.3	 Syntactic analysis .. 17	

4.4	 Keeping track of scopes .. 19	

4.4.1	 Scope tree construction .. 20	

4.4.2	 Qualified location ... 22	

4.4.3	 Scopes of partial types ... 22	

4.5	 Type system ... 23	

4.5.1	 Types and members ... 23	

4.5.2	 Identifying types with fully qualified names and assembly identifiers
 29	

4.6	 Populating the type system ... 30	

3

4.6.1	 Library reference resolving .. 31	

4.6.2	 Analyzing types in two stages .. 32	

4.6.3	 Type scanning ... 32	

4.6.4	 Type building ... 34	

4.7	 Summary ... 37	

5	 Classification .. 39	

5.1	 Classification Result ... 39	

5.2	 Type classification ... 43	

5.2.1	 Fetching types using a fully qualified name 43	

5.2.2	 Querying types which reside in modules 44	

5.2.3	 Type resolution .. 46	

5.3	 Classifying member and local variable references 49	

5.3.1	 Classifying a simple named identifier .. 49	

5.3.2	 Classifying a qualified named member .. 52	

5.3.3	 Classifying a module member .. 53	

5.3.4	 Finding accessible modules .. 55	

5.3.5	 Finding the correct member call or indexing on a type 56	

5.3.6	 Member resolution ... 57	

5.4	 Expression classification ... 65	

5.4.1	 Operator resolution .. 65	

5.4.2	 Expressions ... 66	

5.5	 Justification of the classification against the coding specification 73	

5.5.1	 Type resolution justification ... 73	

5.5.2	 Simple name expressions .. 78	

5.5.3	 Member Access Expressions .. 81	

5.5.4	 Overloaded Method Resolution ... 83	

5.5.5	 Applicable Methods ... 85	

5.5.6	 Type Argument Inference .. 86	

5.5.7	 Index Expressions .. 88	

5.5.8	 Operator resolution .. 89	

5.6	 Summary ... 91	

6	 Code refactoring ... 92	

6.1	 Matching .. 95	

6.1.1	 Finding matching code fragments ... 95	

4

6.1.2	 Matching statements .. 96	

6.1.3	 Checking dataflow consistency ... 115	

6.2	 Selection .. 117	

6.2.1	 Refactoring preconditions .. 117	

6.2.2	 Checking a fragment conditional returns 118	

6.2.3	 Return values of an extracted method 120	

6.2.4	 Side effects ... 121	

6.2.5	 Selecting a code clone to rewrite .. 122	

6.3	 Rewriting .. 122	

6.3.1	 Creating the method body ... 123	

6.3.2	 Determining variables ... 124	

6.3.3	 Determining which variables should be parameters and which should
be returned ... 125	

6.3.4	 Determining variable dependencies .. 127	

6.3.5	 Creating the unifying extracted method 130	

6.3.6	 Replacing the code fragments with a call to the extracted method 131	

6.4	 Summary ... 134	

7	 Application ... 135	

7.1	 Show case .. 135	

7.2	 Case Study ... 138	

8	 Discussion .. 143	

8.1	 Increasing usability .. 143	

8.2	 Increasing the number of code clones found 144	

8.3	 Finding more than two instances of a clone at once 144	

9	 Conclusions .. 146	

10	 References .. 148	

11	 Appendix 1: Visual Basic 8.0 grammar .. 150	

11.1	 Lexical Grammar ... 150	

11.1.1	 Characters and Lines .. 150	

11.1.2	 Identifiers ... 150	

11.1.3	 Keywords .. 151	

11.1.4	 Literals ... 151	

11.2	 Preprocessing Directives ... 153	

11.2.1	 Conditional Compilation ... 153	

5

11.2.2	 External Source Directives ... 154	

11.2.3	 Region Directives ... 154	

11.2.4	 External Checksum Directives .. 155	

11.3	 Syntactic Grammar .. 155	

11.3.1	 Attributes .. 155	

11.3.2	 Source Files and Namespaces .. 156	

11.3.3	 Types ... 157	

11.3.4	 Type Members ... 159	

11.3.5	 Statements ... 165	

11.3.6	 Expressions ... 169	

 	

6

1 Abstract
When coding large projects, chances are that existing code fragments will be re-
written over and again. This can be done unconsciously but also by copy-pasting;
this is unfortunately a widespread practice. In some case studies of commercial
software it was shown that 5% of the code was represented by clones. It is well-
known that code duplication decreases the maintainability of the code rapidly. In
this thesis we describe the design and implementation of a software tool which
can detect code duplicates in programs written in Visual Basic. The tool offers the
possibility to automatically remove these duplicates by using a method extraction
refactoring. As a non-trivial side result in building this tool, we constructed a full
static analysis pipeline involving parsing, disambiguation, and deep semantic
analysis of general Visual Basic programs. One additional novel part of our tool is
that semantical analysis is performed to ensure the duplicates presented can be
refactored without changing the external behaviour of the program.

7

2 Introduction
When coding large projects, chances are that existing code fragments will be re-
written over and again. This can be done unconsciously but also by copy-pasting,
this is unfortunately a widespread practice. In some case studies of commercial
software 5% of the code was reported to be clones (1) in an open source project,
this amount was reported to be higher: 12% (2). Newer surveys indicate similar
figures across a wide range of types of open source software (3). It is well-
known that code duplication decreases the maintainability of the code rapidly. It
is desirable to remove these clones by merging them into one instance of the
code.

To be able to remove clones they first need to be found. When working on a
large code base with hundreds of thousands of lines of code or more which has a
lot of duplicate code, it is quite difficult to find all this duplicate code. Although
code duplication detection tools exist, these are, for their greatest majority,
based on textual (2) or token (1) (4) based analysis of the code. Textual analysis
only will find code which is textually exactly the same, if for example someone
changes a variable name slightly; the similarity of the code is no longer
recognized. Also it is not guaranteed that two pieces of code which are textually
the same are semantically the same. Token based analysis will find more code
duplications, because it compares token types, for example an identifier will
match an identifier. This also means more code clones will be found which are
not semantically the same.

Even if we assume the availability of state-of-the-art code duplication detectors
which can detect semantically identical, but potentially syntactically different,
duplicates, the elimination of the dyplicates is typically done manually. This
process involves a laborious activity of checking the instances of a duplicate one
by one and editing the code in various places to replace all duplicates by a single
instance. Henc, a second challenge for producing maintainable code, after
detecting the duplicates, is to suggest (or perform) automatic refactoring, i.e.
replace all instances of a duplicate (also called a clone) with one single instance.
The advantages of refactored code are numerous: the code base to maintain
becomes smaller; the overall structure can improve, testing and understanding
activities decrease in cost, since one has now only to test or understand a single
code instance rather than all its clones.

The goal of this thesis project is to build a tool which locates pieces of code which
are semantically the same or similar, whether they are textually the same or not
and, where suitable, suggest and perform code refactoring operations to
eliminate this duplication. This code refactoring operations will be in the form of
unifying method extractions in such a way that a call to the resulting method
with the right arguments can replace both semantically similar pieces of code
without changing anything to the external behaviour of the code. Given that this
project is executed in the context of software development activities at an IT

8

company specialized in Visual Basic development, we shall limit our clone
detection and refactoring scope to Visual Basic code.

Tools exists which suggest the removal of code clones in java source code using
the so-called “Extract Method” or “Pull Up Method” refactoring (5) using only
syntactical information. However, syntactical information is not enough though to
actually perform the code refactorings. Hence, we need a mechanism to extract
both syntactic and semantic information from Visual Basic source code to support
our automatic clone removal requirement.

Because code clones need to be found which can be automatically removed by
method extraction without changing the external behaviour of the code, the code
clones cannot be found using just textual or token based duplication detection. It
is necessary to exactly now which variables and members are used in the code
and what is done with them. This, again, can only be done by doing a deep
semantic analysis on the code.

To limit the scope and effort of this work, the envisaged solution should be able
to parse and analyze code written in Visual Basic 8.0. Preconditions for this code
are; it is provided with a Visual Studio 2008 project file and the code should be
compilable with option ‘strict’ on. However, the main design principles involved in
creating the solution should be generally applicable to languages beyond Visual
Basic.

As a first step of the proposed solution, a static code analyzer is constructed.
This code analyzer analyses a Visual Basic 8 project and loads all files necessary.
In the first phase, all files containing source code are parsed to an abstract
syntax tree (AST). In the second phase, a semantic analysis is performed over
the AST. In this phase, the AST is used to populate the so-called type system,
which keeps track of all types existent in the program. Next, an expression
resolver is constructed to resolve any expression against the type system. This
step is required to be able to determine how methods are called in the program,
as a preliminary support step for the refactoring.

In the second stage fragments of similar code are detected. Because the
envisioned way to handle the found code clones is to remove them by extracting
one method from such fragments, next to the matching of the code, the
restrictions of the method extraction operation must be kept in mind.

The method used to find matches is loosely based on the unifying algorithm to
match expressions. To match two fragments the kinds of every pair of
statements must be the same, but under the right circumstances expressions
can be substituted with new variables introduced in the extracted method.
Sometimes this is necessary because the expressions refer to local variables
which are in another scope then they will be after the refactoring; sometimes it is
necessary because two expressions differ; in that second case, the resulting

9

value of the evaluated expressions can be passed to the extracted method as an
argument.

From the code clones found, candidates for method extraction must be chosen.
Some code clones must be rejected because they are impossible to replace with
an extracted method, others must be rejected because it is not desirable to
replace them with an extracted method.

Ones a code clone is selected, it can be rewritten. A method must be created
which with the correct arguments can be called in replacement of the two
matching fragments of code in the selected code clone. First must be
distinguished which substitute variables in the extracted method need to be
parameters and which need to be returned. The method and must be added in
the source code and both fragments need to be replaced by the correct call. If
the extracted method returns a value it must be assigned to the correct variable
or property.

The following diagram gives an overview on what has to be done to find and
refactor code clones.

Figure 1 Overview of the clone detection and refactor process

The remainder of this thesis is structured as follows.

Section 3 discusses the work that has already been done in the area of code
clone detection and refactoring. Section 4 discusses how the code analysis is
performed and a type system is built. Section 5 discusses how expressions can
be classified using the type system. Section 6 discusses the code clone detection
itself, the selection of code clones and the rewriting of the code. In section
Error! Reference source not found. some examples of the use of the software
created are shown. Section 8 discusses our solution. Section 9 concludes the
thesis and outlines directions of future work. 	

10

3 Related work
There is little work to be found about the combination of code clone detection
and refactoring combined. However, a lot of research is done in the area of code
clone detection. Also method extraction of single code fragments is researched.
Most scientific work is intended for languages like C or Java, which do not have
the ‘Property’ and ‘Module’ construction present in Visual Basic, so these results
are not directly applicable to Visual Basic. In section 3.1 work in the area of
clone detection is discussed, section 3.2 discusses work in the area of code
refactoring.

3.1 Code clone detection
Multiple approaches are used to find code clones; none of them as far as we
know find code clones which are guaranteed to be removable using method
extraction. Generally variable names and literal values are abstracted away and
ignored, resulting in simpler and faster algorithms, but to guarantee a code clone
is really a clone, or is similar, and refactoring would be semantic invariant,
semantic analysis is necessary as done by the tool presented in this thesis.

3.1.1 Text based code clone detection

In (2) uses a textual based approach to find code duplication or near-duplication.
Two code fragments are considered a match if they are the same after some
global substitutions of variables and literal values, whitespace within lines and
comments are ignored. This approach is based on a parameterized suffix tree. It
is very fragile, if a new line is added in a clone, it is not found. In (6) whole lines
are compared to each other by hashing the strings. To further support clone
analysis, visualization is used: In a dotplot, or matrix plot, matching lines can be
visualized; diagonals in the dotplot are consecutive lines. However interesting,
this visualization approach does not really scale well to very large code bases.

3.1.2 Token based code clone detection

 A commonly used tool to find code clones is CCFinder (4). CCFinder uses lexical
analysis to transform the source files into a token sequence. This token sequence
is transformed using a set of transformation rules in such a way it generalizes
similar tokens; among others, variable names and literals are abstracted away.
After this sequences of equal tokens are sought to find code clones. Some
metrics and heuristics are used to filter out the less interesting code clones. To
cope with scale, CCFinder uses suffix trees to find sequences of equal tokens.
CCFinder also uses the lexical knowledge of programming languages to find code
clones, which is an improvement to the text based approach. A refinement of the
CCFinder approach that also uses more sophisticated visualizations to show the
code clones together with the overall hierarchical program structure is
implemented by the SolidSDD tool (7). However, neither CCFinder nor SolidSDD
are designed in such a way that they can be adapted to perform method-based
clone removal.

11

3.1.3 Pattern matching based code clone detection

In (8)methods are presented to find code clones using pattern matching
techniques. A similarity metric between all pairs of begin-end blocks in the
program is computed. Code clones are not really found but only a similarity
measure. To find code clones, the user has to look manually through high scoring
pairs. The methods only compare whole blocks of code; code clones which are
not whole blocks will thus not be detected.

3.1.4 AST based code clone detection

In (1) abstract syntax trees are used to find code clones. Near misses are found
by comparing trees for similarity rather than exact equality; variable names and
literal values are ignored. Because this method uses abstract syntax trees, the
syntactical knowledge of the programming language is used; this is a great
advance in respect to textual code clone detection. But because of the ignoring of
the variable names matches could be found which are not meaningfully
extractable. To cope with scale, in the method sub-trees are categorized using
hash values which allows straightforward matching of exact sub-tree clones. The
solution presented in this thesis also makes use of AST’s to find clones, near
misses and less near misses are found by using the type an expression classifies
to instead of only the fact it is the same kind of expression. In our solution
selection procedure guarantees the presented code duplicates are meaningful
and extractable. Moreover, our method focuses on Visual Basic, which was not
one of the languages covered by (1). In (9) code clones are sought to serialise
ASTs and using suffix tree detection on the serialized ASTs.

3.1.5 Slicing based code clone detection

In (10) duplicates are found which don’t have to be continuous and of which the
statements don’t have to be in the same order. A program slicing approach is
used to find these duplicates. First groups of matching statements are made,
after that groups of matching statements are combined to find bigger duplicates.
To do this a program dependency graph is used. In short a statement is
dependent on another statement if the other statement alters a variable used by
the statement or if the other statement is a control statement influencing if and
how a statement is evaluated. To expand a matching pair of statements, the
predecessors in the dependency graph are matched, if they match, they can be
added to the resulting duplicate. Just as in previous approaches described
variable names and literal values are ignored.

3.2 Code refactoring
Not much is written about automatically refactoring code clones, and there are
virtually no records of showing such techniques implemented by actual tools. All
approaches found, such as the ones discussed above, abstract variable names
and literal values away and very few approaches (if any) do deep semantic
analysis. Hence, such approaches are less suitable (if suitable at all) to perform
automatic code clone refactoring, for the reasons discussed earlier in this
chapter.

12

3.2.1 Extract method

Fowler presented in his book (11) an elaborate list of refactorings. In this thesis
the focus is on the “Extract Method” described on page 110. The refactoring
described in the book is done manually and used to break big methods up in
smaller methods. One of the motivations is that smaller methods increase the
chances that other methods also can use it, which is exactly what is done in this
project: pieces of code which are reused are extracted. However, we do this
automatically, and not manually.

3.2.2 Metric based refactoring suggestions

A tool with common goals as this thesis is Aries (5) Code refactoring
opportunities are suggested to the user in the form of the tool Aries in the form
of the “Extract Method” and “Pull Up Method” refactoring patterns also described
in (11). Aries uses the output of CCFinder (4) and performs code metrics on it to
suggest which code clones found are suitable for refactoring. CCFinder only uses
lexical analysis, in Aries syntactical information is added by parsing source files
where code clones are found. Aries does not look at semantics and types though.
It can thus only base it suggestions on syntax thus it cannot be guaranteed the
suggested refactorings are possible, especially not if it would be applied to a
language as Visual Basic with structures as properties and modules. Hance, Aries
is suitable as a help for further manual refactoring, but does not solve the
challenge of deep automatic refactoring.

3.2.3 Slicing based code clones refactoring

In (12) duplicated code is found using a program-slicing based approach as
described in 3.1.5. Algorithms are provided to extract methods for duplicated
code. These were only partial implemented, dependencies between statements
still needed to be manually determined. Two nodes are regarded matching if
their internal expressions are identical ignoring all variable names and literal
values. Hence, determining the parameters of the extracted method would thus
not be trivial, making this method less suitable for automatic method-based
clone refactoring.

 	

13

4 Code analysis
To be able to refactor code and eliminate duplicates, a first fundamental step is
to find the duplicates. As already mentioned in the introduction, we are looking
for duplicates from a semantic, rather than syntactic or lexical perspective. This
guarantees, first of all, refactoring correctness. Secondly, because knowledge of
types allows identifying expressions which are syntactically different but result in
the same type, expectations are this will yield a higher duplication rate, meaning
ultimately a better refactoring.

To extract the semantic information from the source code, the code is first
transformed into abstract syntax trees (AST’s) and a type system is built. An
abstract syntax tree of a program text is a data structure which represents
program text in terms of the programming language’s grammar (13). The type
system is a table of all types declared and referenced(used) in the source code.

To build the ASTs and the type system a code analysis is done in following four
stages:

Figure 2 Overview of the code analysis

In the project analysis an input project file is analyzed and together with some
general project information. All referenced source files, projects and libraries are
loaded as discussed in section 4.1. During the lexical analysis the raw source
code is transformed to a stream of language specific tokens, which is discussed
in section 4.2. In the syntactical analysis, discussed in section 4.3, these tokens
are used to build an abstract syntax tree. In the semantic analysis, a so-called
scope tree is built, representing the scopes in the source code, and the type
system is populated. Section 4.4 discusses how scope trees are constructed, in
section 4.5 is discussed what the type system is and how it works and section
4.6 discusses how the type system is populated.

4.1 Project analysis
The goal of project analysis is to analyze the project at a high level and
determine the information needed for subsequent per-file syntax and semantic
analysis. This means we have to determine which code files, referenced projects
and libraries to load along with other project information. There are two reasons
why this stage is needed:

• Automation: ideally we want to apply our code refactoring solution on
entire projects with minimal user intervention. For this, a means should be
devised to analyze and process entire projects rather than individual files.

Correctness and completeness: the semantics of a given code fragment (whether
it is a file, function, class, or something else) is, in most programming languages
including Visual Basic, not independent of its larger context. For instance, the

14

code constructs in a file typically depend on included files and referenced
projects and libraries. Also some build options used to compile that file are only
available at the project level. Hence, the analysis of individual files is implicitly
dependent on information available at project level.

All information about which files are included in a project, which projects and
libraries are referenced and other general project information in Visual Basic is
stored in a project file. This project file is analyzed. The result of this stage will
be a collection of Project objects containing the appropriate CodeFile objects,
references and other project information.

The Visual Basic 8 project files are XML files, therefore parsing is not a problem;
many libraries are available taking care of parsing XML. The following information
is extracted from the project file:

• Which source code files are a part of the project
• The root-namespace of the project
• The id of the project
• Referenced projects and libraries
• Global imports

Section 4.1.1 discussed how a Visual Basic project file generally is formatted.
Section 4.1.2 discusses how the source code files referenced by the project file
are loaded. Every Visual Basic project has a so-called root-namespace helping to
identify types declared in a specific project, section 4.1.3 discusses the root-
namespace of a project. Although the root-namespace of a project can be used
to distinguish types from different projects, the root-namespaces of different
projects can be the same. Every project has however a unique id which is
discussed in section 4.1.4. Section 4.1.5 discusses how referenced projects and
libraries are loaded. Section 4.1.6 discusses how imports are extracted from the
project file.

4.1.1 Project file structure

As said before, a project file is an XML file. The information in the file is divided
into properties and items. Properties contain general information about the
project such as the root-namespace and project id. Properties are grouped in
tags with the name PropertyGroup. Items represent source code file names and
references; they are grouped in tags with the name ItemGroup. Both the
PropertyGroup and ItemGroup tags are direct children of the root tag Project.

A project file looks as follows, where the items and properties are replaced by
dots:

<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="3.5" DefaultTargets="Build"
xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 …

15

 </PropertyGroup>
 <ItemGroup>
 …
 </ItemGroup>
</Project>

4.1.2 Source code files

The source code in a Visual Basic project is distributed over different source code
files. To be able to analyze the code correctly, all source code files associated
with the project need to be loaded, i.e. read into the analysis tool.

Files are included in the project file using the Compile tag which is a child of
ItemGroup:

<Compile Include="Class1.vb" />

The code files are distinguished by their extension, files referenced in the project
file ending with the extension ‘vb’ are considered code files; other files, for
example images or other non-compilable resources, are ignored. For every code
file a CodeFile object is added to the project; this object further loads the content
of the source file.

4.1.3 Root namespace

The root-namespace is the namespace in which every type and subsequent
namespace in the project is automatically placed in. It can be used to distinguish
types declared in different projects. Hence, the root-namespace will be the first
part of every qualified name of types declared in the project. The root-
namespace is stored in the Project object. In the project file, the root-namespace
is found in the RootNamespace element which is a child element of a
PropertyGroup element.

<RootNamespace>rootnamespace</RootNamespace>

4.1.4 Project Id

Every project has a unique id which is used to identify it with. In theory multiple
types with the same qualified path can exist in different projects, this id is used
to distinguish between them. It can be found in the ProjectGuid element which is
a child of PropertyGroup element.

<ProjectGuid>{19C0B3FD-3C43-46D2-8DAA-DE50C4B5DB4D}</ProjectGuid>

The project id is stored in the Project object.

4.1.5 References

A project can reference other projects to be able to use types declared in those
projects. There are two types of references: library references and project
references. A library reference references a so-called assembly contained in a
dynamic link library (DLL) file; these references are saved in the project file for

16

later use. The references can be found in the Reference element, which is a child
of an ItemGroup element.

 <Reference Include="ReferencedLibrary.Windows,
Version=2.0.1207.0, Culture=neutral,
PublicKeyToken=21d5517571b185bf">
 <HintPath>..\..\Externals\
ReferencedLibrary.Windows.dll</HintPath>
 </Reference>

	
A project can also reference another project. Projects which are referenced need
to be analyzed as well. So if a project is referenced, its project file is loaded and
analyzed as well. The id of the referenced project is saved in the Project object.
Reference projects can be found in the ProjectReference element which is a child
of an ItemGroup element.

 <ProjectReference Include="..\
ReferencedLibrary\ReferencedLibrary.vbproj">
 <Project>{B2BBB9DD-7561-4D2F-8A45-77755E9CC104}</Project>
 <Name> ReferencedLibrary </Name>
 </ProjectReference>

4.1.6 Imports

Global imports are imports which apply for every file in the project. They are
saved in a list in the Project object. They can be found in the Import tag which is
a child of Itemgroup.

<Import Include="Microsoft.VisualBasic" />

4.2 Lexical analysis
Once all the files are loaded the next step of the code analysis is the lexical
analysis. A lexical analyzer or scanner takes the raw source code as its input and
turns it into a stream of tokens. A token represents a couple of characters,
separated by whitespace, which together mean something in the language
analyzed.

Regard the following code which represents a get accessor of a property.

1 Get
2 Return _TabSpaces
3 End Get

If this code is scanned, we get five tokens; a GET token, a RETURN token, an
Identifier token ‘_TabSpaces’, an END token and a GET token. Whether a group
of characters is a token or not is fairly context free, in the example ‘Get’ is a
token because it consists of a ‘g’ followed by an ‘e’ followed by a ‘t’ and it is
surrounded by whitespace. A token doesn’t have any further meaning
(semantics) at this stage. The first ‘Get’ in the example has a different

17

syntactical meaning than the second one, but at this stage it has the same token
type. The first one is the start of a get accessor of a property, the second one
together with the ‘End’, is the end of a get accessor. This syntactical difference is
determined in the next stage of the code analysis, the syntax analysis.

For the project an external third-party lexical analyzer was acquired and used out
of the box (14), so further discussion about this subject falls out of the scope of
this thesis.

4.3 Syntactic analysis
Syntax analysis or parsing takes tokens from the lexical analyzer and uses them
to build an abstract syntax tree (AST) or parse tree. In this stage syntax, i.e. the
order of the tokens is taken in to account to give more meaning to the tokens.
Normally the grammar of a language is used to model a parser and the AST. The
next piece of Visual Basic code, for example, represents a property.

1 Public Property MyProperty() As MyType
2 Get
3 Return _ MyPropertiesBackingField
4 End Get
5 Set(ByVal value As MyType)
6 _ MyPropertiesBackingField = value
7 End Set
8 End Property

The grammar for a property in Visual Basic 8 is as follows [3].

PropertyMemberDeclaration ::=
 RegularPropertyMemberDeclaration |
 MustOverridePropertyMemberDeclaration

RegularPropertyMemberDeclaration ::=
 [Attributes] [PropertyModifier+] Property FunctionSignature [ImplementsClause]
 LineTerminator
 PropertyAccessorDeclaration+
 End Property StatementTerminator

MustOverridePropertyMemberDeclaration ::=
 [Attributes] [MustOverridePropertyModifier+] Property FunctionSignature [
ImplementsClause]
 StatementTerminator

PropertyModifier ::= ProcedureModifier | Default | ReadOnly | WriteOnly

MustOverridePropertyModifier ::= PropertyModifier | MustOverride

PropertyAccessorDeclaration ::= PropertyGetDeclaration | PropertySetDeclaration

PropertyGetDeclaration ::=
 [Attributes] [AccessModifier] Get LineTerminator
 [Block]
 End Get StatementTerminator

18

PropertySetDeclaration ::=
 [Attributes] [AccessModifier] Set [(ParameterList)] LineTerminator
 [Block]
 End Set StatementTerminator

The parser, which is based on the Visual Basic 8.0 grammar, tries to match the
tokens in the order specified by the grammar and builds an AST of the tokens.

After parsing the example above, the AST representing the property will look like
this:

DeclarationCollection

PropertyDeclaration
NameCollection

GetAccessorDeclaration
SetAccessorDeclaration

StatementCollection
StatementCollection

AttributeCollection
AttributeCollection

EndDeclaration

EndDeclaration

EndDeclaration

ModifierCollection
ModifierCollection

TypeParameterCollection

ParameterCollection

AttributeBlockCollection

ReturnStatement AssignmentStatement

AttributeCollection

ModifierCollection

Public

ParameterCollection

Value

Figure 3 Example of an AST

For every file in the projects loaded an AST is constructed. The complete
grammar from the code specification (15) is included in Appendix 1. The

19

syntactic analyzer that we used in our work was acquired together with the
lexical analyzer (14), so the subject is not discussed any further in this thesis.

4.4 Keeping track of scopes
The scope of an entity’s name is the set of all declaration spaces within which it
is possible to refer to that name without qualification (15). To be able to classify
expressions correctly at a later stage it is necessary to know in which scopes to
search for declarations. To facilitate the search for scopes, a so-called scope tree
is constructed. The scope tree represents the scope structures in the source code
as illustrated by the next example:

1 Public Class Scope
2 Private var1 As Integer
3 Public Sub ScopeSub1(ByVal var1 As Integer)
4 End Sub
5
6 Public Sub ScopeSub2(ByVal var2 As Integer)
7 End Sub
8 End Class	

The code in the example has five scopes. The first scope, which is not really
obvious is the global scope; the global scope is an implicit (i.e. not declared by
explicit syntax) scope which contains everything from all projects loaded in the
analysis at a given moment. Every project in Visual Basic has a root namespace;
everything within a project is nested in this root namespace. The Class ‘Scope’ is
declared in this root namespace scope and is itself also a scope boundary; the
two methods ‘ScopeSub1’ and ‘ScopeSub2’ are nested within the class’s scope
and also represent scopes themselves.

An important step in the syntactic and semantic analysis of source code is
qualification of identifiers. By this, we mean finding the complete scope path,
from the root scope (global scope) up to the innermost scope which contains the
location of a given identifier. When an identifier needs to be classified, scopes are
sought through from the scope the identifier is directly contained in, to the
outermost scope until the identifier is classified. The scope path produced as
described above generates a so-called fully qualified identifier name. Fully
qualified names are useful as they uniquely describe identifiers with potentially
identical non-qualified names throughout a project.

So when ‘var1’ is referenced within method ‘ScopeSub1’, this means the
parameter in the method signature on line 3 is referenced. If an identifier with
the same name would be used within method ‘ScopeSub2’, it would mean the
field declared on line 2 would be referenced.

This shows that to classify identifiers correctly, it is necessary to know the scope
structure in the source code. We should be able to determine which the direct
containing scope of an entity is and which entities reside in a scope. It is also

20

necessary to be able to find the direct containing scope of any scope. To
facilitate all these requirements we capture the scope structure in a tree, a scope
tree.

How such a scope tree is constructed is discussed next in section 4.4.1. The fully
qualified name of a type is tightly coupled to the scope structure; every structure
that adds a part to a qualified name of a type it contains, also starts a new sub-
scope. The scope tree is thus an ideal structure to keep track of this “qualified
location”; this is discussed in section 4.4.2. A further complication to scopes
appears: In Visual Basic, the notion of partial types exists. A partial type is a
type whose declaration can be distributed in multiple files; still their inner scope
is the same one. Section 4.4.3 discusses the scopes of partial types.

4.4.1 Scope tree construction

The scope tree is a tree in which every scope in the code is represented by a
node. Every directly nested scope in a scope is represented by a child node of
the node representing that scope. Every scope node contains references to scope
members (i.e. symbols, or identifiers) directly contained by the corresponding
scope in the source code. To be able to determine the directly containing scope
for an identifier, for every node in the AST a reference to the corresponding
scope node in the scope tree is stored. In this way, we can easily access the
scope and, if needed, fully qualified name of any symbol in the AST.

The code shown above results in a scope tree as shown in the diagram below,
the scope tree of the example above is shown on the left, a simplified version of
the AST is shown on the right. A reference is stored from the AST nodes to the
scope node which is positioned between the same dashed lines.

21

Figure 4 Scope tree (left) with the corresponding AST (right)

To distinguish between different types of scopes, five types of scope-nodes are
defined:

• Global: A singleton root-node
• Namespace: Represents namespace scopes
• Type: Represent type scopes; modules, classes, structures, enums and

interfaces
• Member: Represent member scopes; properties, functions, subs, and so

on
• Block: Represent block scopes; where, if, and so on

The scope tree is built by recursively traversing the AST of each file, starting at
the root, passing a reference to the current scope node while doing so. The root
scope node is the same scope for all ASTs, it represents the global scope. Every
time a node is encountered in the AST which starts a new nested scope, such as
a class declaration, a new scope node is added as a new child of the current
scope node. The new scope node is passed on as the current scope when the
children of the AST node are recursively traversed.

 If the node represents a scope defined by a type, a reference to this type can be
stored in the scope node for later use in the type building phase; more about this
is explained in section 4.5.

22

4.4.2 Qualified location

The qualified location of each new scope is the qualified name of the entity which
starts the new scope; this can for example be a class name or a method name.
The qualified location can be used to determine in which namespaces and
locations can be sought for a type. The qualified name is constructed by taking
the unqualified name of the entity which start the new scope and qualify it with
the qualified location of the containing scope.

Consider the example in 4.4 again , if in the root-namespace of the project is
‘Root’ then the namespace scope node would have the qualified location ‘Root’,
the type scope node would have qualified location ‘Root.Scope’ and the member
scope nodes the qualified locations ‘Root.Scope.ScopeSub1’ and
‘Root.Scope.ScopeSub1’.

4.4.3 Scopes of partial types

Partial type declarations are class or structure declarations that may be spread
across multiple partial declarations within the program (15). This means the
declaration space and thus the inner scope of this type is distributed as well
among several files.

Consider the following code:

1 Partial Class PartialClass
2 Sub DoSomething()
3
4 End Sub
5 End Class
6
7 Partial Class PartialClass
8 Sub DoSomethingMore()
9
10 End Sub
11 End Class 	

This example will result in the class ‘PartialClass’ with two methods
‘DoSomething’ and ‘DoSomethingMore’. The inner scope of both parts of
‘PartialClass’ is the same.

Because the inner scope of these partial declarations is the same, they should be
represented in the scope tree by the same single scope node. Therefore when a
class or structure is encountered, first a scope node is sought within the same
project with the same fully qualified location, if such a scope is found it is used
instead of creating a new scope. In this way all members which are added to the
scopes type are added to the same type and for all AST nodes within the partial
type a reference to the same scope is stored.	

23

4.5 Type system
The type system is the heart of the type semantic analyzing mechanism. To be
able to determine if two pieces of code are semantically the same, it is necessary
to know the types of the identifiers in it. The type system is the central system
which keeps account of all types found and referenced in the source code. The
type system mainly consists of a type table containing every declared type
exactly once. The word ‘type’ can be a bit hard to define; is used with numerous
potentially different, senses in the static analysis literature. Section 4.5.1
discusses how the term is used in this thesis, what types and members exist in
Visual Basic and how they are represented in the type system. Because only one
representation of every type may exist in the type system, there must be a way
to identify them; section 4.5.2 discusses how types are identified in the type
system.

4.5.1 Types and members

It is very hard to find a single definition of the word ‘type’ in the static analysis
literature, so first we should clarify the meaning of the word type in this thesis.
We don’t use the word type as it is often used when talking about compilers, i.e.
the semantic information associated with a program construct like a variable,
function or class definition. We use here the word ‘type’ in the same narrow
sense it is used in programming languages when referring to a ‘data type’. More
precisely, in this thesis, types are entities which can be instantiated. For example
a class is a type, but also intrinsic types and arrays are types. The only exception
to the above rule are modules. A module is not a data type in the sense that it
cannot be instantiated, but in our discussions it is regarded also as a type.

 Functions are not regarded as types in this thesis (in contrast to some works in
compiler theory where functions are types in a type system); they are referred to
as members, just as fields, properties or any other structure which is a part of a
type. All types can have members; members are declarations directly contained
by the types declaration like functions, fields, properties or inner types.

Every kind of type or member in Visual Basic has its own properties, some of
them are shared, and some of them are unique to a specific kind. For the
complete description of Visual Basic 8 the reader is referred to [3]. Only
properties which influence the semantics are of use to us. To represent the types
and members we defined a class hierarchy as shown below. The central element
is TypeDeclaration, which models a type. Its subclasses model specializations of
the type notion (as shown in the lower part of the diagram). As explained above,
a type can contain members, modelled by MemberDeclaration. Different kinds of
members are modelled by specializations of MemberDeclaration (as shown in the
top part of the diagram).

24

+Members
TypeDeclaration

GenericTypeDeclaration

ClassDeclaration ConstructedTypeDeclaration

DelegateDeclarationEnumDeclaration

InterfaceDeclaration

ModuleDeclaration NullTypeDeclaration

StructureDeclaration

TypeParameterDeclaration

ReferencedModuleDeclaration

ReferencedInterfaceDeclaration ReferencedClassDeclarationReferencedStructureDeclaration

MemberDeclaration

SignatureDeclaration VariableDeclaration

ConstructedMemberDeclaration

ConstructorDeclaration EventDeclaration MethodDeclaration

OperatorDeclaration PropertyDeclaration
-Contains

1

-Contained by

*

Figure 5 Overview of the type representation hierarchy

In the next sections each of the different kinds of types and members are
discussed.

4.5.1.1 MemberDeclaration

The MemberDeclaration class is the base of the representation for all types and
members. It might seem strange that representations for types are a subclass of
the MemberDeclaration class because a type often isn’t a member at all. Types
can be nested though; if this is the case they should be regarded a member of
the containing type; to model this, it is convenient to have both types and other
members have the same super class. If a type is not a nested type it could with
some leeway be considered a member of its containing namespace and therefore
this construction is justified.

 The MemberDeclaration class contains the following properties1:

1 The type system is implemented itself, as Visual Basic, in the .Net framework, hence the use of
similair terminology here and in the following discussions.

25

• Name: the name of the entity.
• IsShared: a flag, which when set means the member is static; this means

it can be accessed directly on the uninstantiated type instead off only on
an initialized one.

• Shadows: a flag, which when set means all members with the same
name contained by super types of the containing type, are hidden.

• AccessModifier: the access modifier defines how accessible the member
is, there are five values the access modifier can have:

o Public: accessible to any type.
o Private: accessible only within the containing type.
o Protected: accessible only from within containing type and

subtypes of it.
o Friend: accessible only from within the same project.
o ProtectedFriend: accessible from types within the same project or

from subtypes of which this is a member.

4.5.1.2 SignatureDeclaration

The SignatureDeclaration class is the base class of all members that have a
signature, i.e. have a return type, a name and parameters. The class contains
the following properties:

• ParameterTypes: the parameters in the signature. This property
consists of a list of objects of the type ParameterType. The ParameterType
class has the following properties:

o Type: a reference to the TypeDefinition which represents the type
of the parameter

o Name: the name of the parameter
o IsByRef: a flag which when set means a reference to the value is

passed instead of the value itself.
o IsOptional: a flag which when set means the parameter is optional.
o IsParamArray: a flag which when set means the parameter is an

array which can be passed as a list of comma separated
parameters.

• TypeParameters: Represent the type parameters of the member when
the member is a generic member. Within the scope of this member they
behave like types themselves. More about type parameters in section
4.5.1.15.

4.5.1.3 ConstructorDeclaration

The ConstructorDeclaration class represents a constructor of a type. It is a
subtype of SignatureDeclaration and it has no further properties on its own. It is
necessary to be able to distinguish between constructors and other methods
because constructors can only be called at the moment a type is instantiated.

4.5.1.4 EventDeclaration

The EventDeclaration class represents an event declaration in a type.

26

4.5.1.5 MethodDeclaration

The MethodDeclaration represents a Sub or Function definition (in Visual Basic
terminology). It is a subclass of SignatureDeclaration and does not have extra
properties. A sub and a function are both methods with the difference that sub
returns void and a function always returns a type.

4.5.1.6 GenericTypeDeclaration

The GenericTypeDeclaration class is the base class for all so-called generic types.
A generic type is a type which has generic type parameters. These parameters
are placeholders for types that are only specified at the place an instance is
made of the type. The class contains the following properties:

• ImplementedTypes: A list of TypeDeclarations which represent the
interfaces the type implements.

• TypeParameters: A list of TypeParameters which represent the type
parameters of this generic type.

4.5.1.7 ConstructedMemberDeclaration

The ConstructedDeclaration class represents a specific case of a generic member.
The class provides functionalities to represent its containing generic type but with
the type parameters replaced by actual types. It has the following properties:

• GenericMember: A reference to the generic signature declaration of
which this is a instantiation.

• TypeArguments: Represent the arguments which are matching type
parameters of the signature. It consists out of a list of references to type
definitions, for every type parameter in the generic signature declaration a
type argument exists at the same index in the list.

4.5.1.8 OperatorDeclaration

The OperatorDeclaration represents a user defined operator overloading
declaration. It contains the following properties:

• OperatorToken: The token initially produced by the lexical analyzer, it’s
used to determine which operator is overloaded.

• IsWidening: Applicable when the operator is the Visual Basic ‘CType’
operator. The ‘CType’ operator is used to cast an object of one type to
another. For specific cases this cast can be overloaded, this overload
should explicitly state if the cast is a widening or a narrowing cast.
Widening casts can be done with no loss of data and therefore are implicit.
No extra effort has to be done to write one type into a variable of another
type if there is a widening cast available. A narrowing cast means data or
precision could be lost. A narrowing cast is explicit, the ‘CType’ operator
should be added, else the compiler won’t accept the cast. This property is
set when the operator is a widening ‘CType’.

• IsNarrowing: See above. This property is set when the operator is a
narrowing ‘CType’.

27

4.5.1.9 PropertyDeclaration

The PropertyDeclaration class represents a property of a type as present in the
Visual Basic language. It contains the following properties:

• IsDefault: When set states the property is default. A default property is a
property that is called when an instance of its containing type is indexed.

The next type in the next example has a default property.

1 Public Class DefaultPropertyClass
2 Private _list As List(Of Integer) = new List(Of Integer)()
3
4 Public Default Property ListItem(ByVal index As Integer) As Integer
5 Get
6 Return _list.Item(index)
7 End Get
8 Set(ByVal value As T)
9 _list.Item(index) = value
10 End Set
11 End Property
12 End Class	
When a variable is declared with the type:

Dim defaultPropertyValue As DefaultPropertyClass =
New DefaultPropertyClass()

	
Then	 the	 next	 expression	 will	 call	 the	 default	 property:	
	
Dim defaultPropertyResult As Integer = defaultPropertyValue(1)

4.5.1.10 VariableDeclaration
The VariableDeclaration represents a variable declaration in a type.

4.5.1.11 TypeDeclaration

The TypeDeclaration class is the base class for all types. It contains the following
properties:

• Members: A list of MemberDeclarations which represent the members of
the type.

• Bases: A list of TypeDeclarations which represent the base types of the
type, usually this is only one, but in case of an interface it can be more.

• QualifiedPath: The full namespace path of the type. For example a type
is declared within ‘Namespace1’ in a project with a root namespace
‘Namespace0’ the QualifiedPath will be ‘Namespace0.Namespace1’.

• ProjectGuid: The id of the project this type is declared in.

28

4.5.1.12 ModuleDeclaration

The ModuleDeclaration class represents a module. A module is a static type of
which instances cannot be made. When a module is imported, its members will
become available everywhere within the file, or project it’s imported in.

4.5.1.13 EnumDeclaration

The EnumDeclaration class represents an enum. It contains the following
property:

• UnderlyingType: An enum is actually just a number represented by a
name. Its underlying type can be changed, it can be one of Byte, SByte,
UShort, Short, UInteger, Integer, ULong or Long. This property holds a
reference to the TypeDeclaration representing the underlying type.

4.5.1.14 DelegateDeclaration

The DelegateDeclaration class represents a delegate declaration. A delegate has
a signature and therefore one could think it should be a subclass of the
SignatureDeclaration class, but because instances can be made of it and it has
extra default members, it behaves more as a type. The signature is added as a
nameless method declaration.

4.5.1.15 TypeParameterDeclaration

The TypeParameterDeclaration class represents a type parameter of a generic
type. It contains the following property:

• Constraints: This is a list of TypeDeclarations which represent the
constraints of this type parameter. It means the type should be of the
(sub-)types in this list. This information is useful because these constrains
imply that members that exist in instances of one of these types, also
exist in the type parameter that has these constrains. These constrains
thus are necessary to resolve the members on this type parameter. There
is also a special case of constraint, the ‘New’ constraint means the type
should have a parameterless constructor. This constraint however is
uninteresting for the semantic analysis and thus ignored.

4.5.1.16 NullTypeDeclaration

The NullTypeDeclaration class represents the ‘Nothing’ Visual Basic keyword. It
represents the value of a reference to an instance of a certain type, not pointing
at anything, also known as NULL or null in other programming languages like C
or C++.

4.5.1.17 StructureDeclaration

The StructureDeclaration class represents a structure or compound type.

4.5.1.18 InterfaceDeclaration

The InterfaceDeclaration class represents an interface.

4.5.1.19 ClassDeclaration

The ClassDeclaration class is represents a class.

29

4.5.1.20 ConstructedTypeDeclaration

The ConstructedTypeDeclaration represents a specification of a generic type. The
class contains functionality to represent itself as if it was a normal type. This is
done to substitute all the instances of the type parameters with its type
arguments. It contains the following properties:

• GenericType: A reference to the GenericTypeDeclaration this type
specifies.

• TypeArguments: Represent the arguments which are matching type
parameters of the generic type. It consists out of a list of references to
type definitions, for every type parameter in the generic type declaration a
type argument exists at the same index in the list.

4.5.2 Identifying types with fully qualified names and assembly identifiers

The core of the type system is a collection of every type known in a given
program. Every type has a unique key (among all possible types in all projects)
which is constructed of a project identifier and a fully qualified name. A fully
qualified name contains the complete type path, the types name and possibly its
generic rank, array rank or type arguments.

For example the next code with root namespace ‘Root’:

Namespace Namespace1
 Class Class1
 Class Class2

 End Class
 End Class
End Namespace

In this example there are two types, class Class1 and class Class2, the fully
qualified names of these two will be ‘Root.Namespace1.Class1’ and
‘Root.Namespace1.Class1.Class2’.

It is not allowed for a type reference to be ambiguous; it always should be
possible to resolve the type or the source code cannot compile. With the
precondition that the code must be compilable, i.e. is complete and correct, this
guarantees a reference is never ambiguous. This means a distinction between
referenced types can always be made, which implies fully qualified names of
referenced types are always unique in the containing type of the type reference.
Thus the fully qualified name together with the reference containing type is
always enough to identify the correct type referenced somewhere in a program.

It is possible to have a reference to a type for which another type exists with the
same (fully qualified) name within the same environment, which can only be
distinguishable by the context of the type reference. If for example a project
MainProject references two other projects ReferencedProject1 and
ReferencedProject2, ReferencedProject1 contains a type with the fully qualified
name Namespace1.Class1, ReferencedProject2 containing a reference to project

30

ReferencedProject3 which on his turn also has a type with the fully qualified
name Namespace1.Class1. If within MainProject a type is referenced with the
fully qualified name Namespace1.Class1 or part of this name, from the context
can be deducted the type from project ReferencedProject1 is the one referenced.
This because project ReferencedProject3 is not referenced by MainProject, thus
types in ReferencedProject3 are not visible in the context of the type reference.

Within a project or a library, two types with the same fully qualified name are not
allowed. This, together with precondition the code has to be compilable, makes
the fully qualified name within a project or library guaranteed unique.

To distinguish between two types with the same fully qualified name, a unique
key is constructed from the identifier of the containing project or library,
together with the fully qualified name. How this key is used to find a referenced
type is discussed in chapter 5.

4.6 Populating the type system
In the previous section was shown what the type system is and what kind of
types and members can be stored in it. Before the type system can be used for
classification it needs to be populated with all the types existent in the program
analyzed. Constructed and array types can be added when needed, but all basic
types need to be present for correct resolution.

The next diagram shows an overview of the type system construction process.

Create scope
tree

Load
referenced

dll’s

Scan for
types

Types system

Projects

Build types

AST’s

References AST’s

AST’s

Add modules Add Types

Alter types/Add constructed types

Figure 6 Overview of the type system construction

Populating the type system is done three stages. The first step is library
reference resolving; in this stage referenced libraries are loaded and types within
the libraries are extracted; this step is discussed in section 4.6.1. After this, all
types declared within the analyzed code are added. At first the types are scanned

31

superficially; only their name, type and location are extracted. In the stage
following the types are further constructed, and their inheritance and all of their
members are extracted. Section 4.6.2 discusses why the types are extracted in
two stages. Section 4.6.3 describes the type scanning and type building is
described in section 4.6.4.

4.6.1 Library reference resolving

Not all types referenced within the code files can be found in the code itself;
some of the types reside in external libraries. For proper type resolution it is
necessary to load the referenced types into the type system. In this stage of the
type system population, the referenced libraries are loaded and analyzed.

First the referenced libraries need to be found. System libraries are often
referenced by name only. These system libraries can be found at different
standard locations. To find a referenced library these standard locations are
probed to find it.

When a referenced library is found, reflection is used to analyze the types
present in the library. Reflection is a technique that for dynamic type loading
from libraries and examine their properties. When needed types are loaded from
the referenced libraries, analyzed and stored into the type system. Reflection is
natively supported in the .NET framework.

Not all referenced types are loaded straight away; for performance reasons
referenced types are loaded lazily. The libraries are loaded in memory, but not
yet analyzed; only modules, which are a special case are extracted from the
libraries at this point.

The rest of the types are only loaded only on request by the type system. When
a type reference is being resolved by the type system, it sends a request to the
reference resolver which tries to find a type with that name in the appropriate
library and just in time adds it to the type system when found. This way, type’s
only get loaded when needed and no resources are wasted in loading types that
are never used.

Not only are types from referenced libraries loaded lazily, a type’s members,
bases and implemented types are loaded lazily as well. Members of a type often
have a return type or parameter types. Constructing referenced types together
with their members would mean all types used in these members have to be
loaded as well. These types have also members of which the types also should be
loaded. So still a lot of types would be loaded which never are used in the code
that is to be analyzed.

To load members lazy the type classes are sub-classed with special reference
versions which load members, bases and implemented types only when needed,
using a design pattern similar to the well-known Proxy pattern. These sub
classes are:

32

• ReferencedModuleDeclaration, a subclass of ModuleDeclaration.
• ReferencedClassDeclaration, a subclass of ClassDeclaration.
• ReferencedStructureDeclaration, a subclass of StructureDeclaration.
• ReferencedInterfaceDeclaration, a subclass of InterfaceDeclaration.

These classes hold a reference to the library type. When a member’s property is
accessed for the first time, the library type is analyzed and the type’s members
are added together with the types used in these members. The same happens
with the bases and implemented types properties, the bases and implemented
types are analyzed and added the first time the property is accessed.

The performance gained with lazy reference loading is considerable; the number
of types loaded because of standard imports went down a factor 10..15. Because
of this 10ths of seconds where shaved of the type system building process.

As stated above modules are loaded without delay. As will be explained later, it
should be possible to find all modules in given namespace, without knowing their
name in advance. The standard functionality of reflection doesn’t provide
functionality to find a type by the namespace it is contained in. To be able to
find modules, all modules are loaded from referenced libraries without delay.

4.6.2 Analyzing types in two stages

Members often have return types or parameter types. To construct a
representation of these members, those types have to be resolved as well. If
types would be loaded and constructed completely in one pass, this would mean
that at some point a type needs to be resolved while the type system is not
completely populated yet. It is obvious this would mean there is a chance the
type sought would be not yet present in the type system and no type is found,
but worse it could also happen a type is found but it is not the correct one, so
type resolution isn’t guaranteed to be correct before all types are loaded.
Because of this type resolution can only be done after all types exist in the type
system, this implies type loading has to be done in two passes.

There are different approaches possible to split the loading in two stages. For
example the type reference could be stored in some sort of ‘pseudo type’
placeholder to be resolved in the second pass. For convenience is chosen to only
load the skeleton of the types, only the information needed to resolve a type, in
the first pass, i.e. the name, the access modifiers and the generic rank of the
type. All the members and inheritance are loaded in the second pass.

4.6.3 Type scanning

In this step of populating the type system we find out which types are declared
in the source code files. As described in the previous section, in this stage only a
skeleton of every type is added to the type system.

To scan for types, the process walks through the AST of all source files in the
program. Every time a type is encountered, the type is added to the type
system. The qualified location is extracted from the corresponding scope node

33

and the qualified location of the type is set to this value. The name of the type,
generic rank and access modifier is extracted from the AST node and saved in
the type representation.

Next to the types themselves, type parameters are treated as types as well and
added to the type system.

Together with the type scanning two other types of statements are scanned, the
import statement and the with statement. These are piggybacked onto this stage
because separately walking through the AST just to find these statements would
be a relatively big impact on the performance.

4.6.3.1 Imports

There two types of imports namespace imports and alias imports.

ImportsStatement ::= Imports ImportsClauses StatementTerminator

ImportsClauses ::=
 ImportsClause |
 ImportsClauses , ImportsClause

ImportsClause ::= ImportsAliasClause | ImportsNamespaceClause

ImportsAliasClause ::=
 Identifier = QualifiedIdentifier |
 Identifier = ConstructedTypeName

ImportsNamespaceClause ::=
 QualifiedIdentifier |
 ConstructedTypeName

In the AST these are represented by NameImport and AliasImport objects. When
one of these representations is encountered, the import is added to the list of
imports in the current CodeFile object for later use in type resolution.

4.6.3.2 With block

A with block is a block of code where an expression is first specified, and then
implicitly used.

WithStatement ::=
 With Expression StatementTerminator
 [Block]
 End With StatementTerminator

For example the following code:

1 With Var
2 .FunctionOnVar()
3 .AnotherFunctionOnVar()
4 End With

34

Here ‘Var’ is the With-expression, the variable produced by the expression is
implicit within the with block. The two function calls in the block are called on the
variable produced by the With-statement, thus on the variable ‘Var’.

In the AST it is represented with a WithBlockStatement object. The expression is
saved in the current scope node for later use in type resolution.

4.6.4 Type building

Once all types are known, the skeleton types scanned in the previous phase can
be filled in. Its members need to be extracted from the code, implemented
types, inherited types, type parameter constraints and underlying types. Next to
members and other dependencies, it is also necessary to be able to qualify local
variables, so these are added to the system as well.

For this the ASTs are traversed one more time, as follows.

In the next sections, we discuss members and variables are discussed,
implemented types, inherited types, type constraints, and underlying types.

4.6.4.1 Members and variables

When a member or variable is encountered, the scope node corresponding with
the AST node representing the member or variable is fetched. The member or
variable is added to the list of members in the scope so it can be found during
classification.

After this the scope is searched for the innermost type containing the member or
variable, if the qualified name of this type equals the qualified location of the
scope, it means the member is in fact a member of the type and not a local
variable. If a variable is a member, it is often referred to as a field. If it is a
member, it is added to the member list of the type.

The following kinds of members are added to types:

• Sub
• Function
• Property
• External Sub
• External Function
• Event
• Custom Event
• Constructor
• Field

Note that nested types are not treated as the rest of the member. They are in
fact members but they are treated as separate types; there is no way of listing
the nested types of a type.

As already explained earlier, a signature member is a member that has a name,
parameters a return type and possibly type parameters. Except for variables, all

35

of these members have such a signature and have the same basic form. A
variable has just a name and a type. All members, including fields can have
access and other modifiers.

If a member is encountered while traversing an AST, the name and modifiers are
extracted and saved in a member representation. After this all dependent types,
which are the result type, parameter types and type parameter types, are
resolved and saved in the member representation.

The scope node corresponding with the AST node representing the member is
fetched. The member is added to this scope. The scope is searched for the
innermost type containing the member, if the qualified name of this type equals
the qualified location of the scope, it means the member is a direct member of
the type and it is added to its member list. A member is for example not a direct
member if it is a variable in a method.

4.6.4.1.1 Extracting	 member	 access	 modifiers	
For all members their access modifiers are extracted and saved in the member’s
representation.

An access modifier is a modifier which defines the access rights to the member
from outside the type it which is declared. The access modifiers can be one of
the following:

• Public
• Protected
• Friend
• Private

The protected and friend can be combined. The use of an access modifier is not
mandatory; if no access modifier is provided, the default access modifier is
public. For completeness:

Public means there is no access restriction to this member. Protected means the
member is only available to sub-types. Friend means the member is only
available within the same assembly. Private means no access is allowed from
outside the type. The combination of friend and protected means the member is
available from within the same assembly as well as to all sub-types.

4.6.4.1.2 Extracting	 other	 member	 modifiers	
Next to access modifiers there are some other modifiers which can influence the
semantics of a member. Some of these are extracted and saved in the member
representation, others can be safely ignored because of the precondition the
input code should be compilable. Of all non access modifiers only the shadows
and shared modifier are saved.

The shadows modifier hides all members with the same name in super-types,
this modifier influence type resolution so it is saved.

36

When a member has the shared modifier it is accessible on the uninitialized type.
In many other languages the word static is used for this. To which member a
member call resolves on an uninitialized type is dependent on this modifier, thus
it is saved.

4.6.4.1.3 Extracting	 type	 parameters	
If a member has type parameters and thus is a generic member, the type
parameters are extracted and added to the member representation in the same
order as they have been put in the code. The type parameters are also added to
the type system as they can be seen as types themselves within the member’s
scope.

4.6.4.1.4 Extracting	 a	 member	 return	 types	
After extracting the type parameters, the return type is resolved using the type
system. If the member does not have a return type specified, the return type
implicitly is the “System.Void” type.

4.6.4.1.5 Extraction	 of	 member	 parameters	
When the member has parameters, their types are resolved using the type
system. Parameters are added to the member in a list of objects of the type
ParameterType. Parameters can be optional, when the optional keyword is
added, the IsOptional property in the ParameterType object is set to true. The
last parameter in the list can be a parameter array, if the ‘ParamArray’ keyword
is provided, the IsParamArray property in the ParameterType object is set to
true. Within the scope of the member it is a variable, so a variable with the
parameter name and type is added to the current scope node.

4.6.4.1.6 Member	 type	 specific	 processing	
Next to the standard member properties, some member types need some extra
processing done, as follows.

In the scope of a Function the function name can be used as a variable, the
function result will be the content of this variable if not a specific value is
returned. A variable with the name of the function and the functions return type
as type is added to the scope of the function, to be able to resolve this variable.

When the member is an operator, the operator token is saved. An operator can
have two special modifiers, the Narrowing and Widening modifier. One of these
modifiers should be provided when the operator is of the type CType which is the
cast operator. The Widening modifier states a cast can be done without data loss.
The Narrowing modifier states the cast can lead to data or precision loss. The
OperatorDeclaration has the properties IsNarrowing and IsWidening which are
set to true when the modifiers are provided.

4.6.4.2 Variables

Variables can be members or local. Their type is resolved using the type system.
All variables encountered are added to the scope, the variables which are a
member are also added to the members of its containing type.

37

4.6.4.3 Generic types

Generic types can inherit and implement other types. Generic types are classes,
structures and interfaces. When the definition of a generic type is encountered,
the types which are inherited and implemented are resolved using the type
system and saved in the GenericTypeDeclaration in the properties Bases and
ImplementedTypes.

4.6.4.4 Underlying types

An enum has an underlying type. If this underlying type is provided, the type is
resolved using the type system. If the type is not provided, the default type is
“System.Int32”.

4.6.4.5 Type Parameters

If a type parameter is encountered. Its type constraints are extracted. There are
two types of type constraints, one is the new keyword and the other is a type
name. The new keyword means a type should have a default constructor. This
doesn’t add any information which useful to resolving, so this constraints are
ignored. The type name constraint means, the type should be an instance of this
type or implement it. All type constraints are resolved using the type system and
added to the TypeParameter object.

4.6.4.6 Delegate methods

Delegate subs and functions are a particular feature of Visual Basic. They are a
hybrid between a type and a member. They can be called as a normal sub or
function, but they also inherit the Delegate class which implement some default
specific methods. These default methods are:

• Invoke, which has the same parameters as the delegate method.
• BeginInvoke, which has the same parameters as the delegate method

plus an extra parameter of type “System.AsyncCallback” with the name
DelegateCallback and a parameter of type “System.Object” with the name
DelegateAsyncState.

• EndInvoke, which has the parameters as the delegate method which are
passed by reference together with a parameter of type
“System.AsyncCallback” with the name DelegateCallback.

These methods are added to the members of the DelegateDeclaration object.

4.7 Summary
In this chapter has been described how source code is analyzed, resulting in an
abstract syntax tree for every code file associated with a project and a type
system containing a representation of every type used in the analyzed program.
This is done in four stages; project analysis, lexical analysis, syntactic analysis
and semantic analysis.

In the project analysis a project file is analyzed and all properties, associated
project, source files and libraries are loaded. In the lexical analysis every source
file is converted into a stream of Visual Basic specific tokens. These tokens are

38

used in the syntactic analysis to construct an abstract syntax tree for every file.
After this first the referenced libraries are analyzed, modules in the libraries are
loaded completely, all other types are loaded lazily when needed. In the
semantic analysis the types declared in the source code itself are extracted from
the ASTs in two phases; first only the name and rank of the type is extracted.
After all types extracted, the types are built further. Finally, a complete type
system is created which enables us to carry out several types of semantic
analyses required for the clone detection and refactoring steps described next.

 	

39

5 Classification
In the previous chapter was explained how abstract syntax trees and scope trees
are built and the type system gets populated. The last step in the semantic
analysis is to classify every expression in the source code using the type system.

By classification, we mean analyzing expressions to deduce refined information
which will further enable us to detect clones and ultimately refactor them. The
term ‘classification’ used here is of our own choice. In the compiler literature,
similar refined analyses on syntax and semantic information have different
names, e.g. disambiguation, elaboration or advanced semantic analysis. This
step is typically related to the separation of syntax and semantic analysis: typical
(simpler) parsers operate context-free. However, in context-dependent
languages, such as Visual Basic or C/C++, some constructs cannot be fully
classified (i.e. determined what they are) at parsing stage, so this step is left for
the subsequent semantic analysis. Since there is no established name for the
specific type of analysis we do, and since our analysis is quite specific to our
goals of clone detection and refactoring, we chose to introduce our own term:
classification.

This step is quit a elaborate one; many resolution steps and rules apply to
finding the correct type, member or operator. Instead of classifying each node in
the abstract syntax tree, complete expressions are classified. The result of the
classifying is formed in such a way the complete origin of the data type and
value to which an expression classifies is deductable from the result, the result
format is discussed in section 5.1. The classification of identifiers can be divided
in three processes; type resolution, member reference classification and
expression classification. If a node of the AST needs to be classified, it is
deductable from the type of the node which of the processes is needed to classify
the node. If the AST node refers to a data type, the type resolution process is
needed; type resolution is discussed in section 5.2. If the node is an identifier,
but doesn’t refer a data type, it must refer a member or local variable, the
classification of such nodes are discussed in section 5.3. The last classification
case is the classification of expressions which is discussed in section 5.4.

5.1 Classification Result
To be able to match for example two expressions, it is necessary to know how
they are related to each other. It’s not only necessary to know if the types they
classify to are equal or interchangeable, but it is also necessary to know which
variables and members are accessed resulting into this type. If for example a
certain member of a certain type is called on two instances of this type, it can
only be said the two are the same if the instance of the type is the same; the
origin of the instance of the type is thus important to know.

Often the result of a classified expression influences the classification of another
expression. For example to which overloaded method is applicable depends on

40

the types its arguments classify to or sometimes even to which constant value
the argument results in.

To provide the information needed for further classification and matching, all
classification algorithms in the project return an object of the type ResolveResult.
This object describes the origin of the resulting type of an expression. The
information the object contains is dependent on the type of node which got
classified. The ResolveResult always contains the classified data type the
expression results in.

Some type members are accessible on types which aren’t instantiated, others
only on instances of types. Therefore the result always has a flag which states
the resulting type of an expression is instantiated or not. If the instantiated flag
is set, it means the resulting type should be interpreted as an instance of the
type, if not it should be interpreted as a reference to the type itself.

Constant expressions of some intrinsic types can implicitly be converted to a
narrower type when the value is within the range of the destination type. If the
result of an expression is the argument in a method call or an operand of an
operator, it the fact the expression is constant or not can influence the resolution
process. Therefore the ResolveResult has a flag which states the resulting value
is constant when set.

There are different implementations of the ResolveResult each reflecting a
different classification case. The hierarchy of the ResolveResult types is shown
below and explained in the following.

Figure 7 Overview of the result types of the classification process

LocalVariableReferenceResult

When an expression is classified as a local variable, which is a variable which is
declared within the scope of a member, a LocalVariableReferenceResult is
returned. It contains a reference to the variable referenced.

NewInstanceTypeResult

41

The NewInstanceTypeResult is returned when the classified expression
instantiates a type NewInstanceTypeResult holds a reference to the
ResolveResult of the type itself.

InstanceTypeResult

The InstanceTypeResult is returned when the resolved expression is an instance
expression or if the type was implicit. An instance expression is the Visual Basic
keyword Me, MyClass or MyBase, which refer to the type itself and the base type.
When a member call is done on a member of the containing type, the member
does not have to be qualified, in this case an InstanceTypeResult for the
containing type is added.

EnumerationMemberResult

The EnumerationMemberResult is returned when the expression resolves to a
member of an enumeration. EnumerationMemberResult holds a reference to the
ResolveResult of the qualifying enumeration .

ArrayIndexResult

The ArrayIndexResult is returned when the expression classifies to the indexing
of an array. It holds a reference to the ResolveResult of the array itself and a list
of ResolveResults of the arguments used to index the array.

MemberCallResult

The MemberCallResult is returned when the expression classifies to a member
call. It holds a reference to the member, a reference to the ResolveResult of the
qualifying type and a list of ResolveResults of the arguments passed in the
member call.

LiteralTypeResult

The LiteralTypeResult is returned when the expression classified is as a literal,
the LiteralTypeResult contains the scanned literal. This variant of the TypeResult
has the constant flag always set.

BuiltInBinaryOperatorResult

The BuiltInBinaryOperatorResult is returned when the expression classified is a
binary expression of which the operator resolution results in a built in operator.
BuiltInBinaryOperatorResult contains the ResolveResult of both operands and the
operation type. The constant flag is set when both operands are constant and the
operator type is ´plus´, ´minus´, ´multiply´, ´power´, ´modules´, ´divide´,
´integral divide´, ´and´, ´or´ or ´xor´.

UserDefinedOperatorResult

42

The UserDefinedOperatorResult is returned when the expression classified is a
binary expression of which the operator resolution results in a user defined
operator. UserDefinedOperatorResult contains the ResolveResult of both
operands and a reference to the operator. The fact that the operator is user
defined implies that at least one of the operands is a non intrinsic type, therefore
the constant flag is always unset.

TypeReferenceResult

The TypeReferenceResult is returned when an AST node classifies to a type. This
is the only variant of ResolveResult which has instantiated flag unset.

BuiltInUnaryOperatorResult

The BuiltInUnaryOperatorResult is returned when the expression classified is a
unary expression of which the operator resolution results in a built in operator.
BuiltInUnaryOperatorResult contains the ResolveResult of the operand and the
operation type. The constant flag is set when the operand is constant.

UserDefinedUnaryOperatorResult

The UserDefinedUnaryOperatorResult is returned when the expression classified
is a unary expression of which the operator resolution results in a user defined
operator. UserDefinedUnaryOperatorResult contains the ResolveResult of the
operand and a reference to the operator. The fact that the operator was user
defined implies the operand cannot be an intrinsic type, therefore the constant
flag is always unset.

Consider for example the following code:

1 Class A
2 Dim instanceOfB As B
3 Sub DoSomething()
4 Dim var1 As Integer
5 Dim var2 As Integer
6 instanceOfB.Something(var1, var2)
7 End Sub
8 End Class
9
10 Class B
11 Function Something(ByVal param1 As Integer, ByVal param2 As
Integer) As Integer
12 Return 0
13 End Function
14 End Class

If the expression ´InstanceOfB.Something(var1, var2)´ in line 6 is classified,
the result will be a MemberCallResult where the type will be ´System.Int32´,
and the member will be a reference to the method ´Something´ of class ´B´. In

43

the arguments are the two argument ResolveResults, both of type
LocalVariableReferenceResult with type ´System.Int32´ and references to
variables ´var1´ and ´var2´. In the qualifier of the MemberCallResult there is a
also a MemberCallResult with type ´B´, its member will be de ´instanceOfB´, its
qualifier is an InstanceTypeResult of type ´A´.

Figure 8 Example of a classification result

5.2 Type classification
In the type classification process, for a type reference in the code the correct
type needs to be found in the type system. It can be that a type reference is just
the simple name of a type, but it can also be the type is qualified. As discussed
in section 4.5.2, sometimes different types with the same simple name can exist.
To which of those types the reference classifies depends on multiple factors;
which namespaces are imported in the file or in the project, which assemblies
and projects are referenced by the project, which is the containing namespace of
the type reference and how is the type reference qualified.

Section 5.2.1 discusses how, given a fully qualified name, can a type be fetched
from the type system which is reachable and visible from a type reference.
Modules are constructions in Visual Basic of which the members are implicit
reachable if the module itself is reachable. Special actions need to be taken to
facilitate classifying types declared within modules; these are discussed in
section 5.2.2. To find the correct type resolution steps are defined in the
language specification, section 5.2.3 discusses how these are implemented.

5.2.1 Fetching types using a fully qualified name

As explained in the previous section a fully qualified name itself is not enough to
identify a type. Which type is found and if the type is found depends on the
scope of the type reference. The process of finding a type given its fully qualified
name and its containing type is referred to in the remainder of the thesis as a
type lookup.

44

From the containing type the containing project can be derived. The containing
project has references to other projects and libraries, these are the projects and
libraries which are reachable from the type reference and thus together with the
containing project itself, are the projects and libraries the type should be sought
in. The containing type determines if a type is visible to a type reference. A type
is visible to a type reference if one of the following statements holds for the
containing type:

• The containing type is nested within the referenced type.
• The containing type is a direct parent of the referenced type.
• The referenced type has a public access modifier and if the type is a nested

type, the parent is visible.
• The referenced type has a protected access modifier and the containing type

inherits from the referenced type.
• The referenced type has a friend access modifier, the containing type resides

in the same project modifier and if the type is a nested type, the parent is
visible.

To check if a fully qualified name candidate C matches a type the following
algorithm is used:

for	 all	 identifiers	 G	 of	 the	 projects	 and	 libraries	 referenced	 by	 the	 containing	 project	
construct	 a	 key	 using	 G	 and	 C	

	 	 	 if	 there	 is	 a	 type	 matching	 this	 key	
	 	 	 	 	 	 	 	 if	 the	 type	 found	 visible	 to	 the	 containing	 type	
	 	 	 	 	 	 	 	 	 	 	 	 return	 the	 type	
return	 null	 //no	 match	 found	
	
As explained in the section 4.5.2; in the context of a type reference, for every
referenced type with fully qualified name N, there cannot be another type within
this same context, which is reachable and visible, also having the fully qualified
name N. This means given a fully qualified name, the first type found by the
algorithm shown above must be the correct type.

5.2.2 Querying types which reside in modules

There is a relatively odd construction in the Visual Basic language which
complicates type lookup a bit: the standard module. For now only the
implications of types declared within modules are discussed. Nested types in
modules are reachable just as nested types in other types, but, the name of a
standard module is implicit and can be left out. If a module is directly visible
within the context of a type reference, a directly nested type in the module can
directly be referenced without referring the module itself. If the module resides
within a namespace, nested type can be accessed directly on a reference to that
namespace. If for example a module Module1 with nested type Type1 exists in
namespace Namespace1 and Type1 is accessible with
Namespace1.Module1.Type1, then because the module name is implicit, it is also

45

accessible with Namespace1.Type1, the fully qualified name still is
Namespace1.Module1.Type1 though.

This difficulty is handled in the type lookup mechanism. If a fully qualified name
candidate is tried out, more candidates are synthesized from it by adding
potentially left out module names. Two parts of the fully qualified name are
passed to the type lookup process; an implicit part, and an explicit part.

The implicit part is a qualified path which might be added to the name to search
for the type in that location, it is not explicitly provided in the type reference
(why this is done is explained in section 5.2). The explicit part is the name as
stated in the code, or constructed from it using an import. The explicit part can
contain a “hidden” standard module name part. If the beginning of a type
reference, which is the explicit part of the fully qualified name, refers to a
namespace, this namespace may contain a standard module, which could contain
the rest of the fully qualified name.

When a fully qualified name is passed to the type lookup algorithm all the
candidates with potentially hidden module names inserted are synthesized and
queried as follows:

Try	 to	 lookup	 the	 fully	 qualified	 name	 as	 is	
	
if	 a	 type	 is	 found	

return	 the	 type	
split	 the	 explicit	 name	 part	 into	 a	 list	 of	 its	 name	 parts	
for	 all	 n	 =	 0	 to	 the	 number	 of	 name	 parts	

construct	 the	 qualified	 name	 beginning	 S	 by	 combining	 the	 first	 n	 name	 parts	 combined	 with	
	 the	 implicit	 part	 of	 the	 qualified	 name	
construct	 the	 qualified	 name	 ending	 E	 by	 combining	 the	 rest	 of	 the	 name	 parts	
for	 every	 reachable	 module	 in	 the	 namespace	 with	 name	 S	
	 	 try	 to	 lookup	 a	 type	 with	 the	 fully	 qualified	 name	 S.M.E	 where	 M	 is	 the	 name	 of	 the	 	
	 	 module	
	 	 if	 a	 type	 is	 found	
	 	 	 	 return	 the	 type	

return	 null	 //no	 match	 found	

In above algorithm a lookup is done for every reachable module in a namespace,
how this list of reachable modules is constructed is explained in section 5.3.4.

It would be incorrect to apply the above algorithm on the whole fully qualified
name candidate instead of only on the explicit part. Consider the following
example:

1 Namespace Namespace1
2 Module Module1
3 Class ClassOrNamespace1
4 Class NestedClass
5

46

6 End Class
7 End Class
8 End Module
9
10 Namespace ClassOrNamespace1
11 Class AnotherClass
12 Dim var As NestedClass
13 End Class
14 End Namespace
15 End Namespace

 ‘NestedClass’ is a nested class in class ‘ClassOrNamespace1’ which on its turn is
a nested class in module ‘Module1’. In ‘AnotherClass’ a variable is declared of
type ‘NestedClass’; this is not the ‘NestedClass’ declared in the example because
this is a nested class and nested classes are not implicitly reachable without a
qualifier from outside the containing class. If the algorithm described above
would be applied to the complete fully qualified name instead of on only the
explicit part, the ‘NestedClass’ declared in the example would be found though.
In section 5.2.3.2 is shown how in the type resolution steps the qualified name
‘Namespace1.ClassOrNamespace1.NestedClass’ is tried in an attempt to classify
the variables type. Would above algorithm also be applied to the implicit part,
the algorithm would find ‘Module1’ in namespace ‘Namespace1’ and try candidate
‘Namespace1.Module1.ClassOrNamespace1.NestedClass’ which indeed results
into a match, the nested class ‘NestedClass’ which as stated earlier is not correct.

5.2.3 Type resolution

Type resolution is the process of finding the correct type referred to by a type
reference in the code. As discussed in the previous section, the context of the
type reference determines which types are reachable from the type reference. If
type references always would be fully qualified names the type reference could
be passed to the type lookup mechanism and it would be done. Type references
are not fully qualified names most of the time though, they are often just
unqualified names. To find the correct type a given set of resolution steps is
described in the code specification (15). To find the correct type fully qualified
name candidates are constructed and looked up using the type lookup
mechanism discussed in sections 5.2.1 and 5.2.2. This is done in such order the
resolution steps in (15) are met.

The candidates are constructed in the following order:

1. Construct a candidate from a reference which begins with a the Global
keyword

2. Construct candidates for the type in same or in a super namespace.
3. Construct candidates using aliased imports located in the source file.
4. Construct candidates using non aliased imports located in the source file.
5. Construct candidates using aliased imports located in the project.
6. Construct candidates using non aliased imports located in the project.

47

 Section 5.2.3.1 discusses the case the reference starts with the ‘Global’
keyword, section 5.2.3.2 discusses the candidates in the super namespaces,
section 5.2.3.3 discusses the construction of candidates given an aliased import
and section 5.2.3.4 discusses the construction of candidates given a non aliased
import.

5.2.3.1 Finding the type qualified with Global keyword

The Global keyword is used to identify the absolute root of the program; this
means everything following the Global keyword in a type reference should be
interpreted as a fully qualified name2. The first step of the type resolution is to
look if the type reference starts with the global keyword, if it does, the keyword
is striped of and the rest of the type reference is the first fully qualified name
candidate. If the code is compilable, this candidate always will be a hit.

5.2.3.2 Finding the type in the same or in a super namespace

The second step is try is to find the type in the same or super qualified location.
A qualified location is the full path from the root to the scope in which the type
reference occurs.

For example:

1 Namespace MyNamespace
2 Namespace MySubNamespace
3 Class A
4 Dim InstanceOfA As MySubNamespace.A
5 End Class
6 End Namespace
7 End Namespace

As explained in section 4.4.2 the qualified location of ‘InstanceOfA’ is
‘MyNamespace.MySubNamespace.A’.

To find the type, fully qualified name candidates are constructed by combining
the type reference with all containing nested locations from the innermost to the
outermost.

First a list of all super-locations is created from the innermost to the outermost
location, in the case of the example this list would be:

• “MyNamespace.MySubNamespace.A”
• “MyNamespace.MySubNamespace”
• “MyNamespace”
• “”

2 This construct is similar to the :: (double colon) scope operator at the beginning of identifiers in C++

48

A fully qualified name candidate is constructed by combining the type reference
with these locations and looked up until the type is found or all super
namespaces are tried. In the case of the example:

• “MyNamespace.MySubNamespace.A.MySubNamespace.A” Miss
• “MyNamespace.MySubNamespace.MySubNamespace.A” Miss
• “MyNamespace.MySubNamespace.A” Hit

5.2.3.3 Finding the type using aliased imports

Aliased imports are imports in which an import reference is aliased by an alias
name. Whenever this alias name is used in the code, the name can be
substituted by the imports reference.

Take for example:

Imports Alias = AliasedNamespace.AliasedSubNamespace

Now ‘Alias’ can be used in the following way:

Dim aliasClass As Alias.AliasedClass

Which is equivalent to:

Dim aliasClass As AliasedNamespace.AliasedSubNamespace.AliasedClass

In the third and fifth step of the type resolution fully qualified name candidates
are made using aliased imports. These are the aliased imports imported in the
containing file in the third step and imports imported in the project in the fifth
step.

To try to resolve a type using aliased imports, the following steps are taken.

for	 every	 aliased	 import	
if	 the	 alias	 is	 not	 equal	 to	 the	 beginning	 of	 the	 type	 reference	
	 	 continue	 with	 the	 next	 import	
	 construct	 a	 fully	 qualified	 name	 by	 replacing	 the	 alias	 in	 the	 type	 reference	 by	 the	 import	 	
reference	
try	 to	 match	 the	 type	 using	 the	 type	 lookup	 mechanism.	 	
If	 a	 match	 is	 found	 	
	 	 return	 the	 match	

return	 null	 //no	 match	 found	
	
 In the example the start of ‘Alias.AliasedClass’ equals ‘Alias’, this beginning is
now replaced by the namespace of the import
‘AliasedNamespace.AliasedSubNamespace’ resulting in fully qualified name
candidate ‘AliasedNamespace.AliasedSubNamespace.AliasedClass’.

The imports reference is a fully qualified reference by definition, so substituting
an alias with the import reference results in the only correct fully qualified name
which can be made with an aliased import.

49

5.2.3.4 Finding the type using non aliased imports

Regular non aliased imports import namespaces or types. If a namespace is
imported, this means reachable types and namespaces directly in this
namespace can be referenced without any qualification, if a type is imported this
means nested types in it can be referenced without qualification.

In the fourth and sixth step of the type resolution fully qualified name candidates
are constructed using non aliased imports. These are the non aliased imports
imported in the containing file in the third step and imports imported in the
project in the fifth step.

for	 every	 non	 aliased	 import	
combine	 the	 import	 with	 the	 type	 reference	 and	 use	 the	 type	 lookup	 mechanism	 to	 match	 a	 	
type.	
if	 a	 type	 is	 found	 	
	 	 return	 the	 type	

return	 null	 //	 no	 match	 found	

5.3 Classifying member and local variable references
In the previous section was discussed how type references where classified. All
other identifiers which don’t classify to a data type, classify to a member or a
local variable. This section discusses how these identifiers are classified.

Section 5.3.1 describes the resolution steps that have to be taken if the
reference is a simple name. Section 5.3.2 describes the resolution steps that
have to be taken if the reference is a qualified name. A lot of the resolution steps
taken involve trying to match the name to the members of accessible modules,
section 5.3.3 discusses how this is done. How accessible modules are found is
discussed in section 5.3.4. Often it is not deductable from the syntax alone if
something is a call to a member of a type passing arguments or that the result of
a call to a member is indexed using these arguments, section 5.3.5 discusses
how such a situation is handled. Most steps described in these sections need a
way to find a member of a type most fitting to a reference, how this is done is
discussed in section 5.3.6.

5.3.1 Classifying a simple named identifier

If a simple named identifier which is not a type reference is classified, the same
resolution steps can be taken regardless of if there are arguments or type
arguments passed in the reference.

When a variable or member is referenced, there are often clues that give away
the type of the entity referenced. For instance if type arguments are provided,
the entity referenced can’t be a variable; when no argument list is provided, it
cannot be a reference to a method which has non-optional parameters. Those
clues are not enough though to know which kind of member, variable or type is
referenced though. For example:

Something(0)

50

In this example ‘Something’ can several things. The first guess probably is that
‘Something’ is a method and the statement above is a method call3. This could
well be correct, but there are many other things ‘Something’ could be.
‘Something’ could be a variable or a property containing an array or an object
with a default property. In the next example there are no arguments anymore:

Something

In this example ‘Something’ also could be a property, a variable or even a
method without parameters. So clues aside, both cases need similar resolution
steps to find out what ‘Something’ really is.

To be able to classify all cases with a simple name, i.e. no qualified name, one
algorithm is created which uses the name, argument types and type arguments
of a reference.

The reference is classified using the following resolution steps, if in one of the
steps a match is found, the result is returned and no other steps are tried:

• Try to find a variable by searching scopes of the type itself.
• Try to find it as a member of the type.
• Try to find it as a member of a module which resides within the same

namespace or in a super namespace.
• Try to find it as a member of a module which is imported within the same

file.
• Try to find it as a member of a module which is imported globally within

the project.

In the following subsections each of these steps is discussed.

5.3.1.1 Searching in the scope

The first try is to assume a variable is referenced which is declared within the
current member. The reason the local scope is searched first is the following. If
two variables are declared with the same name, one in a sub scope of the scope
the other directly is in, then if a variable is referenced with that name on a place
where both variables are in scope, the one in the sub scope is referenced.
Therefore the inside of a member is searched first. For example:

1 Public Class Scope
2 Private var As Integer
3 Public Sub ScopeSub(ByVal var As Integer)
4 DoSomething(var)

3 It is important to note that such ambiguities are due to the design of the parser used. More sophisticated parsers
do additional processing, at the border of syntax and semantic analysis, and thus are able to resolve such context-
dependent ambiguities during the parsing process, resulting in more detailed syntax trees. However, this
complicates the design of the parser. Given that our chosen parser does not resolve such ambiguities, we are left
with the task of doing it ourselves during our own semantic analysis. The same situation occurs in many
programming languages, C and C++ being notoriously (in)famous for that.

51

5 End Sub
6 End Class

Here ‘var’ is passed as an argument to the method ‘DoSomething’ the variable
which is actually referenced is the parameter ‘var’ of the method ‘ScopeSub’ and
not the variable ‘var’ in class ‘Scope’. Both the parameter ‘var’ and the variable
‘var’ are in the scope of the method call. The parameter ‘var’ however exists in a
sub scope of the scope the variable ‘var’ exists in. Therefore this is the one
referenced.

If a variable V with name N is declared within a scope S and some other member
M also named N is defined outside this scope, it is impossible to refer to member
M from within scope S, even if M would be distinguishable from V by its
signature. With the precondition that the input code is correct this means when
the scope tree is searched up, starting at the scope the reference is in, the first
variable found with the correct name is guaranteed to be the variable referenced.

As described before every node in the AST has a reference to the scope it is
directly in. To resolve the reference, first the correct variable is found by walking
up the scope tree and getting the first variable with the correct name. If no
variable is found within the scope of the member, this attempt fails.

If a variable is found the resolution is not completely done. If argument types
were passed to the resolution method, this means the variable is indexed. This
means the variable is an array type or it has a default property. If the variable is
an array type, the result type will be the element type of this array type. If the
variable is not is an array type, this means the variable must have a default
property matching the arguments passed. This default property is resolved using
member resolution which is described later in this chapter.

5.3.1.2 Searching the current type

At this point the only possibility is that the member searched is a member of the
current type, or a member on a module visible at this point. Members of the
current type hide members of a module because they are closer to reference in
the scope tree, because of this trying to match a member of the current type is
the second step in resolving a simple named reference. To do this the type the
call is in is found in the scope tree and the member is resolved using the method
described in 5.3.5 below.

5.3.1.3 Searching local modules

The name could reference to a member of a module which resides in the
namespace the reference is in, or one of its super namespaces. The code
specification states that the nested namespaces are searched from the innermost
namespace going to the outermost. So the current namespace is taken and all
super namespaces are constructed from it. The referenced member is searched
using the method described in 5.3.3.

52

5.3.1.4 Searching locally imported modules

The next possibility to resolve the name is that it references a member of a
module which resides in a namespace imported in the source file containing the
reference. All imports are collected and the referenced member is searched using
the method described in 5.3.3.

5.3.1.5 Searching globally imported modules

The last possibility to resolve the name is that it references a member of a
module which resides in a namespace imported in the project file. All imports are
collected and the referenced member is searched using the method described in
5.3.3.

5.3.2 Classifying a qualified named member

The same difficulties as with the classification of simple named references
described above also hold for qualified named references; it’s not always clear
what is the kind of member searched. A qualified member introduces an extra
dimension to this difficulty though; the qualifier itself can be many different
things as well. So it is not only the question what is the kind of member searched
for, but it also has to be determined on which type it has to be searched. The
qualifying type could be a variable, a member, an uninitialized type, but also a
namespace in which a module resides.

To classify a qualified named member, the following resolution steps are taken,
just as with the simple name resolution, the first hit found is the correct
member.

• Try to find a qualifying type and find a member on it
• Try to resolve global
• Try to find a module which path is the same
• Try to find a module using an alias import
• Try to find a module using a local import
• Try to find a module using a global import
• Try resolving the type using the type system

The next subsections will discuss each of these steps.

5.3.2.1 Searching a member on a qualified type

A qualified expression is constructed in the form “[Qualifier].Member” the dot
means the member is a part of the type described by the qualifier. There is a
construction however where the Qualifier can be empty and the expression looks
like “.Member”, this construction is the with-statement discussed in section
4.6.3.2. Within a with-statement the with-expression is implicitly used when an
empty qualifier is used.

The method GetTypeFromQualifier is defined in the expression resolver to
resolve a qualifier type. As one of the parameters the qualifier-expression is
passed. The expression is resolved to get the qualifier-type; when this

53

expression is empty, the with-expression is sought in the scope and used
instead.

The language specification states that when there is an empty qualifier the
qualifier is substituted with the with-expression of the immediately containing
with-statement, the first with-expression found when searching the scope from
bottom to top will thus be the correct one.

The pre-condition the code is compilable and the fact that an empty qualifier only
is allowed within a with-statement guarantees a with-statement always will be
found when the qualifier-expression is empty.

If a qualifier type is found, the correct member called on the type is resolved
using the algorithm described in section 5.3.5.

5.3.2.2 Searching a member of a module which is referenced with a qualifier
starting with global

If a qualifier starts with the keyword ‘Global’, it means the rest of the qualifier
should be mapped on the global namespace, which is the root of all namespaces.
The rest of the qualifier should be interpreted as a fully qualified namespace. So
in this namespace a module is sought with a matching member using the
algorithm later in section 5.3.3.

5.3.2.3 Searching a member of a module in a partially qualified namespace

In this stage, the nested namespaces in which the call is located is searched from
the inner namespace to the outer namespace for a module which contains a
matching member. To do this, the algorithm described in section 5.3.3 is used.

5.3.2.4 Searching a member of a module which is referenced by an alias or an
aliased namespace

For all aliased imports for which holds that the qualifier starts with its alias, the
aliased part of the qualifier is replaced by the namespace of the import. In the
resulting namespace is sought for a module with a matching member using the
algorithm described in section 5.3.3.

The next stage is to try to find a module with a matching member by looking in
the namespaces imported in the file the call is located in using the algorithm
described later in section 5.3.3.

5.3.2.5 Searching a member of a module which is reachable via a global
import

The last step is to try to find a module with a matching member by looking in the
namespaces imported in the project the call is located in again using the
algorithm described in section 5.3.3.

5.3.3 Classifying a module member

Modules in Visual Basic 8 are a particular construction. Whenever a module is
accessible, all its accessible members are available without having to specify the
module. For example:

54

1 Namespace Namespace1
2 Module Module1
3 Public Property ModuleProperty() As Integer
4 Get
5 …
6 End Get
7 Set(ByVal value As Integer)
8 …
9 End Set
10 End Property
11 End Module
12
13 Class Class1
14 Public Sub DoSomething()
15 ModuleProperty = 1
16 End Sub
17 End Class
18 End Namespace

Here ‘ModuleProperty’ is set to ‘1’ on line 15. Nothing points to the fact that
‘ModuleProperty’ is in fact a reference to the property in ‘Module1’. Just because
the module ‘Module1’ is visible at the call, makes it possible to access its
members.

The Visual Basic language specification (15 p. 52) states the following about
unqualified name resolution:

For each nested namespace containing the name reference, starting from the innermost
namespace and going to the outermost namespace, do the following:

If the namespace contains one or more accessible standard modules, and R matches the name of an
accessible nested type in exactly one standard module, then the unqualified name refers to that nested
type. If R matches the name of accessible nested types in more than one standard module, a compile-
time error occurs.

If the source file containing the name reference has one or more imports:

If the imports contain one or more accessible standard modules, and R matches the name of an
accessible nested type in exactly one standard module, then the unqualified name refers to that type. If
R matches the name of accessible nested types in more than one standard module, a compile-time
error occurs.

If the compilation environment defines one or more imports

If the imports contain one or more accessible standard modules, and R matches the name of an
accessible nested type in exactly one standard module, then the unqualified name refers to that type. If
R matches the name of accessible nested types in more than one standard module, a compile-time
error occurs.

Regarding qualified name resolution referring to modules, the specification
further states:

55

Given a qualified namespace or type name of the form N.R, where R is the rightmost identifier in the
qualified name, the following steps describe how to determine to which namespace or type the
qualified name refers:

Resolve N, which may be either a qualified or unqualified name.

If N contains one or more standard modules, and R matches the name of a type in exactly one
standard module, then the qualified name refers to that type. If R matches the name of types in
more than one standard module, a compile-time error occurs.

In both the unqualified and the qualified resolution, a name can match a member
of a module in one of different given namespaces. To search for module
members in a set of namespaces the following algorithm is provided:

for	 all	 namespaces	 provided	
if	 no	 module	 with	 the	 namespace	 exists	
	 	 continue	 with	 the	 next	 namespace	
for	 each	 module	 in	 the	 namespace	
	 	 try	 to	 find	 the	 member	 on	 the	 module	 using	 member	 resolution	
	 	 if	 a	 member	 is	 found	
	 	 	 	 	 	 return	 the	 member	

return	 null	 //no	 module	 member	 found	
	
In section 5.3.4 is discussed how given a namespace accessible modules are
found. Section 5.3.5 discusses how, given a type, a correct member can be
determined by applying member resolution.

In the code specification is stated that if there are more matches in one
namespace, or more matches in imports, this results in a compile-time error. A
precondition of the input code is that the code is compilable, therefore if the
name matches a module member, exactly one match exists, so it is correct to
return the first match found.

5.3.4 Finding accessible modules

A module is a static type which means no instance can be made of it. In the
previous section the standard module is already partially discussed. When a
module is directly reachable because it exists in the same namespace, in a super
namespace or in an imported namespace, or the namespace containing the
module is used in a reference, its members are directly accessible without
naming the module itself.

For example, a module M with member F resides in namespace N, if N is
imported, F can be accessed without qualifying it with the module name. Or for
example a module M is declared in namespace NS, M contains a member F, now
the reference NS.F can be used instead of NS.M.F to access F directly.

In section Error! Reference source not found.5.2.2 is discussed how this
phenomenon is handled in the type resolution process. Later is discussed how it
is handled in expression resolving.

56

To find member F in both examples, it is necessary to find the module without
actually knowing its name. The module sought could be any module in any
reachable namespace, so it is necessary to have a way to get all accessible
modules in a given namespace.

 As with other types, it depends on the context of the reference if a module is
reachable. Although the grammar implies otherwise4, a standard module can only
have the access modifiers public and friend; this is because a module can only be
nested directly in a namespace and types directly nested in a namespace cannot
be private or protected. This makes it easy to determine if a module is
accessible, a module is accessible if its access modifier is public, or if it is friend
and the module resides in the same project as the reference.

To get a list of accessible modules the type system stores the modules in
dictionaries with their namespace as a key. These dictionaries in turn are stored
in a dictionary with their project or library identifier as a key. Given a namespace
and the project containing the reference, the list of compiled modules is created
as follows:

for	 every	 referenced	 project/assembly	 identifier	 in	 the	 project	
if	 the	 associated	 module	 dictionary	 doen’t	 exist	
	 	 continue	 with	 the	 next	 identifier	
	 retrieve	 the	 list	 of	 modules	 in	 the	 given	 namespace	 from	 the	 module	 dictionary	

	 	 	 for	 every	 module	 in	 the	 list	
	 	 if	 accessible	 from	 within	 the	 given	 project	
	 	 	 	 	 add	 it	 to	 the	 result	
return	 the	 result	

5.3.5 Finding the correct member call or indexing on a type

As described before in section 5.3.1, an identifier with an argument list can be a
call to a method but also could be a call to a property which has an array type or
a type with a default property, which is indexed.

For Example:

A.DoSomething(10)

This could be a method call on a method called ‘Something’ with an argument
‘10’. It could also be a property with an array type as a type. This means
‘A.DoSomething’ returns an array and ‘(10)’ takes the tenth item from the array.
It could also be that ‘A.DoSomething’ returns another type with a default
property which takes a number as a parameter.

To handle this situation an algorithm is provided which among other parameters
takes a qualifier type, a member name, argument types and type arguments and
returns the correct result. Note the list of argument types and type arguments
can be empty or not provided at all.

4 This is again an illustration of the semantic limitations of a context-free grammar

57

The correct result is found using the following steps:

//	 assume	 the	 name	 and	 arguments	 are	 a	 member	 call	 first	
try	 to	 find	 the	 most	 specific	 one	 using	 member	 resolution	 described	 in	 section	 5.3.6.	
if	 a	 member	 is	 found	 	

return	 the	 result	
//assume	 the	 name	 refers	 to	 a	 member	 without	 a	 parameter	 list	
try	 to	 find	 the	 most	 specific	 one	 using	 member	 resolution.	
if	 such	 a	 member	 is	 found	

if	 the	 found	 member	 returns	 an	 array	 type	
	 	 	 	 return	 the	 element	 type	 of	 the	 array	 type	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 else	 	
	 	 	 	 //	 the	 type	 returned	 by	 the	 found	 should	 have	 a	 default	 property	 which	 matches	 the	 	 	

	 	 //arguments	 	
	 	 use	 member	 resolution	 to	 find	 the	 most	 specific	 matching	 property	
	 	 return	 the	 result	

else	
if	 the	 type	 is	 an	 enumeration	
	 	 return	 the	 type	 	 //the	 member	 is	 an	 enumeration	 member	 call	 and	 thus	 results	 in	 an	 	
	 	 	 	 //instance	 of	 the	 same	 type	

return	 null	 //no	 correct	 member	 is	 found	

5.3.6 Member resolution

Different members in the same type can have the same name and the same
number of parameters. Which members are applicable depends on the context.
In some situations more than one member is applicable. Finding out which
members are applicable and which one is most specific might well be the trickiest
part of our semantic analysis. Different factors have influence on the applicability
of a member:

• The name of the member.
• The accessibility of the member.
• The number of arguments. This sounds easy, but because of optional

parameters and parameter arrays this is not that straight forward as it
might seem at first.

• Are the types of the parameters correct? Often the argument types are not
the same as the parameters. The argument types may be subtypes of the
parameter types, or an implicit cast might exist from the argument type to
the parameter type. Also the member might be a generic member, its
parameters could be type parameters. To make it even more difficult, the
argument can be passed as named arguments, this means the order of the
arguments could be different than that of the parameters.

• The member could be shadowed by another member.

The following steps are taken to find a correct member:

add	 all	 “constructed	 members”	 which	 could	 be	 constructed	 with	 the	 provided	 type	 arguments	 and	
argument	 types	
list	 all	 matching	 members	 within	 the	 type	
if	 none	 of	 the	 members	 found	 are	 declared	 shadowing	

58

add	 the	 matching	 members	 within	 the	 inherited	 types	
if	 only	 one	 member	 is	 found	

return	 the	 member	
for	 all	 members	 which	 used	 narrowing	 coercion	 to	 match	

remove	 the	 member	 from	 the	 list	 	
if	 only	 one	 member	 is	 found	

return	 the	 member	
for	 all	 members	 for	 which	 there	 is	 a	 member	 in	 the	 list	 that	 is	 more	 applicable	 	
	 remove	 the	 member	 from	 the	 list	
if	 only	 one	 member	 is	 found	

return	 the	 member	
for	 all	 members	 for	 which	 there	 is	 a	 member	 in	 the	 list	 that	 is	 less	 generic	
	 	 remove	 the	 member	 from	 the	 list	
if	 only	 one	 member	 is	 found	

return	 the	 member	
return	 null	 //no	 member	 is	 found	 (should	 never	 be	 reached	 if	 the	 preconditions	 are	 met)	
	
In section 5.3.6.1 the construction of constructed members is discussed. The
section after that 5.3.6.2 how is checked if a member is applicable. Section
5.3.6.3 describes how the accessibility of a member is checked. Section 5.3.6.4
describes how of two members the most applicable is determined. Section
5.3.6.5 describes how of two members the least generic is determined.

5.3.6.1 Adding constructed members

Some members are generic members, this means type parameters can be
provided. In a call these type parameters can be explicitly provided, but it is also
possible to let the compiler implicitly find out what the type arguments are in an
instance. All type parameters should at least be used once as a parameter type
to be able to do this.

A constructed member is a member which refers to a generic member but all
type parameters are replaced by the type arguments. Before a call is resolved,
all matching constructed members are added. To ensure all references to a
constructed member with the same type arguments are classified to the same
one, there may only be one constructed instance of a generic member for every
set of type arguments.

Adding the constructed members is done with the following steps:

if	 the	 type	 arguments	 are	 explicitly	 provided	 	
	 find	 all	 members	 with	 the	 given	 name	 and	 the	 same	 number	 of	 type	 parameters	 as	 provided	 	
type	 arguments.	
for	 every	 found	 member	

	 	 	 	 if	 a	 constructed	 member	 for	 the	 member	 with	 the	 same	 type	 arguments	 already	 	 	
	 	 	 	 exists	 within	 the	 type	
	 	 	 	 	 continue	 with	 the	 next	 member	 	
	 	 	 	 construct	 a	 constructed	 member	 with	 given	 type	 arguments	
	 return	
find	 all	 members	 with	 the	 given	 name	 that	 has	 type	 parameters.	
for	 every	 found	 member	

59

for	 every	 type	 parameter	 	
	 	 	 try	 to	 find	 the	 type	 argument	 by	 searching	 for	 instances	 of	 the	 type	 parameter	 in	 the	 	
	 	 	 list	 of	 parameters	 and	 taking	 the	 associated	 argument	 type	 as	 the	 type	 argument	 of	 	 	
	 	 	 that	 type	 parameter.	

If	 all	 type	 arguments	 are	 found	 	
	 	 if	 a	 constructed	 member	 for	 the	 member	 with	 the	 same	 type	 arguments	 already	 	 	 	 	 	
	 	 exists	 within	 the	 type	

	 	 	 	 	 continue	 with	 the	 next	 member	 	
	 	 	 	 construct	 the	 constructed	 member	 using	 the	 type	 arguments	

5.3.6.2 Checking for matching signatures

Checking if a member has the correct signature can be a bit complicated. A
signature can contain type parameters, named parameters, optional parameters
or a parameter array which don’t make it easy.

When type arguments are provided, only constructed members with the right
number of type parameters and the right type arguments match, so if argument
types are provided, all non constructed members and members with the wrong
number or type of argument types are rejected.

If there is no argument list provided, that is, a member is referred without
parentheses, the referred member must be a variable or a property, if this is the
case all members not a variable or a property without parameters are rejected,
else there is a match.

Arguments can be named or unnamed. Unnamed arguments are mapped on
parameters on the same position. Named argument explicitly pass a value to a
certain named parameter. When one of the arguments is a named argument, all
following arguments are mandatorily named as well.

For example

Sub ParameterExample(ByVal var1 As Integer, ByVal var2 As Integer)

Can for example be called with normal arguments

ParameterExample(1, 2)

Or with named parameters

ParameterExample(var2:=2, var1:=1)

Parameters can be optional. When using normal arguments an optional argument
can be left out by leaving its place empty or completely ignored if no arguments
follow. When arguments are passed using named arguments, the optional
parameter can be ignored completely.

For example

60

Sub ParameterExample(Optional ByVal var1 As Integer = 1, Optional
ByVal var2 As Integer = 2)
	
Could be called with

ParameterExample(, 3)
	
Or

ParameterExample(var2:=3)
	
The last parameter of a signature can be preceded with the keyword
´ParamArray´, if this is the case the parameter type must be an array type.
When a member with such a parameter is called, the argument can be passed in
the form of array of the same type, but it can also be passed as arguments of
the same type as the arrays element type, or even be left out completely.

For example:

Sub ParamArrayExample(ByVal ParamArray var() As Integer)
	
Could be called without arguments:

ParamArrayExample()
	
Or with one argument of the same type as the element type of the array, in this
case an integer:

ParamArrayExample(1)
	

Or with more arguments of the same type as the element type of the array, in
this case two integers:

ParamArrayExample(1, 2)
	
Or with one argument of the same type as the array, in this case an array of
integers:

ParamArrayExample(New Integer() {1, 2})
	
For a signature to match, arguments and all named arguments must map to a
parameter and all parameters not mapped must be optional.

Constant expressions are expressions which can be evaluated during compile
time.

For example:

2 + 3 * 6
	
This expression evaluates to an integer with constant value 20.

61

Constant expressions of an integral type can be implicitly converted to a
narrower type if the value falls within the range of this type. Constant
expressions of type ‘Double’ can be implicitly converted to type ‘Single’ if the
value falls within the range.

For example:

Sub ShortExample(ByVal val As Short)
	
Can be called with:

ShortExample(2 + 3 * 6)
	

The constant expression of type ‘Integer’ with value 20 is converted to the
narrower type ‘Short’ because it falls within the range.

To check if a member matches a call, given the argument types and the type
arguments the following algorithm is used, a flag determines if implicit
narrowing is allowed:

if	 type	 arguments	 are	 provided	

if	 the	 number	 and	 type	 of	 the	 type	 arguments	 are	 not	 the	 same	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 return	 false	
if	 the	 member	 is	 a	 property	 without	 parameters	 and	 there	 areno	 arguments	 provided	

return	 true	
if	 the	 member	 is	 not	 a	 signature	 member	 (i.e.	 it	 hasn’t	 a	 list	 of	 parameters)	
	 	 if	 arguments	 where	 provided	
	 	 return	 false	
	 else	
	 	 	 return	 true	
for	 every	 argument	 provided	

if	 the	 argument	 is	 a	 named	 argument	
	 	 record	 this	 fact	
	 	 exit	 the	 loop	
if	 the	 argument	 is	 an	 empty	 argument	
	 	 if	 the	 associated	 parameter	 is	 not	 	 optional	

	 	 	 	 	 	 return	 false	
	 	 if	 the	 index	 of	 the	 argument	 is	 the	 same	 or	 higher	 than	 the	 index	 of	 the	 last	 parameter	 of	 the	 	

member	 and	 this	 last	 parameter	 is	 a	 parameter	 array	
	 	 	 	 if	 the	 last	 parameter	 is	 already	 covered	 in	 the	 previous	 iteration	
	 	 	 	 	 	 return	 false	
	 	 	 	 if	 the	 last	 argument	 matches	 the	 type	 of	 the	 parameter	

	 	 	 	 record	 this	 fact	 	
	 	 	 	 	 continue	 with	 the	 next	 argument	
	 	 	 	 	 if	 the	 argument	 matches	 the	 element	 type	 of	 the	 parameter	 array	
	 	 	 	 	 continue	 with	 the	 next	 argument	
	 	 	 	 else	
	 	 	 	 	 	 return	 false	

if	 the	 index	 of	 the	 current	 argument	 is	 higher	 than	 the	 number	 of	 parameters	
	 	 	 return	 false	

62

if	 the	 argument	 type	 doesn’t	 matchs	 the	 associated	 parameter	 type	
	 	 return	 false	

if	 	 the	 latter	 loop	 is	 exited	 because	 a	 named	 argument	 was	 encountered	
for	 every	 argument	 not	 covered	 in	 the	 first	 loop	
	 	 if	 a	 parameter	 having	 the	 provided	 name	 in	 the	 parameter	 list	 which	 is	 not	 a	 	
	 	 parameter	 array	 and	 is	 not	 covered	 in	 the	 last	 loop	 doesn’t	 exists?	

	 	 	 	 	 	 return	 false.	
for	 every	 parameter	 not	 covered	 in	 the	 first	 loop	
	 	 if	 there	 is	 a	 named	 argument	 with	 the	 name	 of	 the	 parameter	
	 	 	 	 if	 the	 argument	 type	 doesnt	 match	 the	 parameter	 type	
	 	 	 	 	 return	 false	
	 	 else	
	 	 if	 the	 parameter	 is	 not	 optional	
	 	 	 	 	 	 return	 false	

if	 the	 number	 of	 arguments	 is	 the	 same	 as	 the	 number	 of	 parameters	 minus	 one	 and	 the	 last	
parameter	 is	 a	 parameter	 array	

return	 true	
for	 all	 parameters	 not	 yet	 covered	 in	 one	 of	 the	 previous	 loops	

if	 the	 parameter	 is	 not	 optional	
	 	 return	 false	

return	 true	
	
In this algorithm an argument matches a parameter in one of the following
cases:

• The argument type is the same as the parameter type.
• There is a widening conversion available from the argument type to the

parameter type.
• The argument type is a subtype of the parameter type.
• Implicit narrowing is allowed and the argument is a constant expression and

the resulting constant fits the parameter type.

In section 5.1 is discussed how is evaluated if an expression is a constant
expression of a type which can be implicitly narrowed.

5.3.6.3 Checking accessibility

Another prerequisite for a member possible matching a certain call is that it is
visible to the call. To check if a member is visible, the TypeDeclaration of the
type from where the call is made always is passed when trying to resolve a call.
A member is considered visible when one of the following conditions is true:

• The calling type is the same as the type where the member resides.
• The access modifier of the member is public.
• The access modifier of the member is protected or protected friend and

the calling type is a sub type of the type the member resides in.
• The access modifier of the member is friend or protected friend and the

calling type resides in the same project as the type the member resides in.

63

5.3.6.4 Determining the most applicable member

The member that is considered most applicable is the matching member that is
most specific. To determine if a member is more specific than another, the
following steps are taken:

for	 all	 argument	 indexes	
if	 the	 types	 of	 the	 parameters	 matching	 the	 argument	 on	 the	 index	 in	 each	 member	 are	 the	 	 	 	 	 	 	
same	
	 	 if	 exactly	 one	 of	 the	 parameters	 is	 a	 parameter	 array	
	 	 save	 the	 fact	 the	 member	 of	 which	 the	 parameter	 is	 not	 a	 parameter	 array	 	 	
	 	 	 has	 a	 more	 applicable	 parameter	

	 	 	 continue	 with	 the	 next	 pair	 of	 arguments.	
if	 the	 parameter	 of	 the	 first	 member	 more	 is	 applicable	 than	 the	 one	 of	 the	 second	 member	
	 	 save	 this	 fact.	
if	 the	 parameter	 of	 the	 second	 member	 is	 more	 applicable	 than	 the	 one	 of	 the	 first	 member?	

	 	 	 	 	 save	 this	 fact.	
if	 the	 first	 member	 contained	 a	 parameter	 which	 was	 more	 applicable	 then	 the	 equivalent	 parameter	
in	 the	 second	 member	 and	 the	 second	 member	 did	 not	 contain	 any	 parameter	 which	 was	 more	
applicable	 then	 the	 equivalent	 parameter	 in	 the	 first	 member	

return	 true	
else	
	 return	 false	
	
A parameter P1 is considered more applicable than parameter P2 if one of the
following statements hold:

• The type of P1 is a subtype of the type of P2
• There exists a widening conversion from type of P1 to the type of P2
• The argument is a literal 0, the type of P1 is numeric and the type of p2 is an

enum
• The type of P1 is ‘Byte’ and the type of P2 is ‘SByte’
• The type of P1 is ‘Short’ and the type of P2 is ‘UShort’
• The type of P1 is ‘Integer’ and the type of P2 is ‘UInteger’
• The type of P1 is ‘Long’ and the type of P2 is ‘ULong’

5.3.6.5 Determining the least generic member

In compilable code two accessible members of a type can only have the same
signature if their signature is some specification of a generic member.

For example:

Sub GenericTest(Of T)(ByVal a As T, ByVal b As T, ByVal c As
Integer)
	
And:

Sub GenericTest(Of T)(ByVal a As T, ByVal b As Integer, ByVal c As
Integer)
	
If the next call is done:

64

GenericTest(1,	 1,	 1)	
	
Then the signature is seen as the same:

Sub GenericTest(Of T)(ByVal a As Integer, ByVal b As Integer, ByVal
c As Integer)
	

If this is the case, the least generic member should be chosen. If a least generic
member can be determined with respect to the members type parameters, than
this is the least generic member, if not, the least generic member is determined
with respect to the containing types type parameters.

A member is considered less generic than another member if it has less type
parameters. If the number of type parameters is equal, a member is considered
less generic if for all parameter indexes holds that the parameter on the index is
equally or less generic than the parameter on that index of the other member.

A parameter is considered less generic than another parameter if it is not a type
parameter in the members or types type parameters list and the other
parameter is.

Given two members M1 and M2, the least generic member is determined with
the following algorithm:

if	 not	 both	 members	 are	 constructed	
if	 the	 first	 member	 is	 constructed	 	

	 	 	 return	 the	 second	 member	 is	 less	 generic	
	 	 else	
	 	 	 return	 the	 first	 member	 is	 less	 generic	
if	 the	 numbers	 of	 type	 parameters	 differ	

if	 the	 first	 member	 	 has	 less	 type	 parameters	 as	 the	 second	 member	 	
	 	 	 return	 the	 first	 member	 is	 less	 generic	
	 	 else	
	 	 	 return	 the	 second	 member	 is	 less	 generic	
for	 every	 argument	

get	 the	 pair	 of	 parameters	 matching	 the	 argument	
if	 the	 first	 parameter	 is	 more	 generic	 than	 the	 second	 with	 respect	 to	 its	 members	 type	 	 	
parameters	
	 	 save	 the	 fact	 the	 first	 member	 has	 a	 parameter	 which	 is	 more	 generic	
if	 the	 second	 parameter	 is	 more	 generic	 than	 the	 first	 with	 respect	 to	 its	 members	 type	 	 	
parameters	
	 	 save	 the	 fact	 the	 second	 member	 has	 a	 parameter	 which	 is	 more	 generic	

if	 exactly	 one	 of	 the	 members	 has	 a	 parameter	 which	 is	 more	 generic	
return	 the	 other	 member	 is	 less	 generic	

for	 every	 argument	
get	 the	 pair	 of	 parameters	 matching	 the	 argument	
if	 the	 first	 parameter	 is	 more	 generic	 than	 the	 second	 with	 respect	 to	 its	 types	 type	 	 	
parameters	
	 	 save	 the	 fact	 the	 first	 member	 has	 a	 parameter	 which	 is	 more	 generic	
if	 the	 second	 parameter	 is	 more	 generic	 than	 the	 first	 with	 respect	 to	 its	 types	 type	 	 	
parameters	

65

	 	 save	 the	 fact	 the	 second	 member	 has	 a	 parameter	 which	 is	 more	 generic	
if	 exactly	 one	 of	 the	 members	 has	 a	 parameter	 which	 is	 more	 generic	

return	 the	 other	 member	 is	 less	 generic	
	

5.4 Expression classification
Next to identifiers that classify to types, members or variables, expressions also
classify to a type. Expressions are often arithmetic operator expressions or literal
type expressions. If an expression is an operator expression, the operator
defines which the resulting type of the expression is. Intrinsic operator definitions
are built in; their resulting type is predefined. Next to built in operators,
operators can also be user-defined; in such cases, the operator declaration then
defines the result type of the expression. Section 5.4.1 discusses how the correct
operator is found in section 5.4.2 all classifiable expressions are discussed.

5.4.1 Operator resolution

Whenever an expression is resolved which involves an operator, the correct
operator has to be found to get result type of the expression. There are two
types of operators, user-defined operators and predefined operators. The user-
defined operators are considered first and after that the built in operators.

5.4.1.1 Resolving user-defined operators

To resolve the correct user-defined operator the following three steps are used:

• Get all matching operators
• Try to find an exact match in the resulting list, if found return it
• If there is no exact match return the most specific operator from the list.

User-defined operators should be declared within one of the operand types or in
one of their super types. An operator matches when the operands match the
parameter types of the operator. Matching operators are found using the
following steps:

for	 all	 operand	 types	
collect	 all	 operators	 declared	 in	 the	 type	 that	 are	 of	 the	 right	 operator	 type,	 have	 the	 correct	 	
number	 of	 parameters	 (one	 for	 unary,	 two	 for	 binary	 operators)	 and	 of	 which	 the	 operand	 	
types	 match	 the	 parameter	 types	
if	 the	 type	 has	 a	 base	 type	
	 	 get	 the	 base	 type	 of	 the	 operand	 and	 recursively	 collect	 all	 matching	 operators	

if	 no	 matching	 operators	 are	 found	
	 return	 null	
for	 all	 operators	
	 if	 the	 operand	 types	 exactly	 match	 the	 types	 of	 the	 operator	
	 	 return	 the	 operator	
save	 the	 first	 of	 the	 operators	 as	 the	 most	 specific	 operator	
for	 all	 operators	
	 for	 each	 parameter	
	 	 	 if	 the	 type	 of	 parameter	 is	 a	 subtype	 of	 the	 one	 of	 the	 currently	 most	 specific	 	

	 	 operator	 or	 thereis	 a	 widening	 to	 it	
	 	 	 	 	 save	 the	 operator	 as	 the	 most	 specific	 operator	

66

	 	 	 	 continue	 with	 the	 next	 operator	
return	 the	 most	 specific	 operator	
	 	
To determine if one operator is more specific than another, their parameters are
considered one by one. An operator is more specific if the type of the first
parameter that has a different type than the parameter on the same index of the
other operator, is a sub type of that other type or if there exists a widening to
that type.

If one operator is most specific, for all other matching operators will hold that the
most specific operator is more specific than that operator. Thus if operator MSO
is the most specific operator, for every other matching operator MOn, for the first
parameter MOnPi, of which the type differs with that of the parameter MSOPi on
the same index in MSO the following will hold; the type of MSOPi is a sub type of
the type of MOnPi or there is a widening from MSOPi to MOnPi.

If such an operator cannot be found in the set of matching operators and there is
no exact match, the compiler will fail. A precondition in this project is that input
code will compile, therefore the method described above will always find the
correct operator.

5.4.1.2 Resolving built in operators

If no user-defined operator is found, this means the operator is a predefined
operator. Predefined operators cannot be extracted from the type definitions,
they are part of the language itself. In the Visual Basic language specification all
predefined operators are listed. To resolve expressions using a predefined
operator, tables are made for every such operator. The resulting type of the
expression is looked up by using the operands as keys in the mapping tables.

5.4.2 Expressions

As described before, there are multiple types of expressions. Each expression
implies a different way of classifying. Expressions which classify to a type are the
following:

• Dictionary member access expressions
• GetType expressions
• Cast expressions
• Parenthesized expressions
• Unary operator expressions
• Binary operator expressions
• Instance expressions
• New expressions
• Literal expressions
• Call and index expressions
• Nothing expressions
• Type reference expressions
• Simple name expressions

67

• Qualified name expressions

In the next subsections these expressions will be discussed.

5.4.2.1 Dictionary member access

As stated in the language specification a dictionary member access expression is
used to look up a member of a collection. A dictionary member access takes the
form of E!I, where E is an expression that is classified as a value and I is an
identifier. The expression E!I is transformed into the expression E.D(“I”), where
D is the default property of E. Within a With block E can be left out, instead of E
the With expression is used.

DictionaryAccessExpression ::= [Expression] ! IdentifierOrKeyword

In the AST the statement is represented with an DictionaryLookupExpression
object, which contains a qualifier expression and a name. To find the resulting
type of the lookup expression, the most specific default property with one
parameter of the type “System.String” has to be found. To get this the qualifier
expression is resolved to get the qualifier type. The name is just the value used
to pas as an argument to the default property, at this point it is only interesting
to know its type, this is always “System.String” so the name can be ignored.
Member resolving as described before is used to find the default property.

5.4.2.2 Get Type expression

The get type expression is used to return the type object of a given type.

GetTypeExpression ::= GetType (GetTypeTypeName)

The representation of this expression in the AST is a GetTypeExpression object.
The content of this object is ignored, the expression always returns object of the
type “System.Type”, so a ResolveResult with an initialized representation of
“System.Type” is always correct .

5.4.2.3 Cast expressions

To cast an object from one type to another a couple of cast methods are defined
in the language. The DirectCast, TryCast and CType expression all cast an
expression to the type described by a given typename. They have a couple of
different restrictions which are not interesting in this context. Next to these three
there is also a set of methods defined to cast to intrinsic types, these methods
basically work the same except every one of them has its own type it casts to.

CastExpression ::=
 DirectCast (Expression , TypeName) |
 TryCast (Expression , TypeName) |
 CType (Expression , TypeName) |
 CastTarget (Expression)

CastTarget ::=
 CBool | CByte | CChar | CDate | CDec | CDbl | CInt | CLng | CObj | CSByte |
 CShort | Sng | CStr | CUInt | CULng | CUShort

68

In the casts the resulting type is only dependent on to which type the expression
is cast is used and not on the expression itself, the expression therefore can be
safely ignored.

The first three cast methods are represented in the AST as CTypeExpression,
DirectCastExpression and TryCastExpression objects. They contain an expression
and a target type name. The cast expression will produce an object of the type
described by the type name, so the type name is resolved to the correct type
using the type system and returned.

The set of intrinsic cast expressions are represented in the AST as an
IntrinsicCastExpression object. This object contains an intrinsic type enumeration
which states the type of the cast and the expression which is the subject of the
cast. Depending on which cast is used, a ResolveResult with the correct intrinsic
type is returned.

5.4.2.4 Parenthesized expression

In the code specification a parenthesized expression is described as follows. A
parenthesized expression consists of an expression enclosed in parentheses. A
parenthesized expression evaluates to the value of the expression within the
parentheses.

ParenthesizedExpression ::= (Expression)

This means also the resulting type evaluates to the type of the expression within
the parentheses. In the AST it is represented by a ParentheticalExpression
object. It contains the expression that was placed within the parentheses, this
expression is resolved and the result returned.

5.4.2.5 Unary operator expression

There are three unary operator expressions.

UnaryPlusExpression ::= + Expression

UnaryMinusExpression ::= - Expression

NotExpression ::= Not Expression

The resulting type of a unary operator expression is dependent on the operator
definition, which operator definition has to be chosen is dependent on the
resulting type of the operant expression. So to resolve the unary operator
expression, first the type of the expression is resolved. This type is used to find
the most specific matching overloaded operator if one exists. If one exists, the
result type of this operator is the result type of the unary operator expression. If
such an operator is not found, this implies the expression type is an intrinsic
type. The result of unary operator expressions on intrinsic types are implicit, the
correct resulting type is looked up in a mapping which contains the resulting
types for all operators for all intrinsic types.

69

5.4.2.6 Binary operator expression

The language contains a wide range of binary operator expressions.

AdditionOperatorExpression ::= Expression + Expression

SubtractionOperatorExpression ::= Expression - Expression

MultiplicationOperatorExpression ::= Expression * Expression

DivisionOperatorExpression ::=
 FPDivisionOperatorExpression |
 IntegerDivisionOperatorExpression

FPDivisionOperatorExpression ::= Expression / Expression

IntegerDivisionOperatorExpression ::= Expression \ Expression

ModuloOperatorExpression ::= Expression Mod Expression

ExponentOperatorExpression ::= Expression ^ Expression

RelationalOperatorExpression ::=
 Expression = Expression |
 Expression <> Expression |
 Expression < Expression |
 Expression > Expression |
 Expression <= Expression |
 Expression >= Expression

LikeOperatorExpression ::= Expression Like Expression

ConcatenationOperatorExpression ::= Expression & Expression

LogicalOperatorExpression ::=
 Expression And Expression |
 Expression Or Expression |
 Expression Xor Expression

ShortCircuitLogicalOperatorExpression ::=
 Expression AndAlso Expression |
 Expression OrElse Expression

ShiftOperatorExpression ::=
 Expression << Expression |
 Expression >> Expression

As with the unary operator expressions, the result of the binary operator
expression is dependent on the operator definition, which operator definition is
the most specific is dependent on the resulting type of the operands. First the
types of both operands are resolved. Using the operant types, the most specific
matching operator is searched. If no matching operator is found, a second try is
done in which literals are allowed to narrow. See literal expressions for that. The
result type of the resulting operator is the result type of the binary operator
expression. Is no operator found, this implies both operands are intrinsic and the
result is found in a mapping.

70

5.4.2.7 Instance expression

The code specification describes the instance expression as the keyword Me,
MyClass or MyBase. The keyword ‘Me’ represents an instance of the type
containing the method or property accessor being executed. The Keyword
MyClass is equivalent to Me, but all method invocations are treated as if the
method being invoked is non-overridden. Thus, the method called will not be
affected by the run-time type of the value on which the method is being called.
The keyword MyBase represents the instance of the type containing the method
or property accessor being executed cast to its direct base type.

InstanceExpression ::= Me | MyBase | MyClass

The AST representation of an instance expression is an InstanceExpression
object. It contains an instance type which describes which of the three types it
represents. If the instance expression is MyBase, the base type of the type the
current scope is in is returned. If the instance expression is Me or MyClass, the
type the current scope is in is returned.

5.4.2.8 New expression

To initialize a type the new expression is used.

NewExpression ::=
 ObjectCreationExpression |
 ArrayCreationExpression |
 DelegateCreationExpression

ObjectCreationExpression ::=
 New NonArrayTypeName [([ArgumentList])]

ArrayCreationExpression ::=
 New NonArrayTypeName ArraySizeInitializationModifier ArrayElementInitializer

DelegateCreationExpression ::= New NonArrayTypeName (Expression)

The object creation expression and the delegate creation expression are
represented in the AST with a NewExpression object. The array creation
expression is represented by an NewAggregateExpression object. Both objects
contain a type name, this type name is used to resolve the type using the type
system.

5.4.2.9 Literal expression

A literal expression is a value expressed in code. The following grammar is
heavily simplified, see the appendixes for the complete grammar.

Literal ::=
 BooleanLiteral |
 IntegerLiteral |
 FloatingPointLiteral |

71

 StringLiteral |
 CharacterLiteral |
 DateLiteral

In the AST literal expressions are represented by StringLiteralExpression,
CharacterLiteralExpression, DateLiteralExpression, IntegerLiteralExpression,
UnsignedIntegerLiteralExpression, FloatingPointLiteralExpression,
DecimalLiteralExpression and BooleanLiteralExpression.

When the StringLiteralExpression, CharacterLiteralExpression,
DateLiteralExpression, DecimalLiteralExpression or BooleanLiteralExpression is
encountered in the AST the corresponding types simply can be returned, which
are in the same order “System.String”, “System.Char”, “System.DateTime”,
“System.Decimal” and “System.Boolean”.

The types of the other three AST literal representations are dependent on their
type character, their value and if narrowing of literals is allowed.

If a type character is supplied, the type character decides the resulting type.

If there isn’t a type character supplied, the IntegerLiteralExpression defaults to
the type “System.Int32”, which is the same as the intrinsic type Integer. When
the literal value is bigger than the maximum value of an integer, it is considered
a Long, so the type “System.Int64” which is the same is returned. Is it allowed
to narrow literals, the type is considered a “System.Int16” or Short if the value is
smaller than the maximum value of Short.

With no type character supplied the UnsigendIntegerLiteralExpression standard
results in “System.UInt32”. It results in an “System.UInt64” if the value is too
big for an UInt32 . If narrowing literals is allowed, the type “System.UInt16” is
returned if the value is smaller than the maximum value of UInt32.

With no type character supplied the FloatingPointLiteralExpression standard
results in a “System.Double”. If narrowing of literals is allowed and the value is
smaller than the maximum value of Single, “System.Single” is returned.

5.4.2.10 Call or index expression

An invocation expression consists of an invocation target and an optional
argument list. An indexed expression also consists of an invocation target and an
argument list.

InvocationStatement ::= [Call] InvocationExpression StatementTerminator

InvocationExpression ::= Expression [([ArgumentList])]

IndexExpression ::= Expression ([ArgumentList])

ArgumentList ::=
 PositionalArgumentList , NamedArgumentList |
 PositionalArgumentList |
 NamedArgumentList

72

PositionalArgumentList ::=
 Expression |
 PositionalArgumentList , [Expression]

NamedArgumentList ::=
 IdentifierOrKeyword := Expression |
 NamedArgumentList , IdentifierOrKeyword := Expression

From syntax alone it is not possible to make the difference between a member
call and a type index. Because of this there is the type CallOrIndexExpression, in
cases where it is clear the type is CallStatement. Both of these types have a
target expression and an argument list. The method described in section 5.3.6 is
used to resolve the expression.

5.4.2.11 Nothing expression

A special case of literal is Nothing, which is the empty value.

Nothing ::= Nothing

In the AST nothing is represented with an NothingExpression. As a resolve result
a special type of type declaration is returned, a NullTypeDeclaration.

5.4.2.12 Type reference expression

Type references are recognized as such by the syntactical analyzer, they are
represented by an TypeReferenceExpression Object.

TypeName ::=
 ArrayTypeName |
 NonArrayTypeName

NonArrayTypeName ::=
 SimpleTypeName |
 ConstructedTypeName

SimpleTypeName ::=
 QualifiedIdentifier |
 BuiltInTypeName

BuiltInTypeName ::= Object | PrimitiveTypeName

PrimitiveTypeName ::= NumericTypeName | Boolean | Date | Char | String

NumericTypeName ::= IntegralTypeName | FloatingPointTypeName | Decimal

IntegralTypeName ::= Byte | SByte | UShort | Short | UInteger | Integer | ULong |
 Long

FloatingPointTypeName ::= Single | Double

ArrayTypeName ::= NonArrayTypeName ArrayTypeModifiers

ArrayTypeModifiers ::= ArrayTypeModifier+

ArrayTypeModifier ::= ([RankList])

73

RankList ::=
 , |
 RankList ,

QualifiedIdentifier ::=
 Identifier |
 Global . IdentifierOrKeyword |
 QualifiedIdentifier . IdentifierOrKeyword

IdentifierOrKeyword ::= Identifier | Keyword

The type system is used to resolve type references using the method described
in section 5.2.

5.4.2.13 Simple name expression

A simple name expression is a standalone identifier with possibly a list of type
arguments. It can point to a member or even a type.

SimpleNameExpression ::= Identifier [(Of TypeArgumentList)]

The method described in section 5.3.1 is used to resolve such an expression.

5.4.2.14 Qualified expression

A qualified expression is an identifier which is prefixed with another expression.

MemberAccessExpression ::=
 [[MemberAccessBase] .] IdentifierOrKeyword

MemberAccessBase ::=
 Expression |
 BuiltInTypeName |
 Global |
 MyClass |
 MyBase

The method described in section 5.3.2 is used to resolve such an expression.

5.5 Justification of the classification against the coding
specification

The complete behaviour of the Visual Basic is described in the language
specification (15). In this section all classification algorithms described before are
justified against the classification as described in the code specification. The
classification and resolution steps taken from the language specification are
printed in gray.

5.5.1 Type resolution justification

Type resolution is the process by which a type reference is classified (or bound
to) the type it refers to. This is discussed in section 5.2. In the language
specification (15), a difference is made between qualified name resolution and
simple name resolution. In this project type resolution is done in a different way
than described in the language specification. In the language specification
namespaces can be resolved. In our namespaces don’t exist as entities, because

74

a namespace itself cannot be used standalone. Another difference between the
specification and our implementation is that unqualified names and qualified
names are resolved in the same routine instead of two separate ones as the
language specification would naturally imply.

First let us state the qualified name resolution taken from the language
specification (15 p. 52):

Given a qualified namespace or type name of the form N.R, where R is the rightmost identifier in the
qualified name, the following steps describe how to determine to which namespace or type the
qualified name refers:

1. Resolve N, which may be either a qualified or unqualified name.

The	 resolution	 in	 the	 language	 specification	 describes	 here	 that	 N.R	 could	 be	 a	 namespace	 or	 type.	
As	 described	 in	 section	 5.2; in	 our	 implementation	 there	 is	 no	 namespace	 entity,	 types	 qualified	 with	
a	 namespace	 are	 resolved	 in	 one	 step,	 by	 sequentially	 constructing	 and	 trying	 all	 possible	 fully	
qualified	 names	 until	 the	 type	 is	 found.	 Hence,	 type	 resolution	 is	 not	 done	 recursively.

2. If resolution of N fails, resolves to a type parameter, or does not resolve to a namespace or type, a
compile-time error occurs. If R matches the name of a namespace or type in N, then the qualified
name refers to that namespace or type.

If R matches the name of a type in N, it is found by looking up the fully qualified
name N.R; as explained above, it will never match a namespace.

3. If N contains one or more standard modules, and R matches the name of a type in exactly one
standard module, then the qualified name refers to that type. If R matches the name of types in
more than one standard module, a compile-time error occurs.

For	 every	 Q.T	 within	 the	 fully	 qualified	 name	 where	 Q	 is	 a	 namespace	 containing	 modules,	 for	 every	
module	 with	 name	 M	 within	 namespace	 Q,	 the	 fully	 qualified	 name	 Q.N.T	 is	 a	 candidate.	 These	
candidates	 are	 tried	 from	 the	 longest	 Q	 to	 the	 shortest	 	 that	 can	 be	 constructed	 with	 the	 fully	
qualified	 name.	 	 A	 module	 cannot	 be	 nested,	 therefore	 a	 type’s	 fully	 qualified	 name	 can	 maximally	
“hide”	 one	 module;	 thus	 this	 method	 described	 in	 section	 5.2.2	 will	 find	 every	 type	 nested	 in	 a	
module.	 	

The unqualified name resolution from the language specification (15 p. 52),
reads as follows:

Given an unqualified name R, the following steps describe how to determine to which namespace or
type an unqualified name refers:

1. For each nested type containing the name reference, starting from the innermost type and going to
the outermost, if R matches the name of an accessible nested type or a type parameter in the
current type, then the unqualified name refers to that type or type parameter.

2. For each nested namespace containing the name reference, starting from the innermost
namespace and going to the outermost namespace, do the following:

a. If R matches the name of an accessible type or nested namespace in the current
namespace, then the unqualified name refers to that type or nested namespace.

75

b. If the namespace contains one or more accessible standard modules, and R matches the
name of an accessible nested type in exactly one standard module, then the unqualified
name refers to that nested type. If R matches the name of accessible nested types in more
than one standard module, a compile-time error occurs.

The qualified path of the reference is taken and from the innermost to the
outermost location, the name is looked up. The solution is indiscriminate about if
name parts in a qualified location are nested types or nested namespaces. In
the language specification types and namespaces are handled separately one
after the other in step 1 and 2. It is not a problem though to do it in one step;
within a namespace, namespaces and types are not allowed to have the same
name and types cannot have sub namespaces, thus a conflict will never occur.

If no type is found in step 1 and 2a, in step 2b, R is sought in the accessible
modules. In our implementation this is handled in the lookup algorithm as
described in section 5.2.2.

As described in section 5.2.3.2,	 all	 possible	 fully	 qualified	 names	 which	 can	 be	 constructed	 by	
concatenating	 the	 current	 fully	 qualified	 location	 and	 super	 fully	 qualified	 locations	 are	 constructed.	
Part	 of	 this	 fully	 qualified	 name	 can	 be	 namespaces	 and	 part	 can	 be	 type	 names.	

For	 example	 a	 type	 named	 T	 which	 is	 a	 directly	 nested	 type	 in	 a	 type	 with	 the	 fully	 qualified	 name	
N.S,	 its	 fully	 qualified	 name	 then	 will	 be	 N.S.T.	 	

This	 way,	 nested	 types	 and	 types	 in	 nested	 namespaces	 will	 both	 be	 found.	 Because	 the	 constructed	
locations	 are	 constructed	 from	 the	 most	 inner	 location	 to	 the	 outer,	 nested	 types	 will	 be	 found	
before	 types	 in	 nested	 namespaces.	 Type	 parameters	 are	 added	 to	 the	 type	 list,	 so	 they	 will	 be	 found	
in	 this	 same	 way.	

3. If the source file has one or more import aliases, and R matches the name of one of them, then the
unqualified name refers to that import alias.

As	 described	 in	 section	 5.2.3.3;	 when	 an	 aliased	 import	 is	 found	 of	 which	 the	 alias	 matches	 with	 the	
start	 of	 the	 name	 sought,	 the	 matching	 part	 is	 replaced	 by	 the	 import.	 If	 the	 name	 sought	 completely	
matches	 the	 alias,	 this	 means	 the	 fully	 qualified	 name	 candidate	 will	 be	 the	 import	 itself.	

4. If the source file containing the name reference has one or more imports:

a. If R matches the name of an accessible type in exactly one import, then the unqualified
name refers to that type. If R matches the name of an accessible type in more than one
import and all are not the same entity, a compile-time error occurs.

b. If R matches the name of a namespace in exactly one import, then the unqualified name
refers to that namespace. If R matches the name of a namespace in more than one import
and all are not the same entity, a compile-time error occurs.

c. If the imports contain one or more accessible standard modules, and R matches the name
of an accessible nested type in exactly one standard module, then the unqualified name
refers to that type. If R matches the name of accessible nested types in more than one
standard module, a compile-time error occurs.

76

As	 described	 in	 section	 5.2.3.4:	 for	 every	 import	 in	 the	 source	 file	 containing	 the	 name,	 the	
namespace	 of	 the	 import	 is	 concatenated	 with	 this	 name	 to	 construct	 a	 candidate.	 This	 covers	 the	
situation	 that	 the	 import	 is	 an	 import	 of	 a	 namespace.	 	

If	 the	 last	 name	 part	 of	 the	 import	 is	 the	 same	 as	 the	 first	 name	 part	 of	 the	 name,	 in	 the	 case	 of	 a	
simple	 name	 this	 is	 the	 whole	 name,	 then	 the	 last	 name	 part	 of	 the	 import	 is	 replaced	 by	 the	 name	
to	 construct	 a	 second	 candidate.	 This	 covers	 the	 situation	 the	 import	 imports	 a	 type.	

If	 the	 resolution	 is	 ambiguous	 and	 both	 candidates	 described	 above	 will	 match	 a	 type,	 the	 code	 will	
not	 compile;	 with	 the	 precondition	 the	 code	 input	 is	 compilable,	 this	 guarantees	 the	 correct	 type.	

The	 lookup	 algorithm	 will	 ensure	 that	 if	 the	 name	 sought	 matches	 a	 member	 of	 a	 standard	 module,	 it	
will	 be	 found.

5. If the compilation environment defines one or more import aliases, and R matches the name of one
of them, then the unqualified name refers to that import alias.

6. If the compilation environment defines one or more imports:

a. If R matches the name of an accessible type in exactly one import, then the unqualified
name refers to that type. If R matches the name of an accessible type in more than one
import, a compile-time error occurs.

b. If R matches the name of a namespace in exactly one import, then the unqualified name
refers to that namespace. If R matches the name of a namespace in more than one import,
a compile-time error occurs.

c. If the imports contain one or more accessible standard modules, and R matches the name
of an accessible nested type in exactly one standard module, then the unqualified name
refers to that type. If R matches the name of accessible nested types in more than one
standard module, a compile-time error occurs.

The	 imports	 defined	 in	 the	 compilation	 environment	 are	 handled	 exactly	 the	 same	 as	 the	 imports	
defined	 in	 the	 source	 file.	

Step	 5	 and	 6	 are	 the	 same	 as	 3	 and	 4	 except	 the	 imports	 defined	 in	 the	 compile	 environment	 (the	
project	 file)	 are	 used	 instead	 of	 the	 imports	 in	 the	 source	 file	 itself,	 the	 solution	 therefore	 also	 is	 the	
same.	

It	 might	 be	 unclear	 at	 this	 point	 if	 types	 in	 modules	 and	 out	 of	 modules	 are	 resolved	 in	 the	 same	
order	 as	 described	 in	 the	 code	 specification.	 For	 this	 take	 for	 example	 unqualified	 name	 C	 which	 is	
referred	 within	 the	 namespace	 A.B.	 Presume	 every	 namespace	 contains	 a	 module	 named	 M.	 The	
order	 in	 which	 the	 solution	 tries	 out	 the	 candidates	 will	 be	 as	 follows:	

• First	 a	 list	 of	 nested	 namespaces	 is	 constructed,	 C	 resides	 in	 namespace	 A.B,	 so	 the	 list	 will	 be	 A.B	
and	 A,	 it	 is	 impossible	 to	 create	 types	 at	 the	 same	 level	 as	 the	 root	 namespace	 so	 there	 is	 no	
empty	 namespace	 to	 look	 in.	

• Lookup	 with	 the	 first	 implicit	 nested	 namespace	 name	 part	 A.B	 and	 explicit	 name	 part	 C:	

• Lookup	 as	 is:	 	 A.B.C	

• Add	 potentially	 hidden	 module	 names	 to	 the	 explicit	 part:	 A.B.M.C	

• Lookup	 with	 the	 second	 implicit	 nested	 namespace	 name	 part	 A	 and	 explicit	 name	 part	 C:	

77

• Lookup	 as	 is:	 A.C	

• Add	 potentially	 hidden	 module	 names	 to	 the	 explicit	 part:	 A.M.C	

• Lookup	 the	 referenced	 name	 as	 is	 C	

If	 the	 same	 resolution	 is	 done	 with	 the	 steps	 described	 in	 the	 code	 specification	 the	 result	 is	 as	
follows:	

Search	 the	 inner	 most	 namespace	 A.B	 for	 C:	 A.B.C	

For	 all	 modules	 available	 in	 A.B	 try	 to	 find	 C:	 A.B.M.C	 	

Search	 the	 next	 nested	 namespace	 A	 for	 C:	 A.C	

For	 all	 modules	 available	 in	 A	 try	 to	 find	 C	 =>	 A.M.C	

The	 resolution	 in	 both	 is	 the	 same	 A.B.C,	 A.B.M.C,	 A.C	 and	 A.M.C.	 If	 A.B.C	 would	 be	 fully	 qualified	 in	
the	 reference	 the	 resolution	 would	 look	 be	 as	 follows:	

• As	 before	 first	 the	 list	 of	 nested	 namespaces	 is	 constructed;	 A.B	 and	 A.	

• Lookup	 with	 the	 first	 implicit	 nested	 namespace	 name	 part	 A.B	 and	 explicit	 name	 part	 A.B.C:	

• Lookup	 as	 is:	 A.B.A.B.C	

• Add	 potentially	 hidden	 module	 names	 to	 the	 explicit	 part:	 A.B.A.B.M.C,	 A.B.A.M.B.C	 and	
A.B.M.A.B.C	

• Lookup	 with	 the	 second	 implicit	 nested	 namespace	 name	 part	 A	 and	 explicit	 name	 part	 A.B.C:	

• Lookup	 as	 is:	 A.A.B.C	

• Add	 potentially	 hidden	 module	 names	 to	 the	 explicit	 part:	 	 A.A.B.M.C,	 	 A.A.M.B.C	 and	 	
A.M.A.B.C	 	

• Lookup	 the	 referenced	 name	 as	 is	 A.B.C	 	

• Add	 potentially	 hidden	 module	 names	 to	 the	 explicit	 part:	 	 A.B.M.C,	 A.M.B.C	 (M.A.B.C	 will	 never	
be	 tried	 because	 there	 cannot	 exist	 a	 standard	 module	 at	 the	 same	 level	 as	 the	 root	 namespace)	

The	 order	 in	 which	 the	 resolution	 described	 in	 the	 code	 specification	 is	 as	 follows.	 The	 resolution	 is	 a	
recursive	 process	 where	 the	 qualifier	 is	 resolved	 first.	 This	 example	 starts	 at	 the	 bottom	 of	 this	
recursive	 process	 where	 the	 simple	 name	 is	 resolved	 and	 works	 up	 again	 processing	 the	 result	 of	 the	
last	 step.	 Some	 of	 the	 branches	 end	 in	 ‘impossible’,	 these	 branches	 will	 never	 happen	 because	 it	 is	
impossible	 to	 have	 a	 standard	 module	 to	 be	 nested	 in	 another	 standard	 module.	

• Search	 the	 inner	 most	 namespace	 A.B	 for	 A:	 A.B.A.*	

o Search	 B	 in	 the	 result:	 A.B.A.B.*	

§ Search	 C	 in	 the	 result:	 A.B.A.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.B.A.B.M.C	

o Search	 B	 in	 modules	 in	 the	 result:	 A.B.A.M.B.*	

§ Search	 C	 in	 the	 result	 A.B.A.M.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.B.A.M.B.M.C	 -‐	 impossible	

78

• Search	 A	 in	 modules	 in	 namespace	 A.B:	 A.B.M.A.*	

o Search	 B	 in	 the	 result:	 A.B.M.A.B.*	

§ Search	 C	 in	 the	 result:	 A.B.M.A.B.C	

§ Search	 C	 in	 modules	 in	 the	 result	 A.B.M.A.B.M.C	 -‐	 impossible	

o Search	 B	 in	 modules	 in	 the	 result:	 A.B.M.A.M.B.*	 -‐	 impossible	

• Search	 the	 next	 nested	 namespace	 A	 for	 A:	 A.A.*	

o Search	 B	 in	 the	 result:	 A.A.B.*	

§ Search	 C	 in	 the	 result:	 A.A.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.A.B.M.C	

o Search	 B	 in	 modules	 in	 the	 result:	 A.A.M.B.*	

§ Search	 C	 in	 the	 result:	 A.A.M.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.A.M.B.M.C	 -‐	 impossible	

• Search	 A	 in	 modules	 in	 namespace	 A:	 A.M.A.*	

o Search	 B	 in	 the	 result:	 A.M.A.B.*	

§ Search	 C	 in	 the	 result:	 A.M.A.B.C	

§ Search	 C	 in	 modules	 in	 the	 result	 A.M.A.B.M.C	 -‐	 impossible	

o A.M.A.M.B.*	 -‐	 impossible	

• Search	 for	 A	 as	 a	 root	 namespace:	 A.*	

o Search	 B	 in	 the	 result:	 A.B.*	

§ Search	 C	 in	 the	 result:	 A.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.B.M.C	

o Search	 B	 in	 modules	 in	 the	 result:	 A.M.B.*	

§ Search	 C	 in	 the	 result:	 A.M.B.C	

§ Search	 C	 in	 modules	 in	 the	 result:	 A.M.B.M.C	 -‐	 impossible	

Both	 resolutions	 try	 to	 resolve	 the	 reference	 in	 the	 same	 order:	 A.B.A.B.C,	 A.B.A.B.M.C,	
A.B.A.M.B.C,	 A.B.M.A.B.C,	 A.A.B.C,	 	 	 A.A.B.M.C,	 	 A.A.M.B.C,	 	 A.M.A.B.C,	 A.B.C,	 which	 shows	 both	
resolution	 methods	 will	 find	 the	 same	 types.

5.5.2 Simple name expressions

Simple name expressions are non qualified identifiers as described in section
5.3.1.

The simple name expression resolution taken from the language specification (15
p. 217) reads as follows:

A simple name expression consists of a single identifier followed by an optional type argument list.
The name is resolved and classified as follows:

79

1. Starting with the immediately enclosing block and continuing with each enclosing outer block (if
any), if the identifier matches the name of a local variable, static variable, constant local, method
type parameter, or parameter, then the identifier refers to the matching entity. The expression is
classified as a variable if it is a local variable, static variable, or parameter. The expression is
classified as a type if it is a method type parameter. The expression is classified as a value if it is a
constant local with the following exception. If the local variable matched is the implicit function
or Get accessor return local variable, and the expression is part of an invocation expression,
invocation statement, or an AddressOf expression, then no match occurs and resolution continues.

As	 described	 in	 section	 5.3.1.1:	 from	 the	 scope	 of	 the	 identifier	 is	 directly	 in,	 to	 the	 scope	 of	 the	
immediately	 enclosing	 	 type,	 a	 member	 with	 a	 matching	 name	 name	 is	 sought,	 if	 a	 match	 is	 found	 it	
is	 returned.	 	

Our	 implementation	 there	 is	 no	 distinction	 made	 between	 a	 constant	 and	 a	 variable.	 A	 constant	
could	 be	 seen	 as	 a	 read	 only	 variable,	 the	 read	 only	 constrain	 limits	 the	 usage	 of	 it.	 Because	 of	 the	
precondition	 that	 the	 code	 has	 to	 be	 compilable,	 this	 distinction	 would	 not	 add	 insight.	 Constants	 can	
just	 as	 wel	 be	 handled	 as	 variables	 that	 happen	 to	 be	 only	 read.	 The	 distinction	 between	 non-‐
initialized	 types	 (or	 variables	 and	 types)	 and	 initialized	 types	 is	 not	 ignored,	 because	 this	 knowledge	
can	 influence	 member	 resolution.	 	

2. For each nested type containing the expression, starting from the innermost and going to the
outermost, if a lookup of the identifier in the type produces a match with an accessible member:

a. If the matching type member is a type parameter, then the result is classified as a type and
is the matching type parameter.

b. Otherwise, if the type is the immediately enclosing type and the lookup identifies a non-
shared type member, then the result is the same as a member access of the form Me.E,
where E is the identifier.

c. Otherwise, the result is exactly the same as a member access of the form T.E, where T is
the type containing the matching member and E is the identifier. In this case, it is an error
for the identifier to refer to a non-shared member.

In	 the	 second	 resolution	 step	 described	 in	 section	 5.3.1.2,	 a	 match	 is	 searched	 in	 the	 members	 of	 the	
immediately	 enclosing	 type	 which	 is	 encountered	 as	 an	 initialized	 type.	 After	 this,	 all	 other	 enclosing	
types	 are	 searched	 from	 the	 innermost	 to	 the	 outermost;	 these	 types	 are	 encountered	 as	
uninitialized	 types.	 When	 the	 identifier	 matches	 a	 type,	 the	 result	 will	 be	 a	 non	 initialized	 type,	 if	 it	
matches	 a	 member,	 it	 will	 be	 an	 initialized	 type.	 	

3. For each nested namespace, starting from the innermost and going to the outermost namespace,
do the following:

a. If the namespace contains an accessible namespace member with the given name, then the
identifier refers to that member and, depending on the member, is classified as a namespace
or a type.

b. Otherwise, if the namespace contains one or more accessible standard modules, and a
member name lookup of the identifier produces an accessible match in exactly one standard
module, then the result is exactly the same as a member access of the form M.E, where M is
the standard module containing the matching member and E is the identifier. If the identifier
matches accessible type members in more than one standard module, a compile-time error
occurs.

80

Type	 classification	 is	 done	 by	 the	 type	 classification	 described	 in	 section	 5.2	 and	 justified	 in	 section	
5.5.1.	 The	 approach	 used	 to	 classify	 results	 in	 that	 identifiers	 never	 classify	 to	 a	 namespace.	 All	
containing	 namespaces	 are	 searched	 for	 modules	 as	 described	 in	 section	 5.3.1.3.	 If	 a	 matching	
member	 is	 found	 on	 one	 of	 the	 found	 modules,	 this	 will	 be	 the	 result.	

4. If the source file has one or more import aliases, and the identifier matches the name of one of
them, then the identifier refers to that namespace or type.

Type	 classification	 using	 import	 aliases	 also	 done	 by	 the	 algorithm	 described	 in	 section	 5.2	 and	
justified	 in	 section	 5.5.1.	

5. If the source file containing the name reference has one or more imports:

a. If the identifier matches the name of an accessible type or type member in exactly one import,
then the identifier refers to that type or type member. If the identifier matches the name of an
accessible type or type member in more than one import, a compile-time error occurs.

b. If the identifier matches the name of a namespace in exactly one import, then the identifier
refers to that namespace. If the identifier matches the name of a namespace in more than one
import, a compile-time error occurs.

c. Otherwise, if the imports contain one or more accessible standard modules, and a member
name lookup of the identifier produces an accessible match in exactly one standard module,
then the result is exactly the same as a member access of the form M.E, where M is the
standard module containing the matching member and E is the identifier. If the identifier
matches accessible type members in more than one standard module, a compile-time error
occurs.

Type	 classification	 using	 imports	 is	 done	 by	 the	 algorithm	 described	 in	 section	 5.2	 and	 justified	 in	
section	 5.5.1.	 All	 standard	 modules	 accessible	 through	 imports	 in	 the	 source	 file	 are	 searched	 for	
matching	 members	 as	 described	 in	 section	 5.3.1.4.	

6. If the compilation environment defines one or more import aliases, and the identifier matches the
name of one of them, then the identifier refers to that namespace or type.

Type	 and	 classification	 using	 non	 local	 alias	 imports	 is	 done	 by	 the	 algorithm	 described	 in	 section	 5.2	
and	 justified	 in	 section	 5.5.1.	

7. If the compilation environment defines one or more imports:

a. If the identifier matches the name of an accessible type or type member in exactly one import,
then the identifier refers to that type or type member. If the identifier matches the name of an
accessible type or type member in more than one import, a compile-time error occurs.

b. If the identifier matches the name of a namespace in exactly one import, then the identifier
refers to that namespace. If the identifier matches the name of a namespace in more than one
import, a compile-time error occurs.

c. Otherwise, if the imports contain one or more accessible standard modules, and a member
name lookup of the identifier produces an accessible match in exactly one standard module,
then the result is exactly the same as a member access of the form M.E, where M is the
standard module containing the matching member and E is the identifier. If the identifier
matches accessible type members in more than one standard module, a compile-time error
occurs.

81

Type	 classification	 using	 non	 local	 imports	 is	 done	 by	 the	 algorithm	 described	 in	 section	 5.2	 and	
justified	 in	 section	 5.5.1.	 All	 standard	 modules	 accessible	 through	 imports	 in	 the	 compilation	
environment	 are	 searched	 for	 matching	 members	 as	 described	 in	 section	 5.3.1.5.	

8. Otherwise, the name given by the identifier is undefined and a compile-time error occurs.

5.5.3 Member Access Expressions

A member access expression is a qualified expression which does not classify to
a type as described in section 5.3.2.

The member access expression classification from the language specification (15
p. 221) reads as follows:

A member access expression is used to access a member of an entity. A member access of the form E.I,
where E is an expression, a built-in type, the keyword Global, or omitted and I is an identifier with an
optional type argument list, is evaluated and classified as follows:

1. If E is omitted, then the expression from the immediately containing With statement is substituted
for E and the member access is performed. If there is no containing With statement, a compile-
time error occurs.

In	 section	 5.3.2.1	 is	 explained	 how	 an	 empty	 qualifier	 resolved	 to	 the	 ‘With’	 expression	 found	 in	 the	
scope	 tree.	

2. If E is a type parameter, then a compile-time error results.

A	 precondition	 is	 that	 the	 input	 code	 is	 compilable,	 so	 E	 will	 thus	 never	 be	 a	 type	 parameter	 where	 a	
type	 parameter	 isn’t	 allowed.	

3. If E is the keyword Global, and I is the name of an accessible type in the global namespace, then
the result is that type.

The	 only	 thing	 that	 can	 exist	 directly	 in	 the	 global	 namespace	 is	 another	 namespace;	 as	 the	 type	
system	 doesn’t	 have	 namespace	 entities	 but	 resolves	 types	 in	 one	 go,	 it	 means	 that	 if	 the	 first	 non	
namespace	 part	 of	 a	 qualified	 expression	 is	 a	 module	 member	 it	 will	 be	 resolved	 as	 described	 in	
section	 5.3.2.2,	 if	 the	 first	 non	 namespace	 part	 of	 the	 qualified	 expression	 is	 a	 type,	 it	 will	 be	 resolved	
by	 the	 type	 system	 as	 described	 in	 section	 5.3.2.5.	

4. If E is classified as a namespace and I is the name of an accessible member of that namespace,
then the result is that member. The result is classified as a namespace or a type depending on the
member.

As	 described	 before,	 I	 will	 never	 be	 a	 namespace.	 If	 I	 is	 a	 member	 of	 a	 module	 in	 namespace	 E	 it	 will	
be	 found	 as	 described	 in	 section	 5.3.2.3,	 if	 I	 is	 a	 type	 it	 will	 be	 resolved	 by	 the	 type	 system	 as	
described	 in	 section	 5.2.3.	

5. If E is a built-in type or an expression classified as a type, and I is the name of an accessible
member of E, then E.I is evaluated and classified as follows:

a. If I is the keyword New, then a compile-time error occurs.

b. If I identifies a type, then the result is that type.

c. If I identifies one or more methods, then the result is a method group with the associated
type argument list and no associated instance expression.

82

d. If I identifies one or more properties, then the result is a property group with no
associated instance expression.

e. If I identifies a shared variable, and if the variable is read-only, and the reference occurs
outside the shared constructor of the type in which the variable is declared, then the result
is the value of the shared variable I in E. Otherwise, the result is the shared variable I in
E.

f. If I identifies a shared event, the result is an event access with no associated instance
expression.

g. If I identifies a constant, then the result is the value of that constant.

h. If I identifies an enumeration member, then the result is the value of that enumeration
member.

i. Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

6. If E is classified as a variable or value, the type of which is T, and I is the name of an accessible
member of E, then E.I is evaluated and classified as follows:

a. If I is the keyword New and E is an instance expression (Me, MyBase, or MyClass), then
the result is a method group representing the instance constructors of the type of E with
an associated instance expression of E and no type argument list. Otherwise, a compile-
time error occurs.

b. If I identifies one or more methods, then the result is a method group with the associated
type argument list and an associated instance expression of E.

c. If I identifies one or more properties, then the result is a property group with an
associated instance expression of E.

d. If I identifies a shared variable or an instance variable, and if the variable is read-only,
and the reference occurs outside a constructor of the class in which the variable is
declared appropriate for the kind of variable (shared or instance), then the result is the
value of the variable I in the object referenced by E. If T is a reference type, then the
result is the variable I in the object referenced by E. Otherwise, if T is a value type and the
expression E is classified as a variable, the result is a variable; otherwise the result is a
value.

e. If I identifies an event, the result is an event access with an associated instance expression
of E.

f. If I identifies a constant, then the result is the value of that constant.

g. If I identifies an enumeration member, then the result is the value of that enumeration
member.

h. If T is Object, then the result is a late-bound member lookup classified as a late-bound
access with an associated instance expression of E.

If	 E	 is	 a	 type	 T,	 this	 type	 will	 be	 resolved	 first	 and	 I	 will	 be	 found	 by	 applying	 member	 resolution	 on	 E	
as	 described	 in	 section	 5.3.2.1.	 If	 I	 is	 a	 type,	 the	 type	 is	 resolved	 in	 one	 time	 as	 E.I	 by	 the	 type	 system	
as	 described	 in	 section	 5.2.3.	 If	 I	 is	 a	 variable	 of	 type	 T,	 the	 variable	 is	 resolved	 as	 described	 in	 section	
5.3.1	 and	 5.3.2.	 A	 method	 group	 is	 not	 an	 entity	 which	 can	 be	 used	 as	 is	 in	 visual	 basic	 8,	 overloaded	
method	 resolution	 has	 to	 be	 done	 on	 it	 to	 find	 the	 appropriate	 method.	 In	 the	 implementation	 all	

83

accessible	 members	 matching	 I	 in	 type	 T	 are	 found	 and	 	 I	 classifies	 to	 the	 most	 appropriate	 one	 as	
described	 in	 section	 5.3.6.	

7. Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

5.5.4 Overloaded Method Resolution

If a type contains more methods having the same name, the correct method is
found using overloaded method resolution as described in section 5.3.6.

The overloaded method resolution from the language specification (15 p. 228)
reads as follows:

Given a method group, the applicable method in the group for an argument list is determined as
follows:

Members	 which	 are	 applicable	 and	 accessible	 are	 added	 as	 described	 as	 in	 section	 5.3.6	 instead	 of	
starting	 with	 a	 complete	 list,	 eliminating	 all	 inaccessible	 members	 from	 the	 list.	

1. Eliminate all inaccessible members from the set.

As	 described	 in	 the	 previous	 step,	 inaccessible	 members	 are	 not	 added	 to	 the	 matching	 member	 list;	
section	 5.3.6.3	 discusses	 accessibility.	 	

2. Eliminate all members from the set that are not applicable to the argument list. If the set is empty,
a compile-time error results. If only one member remains in the set, that is the applicable member.

As	 described	 in	 the	 first	 step,	 only	 members	 with	 an	 applicable	 argument	 list	 are	 added	 to	 the	
member	 list,	 also	 see	 section	 5.3.6.2.	 If	 after	 the	 construction	 of	 the	 member	 list	 it	 only	 contains	 one	
member,	 this	 is	 considered	 the	 correct	 member.	

3. Eliminate all members from the set that require narrowing coercions to be applicable to the
argument list, except for the case where the argument expression type is Object. If the set is empty,
a compile-time error results. If only one member remains in the set, that is the applicable member.

As	 described	 in	 section	 5.3.6	 all	 members	 which	 require	 the	 implicit	 narrowing	 coercion	 are	 removed	
from	 the	 list,	 if	 only	 one	 member	 remains	 in	 the	 list,	 it	 is	 considered	 the	 correct	 member.	

4. Eliminate all remaining members from the set that require narrowing coercions to be applicable
to the argument list. If the set is empty, the type containing the method group is not an interface,
and strict semantics are not being used, the invocation target expression is reclassified as a late-
bound method access. If strict semantics are being used or the method group is contained in an
interface and the set is empty, a compile-time error results. If only one member remains in the set,
that is the applicable member.

A	 precondition	 is	 that	 the	 code	 should	 be	 compilable	 with	 option	 strict	 on,	 this	 makes	 this	 step	
redundant.	

5. Given any two members of the set, M and N, if M is more applicable than N to the argument list,
eliminate N from the set. If only one member remains in the set, that is the applicable member. If
the remaining members do not all have the same signature, a compile-time error results.

All	 members	 in	 the	 list	 for	 which	 there	 exists	 a	 member	 in	 the	 list	 which	 is	 more	 applicable	 are	
removed	 from	 the	 list	 as	 described	 in	 sections	 5.3.6	 and	 5.3.6.4.	

84

6. Otherwise, it must be the case that the remaining members have the same signature because of
type parameters. Given any two members of the set, M and N, if M is less generic than N,
eliminate N from the set. If only one member remains in the set, that is the applicable member.
Otherwise, a compile-time error results.

All	 members	 in	 the	 list	 for	 which	 there	 exists	 a	 member	 in	 the	 list	 which	 is	 less	 generic	 are	 removed	
from	 the	 list	 as	 described	 in	 5.3.6	 and	 5.3.6.5.	

A member M is considered more applicable than N if their signatures are different and, for each pair
of parameters Mj and Nj that matches an argument Aj, one of the following conditions is true:

In	 section	 5.3.6.4	 is	 described	 how	 parameters	 of	 members	 are	 compared	 to	 determine	 the	 most	
applicable	 member.	

1. Mj and Nj have identical types, or

If	 the	 type	 of	 two	 parameters	 differs,	 the	 algorithm	 checks	 if	 each	 parameter	 is	 considered	 more	
applicable	 than	 the	 other.	 The	 steps	 below	 can	 be	 seen	 back	 in	 the	 algorithm.	

2. There exists a widening conversion from the type of Mj to the type Nj, or

3. Aj is the literal 0, Mj is a numeric type and Nj is an enumerated type, or

4. Mj is Byte and Nj is SByte, or

5. Mj is Short and Nj is UShort, or

6. Mj is Integer and Nj is UInteger, or

7. Mj is Long and Nj is ULong.

A member M is determined to be less generic than a member N using the following steps:

In	 section	 5.3.6.5	 is	 described	 how	 the	 least	 generic	 member	 is	 determined.	

1. If M has fewer method type parameters than N, then M is less generic than N.

One	 can	 see	 that	 in	 the	 algorithm	 the	 member	 with	 the	 least	 type	 parameters	 is	 considered	 the	 least	
generic	 member.	

2. Otherwise, if for each pair of matching parameters Mj and Nj, Mj and Nj are equally generic with
respect to type parameters on the method, or Mj is less generic with respect to type parameters on
the method, and at least one Mj is less generic than Nj, then M is less generic than N.

In	 the	 algorithm	 one	 can	 see	 the	 member	 which	 has	 all	 of	 the	 parameters	 matching	 the	 arguments	
equally	 or	 less	 generic	 with	 respect	 to	 the	 type	 parameters	 on	 the	 member	 is	 considered	 the	 least	
generic.	

3. Otherwise, if for each pair of matching parameters Mj and Nj, Mj and Nj are equally generic with
respect to type parameters on the type, or Mj is less generic with respect to type parameters on the
type, and at least one Mj is less generic than Nj, then M is less generic than N.

In	 the	 algorithm	 one	 can	 see	 the	 member	 which	 has	 all	 of	 the	 parameters	 matching	 the	 arguments	
equally	 or	 less	 generic	 with	 respect	 to	 the	 type	 parameters	 on	 the	 type	 is	 considered	 the	 least	
generic.

85

5.5.5 Applicable Methods

A method is applicable if a method call can be matched with a method call as
described in 5.3.6.2.

The applicable methods definition from the language specification (15 p. 231)
reads as followsError! Reference source not found.:

A method is applicable to a set of type arguments, positional arguments, and named arguments if the
method can be invoked using the two argument lists. The argument lists are matched against the
parameter lists as follows:

The	 algorithm	 described	 in	 section	 5.3.6.2	 determines	 if	 a	 method	 is	 applicable	 or	 not.	

1. First, match each positional argument in order to the list of method parameters. If there are more
positional arguments than parameters and the last parameter is not a paramarray, the method is
not applicable. Otherwise, the paramarray parameter is expanded with parameters of the
paramarray element type to match the number of positional arguments. If a positional argument is
omitted, the method is not applicable.

In	 the	 algorithm	 all	 positional	 arguments	 are	 matched	 in	 the	 first	 loop.	 If	 there	 are	 more	 arguments	
than	 parameters,	 they	 are	 matched	 against	 the	 parameter	 array	 if	 it	 exists.	 If	 there	 are	 more	
arguments	 than	 parameters	 which	 do	 not	 match	 a	 parameter	 array,	 the	 method	 is	 considered	 not	
applicable.	

2. Next, match each named argument to a parameter with the given name. If one of the named
arguments fails to match, matches a paramarray parameter, or matches an argument already
matched with another positional or named argument, the method is not applicable.

In	 the	 second	 loop	 in	 algorithm	 for	 every	 named	 argument	 is	 checked	 if	 there	 exists	 a	 parameter	 with	
the	 correct	 name	 which	 is	 not	 a	 parameter	 array	 and	 is	 not	 covered	 by	 another	 positional	 argument	
in	 the	 previous	 loop.	 If	 not	 found,	 the	 method	 is	 not	 considered	 applicable.	 If	 more	 named	
arguments	 match	 a	 parameter	 this	 means	 the	 input	 code	 will	 not	 compile,	 with	 the	 precondition	 the	
input	 code	 must	 be	 compilable,	 checking	 for	 more	 arguments	 with	 the	 same	 name	 is	 not	 necessary.	 	

3. Next, if parameters that have not been matched are not optional, the method is not applicable. If
optional parameters remain, the default value specified in the optional parameter declaration is
matched to the parameter. If an Object parameter does not specify a default value, then the
expression System.Reflection.Missing.Value is used. If an optional Integer parameter has the
Microsoft.VisualBasic.CompilerServices.OptionCompareAttribute attribute, then the literal 1 is
supplied for text comparisons and the literal 0 otherwise.

After checking if all named arguments match a parameter, the algorithm checks if for all parameters
not covered in the first loop a named argument exists. If one is found, the argument type is matched to
the parameter type. If the type doesn’t match the member is considered not matching. If no named
argument is found, it is checked the parameter is optional. If it is not optional the member is
considered not matching. A precondition is the code must be compilable with option strict on, option
strict on prohibits optional parameters without a specified default value.

4. Finally, if type arguments have been specified, they are matched against the type parameter list. If
the two lists do not have the same number of elements, the method is not applicable, unless the
type argument list is empty. If the type argument list is empty, type inferencing is used to try and

86

infer the type argument list. If type inferencing fails, the method is not applicable. Otherwise, the
type arguments are filled in the place of the type parameters in the signature.

In section 5.3.6.1 is described how constructed members with the correct type
arguments are added before trying to find the most applicable member. The
member is matched against the constructed member on which all type
parameters are substituted with the corresponding type arguments.

5.5.6 Type Argument Inference

The type argument inference from the language specification (15 p. 234) reads
as follows:

When a method with type parameters is called without specifying type arguments, type inference is
used to try and infer type arguments for the call. This allows a more natural syntax to be used for
calling a method with type parameters when the type arguments can be trivially inferred. For
example, given the following method declaration:

Module Util

 Function Choose(Of T)(ByVal b As Boolean, ByVal first As T, _

 ByVal second As T) As T

 If b Then

 Return first

 Else

 Return second

 End If

 End Function

End Class

it is possible to invoke the Choose method without explicitly specifying a type argument:

' calls Choose(Of Integer)

Dim i As Integer = Util.Choose(True, 5, 213)

' calls Choose(Of String)

Dim s As String = Util.Choose(False, "foo", "bar")

Through type inference, the type arguments Integer and String are determined from the arguments to
the method.

Given a set of regular arguments matched to regular parameters, type inference inspects each
argument type A and its corresponding parameter type P to infer type arguments. Each pair (A, P) is
analyzed as follows:

1. Nothing is inferred from the argument (but type inference succeeds) if any of the following are
true:

a. P does not involve any method type parameters.

b. The argument is the Nothing literal.

c. The argument is a method group.

87

In	 our	 implementation	 described	 in	 section	 5.3.6.1,	 all	 type	 arguments	 must	 be	 determined	 to	
succeed.	 If	 the	 type	 argument	 cannot	 be	 inferred	 from	 an	 argument,	 this	 is	 no	 problem	 as	 long	 as	
other	 arguments	 provide	 enough	 information	 to	 determine	 the	 type	 arguments.	

2. If P is an array type and A is an instantiation of IList(Of T), ICollection(Of T), or IEnumerable(Of
T), then replace P with the element type of P, and A with the type argument of A and restart the
process.

This	 step	 states	 IList(Of	 T),	 ICollection(Of	 T)	 and	 IEnumerable(OF	 T)	 match	 the	 array	 type	 T().	
This	 feature	 is	 not	 implemented	 yet	 in	 our	 implementation.	 If	 this	 case	 occurs,	 it	 could	 be	 a	
member	 reference	 cannot	 be	 classified	 or	 possibly	 classify	 to	 the	 wrong	 member.	

3. If P is an array type and A is an array type of the same rank, then replace A and P respectively
with the element types of A and P and restart this process.

If	 P	 is	 an	 array	 type	 and	 A	 is	 an	 array	 type	 of	 the	 same	 rank,	 then	 the	 element	 type	 of	 P	 is	 the	 type	
parameter.	 If	 the	 type	 argument	 for	 it	 is	 sought	 and	 A	 is	 the	 first	 instance,	 the	 element	 type	 of	 A	 will	
be	 the	 type	 argument	 found	 by	 the	 algorithm.	

4. If P is an array type and A is not an array type of the same rank, then type inference fails for the
generic method.

If	 the	 type	 argument	 for	 P	 is	 sought	 and	 A	 is	 not	 an	 array	 type,	 the	 type	 argument	 inference	 fails	 in	
the	 implementation.	 It	 could	 be	 another	 argument	 still	 would	 result	 in	 a	 type	 argument	 but	 the	
resulting	 constructed	 member	 will	 not	 match	 the	 signature.	

5. If P is a method type parameter, then type inference succeeds for this argument, and A is the type
inferred for that type parameter.

If	 a	 type	 argument	 is	 sought	 for	 P	 and	 at	 the	 first	 instance	 P	 is	 used	 directly	 as	 a	 parameter,	 then	 in	
the	 implementation	 the	 type	 of	 the	 argument	 provided	 for	 this	 parameter	 will	 be	 the	 type	 argument.	

6. Otherwise, P must be a constructed type. If, for each method type parameter MX that occurs in P,
exactly one type TX can be determined such that replacing each MX with each TX produces a type
to which A is convertible by a standard implicit conversion, then inference succeeds for this
argument, and each TX is the type inferred for each MX. Method type parameter constraints, if
any, are ignored for the purpose of type inference. If, for a given MX, no TX exists or more than
one TX exists, then type inference fails for the generic method (a situation where more than one
TX exists can only occur if P is a generic interface type and A implements multiple constructed
versions of that interface).

In	 the	 implementation	 TX	 will	 be	 the	 type	 of	 the	 argument	 at	 the	 first	 occurrence	 of	 MX.	 No	 least	
general	 base	 type	 for	 all	 occurrences	 of	 MX	 as	 described	 in	 this	 step	 is	 found	 by	 the	 implementation.	
The	 situation	 in	 which	 this	 will	 result	 in	 a	 wrong	 classification	 is	 very	 rare	 though.	 	

7. If a parameter is a paramarray, then type inference is first performed against the parameter in its
normal form. If type inference fails, then type inference is performed against the parameter in its
expanded form.

The	 type	 inference	 implementation	 ignores	 the	 fact	 a	 parameter	 can	 be	 a	 parameter	 array,	 this	
means	 only	 the	 normal	 form	 of	 the	 parameter	 is	 evaluated.	 	

88

8. If all of the method arguments have been processed successfully by the above algorithm, all
inferences that were produced from the arguments are pooled. This pooled set of inferences must
have the following properties:

a. Every type parameter of the method must have a matching inferred type argument.

b. If a type parameter occurred more than once, all of the inferences about that type
parameter must infer the same type argument.

In	 the	 implementation,	 when	 a	 generic	 member	 is	 referenced,	 a	 constructed	 member	 is	 added	 if	 for	
all	 type	 parameters	 a	 type	 argument	 can	 be	 inferred	 from	 the	 arguments.	 Member	 resolution	 is	 than	
applied	 on	 all	 members	 including	 the	 constructed	 members.	 If	 not	 all	 arguments	 fit	 the	 parameter	
types	 of	 the	 constructed	 member,	 the	 constructed	 member	 won’t	 be	 regarded	 a	 match.	 	

5.5.7 Index Expressions

The index expression resolution from the language specification (15 p. 235)
reads as follows:

An index expression results in an array element or reclassifies a property group into a property
access. An index expression consists of, in order, an expression, an opening parenthesis, an index
argument list, and a closing parenthesis. The target of the index expression must be classified as either
a property group or a value. An index expression is processed as follows:

1. If the target expression is classified as a value and if its type is not an array type, Object, or
System.Array, the type must have a default property. The index is performed on a property group
that represents all of the default properties of the type. Although it is not valid to declare a
parameterless default property in Visual Basic, other languages may allow declaring such a
property. Consequently, indexing a property with no arguments is allowed.

As	 can	 be	 read	 in	 section	 5.3.5	 when	 the	 expression	 classifies	 to	 a	 value	 which	 is	 not	 of	 an	 array	 type,	
a	 default	 property	 matching	 the	 arguments	 is	 sought.	

2. If the expression results in a value of an array type, the number of arguments in the argument list
must be the same as the rank of the array type and may not include named arguments. If any of the
indexes are invalid at run time, a System.IndexOutOfRangeException exception is thrown. Each
expression must be implicitly convertible to type Integer. The result of the index expression is the
variable at the specified index and is classified as a variable.

In	 section	 5.3.5	 can	 be	 seen	 that	 if	 the	 expression	 results	 in	 an	 array	 type,	 the	 element	 type	 of	 the	
array	 type	 is	 regarded	 to	 be	 the	 type	 the	 index	 expression	 classifies	 to.	 If	 the	 expression	 results	 in	 an	
array	 type	 the	 only	 possibilities	 are	 that	 the	 complete	 index	 expression	 classifies	 to	 an	 element	
within	 the	 array	 of	 which	 the	 element	 type	 of	 the	 array	 is	 the	 type	 or	 the	 compilation	 will	 fail.	
Because	 a	 precondition	 is	 the	 input	 code	 is	 compilable,	 it	 is	 correct	 to	 state	 that	 any	 index	 argument	
is	 a	 match	 and	 the	 element	 type	 is	 always	 the	 correct	 type	 to	 classify	 to.	 	

3. If the expression is classified as a property group, overload resolution is used to determine
whether one of the properties is applicable to the index argument list. If the property group only
contains one property that has a Get accessor and if that accessor takes no arguments, then the
property group is interpreted as an index expression with an empty argument list. The result is
used as the target of the current index expression. If no properties are applicable, then a compile-
time error occurs. Otherwise, the expression results in a property access with the associated
instance expression (if any) of the property group.

89

If	 the	 expression	 classifies	 to	 a	 property	 group	 that	 means	 the	 whole	 index	 expression	 classifies	 to	 a	
specific	 property	 or	 a	 compile-‐time	 error	 occurs.	 A	 precondition	 is	 the	 code	 is	 compilable,	 so	 the	
index	 expression	 will	 always	 classify	 to	 one	 property.	 In	 section	 	 5.3.6	 is	 described	 how	 the	 property	
will	 be	 found	 by	 applying	 member	 resolution.	

4. If the expression is classified as a late-bound property group or as a value whose type is Object or
System.Array, the processing of the index expression is deferred until run time and the indexing is
late-bound. The expression results in a late-bound property access typed as Object. The
associated instance expression is either the target expression, if it is a value, or the associated
instance expression of the property group. At run time the expression is processed as follows:

a. If the expression is classified as a late-bound property group, the expression may result in
a method group, a property group, or a value (if the member is an instance or shared
variable). If the result is a method group or property group, overload resolution is applied
to the group to determine the correct method for the argument list. If overload resolution
fails, a System.Reflection.AmbiguousMatchException exception is thrown. Then the result
is processed either as a property access or as an invocation and the result is returned. If
the invocation is of a subroutine, the result is Nothing.

b. If the run-time type of the target expression is an array type or System.Array, the result of
the index expression is the value of the variable at the specified index.

c. Otherwise, the run-time type of the expression must have a default property and the index
is performed on the property group that represents all of the default properties on the
type. If the type has no default property, then a System.MissingMemberException
exception is thrown.

Late bound expressions are not possible if the option strict is set. A precondition
is that the option strict is set so this step does not apply.

5.5.8 Operator resolution

The operator resolution from the language specification (15 p. 243) reads as
follows:

Given an operator type and a set of operands, operator resolution determines which operator to use
for the operands. When resolving operators, user-defined operators will be considered first, using the
following steps:

As	 discussed	 in	 section	 5.4.1,	 user-‐defined	 operators	 are	 considered	 first;	 only	 if	 no	 user-‐defined	
operator	 is	 found,	 a	 built	 in	 operator	 is	 sought.	

1. First, all of the candidate operators are collected. The candidate operators are all of the user-
defined operators of the particular operator type in the source type and all of the user-defined
operators of the particular type in the target type. If the source type and destination type are
related, common operators are only considered once.

As	 discussed	 in	 section	 5.4.1.1,	 all	 matching	 operators	 are	 extracted	 from	 the	 source	 and	 target	
types.	 Only	 operators	 of	 which	 the	 parameters	 match	 the	 type	 of	 the	 operands	 are	 collected.	

2. Then, overload resolution is applied to the operators and operands to select the most specific
operator.

90

Of	 all	 matching	 operators,	 an	 exact	 match	 is	 selected	 if	 available,	 else	 the	 most	 specific	 match	 is	
selected.	 An	 operator	 is	 more	 specific	 than	 another	 if	 the	 first	 parameter	 type	 that	 is	 different	 is	
more	 specific.	

When resolving overloaded operators, there may be differences between classes defined in Visual
Basic and those defined in other languages:

3. In other languages, Not, And, and Or may be overloaded both as logical operators and bitwise
operators. Upon import from an external assembly, either form is accepted as a valid overload for
these operators. However, for a type which defines both logical and bitwise operators, only the
bitwise implementation will be considered.

4. In other languages, >> and << may be overloaded both as signed operators and unsigned
operators. Upon import from an external assembly, either form is accepted as a valid overload.
However, for a type which defines both signed and unsigned operators, only the signed
implementation will be considered.

These	 rules	 are	 not	 implemented;	 all	 user	 defined	 operaters	 are	 resolved	 in	 the	 same	 way;	 it	 is	
undefined	 if	 the	 bitwise	 or	 logical	 implementation	 or	 signed	 or	 unsigned	 operators	 are	 selected.	

If no user-defined operator is most specific to the operands, then pre-defined operators will be
considered. If no pre-defined operator is defined for the operands, then a compile-time error results.

When	 no	 user-‐defined	 operator	 is	 found,	 the	 pre-‐defined	 operator	 is	 looked	 up.	 The	 precondition	
that	 the	 source	 is	 compilable	 guarantees	 an	 operator	 is	 available.	

Each operator lists the pre-defined types it is defined for and the type of the operation performed
given the operand types. The result of type of a pre-defined operation follows these general rules:

5. If all operands are of the same type, and the operator is defined for the type, then no conversion
occurs and the operator for that type is used.

6. Any operand whose type is not defined for the operator is converted using the following steps and
the operator is resolved against the new types:

a. The operand is converted to the next widest type that is defined for both the operator and
the operand and to which it is implicitly convertible.

b. If there is no such type, then the operand is converted to the next narrowest type that is
defined for both the operator and the operand and to which it is implicitly convertible.

c. If there is no such type or the conversion cannot occur, a compile-time error occurs.

7. Otherwise, the operands are converted to the wider of the operand types and the operator for that
type is used. If the narrower operand type cannot be implicitly converted to the wider operator
type, a compile-time error occurs.

Despite these general rules, however, there are a number of special cases called out in the operator
results tables.

Note For formatting reasons, the operator type tables abbreviate the predefined names to their first
two characters. So “By” is Byte, “UI” is UInteger, “St” is String, etc. “Err” means that there is no
operation defined for the given operand types.

91

The type specification provides all built in operator type results, these type
results are all put in tables which provide functionality to lookup a resulting type
given an operator type and two operand types.

5.6 Summary
In this chapter we discussed how the type system constructed during the first
pass of our semantic analysis is used to classify expressions, or resolve
expressions to a type. First we explain how the result of the process is
constructed in a way to make it easy to deduct its type, origin and (when
applicable) the constant value of an expression.

Next, we described how types are identified and queried from the type system. A
type is identified by creating a key using the unique id of the containing project
or assembly together with their fully qualified name. Finding a correct type is
done by constructing different candidate keys and try to match them with the
types in the type system. These candidates are constructed in such order that
the first hit is the correct type according to the resolution rules described in the
language specification (15).

The third step in our classification process shows how a reference to a local
variable or member is resolved. Just as with searching for a correct type, the
member resolution is based on trying out different ways to classify the identifier
in such a way the first hit is the correct one according to the resolution rules in
the Visual Basic language specification (15)Error! Reference source not
found..To classify a correct we need to match a signature and to decide which of
the potentially multiple matching members is the most applicable one. To classify
to members in a module it is necessary to find modules which are in a certain
namespace.

In addition to type and member references, expressions also classify to a type.
An expression can for example be an arithmetic operation. The involved operator
determines the resulting type of the expression. Which operator is used is
determined by the operator type of the expression together with the types the
operands classify to. The operator can be a built in operator in case the operands
of the expressions classify to intrinsic types, but it also can be user defined. In
the latter case operator resolution steps need to be done to find the correct
operator declaration.

Throughout the chapter, we described how our resolution algorithms relate to the
actual Visual Basic language specification (15). This description should provide a
means to verify the correctness and completness of our implementation.
Moreover, this also reflects on the complexity and effort required to generate a
type resolution mechanism, an aspect which is much too often overlooked by the
literature and practice on static analysis, but which is crucial when building
language processing tools.

92

6 Code refactoring
In previous chapters we have shown how source code is transformed into
abstract syntax trees (ASTs), how a type system is built and how type resolution
can be used to determine the type and origin of values represented by
expressions in the code. In this chapter we show how this functionality can be
used to find semantically equally pieces of code and optionally remove them by
rewriting the code using a unifying method extraction refactoring. Refactorings
are a way to transform code in a behaviour preserving manner (15). One of them
is the method extraction pattern described in (11 p. 110). The method extraction
pattern describes how a fragment of code can be lifted out and placed in a newly
created method, and how the original fragment can be replaced by a call to the
extracted method.

 A “simple” method extraction is based on one code fragment. In contrast the
method extraction that needs to be performed in our context takes two code
fragments and constructs a method to which a call can replace both fragments.
For lack of a better term, we call this a unifying method extraction. To perform a
useful unifying method extraction in the context of clone refactoring, the
matching algorithm must be constructed in such a way that its results are code
clones which are fit to be extracted.

 The refactoring system looks like shown in the diagram below.

The input of the refactoring system is formed by two source code fragments:
source fragment a and source fragment b. If these contain a semantically equal
sub fragment, the output will be three code fragments. One fragment (source
fragment c) will be a newly created method containing a replacement for the
semantically equal sub fragments from the input. The other two fragments
(source fragment a’ and source fragment b’) are source fragment a and source
fragment b transformed in such a way that the semantically equal sub fragments
are replaced by a call to the newly created method (c) and the external
behaviour of source fragment a’ and source fragment b’ are identical to source
fragment a and source fragment b.

Consider the next example, in which the next two code fragments are the bodies
of some members.

93

1 Dim c As Integer
2 c = 2
3 c += 1
4 For a As Integer = 1 To 10
5 c += a
6 Next

1 Dim c As Integer = 0
2 c += 1
3 For b As Integer = 1 To 100
4 c += b
5 Next
6 c += 1
7 c += 1

If we want to refactor these fragments manually by creating a new method to
which a call replaces the matching highlighted fragment without changing the
external behaviour of the program, first we need to identify the matching sub-
fragments. When the sub-fragments are identified, a new method is created. In
the new method we ignore the fact the control variables of the loops ‘a’ and ‘b’
are named differently and just pick a name, say ‘a’. The upper bound
expressions ‘10’ and ‘100’ differ, so they would be replaced with a variable. The
result could be as follows.

1 Function NewFunc(ByVal c As Integer, ByVal newVar As
Integer) As Integer
2 c += 1
3 For a As Integer = 1 To newVar
4 c += a
5 Next
6 Return c
7 End Function	

The code in the example could be altered as follows without changing the
external behaviour of the program.

1 Dim c As Integer
2 c = 2
3 c = NewFunc(c, 10)

1 Dim c As Integer = 0
2 c = NewFunc(c, 100)
3 c += 1
4 c += 1

We ignore here the fact variable ‘a’ and ‘b’ have different names; because both
‘a’ and ‘b’ are of the same type and used exactly the same way in both code
fragments, they can be safely replaced with a new variable named ‘a’. We chose
to replace the upper bound expressions with a variable because both ‘10’and
‘100’ are of the same type in the fragments, but their value differs. Implicitly the
variable ‘c’ is replaced by a new variable as well. Hence the newly created
method contains three variables; ‘a’, ‘c’ and ‘newVar’, two of which (‘c’ and
‘newVar’) became method parameters,and one of them (‘c’) is returned by the
method. The values of ‘c’ and ‘newVar’ need to be passed as arguments because
their values differ in both original fragments. The value of ‘c’ is returned because
it is used again after the method call.

Chances that a programmer doing manual refactoring would next like to further
transform the two fragments as follows.

94

1 Dim c = NewFunc(2, 10) 1 Dim c = NewFunc(0, 100)
2 c += 1
3 c += 1

In the first step of this example, except for the method extraction itself only
substitutions are done, the statements are not changed. The extracted method
body begins with a compound assignment and after that has a for-loop
statement containing a compound assignment in its body, exactly the same as in
the replaced fragments. The second step involves transformations; multiple
statements are combined to one different statement.

For implementation simplicity, in this thesis only substitutions and no
transformations are performed. Hence, a unifying method extraction as done in
the first step of the example is done. Clean up transformations as illustrated in
the second step of the example are not performed, but they can be added in
future work if so desired.

How duplicate fragments are related to eachother influences how they can be
removed. In (16) three cases of code duplication are identified:

• Duplication inside of a single class.
• Duplication between sibling classes.
• Duplication between unrelated classes.

Each of these cases needs a different approach when refactored. The first case is
the simplest one; no special care has to be taken about class boundaries. In the
second case, where classes share the same super class, it might be possible to
refactor the code clone away by placing a unifying extracted method in the
super class. The most difficult case is where there are code clones in unrelated
classes; this could indicate a new responsibility which could be factored out into
its own class.

The scope a method is contained in influences how variables and members can
be reached. If, for example, an extractable method needs to access members of
an instance of type ‘A’, how the method is to be constructed depends on where
the method resides.

 For example, if the extracted method is placed into ‘A’ itself, then other methods
of ‘A’ are directly accessible from the method. If the method is placed a super
type of ‘A,’ only the methods in the super type are directly accessible. If the
method is placed in another completely different type, an instance of ‘A’ needs to
be available in some other way to access methods on it.

If a unifying method extraction needs to be done on fragments in unrelated
types, first should be determined what the best place would be to place the
extracted method. After the place is determined, depending on the case, the
implications can be numerous. The simplest case is to extract a unifying method
from two fragments if the two fragments are contained within the same type
declaration. In this thesis, only the simplest case is addressed.

95

To do a unifying method extraction, first semantically equal fragments of code
need to be identified which are suitable to extract. From these fragments a
selection has to be made. After this the selected match has to be rewritten.

In section 6.1 is discussed how semantically identical statements are found by
matching. In section 6.2 is discussed how code fragments are selected for
rewriting. Section 6.3 discusses the rewriting itself.

6.1 Matching
In the matching stage we try to find all code fragments which are semantically
equal. As described before only expression substitutions are allowed to match
two statements and no transformations. This means that for two matching
fragments of code every statement astatement_i matches statement bstatement_i. This
allows for matching statements one by one without looking at the context of the
statements. In the matching process it is allowed to substitute expressions to
make two statements match. If different expressions substitutions are performed
in matching fragments it could happen that the data flow is altered. It is
necessary to check if this is the case to guarantee a proposed refactoring will not
alter the external behaviour of the program.

We define two sub fragments a’ and b’ from fragments a and b to match if they
are contiguous subsets of a and b, they contain the same number of statements,
for every index i statement astatement_i matches statement bstatement_i and the data
flow with respect to the original fragments is not changed.

Section 6.1.1 discusses what strategy is used to find matching fragments.
Section 6.1.2 discusses the matching of two statements or expressions. Section
6.1.3 discusses how is ensured a unifying method extraction won’t change the
dataflow with a fragment.

6.1.1 Finding matching code fragments

The goal of this stage is to find contiguous sets (runs) of matching statement
pairs. As described in section 66.1, only fragments of code completely contained
in the body of a member are considered, so to find fragments, only bodies of
members are compared.

As discussed in section 6 only code clones are searched in which both matching
pairs are contained by the same type. For every type in the analyzed code, code
clones are sought by matching the body of each member with each other
member within the same type, including the member itself. To find matching

96

code fragments first all pairs of matching statements are collected. How is
determined if two statements match is discussed in section 6.1.2. These
matching statement pairs are then combined into contiguous runs.

Although on each separate pair of statements a unifying method extraction can
be applied without changing the dataflow and thus the external behaviour of the
analyzed program, multiple matching statement pairs combined can change the
dataflow. This is because the matching algorithm includes a transformation
where some expressions can be substituted with variables. If there are
dependencies between extracted expressions and other variables in the match,
the dataflow wil change if a unifying method extraction is applied on it. Section
6.1.3 discusses how is determined if such dependencies exist in a group of
matching statement pairs.

The contiguous groups of pairs of matching statements which don’t change
dataflow and fulfil selection criteria discussed in section 6.2 are added to a set.
From this set, the best candidates are kept by removing all candidates for which
in the set an overlapping match exists which has more lines of code.

6.1.2 Matching statements

As described above, to find matching code fragments, it is necessery to be able
to match statements.

The statement matching algorithm is based on the assumption that every
expression which results in a value of a certain type can be substituted with a
variable of that type containing the resulting value of the expression.

The kind of statement is what the statement actually does. For example an
assignment statement is a statement where the result of a source expression is
assigned to a member referenced in a target expression; a declaration statement
for example declares a local variable and a for-loop statement loops its body. As
we do not perform code transformations, the kinds of two statements need to be
the same for the statements to match.

So we regard two statements first and second to match if the kind of statement
is the same and for each pair of properties firstproperty_i and secondproperty_i, which
resolve to types firstproperty_i_type and secondproperty_i_type holds; firstproperty_i_type and
secondproperty_i_type are the same or there exists a widening from one of the types
to the other, and, if the statements are block statements, for each pair of
statements firststatement_i and secondstatement_i, firststatement_i matches secondstatement_i.

Not every pair of expressions which classify(resolve) to the same result type
have to be substituted with a variable; if the expressions resolves to the same
declaration, it only needs to be substituted if they resolve to a local variable to
match.

97

Consider the for-loops in the following example again. Each for-loop is a
statement on its own; its properties are a control variable declarator, a lower
bound expression and a body which contains one statement.

1 For a As Integer = 1 To 10
2 c += a
3 Next

1 For b As Integer = 1 To 100
2 c += b
3 Next

First, the control variable declarators a and b they both classify to themselves
(as declarators), which means they don’t resolve to the same declaration. Both a
and b are both of type Integer so they can be substituted by a variable.

The lower bound expression is in both cases ‘1’, they are the same, so they
match. The upper bound expression is ‘10’ in the left case and ‘100’ in the right,
which is a different value but the expression classifies to the same type, so they
can be substituted by a variable. The body of the for loop contains one
statement, a compound assignment. The operators of both assignments are the
same. The target expression ‘c’ resolves to a local variable declaration in both
cases, which is not the same, but these local variables do classify to the same
type and thus they do match. The source expression resolves in both cases to
the control variable declaration, so don’t resolve to the same declaration, but
both do have the same type, so they can be substituted with a variable.

Section 6.1.2.1 describes how two statements are matched in more detail;
section 6.1.2.2 describes the matching of expressions .

6.1.2.1 Matching statements- implementation

To find matches, the ASTs and resolving algorithms described in chapter 5 are
used. Statements are built up out of keywords, operators, expressions and other
statements. Each kind of statement has its own representation in the AST in the
form of a different kind of AST node (not to be confused with the type in the type
system; hence, we use ‘kind’ for AST nodes and ‘type’ for type system nodes).
The keywords generally define the kind of statement and are abstracted away in
the ASTs. The operators, statements and expressions which are part of the
statement are stored in the AST node representing the statement.

Statements have semantics. To find semantically equal code fragments between
which the statement kinds differ would mean transformations of the code have to
be performed to match one code fragment to the other; as already mentioned,
this falls out of the scope of this project and therefore for two statements to
match, they have to be of the same kind.

Expressions can be among others, literals, arithmetic operations and member
references. They result in a value which has a type, as explained in the
classification algorithm. Expressions which are different sometimes can be lifted
out of the code fragment by substituting them with variables.

98

To facilitate the rewriting of matches, information about the match is stored in
the algorithm result. In this result, both the matching ASTs are stored together
with a third version which is the unified version of both ASTs. Where an
expression needs to be substituted to match two statements, the corresponding
node in the unified version of the ASTs is replaced by a variable placeholder.
Every substitution performed is stored in a list in the match result. Every time
sub expressions are matched, the results are combined so the resulting match
result contains all the substitutions. How this list of substitutions is used is
discussed in section 6.2 and 6.3, this section focuses on the matching itself.

Because only statements of the same kind are considered, we first compare the
kinds of the statements. If two statements are of a different kind, the match is
rejected; else the match is verified by a specific algorithm for each kind of
statement. Section 6.1.2.1.1 discusses how two blocks of statements
encapsulated in another statement are matched. In the sections after that each
kind of statement is discussed in a subsection as follows:

• Assignment statement 6.1.2.1.2
• Compound assignment statement 6.1.2.1.3
• Call statement 6.1.2.1.4
• Local declaration statement 6.1.2.1.5
• If block statement 6.1.2.1.6
• Else if block statement 6.1.2.1.7
• Else block statement 6.1.2.1.8
• For block statement 6.1.2.1.9
• For Each block statement 6.1.2.1.10
• While block statement 6.1.2.1.11
• Do block statement 6.1.2.1.12
• Return statement 6.1.2.1.13
• Try block statement 6.1.2.1.14
• Using block statement 6.1.2.1.15
• With block statement 6.1.2.1.16
• SyncBlock block statement 6.1.2.1.17
• Select block statement 6.1.2.1.18

6.1.2.1.1 Matching	 a	 statement	 block	
In the grammar of Visual Basic, different block statement kinds exist. A block
statement is a statement which encapsulates one or more blocks of statements.
An example of a block statement is an ‘if’ statement as shown below.

1 If a = 1 Then
2 a = 2
3 c += a
4 Next

In the example the ‘if’ block statement covers lines 1 to 4, it encapsulates a
block of statements which is on lines 2 and 3.

99

For a block statement to match another block statement, it means that besides
all the other properties also all the statements encapsulated in the statement
must match. As described before, only expression substitutions are used to make
statements match, transformations are not performed. This means the number
of statements must be the same and each statement must match the statement
in the other block at the same position.

The matching algorithm for statement blocks is as follows:

if	 the	 number	 of	 statements	 in	 each	 statement	 block	 is	 not	 the	 same	
reject	 the	 match	

for	 each	 pair	 of	 statements	 at	 the	 same	 position	 in	 the	 list	 of	 statements	
if	 the	 statement	 dont	 match	
	 reject	 the	 match	

accept	 the	 match	

6.1.2.1.2 Matching	 assignment	 statements	
An assignment statement is a statement in the form:

Expression = Expression

The result of a source expression is stored in a declaration specified by a target
expression.

To verify if two assignment statements match, the following algorithm is used:

if	 the	 two	 target	 expressions	 dont	 match	
reject	 the	 match	

if	 the	 two	 source	 expressions	 dont	 match	
reject	 the	 match	

accept the match

6.1.2.1.3 Matching	 compound	 assignment	 statements	
A compound assignment statement is a statement in the form:

Expression CompoundBinaryOperator Expression

Where:

CompoundBinaryOperator ::= ^= | *= | /= | \= | += | -= | &= | <<= | >>=

The binary operator is applied to the result value of the source expression and
the result value of the target expression. The result of the operation is stored in
the declaration the target expression resolves to.

To verify if two compound assignment statements match, the following algorithm
is used:

if	 the	 operator	 is	 not	 the	 same	 in	 both	 statements	
	 reject	 the	 match.	

if	 the	 two	 target	 expressions	 dont	 match	
	 reject	 the	 match.	

if	 the	 two	 source	 expressions	 dont	 match	

100

	 reject	 the	 match.	
accept the match

6.1.2.1.4 Matching	 call	 statements	
A call statement is a statement in the form:

 [Call] Expression [([ArgumentList])]

This is a call to the declaration specified by the expression and the arguments.

Both call statements are resolved as a whole and the result is matched as
described in section 6.1.2.2.2. If the match results in a complete substitution the
match is rejected. If the resolve result match is rejected, the statement match is
rejected.

6.1.2.1.5 Matching	 local	 declaration	 statements	
A local declaration statement is a statement in the form:

LocalModifier VariableDeclarators

Where:

LocalModifier ::= Static | Dim | Const

VariableDeclarators ::=
 VariableDeclarator |
 VariableDeclarators , VariableDeclarator

VariableDeclarator ::=
 VariableIdentifiers [As [New] TypeName [(ArgumentList)]] |
 VariableIdentifier [As TypeName] [= VariableInitializer]

VariableIdentifiers ::=
 VariableIdentifier |
 VariableIdentifiers , VariableIdentifier

VariableIdentifier ::= Identifier [ArrayNameModifier]

In a local declaration statement one or more local variables are declared and
potentially initialized.

A local declaration statement consist of one or more variable declarators which
share a local modifier but otherwise are independent of each other. Within a
variable declarator one or more variables can be declared which share the same
type.

The matching algorithm is implemented in such a way all variables need to be
declared in the right order to match. The order in which variables are declared
does not influence the semantics of the declaration, although the order of
initialization could in theory. However, as described in section 6, we decided not
to apply transformationsto make statements match.

101

To verify if two local declaration statements match, the following algorithm is
used:

if	 the	 number	 of	 variable	 declarations	 is	 not	 the	 same	
reject	 the	 match	

for	 each	 pair	 of	 variable	 declarations	 on	 the	 same	 position	
if	 the	 types	 of	 the	 declarations	 dont	 match	
	 	 reject	 the	 match	

	 	 if	 the	 initializers	 dont	 match	
	 	 	 	 reject	 the	 match	
	 	 if	 the	 number	 of	 variable	 identifiers	 is	 not	 the	 same	
	 	 	 reject	 the	 match	

	 for	 each	 pair	 of	 identifiers	 on	 the	 same	 position	
	 	 try	 to	 substitute	 them	
	 if	 the	 substitution	 fails	
	 	 	 reject	 the	 match	
if	 the	 number	 of	 variable	 identifiers	 differs	

	 	 	 reject	 the	 match	
for	 each	 pair	 of	 arguments	 on	 the	 same	 position	
	 	 if	 the	 argument	 expressions	 dont	 match	

	 	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.6 Matching	 if	 block	 statements	
An if block statement is a statement of the form:

If BooleanExpression [Then]
 [Block]
 [ElseIfStatement+]
 [ElseStatement]
End If

If the result of the Boolean expression is true, the statements in the block are
executed, if not, statements in the first elseif statement of which the Boolean
expression is true are executed. If none of the Boolean expressions where true,
the statements in the else statement are executed.

To verify if two if block statements match, the following algorithm is used:

if	 the	 Boolean	 expressions	 dont	 match	
	 reject	 the	 match	
if	 the	 statement	 blocks	 dont	 match	

reject	 the	 match	
if	 one	 of	 the	 if	 block	 statements	 contain	 elseif	 statements	 and	 the	 other	 doesn’t	

reject	 the	 match	
if	 both	 of	 the	 if	 block	 statements	 contain	 elseif	 statements	

if	 the	 elseif	 statements	 dont	 match	
	 	 	 reject	 the	 match	
if	 one	 of	 the	 if	 block	 statements	 contains	 an	 else	 block	 statement	 and	 the	 other	 doesn’t	

reject	 the	 match	
if	 both	 of	 the	 if	 block	 statements	 contain	 an	 else	 statement	

if	 the	 else	 statements	 dont	 match	

102

	 	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.7 Matching	 elseif	 block	 statements	
An elseif block statement is a statement of the form:

ElseIf BooleanExpression [Then]
[Block]

The elseif block statement is part of the if block statement described in section
6.1.2.1.6. If all Boolean expressions preceding this statement in the if block
statement result in false, the Boolean expression of this statement is evaluated,
if the result is true the statements in the statement block are executed.

The matching algorithm for two else if block statements is as follows:

if	 the	 Boolean	 expressions	 dont	 match	
reject	 the	 match	

if	 the	 statement	 blocks	 dont	 match	
reject	 the	 match	

accept	 the	 match	

6.1.2.1.8 Matching	 else	 block	 statements	
An else block statement is a statement of the form:

Else
[Block]

The else block statement is a part of the if block statement described in section
6.1.2.1.6. If all Boolean expressions in the if statement return false, the
statements in the statement block are executed.

The verify if two else block statements match, the following algorithm is used:

if	 the	 statement	 blocks	 dont	 match	
reject	 the	 match	

accept	 the	 match	

6.1.2.1.9 Matching	 for	 block	 statements	
A for block statement is a statement of the form:

For LoopControlVariable = Expression To Expression [Step Expression]
[Block]
Next [NextExpressionList]

NextExpressionList ::=
 Expression |
 NextExpressionList , Expression

LoopControlVariable ::=
 Identifier [ArrayNameModifier] As TypeName |
 Expression

103

The for block statement is a loop. A control variable is initialized with the result
value of the lower bound expressions and increased every iteration with the
result value of the step expression, or 1 if no step expression is provided. The
loop loops until the control variable reaches the result value of the upper bound
expression.

As can be seen in the grammar above, the control variable can be declared in the
for block statement itself, but could also just be referred to in an expression and
be declared elsewhere. Because only expression substitutions and no
transformations are used, two for statements only will match if both control
variables are declared in the for block statement or outside the for block
statement.

To verify if two for block statements match, the following algorithm is used:

if	 one	 of	 the	 for	 block	 statements	 has	 its	 control	 variable	 declared	 in	 the	 statement	 itself	 and	 the	
other	 hasn’t	

reject	 the	 match	
if	 the	 control	 variable	 is	 declared	 in	 the	 statement	 itself	 in	 both	 for	 block	 statements	

if	 the	 variable	 declarators	 dont	 match	
	 	 	 reject	 the	 match	
else	

if	 the	 expression	 dont	 match	
	 	 	 reject	 the	 match	

if	 the	 lower	 bound	 expressions	 dont	 match	
reject	 the	 match	

if	 the	 upper	 bound	 expressions	 dont	 match	
	 	 reject	 the	 match	
if	 one	 of	 the	 for	 loop	 statements	 has	 a	 step	 expression	 and	 the	 other	 hasn’t	

	 reject	 the	 match	
if	 both	 of	 the	 for	 loop	 statements	 have	 a	 step	 expression	

if	 the	 step	 expressions	 dont	 match	
	 	 	 reject	 the	 match.	

if	 the	 contained	 statements	 dont	 match	
	 reject	 the	 match	

accept	 the	 match	

6.1.2.1.10 Matching	 for	 each	 block	 statements	
A for each block statements is a statement of the form:

For Each LoopControlVariable In Expression
[Block]
Next [Expression]

LoopControlVariable ::=
 Identifier [ArrayNameModifier] As TypeName |
 Expression

The for each block statement is a loop. The expression must result in a
collection. The loop for every item in the collection the loop is iterated one time,
with the item assigned to the control variable.

104

Just as the for block statement the control variable can be declared inside or
outside of the for each block statement. Because only substitutions and no
transformations are used, two for each statements only will match if both control
variables are declared in the for each block statement or outside the for each
block statement.

To verify if two for each block statements match, the following algorithm is used:

if	 one	 of	 the	 for	 each	 statements	 has	 its	 control	 variable	 declared	 in	 the	 statement	 itself	 and	 the	
other	 hasn’t	

reject	 the	 match	
if	 the	 control	 variable	 is	 declared	 in	 the	 statement	 itself	 in	 both	 for	 each	 block	 statements	

If	 the	 variable	 declarators	 dont	 match	
	 	 	 	 reject	 the	 match	
else	

if	 the	 expression	 dont	 match	
	 	 	 	 reject	 the	 match	
if	 the	 collection	 expressions	 dont	 match	

	 	 reject	 the	 match	
if	 the	 contained	 statements	 dont	 match	

	 	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.11 Matching	 while	 block	 statements	 	
The while block statement is a statement of the form:

While BooleanExpression
[Block]
End While

The while block statement is a loop. The loop is iterated as long as the Boolean
expression results in true.

To verify if two for each block statements match, the following algorithm is used:

If	 the	 Boolean	 expressions	 dont	 match	
reject	 the	 match	

if	 the	 contained	 statements	 dont	 match	
reject	 the	 match	

accept	 the	 match	

6.1.2.1.12 Matching	 do	 block	 statements	
The do block statement is a statement of the form:

DoTopLoopStatement | DoBottomLoopStatement

DoTopLoopStatement ::=
 Do [WhileOrUntil BooleanExpression]
 [Block]
 Loop

DoBottomLoopStatement ::=
 Do

105

 [Block]
 Loop WhileOrUntil BooleanExpression

To verify if two do block statements match, the following algorithm is used:

if	 not	 both	 Boolean	 expressions	 are	 at	 the	 top	 or	 the	 bottom	 of	 the	 loop	
reject	 the	 match	

if	 the	 Boolean	 expressions	 dont	 match	
	 	 reject	 the	 match	
if	 the	 contained	 statements	 dont	 match	

reject	 the	 match	
accept	 the	 match	

6.1.2.1.13 Matching	 return	 statements	
The ‘Return’ statement is a statement in the form:

Return [Expression]

To verify if two ‘Return’ statements match, the following algorithm is used:

if	 both	 return	 statements	 have	 an	 expression	
if	 the	 Boolean	 expressions	 dont	 match	

	 	 	 	 reject	 the	 match	
else	 if	 one	 of	 the	 statements	 has	 an	 expression	
	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.14 Matching	 try	 block	 statements	
The ‘Try’ block statement is a statement in the form:

Try
 [Block]
 [CatchStatement+]
 [FinallyStatement]
End Try

FinallyStatement ::=
 Finally
 [Block]

CatchStatement ::=
 Catch [Identifier As NonArrayTypeName] [When BooleanExpression]
 [Block]

To verify if two ‘Try’ block statements match, the following algorithm is used:

if	 the	 contained	 statements	 dont	 match	
	 	 reject	 the	 match	
for	 every	 pair	 of	 catch	 statements	

if	 the	 expressions	 dont	 match	
	 	 	 	 reject	 the	 match	

if	 the	 containing	 statements	 dont	 match	
	 	 	 	 	 reject	 the	 match	
if	 both	 ’Try’	 blocks	 have	 ‘Finally’	 blocks	

if	 the	 containing	 statements	 in	 the	 ‘Finally’	 blocks	 dont	 match	

106

	 	 	 reject	 the	 match.	
if	 one	 of	 the	 ‘Try’	 blocks	 has	 a	 ‘Finally’	 block	 and	 the	 other	 doesn’t	
	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.15 Matching	 using	 block	 statements	
The ‘Using’ statement is a statement in the form:

Using UsingResources
 [Block]
End Using

UsingResources ::= VariableDeclarators | Expression

To verify if two ‘Using’ block statements match, the following algorithm is used:

if	 the	 contained	 statements	 dont	 match	
	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.16 Matching	 with	 block	 statements	 	
The ‘With’ statement is a statement in the form:

With Expression
 [Block]
End With

To verify if two ‘With’ block statements match, the following algorithm is used:

if	 the	 contained	 statements	 dont	 match	
	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.17 Matching	 syncblock	 block	 statements	 	
The ‘SyncBlock’ statement is a statement in the form:

SyncLock Expression
 [Block]
End SyncLock

To verify if two ‘SyncLock’ block statements match, the following algorithm is
used:

if	 the	 contained	 statements	 dont	 match	
	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.1.18 Matching	 select	 block	 statements	 	 	
The ‘Select’ block statement is a statement in the form:

Select [Case] Expression
 [CaseStatement+]
 [CaseElseStatement]
End Select

107

CaseStatement ::=
 Case CaseClauses
 [Block]

CaseClauses ::=
 CaseClause |
 CaseClauses , CaseClause

CaseClause ::=
 [Is] ComparisonOperator Expression |
 Expression [To Expression]

ComparisonOperator ::= = | <> | < | > | => | =<

CaseElseStatement ::=
 Case Else
 [Block]

To verify if two ‘Select’ block statements match, the following algorithm is used:

for	 each	 pair	 of	 case	 statements	
for	 each	 pair	 of	 case	 clauses	

	 	 	 if	 the	 type	 of	 the	 case	 clause	 is	 not	 the	 same	
	 	 	 	 	 reject	 the	 match	
	 	 	 if	 the	 case	 clauses	 comparison	 case	 clauses	
	 	 	 	 if	 the	 comparison	 operators	 are	 not	 the	 same	
	 	 	 	 	 reject	 the	 match	
	 	 	 	 if	 the	 expressions	 dont	 match	
	 	 	 	 	 reject	 the	 match	

	 	 if	 the	 case	 clauses	 are	 range	 case	 clauses	
	 	 	 	 if	 the	 expressions	 dont	 match	
	 	 	 	 	 	 reject	 the	 match	
	 	 	 	 if	 the	 statements	 in	 the	 case	 statements	 dont	 match	
	 	 	 	 	 	 reject	 the	 match	

	 	 	 if	 both	 ‘Select’	 blocks	 contain	 a	 ‘Case	 Else’	 statement	
	 	 	 	 	 if	 the	 statements	 in	 the	 ‘Case	 Else’	 Block	 dont	 match	

	 	 	 	 	 reject	 the	 match	
	 	 	 	 if	 one	 of	 the	 ‘Select’	 blocks	 contains	 a	 ‘Case	 Else’	 statement	
	 	 	 	 	 reject	 the	 match	
	 	 	 	 if	 the	 contained	 statements	 dont	 match	
	 	 	 	 	 reject	 the	 match	
accept	 the	 match	

6.1.2.2 Matching expressions

To match two expressions represented by ASTs, first they both are classified as
described in chapter 5. This results in a resolve result tree which exactly
describes the type and origin of the expression results. This allows for semantic
matching.

Regard the following fragment of code:

108

1 Public Class Class1
2 Public a As New Integer
3
4 Public Sub Sub1()
5 Dim class1Instance1 As New Class1
6 Dim class1Instance2 As New Class1
7
8 class1Instance1.a = 1
9 class1Instance2.a = 1
10 End Sub
11 End Class
	
If the target expressions in the assignment statements on line 8 and 9
‘class1Instance1.a’ and ‘class1Instance2.a’ are classified. The result for both
expressions will be a MemberCallResult which refer to the same variable
declaration ‘a’. The qualifier of the MemberCallResult will be a
LocalVariableReferenceResult, referring to ‘classInstance1’ and ‘classInstance2’,
which are different but do have the same type. Because ‘a’ resolves to the same
declaration, that part of the expression is a match as is. The qualifiers classify to
different declarations which are however of the same type, they are thus as
described in section 6.1.2.2.1 substitutable and also a match. Matching of
different classify results are discussed in the following sections.

• Member call 6.1.2.2.2
• Instance type 6.1.2.2.3
• Local variable declaration 6.1.2.2.4
• Literal type 6.1.2.2.5
• Type reference 6.1.2.2.6
• Built in binary operation 6.1.2.2.7
• Built in unary operation 6.1.2.2.8
• User defined binary operation 6.1.2.2.9
• User defined unary operation 6.1.2.2.10
• Array index 6.1.2.2.11
• Enumeration member 6.1.2.2.12
• Implicit instance type 6.1.2.2.13

6.1.2.2.1 Expression	 substituting	
As explained in section 6.1.2 two expressions which are different but do resolve
to the same result type are still considered a match. This is because the resulting
value of both the expressions could be passed using a parameter of that type,
which lifts out the different expression from the code fragment.

Consider the following two statements:

	 	 	 c	 =	 a	 +	 3	 *	 g	 	 	 	 c	 =	 a	 +	 b

Assume that ‘c’ and ‘a’ in both statements classify to the same declarations and
all variables are of the type integer. The only syntactic and semantic difference

109

between the statements are the highlighted expressions. If the highlighted
expressions were to be replaced with a variable of the same type, they would
make both statements exactly the same, as follows.

	 	 	 c	 =	 a	 +	 newVar	 	 	 	 c	 =	 a	 +	 newVar

So when different expressions are substituted with a variable containing the
resulting value of those expressions, effectively the difference are lifted out and
moved to the place the variable gets assigned its value.

 In the matching algorithms described in the following sections it is tried to
match as much of the expressions as possible, but if an algorithm fails to match
two expressions an attempt is made to substitute the expression. If a
substitution succeeds, the expressions are regarded to match anyway, if not the
expressions match is rejected.

A substitution succeeds if the resulting types of both expressions are the same,
or for one of the types there exists a widening to the other one. A widening is a
means to implicitly convert one type to another without any loss of information.
This is the case when one of the types is a subtype of the other or if a widening
cast operation is declared in one of the types.

6.1.2.2.2 Matching	 member	 call	 expressions	
As described in chapter 5 when an expression which refers to a member is
classified, a result of type MemberCallResult is returned. It contains a reference
to the member declaration, a ResolveResult for the qualifier and a ResolveResult
for each argument in the member call.

If the expressions don’t classify to the same member, the two expressions are no
match. The qualifier describes the type and the origin of the instance of that type
the member is called on. If the qualifier cannot be matched, the whole
expression cannot be matched. If the referred members match, this implies the
qualifiers will match or can be substituted, if the same member is referred in two
places, the qualifiers can only be of the same type or one of them a subtype of
the other. In both cases this means they can be substituted and the qualifier will
match.

 If the number of arguments in two member calls differs, this can be caused
because of optional parameters or because the last parameter of the member is
a parameter array. To match two member calls which have a different number of
arguments because of optional parameters would mean that the substitute
variables for the optional arguments need to be optional parameters themselves.
If the different number of parameters are caused by a parameter array this
would mean the extracted method needs to have a parameter array as well. A
method only can have one parameter array, so only one list of arguments passed
to a parameter array could be substituted. In the implementation is chosen not

110

to support these kind of substitutions and reject the match if the number of
arguments differ. Also the arguments at each position should match.

If the member call expression cannot be matched, it is tried to substitute it
completely.

To verify if two MemberCallResults match, the following algorithm is used:

if	 the	 two	 members	 are	 not	 the	 same	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 qualifier	 doesnt	 match	 	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 number	 of	 argument	 is	 not	 equal?	
try	 to	 substitute	 the	 complete	 expression	

for	 each	 pair	 of	 arguments	
	 if	 the	 arguments	 dont	 match	 	
	 	 	 try	 to	 substitute	 the	 complete	 expression	
accept	 the	 match	

6.1.2.2.3 Matching	 	 instance	 type	 expressions	
An instance type could be Me or MyBase, which refer to the containing type or its
base type. If an instance type expression is resolved as described in chapter 5,
this results in an InstanceTypeResult. In this result the type of instance type is
stored and also the type the instance type refers to. To match, they both have
to be of the same instance type and the type referred has to be the same to. If
the expression cannot be matched, it is tried to substitute it completely.

To verify if two InstanceTypeResults match, the following algorithm is used:

if	 the	 instance	 types	 are	 not	 the	 same	 	
try	 to	 substitute	 the	 complete	 expression	

If	 the	 types	 are	 not	 the	 same	 	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

6.1.2.2.4 Matching	 local	 variable	 reference	 expressions	
A local variable is a variable which is only available within the scope of a member
or a statement. If an expression which refers to a local variable is resolved as
described in chapter 5, this results in a LocalVariableReferenceResult. Because
we want to eliminate matching code fragments using the method extraction
pattern, matching local variable references always need to be substituted with a
variable. This is because the code fragment won’t be in the same scope as the
local variable anymore after the method extraction. Therefore there is no use to
check if the two local variables referenced are the same or not, only the type has
to match.

To verify if two LocalVariableReferenceResults match, the algorithm will thus be
very simple:

try	 to	 substitute	 the	 complete	 expression	

111

6.1.2.2.5 Matching	 literal	 type	 expressions	
A literal type expression is a written number, character or string. Their type is
implied by their value. If a literal type expression is resolved as described in
chapter 5, this results in a LiteralTypeResult. They only match if their value is
exactly the same. If the value is not the same, it is tried to substitute the
expression.

To verify if two LiteralTypeResults match, the following algorithm is used:

If	 the	 value	 of	 the	 expression	 not	 the	 same	 	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

6.1.2.2.6 Matching	 type	 reference	 expressions	
A type reference expression is an expression which refers to a type itself. When a
type reference expression is resolved as described in chapter 5, this results in a
TypeReferenceResult. Because type reference expressions refer to an
uninitialized type they cannot be substituted by a variable. If two type reference
expressions refer to the same type, they match.

There are situations where the types are not the same but still could be regarded
semantically the same. For example if two type references expression are part of
qualifiers for member call expressions which resolve to the same member. Than
one of the types referred by the type references expressions could be a subtype
of the other.

It is however not valid to accept two type references as matching when one of
the types referred is a subtype of the other type referred. For example in the
case the type reference expression is used in a conditional statement to validate
the type of a variable.

Thus the situations in which type references match, besides the case they both
resolve to the same type, are context dependant. Although it is possible to look
at this context, the situation where two different referenced types could be
considered semantically equal is rare, therefore only type reference expressions
referring exactly the same type are regarded matching.

To verify if two TypeReferenceResults, the following algorithm is used:

if	 the	 types	 are	 not	 the	 same	 	
reject	 the	 match	

accept	 the	 match	

6.1.2.2.7 Matching	 built	 in	 binary	 	 operator	 expressions	
A binary operator expression is an expression in which an operation is done on
two operand expressions. Which operation is defined by the operator type. An
operator type can for example be arithmetic like ‘-‘, ‘+’ or ‘*’ or logical operators
like ‘AndAlso’ or ‘OrElse’ but also a string operator as ‘&’ (concatenation) or
‘Like’. Built in refers to the fact the operator resolved to a non user defined

112

operator. Built in operators are clearly defined and are semantically the same if
the type is the same so if the operands match, comparing the operator type is
enough to check if two built in binary operators match.

Often arithmetic and logical operators are commutative or associative. If an
operator is commutative means the order of the operands does not influence the
outcome of the expression. For example 1 + 2 has the same result as 2 + 1. If
an operator is associative, this means that if in an expression the operator is
used multiple times in a row, the order of evaluation does not influence the
outcome of the expression. For example 1 + (2 + 3) has the same result as (1 +
2) + 3.

If two binary equal commutative operators are matched, they can match if the
left operand of one of them matches the left operand of the other and the right
operand matches the right of the other, but they also match if the left operand of
one matches the right of the other and the right operand the left operand.

If two binary equal associative operators are matched, which have operator
expressions of the same type among their operands, multiple transformations
can be tried out to try and match the operators.

 As stated before, only substitutions and no transforms are performed to find
matches, therefore the matching described above is not implemented. Two
binary operators are considered matching if the operator type is equal, the right
operands match and the left operands match.

To verify two built in binary operators, the following algorithm is used:

if	 the	 operator	 types	 are	 not	 the	 same	 	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 left	 operands	 dont	 match	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 right	 operands	 dont	 match?	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

6.1.2.2.8 Matching	 built	 in	 unary	 operator	 expressions	
A unary operator expression is an expression in which an operation is done on
one operand expression. As with the binary operator the operator type defines
the operation. There only three types of built in unary operators; ‘-‘, ‘+’ and
‘Not’.

Just as with the binary operators the built in unary operator expressions are
operator expressions which resolved to non user defined operators, which are
clearly defined and semantically equal when the type is the same.

Thus two built in unary operator expressions match if the operands match and
the operator type is the same.

113

To verify two built in unary operators, the following algorithm is used:

if	 the	 operator	 types	 are	 not	 the	 same	 	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 operands	 dont	 match	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

6.1.2.2.9 Matching	 user	 defined	 binary	 operator	 expressions	
A user defined operator expression is basically the same as the built in binary
operator expression. The difference is that the operator resolves to an operator
which is declared in the source code. This means it is not clearly specified what
the operator exactly does and what side effects occur when it is used. Thus
unless the body of the operator declarations is examined, it cannot be
guaranteed two operators of the same type which resolve to user defined
operators are semantically the same, unless they resolve to the same operator
declarator. Examining the body of the operands to determine if they are
semantically the same falls out of the scope of this project.

To match two user defined binary operators, not the operator types, but the
actual operator declarations to which the operator expression resolves are
compared.

To verify two user defined binary operators, the following algorithm is used:

if	 the	 operators	 are	 not	 the	 same	 (note:	 not	 only	 the	 type	 of	 the	 operators)	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 left	 operands	 dont	 match	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 right	 operands	 dont	 match?	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

6.1.2.2.10 Matching	 user	 defined	 unary	 operator	 expressions	
Just as the user defined binary operator expression is basically the same as the
built in binary operator expression, the user defined unary operator is basically
the same as the built in unary operator. The user defined unary operator
expression resolves to an operator defined in the source code which need to be
the same for the unary operator expression to match.

To verify two user defined unary operators, the following algorithm is used:

if	 the	 operators	 are	 not	 the	 same	 (note:	 not	 only	 the	 type	 of	 the	 operators)	
try	 to	 substitute	 the	 complete	 expression	

if	 the	 operands	 dont	 match	
try	 to	 substitute	 the	 complete	 expression	

accept	 the	 match	

114

6.1.2.2.11 Matching	 array	 index	 expressions	
An array index expression is an expression in which an element in an array is
indexed with one or more index expressions. The type of an array consists of an
element type and the number of dimensions. For two array index expressions to
match, only the type of the array has to be the same, this because the array
itself and the index arguments could be substituted.

To verify if two array index expression match, the following algorithm is used:

if	 the	 arrays	 dont	 match	 	
try	 to	 substitute	 the	 complete	 expression	 	

for	 each	 pair	 of	 arguments	
	 if	 the	 arguments	 dont	 match	 	
	 	 	 try	 to	 substitute	 the	 complete	 expression	
accept	 the	 match	

6.1.2.2.12 Matching	 enumeration	 member	 expressions	
An enumeration member expression is an instance of an enumeration. If the
expression resolves to the same member, this means the value and enumeration
type is the same and thus they match. If they do not resolve to the same
member, they can resolve to another member of the same enumeration or to a
member of a different enumeration.

If two enumerations member expressions have different values but are of the
same enumeration type, they can be substituted and thus they are a match as
well.

An enumeration is in fact a different representation of an intrinsic numerical
type, its underlying type. Two different enumerations can have the same
underlying type, if this is the case they could be substituted. However,
enumerations are used to prevent the use of magic numbers and their
enumeration type has a meaning, not necessary for a compiler but it has
documenting meaning for the human reader. If two different enumerations with
the same underlying type were to be matched and thus in a later stage merged,
this would remove the documenting effect. The fact that enumerations can have
the same underlying type is thus ignored in the matching algorithm.

To verify if two enumeration member expressions match, the following algorithm
is used:

if	 the	 enumeration	 members	 are	 not	 the	 same	
	 	 try	 to	 substitute	 the	 complete	 expression	
accept	 the	 match	

6.1.2.2.13 Implicit	 instance	 types	
When a member is referenced in the source code without qualifier, the instance
or type the member is called upon is implicit. If in two member call expressions
the same member is called, they are only semantically the same if the instance
of the type where it is called upon is the same. In the case the member is called

115

from within the type it is a member of, the type is passed as an implicit instance
type in the qualifier of the result as an implicit instance type.

The implicit instance type result is basically the same as the normal instance
type with the difference that the normal instance type has a type property.

To verify if two implicit instance types match, the following algorithm is used:

if	 the	 types	 not	 the	 same	
	 	 try	 to	 substitute	 the	 complete	 expression	
accept	 the	 match	

6.1.3 Checking dataflow consistency

As explained in section 6.1.2 two expressions are considered matching if they
classify to the same type, because in the unifying method extraction process
these expressions can be substituted with a variable of that type. If this variable
is a parameter of the extracted method, the result value of the original evaluated
expressions can be passed to the method as an argument.

A consequence of this approach is that the expression now is evaluated just
before the extracted method is called instead of the moment the expression at
the original position was evaluated. If there is a dependency between the
expression and a variable or property of which the variable is altered between
the original and new evaluation position of the expression this means the data
flow is changed, the expression will use another value then it would before
refactoring.

Regard the following code fragments.

1 Dim c As Integer
2 c = 2
3 c += 1
4 For a As Integer = 1 To 10
5 c += c * 2
6 Next

1 Dim c As Integer = 0
2 c += 1
3 For b As Integer = 1 To 10
4 c += c + 2
5 Next
6 c += 1
7 c += 1

The matching algorithm would regard the highlighted fragments matching. The
source expressions in the statement on line 5 in the left fragment and line 4 in
the right are different, but are of the same type. The expression therefore can
be substituted out and the resulting value can passed as an argument to the
extracted method as follows.

1 Dim c As Integer
2 c = 2
3 c = NewFunc(c, c * 2)

1 Dim c As Integer = 0
2 c = NewFunc(c, c + 2)
3 c += 1
4 c += 1

116

1 Function NewFunc(ByVal c As Integer, ByVal newVar As
Integer) As Integer
2 c += 1
3 For a As Integer = 1 To 10
4 c += newVar
5 Next
6 Return c
7 End Function	

It is obvious this refactoring does change the behaviour of the program. The
expressions are dependent on the value of variable ‘c’. The value of ‘c’ changes
in lines 2 and 4 in the method, which is after ‘NewFunc’ is called and thus after
the moved expressions are evaluated, but before the original position of the
expressions. ‘c’ changes between the evaluation of the moved expression and
the original position of the expression. The original expressions will thus result in
a different value than the expressions lifted out; this extraction would thus be
invalid.

To guaranty the method extraction does not alter the external behaviour of the
program, it must be ensured that when evaluated the lifted out expressions
result in the same value as they would before they were lifted out. This means
the expressions cannot be dependent on variables or properties which are
changed between the time the lifted out expression is evaluated and any time
the expression originally would be evaluated. If a match contains any substituted
expression which isn’t independent from the rest of the code in fragments, the
match must be rejected.

As is discussed in section 6.3.2 equal expressions are substituted by one
variable, so equal substituted expressions can be regarded as being the same. To
ensure the dataflow of the extracted method stays the same as in the original
expressions, the following condition must hold; if a variable gets assigned a
value in a fragment, then none of its following occurrences in the fragment can
be in an substituted expression or all occurrences after the assignment including
the one in the assignment must be substituted as equal expressions.

Regard the matching area of the left fragment from the example above.

3 c += 1
4 For a As Integer = 1 To 10
5 c += c * 2
6 Next	

In the example above in which ‘c’ and ‘c * 2’ are substituted, the substitution ‘c *
2’ in line 5 has a dependency to variable ‘c’. ‘c’ is assigned a value in line 3, the
variable is substituted which means that that all expressions containing ‘c’ must
be substituted in such a way they are equal to the expression ‘c’. ‘c’ is not equal
to ‘c * 2’ so the match must be rejected.

117

To simplify implementation a more conservative approach is taken. If a value is
assigned to a variable or property in one of the fragments, then all instances of
variable or property must be substituted by the same variable or none of the
instances may be substituted.

6.2 Selection
In 6.1 was discussed how fragments of matching code are found. Now needs to
be determined which of the code clones to select for refactoring with a unifying
method extraction. Not all code fragments suitable for code refactoring using the
method extraction pattern. Section 6.2.1 discusses the general preconditions a
fragment of code should meet to be suitable for method extraction.

In this project a method does not need to be extracted from one code fragment
but two fragments are to be removed using one unifying method extraction. As
explained before, some expressions in the matching fragments are to be
substituted with variables which can be parameters or return variables in the
extracted method. A method can only have one return value though, section
Error! Reference source not found. discusses this constrain.

As discussed before in section 6.1.3, lifting out expressions from a fragment
using substitution variables and passing the result value of the expressions as an
argument may change the order or even the number of times an expression is
evaluated. If a substituted expression contains a member call, it is difficult to
determine if this changes the outside behaviour of the program. Section 6.2.4
discusses this issue.

How the final code clone to be refactored is chosen is discussed in section 6.2.5.

6.2.1 Refactoring preconditions

In (17) preconditions for a set of refactorings are described which a selection of
code needs to meet to guarantee the external behavior of the program is not
changed by the refactoring. From this the preconditions regarding the extract
method refactoring are compiled in (18) as follows (slightly adapted to suit Visual
Basic):

1. The selected code must be a list of statements.
2. Within the selections, there must be no assignments to variables that

might be used later in the flow of execution. This can be relaxed to a
maximum of one variable because in Visual basic the value of one variable
can be returned.

3. Within the selection, there must be no conditional returns. In other words,
the code in the selection must either always return, or always flow
beginning to end.

4. Within the selection, there must be no branches to code outside of the
selection. This means no exit(break), continue or goto statements in Visual
Basic unless the selection contains their corresponding targets.

118

In the matching phase, complete statements are compared and added to a clone,
the first precondition is thus always implicitly fulfilled by the manner the code
clones are sought.

As explained in section 6.1.2.2.1 all expressions which are different between two
fragments and all local variables are substituted. A method can only return one
variable, there can thus be at most one assignment to a substituted variable
which substitutes a variable that might be used later in the flow of execution in
one of the fragments . Section Error! Reference source not found. how is
determined which variables should be returned so the clones which would require
more than one return value and thus don’t meet precondition two, are rejected .

If a fragment of code contains a return statement, it means the execution of the
current member ends there. If this statement is moved to an extracted method,
replacing the fragment of code with a call to this method, the return statement
will end the extracted method. To ensure the original fragment still ends at the
same point, the call to the extracted method can be made in the form of a return
statement. Is the return conditional though, it is impossible to use the extract
method pattern. Section 6.2.2 discusses how is ensured the third precondition is
met.

The last precondition states there must be no branches in the fragments. To find
matching fragments, only statements directly in method bodies are compared.
The targets of ‘Exit’ and ‘Continue’ statements are loops and other conditional
blocks. These blocks are always compared completely. If a break or continue
statement is included in a fragment, their target thus is implicitly included as
well. Goto statements are ignored in the matching algorithm, they will never be
included in a match. The last precondition will thus always be met.

6.2.2 Checking a fragment conditional returns

As discussed in section 6.2.1, if a code fragment returns conditionally, it is
impossible to apply the extract method pattern to it. It must thus be ensured
that if the fragment contains a return statement, the fragment unconditionally
returns, this means all possible paths through the fragment must end in a return
statement.

Regard the following code fragment:

1 c += 1
2 For a As Integer = 1 To 10
3 c += c * 2
4 If c > 100 Then
5 Return 100
6 End If
7 Next
8 c += 20
9 Return c

119

This fragment could be extracted into the next method:

1 Protected Function ExtractedFunction(ByVal c As Integer)
2 c += 1
3 For a As Integer = 1 To 10
4 c += c * 2
5 If c > 100 Then
6 Return 100
7 End If
8 Next
9 c += 20
10 Return c
11 End Function

The original fragment then can be replaced with the following call:

Return ExtractedFunction(c)

In this example the flow of execution is not altered, the call to the method will
always return the value the original fragment would before the refactoring.

If line 8 and 9 of the fragment would be left out, it is impossible to refactor it
with a method extraction. The method extraction would result in the next
method:

1 Protected Function ExtractedFunction(ByVal c As Integer)
2 c += 1
3 For a As Integer = 1 To 10
4 c += c * 2
5 If c > 100 Then
6 Return 100
7 End If
8 Next
9 Return c
10 End Function

The extracted fragment could now be replaced by one of the following two
fragments:

1 c = ExtractedFunction(c)
2 c += 20
3 Return c

Or:

1 Return ExtractedFunction(c)
2 c += 20
3 Return c

In case in the value of variable ‘c’ will never pass 100 the first fragment will
return the value would be returned before the refactoring, in case ‘c’ does go

120

past 100 the second replacement fragment returns thevalue as would be
returned before the refactoring. But none of the replacements fragment return
the value that would be returned before the refactoring in all cases.

To ensure a fragment meets the precondition it may not contain a conditional
return, the fragment is analyzed. The fragment passes the check if no return
statement is present in the fragment or the fragment unconditionally returns. If a
fragment does not pass the check it is rejected.

To analyse a fragment it is assumed that every path through it which is not
returned before the last statement of the fragment will pass through the last
statement of the fragment. If the last statement in a fragment unconditionally
returns, the whole fragment thus will unconditionally return. It is possible the
last statement does not unconditionally return while the whole fragment does
uncondionally return, this can only happen when the last statement is
unreachable. Often compilers reject code which contains unreachable code, in
Visual Basic however, it is possible the last statement in a fragment is
unreachable. The situation in which unreachable code exists and matches
another piece of unreachable code is assumed to be rare. Therefore the
possibility the last statement in a fragment does not unconditionally return but
still the whole fragment will is ignored. The implications of this decision is that in
these rare situations fragments are rejected while they technically should have
passed.

A statement is regarded to unconditionally return in the following cases:

• It is itself a ‘Return’ statement.
• It is an ‘If’ statement having an else branch of which the body of each

branch unconditionally returns.
• It is a ‘Try’ in which the body of each branch (‘Catch’, ‘Finally’)

unconditionally returns.
• It is an ‘With’, ‘SyncLock’, ‘Case’ or ‘Using’ statement of which the body

unconditionally returns.

6.2.3 Return values of an extracted method

As discussed in section 6.2.2 fragments of code can contain ‘Return’ statements.
Next to the existing ‘Return’ statements, often it is necessary to return the value
of substituted variables as well. A method however can return a maximum of one
value.

 If more than one value should be returned by an extracted method, there are a
few strategies that come to mind to handle the situation:

• Using out parameters.
• Adding fields to the containing type to pass the values.
• Creata a new type containing fields for all the variables that should be

returned and return an instance of this type containing all necessary
values.

121

• Reject the refactoring.

References to local variables can be passed using the ‘ByRef’ modifier on
parameters. This would mean local variables can just be used as they were in the
original fragment and no values need to be returned. It is however considered
bad practice to use ‘ByRef’ parameters. It does not encapsulate what the method
does from the rest of the program because it would be able to alter the value of
a variable from outside its scope.

The second solution, adding fields to the type containing the method to pass
values, can be elegant in some situations, but in other situations it would mean
adding a field just to have some temporary variables to pass some values from a
method to some local variables. This would produce obscure code and is not
elegant at all.

If multiple values must be returned by a method, the most elegant solution
would be the creation of a new type; a class or a structure, to hold multiple
values. An instance of this type, holding the values of all the variables to be
returned, could be returned by the method.

In our solution however we have chosen the fourth option, which is to reject the
cases in which more than one variable should be returned. If the fragment
already contains ‘Return’ statements returning a value, than no extra values can
be returned. Section 6.3.3 discusses how is determined which variables should
be returned.

6.2.4 Side effects

As described in section 6.1.3 lifting expressions out of fragments of code and
using a parameter to pass the resulting value of the evaluated expression, can
change the order of evaluation of expressions. In the example in the section can
be even seen that the refactoring performed changes the number of times an
expression is evaluated. The substituted expression in the original fragments was
evaluated 10 times, after the refactoring they are only evaluated 1 time.
Expressions can contain member calls, if the number of times and position
expressions are evaluated changes, this also happens whit the member calls
within. Often this is not a problem, but it can be. Member calls are not always
idempotent and independent. Members could have different results if they are
called different times or in a different order.

 It is not possible to determine automatically if such side effects exist. All
potentially infinite possible paths through the source code should be followed to
check if side effects can occur. Because side effects often not occur, it was
decided not to reject matches that have potential side effects, but mark the
match as a potential risk instead. A match is regarded a potential risk when one
or more of the substituted expressions contains a member call. It is left to the
user to check if clones with potential risks don’t have side effects and can be
refactored.

122

6.2.5 Selecting a code clone to rewrite

At this point there is a list of matching code fragment which meet the
preconditions for refactoring by method extraction. The fragments now can all be
refactored, but it does not make sense for all of them to be refactored. A lot of
the fragments will be very short or a lot of parameters would be needed in the
extracted method.

Seven is a magic number for people’s comprehension (19), so the maximum
number of parameters which is desirable is seven. If the number of parameters
exceeds this number, someone who reads the code loses his overview and thus
this will make the code less readable. Matches that require more than seven
parameters are for this reason rejected.

It is more desirable to remove a code clone if it covers more lines of code. If
there are less lines of code in a code clone it means it is less desirable, at some
point it becomes undesirable. Empirically the bottom boundary is set to 4 lines of
code; code clones with fewer lines are rejected.

The remaining code clones are sorted on the number of lines they cover. The
user gets the option to choose a code clone he likes to have rewritten. Section
6.2.4 discusses how some code clones could after refactoring result in change of
external behaviour because of side effects. If this is the case the user gets a
notification he should check that no external behaviour changes will occur before
continuing.

6.3 Rewriting
In the matching phase fragments of code where found which where semantically
similar. Semantically different expressions, which result in a value of the same
type, were considered matching because they can be substituted with a variable
containing the resulting values of the expressions. The original expressions then
can be left out of the matching fragments. From these matches a match was
selected which can be rewritten without changing the external behaviour of the
program.

Now the match can be rewritten; the original matching fragments of code need
to be removed from the source code, a new method needs to be constructed and
added to the source code. Method calls calling this method need to be placed at
the original position of the fragments, having the correct arguments and storing
the result in the correct variable. First a method body is created, containing
placeholders for all substituted expressions, this is discussed in section 6.3.1.
Equal substituted can be taken together to be substituted by one variable,
section 6.3.2 discusses how this is done. Some of the substitution variables need
to get their values from where the extracted method is called and some of the
variables need to be returned, section 6.3.3 discusses how this is determined. To
be able to determine this, knowledge about variable dependancies is needed,
how this knowledge is gained is discussed in section 6.3.4. After this the final
extracted method can be constructed, this is discussed in section 6.3.5. Finally

123

section 6.3.6 discusses how the original code fragments are replaced with a call
to the extracted method.

6.3.1 Creating the method body

To create a method which can replace two fragments of matching code, first the
statements from the original fragments are unified to create the body of the
method.

As explained in section 6.1.2.2.1 different expressions which result in a value of
the same type are considered matching because they can be substituted with a
variable of the same type, containing the result value of the original expressions.
The expression then can be left out of the matching fragments and the resulting
value of the expressions can be passed to the extracted method as arguments.

Next to different expressions also local variables in matching fragments need to
be substituted when extracted to a method. The body of the extracted method
will be a different scope then the original fragments were in, so the local
variables in the original fragment contexts are not directly reachable from the
new method body.

Two fragments of code are regarded matching if all statements and expressions
are interchangeable or substitutable. If two fragments of code match, the nodes
in the AST’s representing the code fragments are also interchangeable or
substitutable. Thus to create the body for the method the AST’s of one of the
code fragments can be copied. To make the new AST’s applicable for both
fragments the nodes which are not interchangeable are substituted with a
placeholder. The substitutions are saved together with the expressions they
replace in the first and second fragment.

Consider the next two matching fragments.

1 c += 1
2 For a As Integer = 1 To 10
3 c += a
4 Next

1 c += 1
2 For b As Integer = 1 To 100
3 c += b
4 Next

The highlighted expressions are not interchangeable, this because they are
different expressions as ‘10’ and ‘100’ or a local variable as ‘c'. One of the
fragments is copied and the expressions which are not interchangeable are
replaced with placeholders as follows:

1 Placeholder1 += 1
2 For Placeholder2 As Integer = 1 To Placeholder3
3 Placeholder4 += Placeholder5
4 Next

	

The expressions replaced by the placeholders are saved, which is the following
list for the example above:

124

Placeholder First expression Second expression
Placeholder1 c c
Placeholder2 a b
Placeholder3 10 100
Placeholder4 c c
Placeholder5 a b

In section 5.5.2 is discussed how these placeholders are replaced with variables.

6.3.2 Determining variables

In the previous section was shown how the interchangeable part of two matching
fragments are copied and the non interchangeable but substitutable nodes are
replaced by placeholders. To unite the fragments into a new method, the next
step is to determine which substituting variables are needed.

The number of substitution variables don’t have to be equal to the number of
substitutions made. If an equal expression is substituted multiple times, the
same variable should be used to maintain the consistency of the data flow and
minimize the number of variables and parameters used. In some cases it would
be incorrect to use different substitution variables for equal substitutions. For
example the case of a value is assigned to a variable after that its value is
retrieved again. If the variable in both instance were to be substituted by two
different variables, the value assigned to the first variable would not be retrieved
from the second variable, the behaviour of the program thus would be changed.

As described in the previous section, substitutions made in the unified fragments
are saved together with expressions they substitute. Placeholders are substituted
with the same variable if the expressions substituted by the placeholders within
each of the fragments are equal.

It is assumed local variables in the original fragments have useful names. So to
increase readability original variable names are preserved as much as possible.
If one or both of the expressions substituted by a variable is a local variable, the
first name of the replaced local variables which is not yet used for another
substitute variable, variable or property is used to name the substitute variable.
If no name can be extracted from the original fragments, the name will be
‘newVarx’ where x is the first number that makes the name unique.

The placeholders from the example in the previous section can be replaced by
three variables. One variable for ‘Placeholder1’ and ‘Placeholder4’, one for
‘Placeholder2’ and ‘Placeholder5’ and one for ‘Placeholder3’ as follows.

Variable First expression Second expression
c c c
a a b
newVar0 10 100

125

The method for the body example looks now as follows.

1 c += 1
2 For a As Integer = 1 To newVar0
3 c += a
4 Next

	

6.3.3 Determining which variables should be parameters and which should be
returned

In the previous section is explained how two fragments are unified. This resulted
in ASTs representing the unified code and a list of the variables which are used
to substitute the differences between the fragments away. Each substitute
variable is associated with the two expressions it replaces. The resulting values
of the evaluated expressions can be passed to the extracted method as an
argument to substitute the original expressions. If needed the value of the
substitution variable can be returned by the extracted method and assigned to
the substituted variable.

Not all substitute variables need to be parameters and have the result value of
the original expressions passed as an argument. For example if a variable
substitutes local variables, it could be the original local variables were declared
within the fragments themselves. Because all instances of local variables are
substituted, this means the instance within the declaration and thus the
declaration itself is also substituted. The substitute variable will thus also be
declared within the extracted method and doesn’t need to be a parameter.

It could be the value of a substitution variable has to be returned, for example
when it substitutes a local variable of which the value is used after the code
fragments. It is however not necessary to return all substituted variables, if for
example a new value is assigned to the substituted variable before the value
assigned in the fragments is retrieved, the value is never used and there is no
need to return it.

To determine if a substitution variable should be a parameter or if it should be
returned by the extracted method, a difference can be made between variables
substituting expressions which are only readable and variables which substitute
expressions which are readable and writable. Expressions which are both
readable and writable are variables and properties, other expressions are only
readable.

Regard the following example.

a	 =	 1	 +	 b	

Here ‘a’ and ‘b’ are variables, thus the expressions ‘a’ and ‘b’ are both readable
and writable. The expression ‘1 + b’ however is only readable, of course the

126

value of the expression can be changed by changing the value of ‘b’, but it’s not
possible to assign a value to the expression as a whole.

Variables which substitute expressions which are not writable always should be
parameters. The only reason that non-writable expressions are substituted is
because they differ between the two code fragments in the match. For each of
the two fragments, the substitute variable thus has a potentially different value
which has to be passed as an argument to the extracted method.

 The value of variables substituting non-writable expressions don’t change within
the extracted method and thus never needs to be returned by the extracted
method.

Which of the variables which are both readable and writable need to be
parameters and which of these variables need to be returned is depending on the
context of the original fragments. As explained above; in the case the
substitution variable substitutes a local variable, it doesn’t need to be a
parameter if it’s declared within the fragments itself. Furthermore it is only
necessary to pass the value of a variable trough a parameter if that value is
actually used. If the value of a parameter is changed before it is read, the initial
value is discarded and there is no reason why the parameter couldn’t just be a
local variable.

The same principle holds for the determination of which variables should be
returned by the extracted method. If after the code fragments a substituted
variable or property is never used again or is overwritten before it is read, there
is no need for the extracted method to return the value of the variable.

If a substituted variable never is read after the code fragments it is obviously not
necessary to return the value of the substituting variable. If the substituted
variable is a local variable, it is easy to determine if it is used after the fragment,
only the containing block of code needs to be examined, this is discussed in
section 6.3.4. If the variable is not local, it is very difficult to determine and
improbable it will not be used in other code. So if one of the variables substituted
is not a local variable, it’s considered necessary to return the value of the
substituting variable by the extracted method.

Regarding the example from the previous section the variables ‘c’ and ‘newVar0’
should be parameters, ‘c’ is declared before the matching fragments and its
value is retrieved before a new value is assigned to it within the fragments and
‘newVar0’ is substituting an expression which is only readable. ‘a’ doesn’t need to
be a parameter because it is declared within the method itself. If one assumes ‘c’
is read again after the fragments before it is overwritten, it needs to be a return
value.

The list of variables now looks as follows.

Variable First Second Is Needs to be

127

expression expression parameter returned
c c c X X
a a b
newVar0 10 100 X

Thus a substitution variable thus is considered not to be a parameter if one of
the following conditions hold:

• Both of the variables are declared within the extracted method.
• The variable is changed before it is read in all code paths possible within

the extracted method.

A substitution variable doesn’t need to be returned if one of the following
conditions hold:

• One of the expressions substituted is not a variable or property.
• The variables substitute local variables which both are altered after the

code fragments before they are read in all code paths possible.
• The variables substitute local variables which are not read after the code

fragments.

6.3.4 Determining variable dependencies

As discussed above, to determine if a variable needs to be a parameter in an
extracted method or if it needs to be returned, it is necessary to determine if the
value in the variable is used again. The value of a variable is not used again
when the following condition is true; the variable is not referred after the
fragment or a new value is assigned to the variable before the value of the
variable is retrieved in all paths possible through the code.

To determine if this condition is true, the code must be examined. If at the first
occurrence of the variable a value is assigned to it, the condition is true, if its
value is retrieved, the condition is false.

 There are a few kinds of statements in which a value is assigned to a variable
after it is declared. A value is assigned to a variable when it is the target
expression of an assignment statement, in a compound assignment statement or
in a mid assignment statement. A value is assigned to a variable when it is the
loop control variable in a for loop or an for each loop. In an erase statement the
value ‘Nothing’ is to an array. In the ‘ReDim’ statement an array is re-declared.
If a variable is passed by reference to a member, the variable can be accessed
within that member. In any other expression the variable occurs its value is
retrieved or not accessed at all.

6.3.4.1 Variables in assignment statements

One of the kinds of statements in which a value is assigned to a variable is the
assignment statement. In an assignment statement the resulting value of a
source expression is assigned to a variable or property classified by the target

128

expression. If the first occurrence of a variable is in an assignment statement.
The condition is true if the variable occurs in the target expression and not in the
source expression. If the variable occurs in the source expression, it will be first
retrieved. Only after the source expression is evaluated its result value is
assigned to the variable classified in the target expression.

6.3.4.2 Variables in compound assignment and mid assignment statements

Just as in the regular assignment statement, a value is assigned to a variable
classified by its target expression in a compound assignment and a mid
assignment statement.

A compound assignment is a different way of writing a binary operation with as
operands the variable classified by the target expression and a source
expression, the result is stored in the variable classified by the target expression.

The mid assignment statement assigns a string into another string. The target
expression classifies a variable of the type string. At the position specified by
arguments a string specified by the source expression is inserted in the string.

In these two types of assignment statements, a value is thus assigned to the
variable classified by the target expression after it is retrieved. Is the first
occurrence of a variable in the target expression, it is thus first retrieved. No
variable is altered in the source expression or other arguments in both
statements.

Thus if the first instance of a variable occurs in a compound assignment or a mid
assignment statement, the condition is false.

6.3.4.3 Variables as control variable in a for loop or for each loop

In the for loop and for each loop statement a block of code is iterated, in every
iteration a value is assigned to the loop control variable. In the for loop the value
assigned is specified by bounds and a step expression, in the for each loop the
value is an item from a specified list.

The expressions specifying the bounds and list are evaluated at the beginning of
the loop before the control variable gets assigned its first value.

 If the first occurrence of a variable is as a control variable in a for loop or for
each loop, the condition thus is true, but only when the variable does not occur
in the expressions specifying the bounds or the input list.

6.3.4.4 Variables in an erase statement

The erase statement resets the value of an array typed variable. The erase
statement is equivalent to assigning the value ‘Nothing’ to the variable. If the
first occurrence of a variable is in an erase statement, a value is thus first
assigned to it and the condition is true.

129

6.3.4.5 Variables in a redim statement

In a ‘ReDim’ statement, an array typed variable is re-declared. The ‘ReDim’
statement is equivalent to assigning a new instance of an array to the variable.
In the ‘ReDim’ statement the preserve keyword can be specified, if this is the
case, the values of the original array are copied to the new array. So if the
preserve keyword is specified the value of the variable is retrieved before a new
variable is assigned to the variable and the condition is false. If the preserve
keyword is not specified, the first occurrence of a variable is as the target in the
‘ReDim’ statement and the variable does not occur in the initializing expression,
a value is thus assigned to the variable before it is retrieved and condition is
true.

6.3.4.6 Variables passed as argument

A variable could be passed by reference as an argument to a member, if this is
the case, the body of the member determines if a value first is assigned to the
variable or retrieved from it. One could state that a value is probably assigned
to a variable passed as reference because else there would not be a reason to
pass it by reference. It is however considered bad practice to pass a variable by
reference to a member, it is therefore assumed not to occur often and treated in
the same way as an argument passed as a value, i.e. the value is considered to
be retrieved before a value is assigned to the variable.

6.3.4.7 Variables in other expressions

If the first occurrence of a variable is in an expression not described above, it is
only retrieved and the condition is thus false. This means the variable needs to
be a parameter or returned depending on which code is analyzed.

6.3.4.8 Conditional code blocks

The order in which statements are evaluated is not always straightforward,
there are a couple of constructions which make the evaluation of blocks of code
conditional. If a block of code is evaluated or not could mean the difference
between if first the value of a variable is retrieved or a value is assigned to the
variable. For example the bodies of loops are evaluated n times where n could be
0, the body of an if statement is only evaluated if its expression results in true.
Because of these constructions different paths through the code are possible.

In most of the cases it is not known exactly which conditional blocks will be
evaluated until runtime, so for every conditional block of code the condition must
hold with and without the block evaluated. This means the condition also must
hold without any of the blocks evaluated, so the condition thus can be said to be
true if at the first occurrence of the variable outside any block the variable gets
assigned a value and within every block before this occurrence the condition is
true.

So an retrieval of the value of the variable before an assignment within a block of
code will render the condition false and an assignment of a value to a variable
will only render the condition true within the block.

130

6.3.5 Creating the unifying extracted method

In the previous sections is discussed how a body is created for an extracted
method and how was decided which substitute variables need to be parameters
of the method or need to be returned. Now a complete method can be created of
it.

Visual Basic knows two types of methods, ‘Sub’ and ‘Function’. The difference
between those is that ‘Function’ returns a value and ‘Sub’ doesn’t. In section
5.4.1 is shown how matches which require more than one return variables were
rejected, so all matches now have one or zero return variables. If a return value
is required or the fragments already contain return statements, a ‘Function’ is
created else a ‘Sub’.

If the method is a ‘Function’ and one of the substituted variable is marked as
return variable, the return type of the method is set to the same type as that
variable. If the method is a ‘Function’ and no substituted variable is marked as
return variable, this means the fragment already must contain return
statements, the return type of the method then is determined by taking the least
specific type the expression in all return statements in the fragments classify too.

In section 6.3.3 was shown that not all substitution variables need to be
parameters, sometimes this is because of the substitution process the
declaration itself was substituted as well and thus is included in the method body
and sometimes this is because the values in the variables are not used within the
fragments and thus not need to be passed. Declarations for variables which are
not parameters nor are declared in another way in the fragments are added
before the earlier created method body within the created method.

In the case a variable needs to be returned then if the method body does not
already contains one or more return statements, a return statement is added at
the at the end of the method body. If the method body already contains return
statements, but they don’t return any value, then all return statements are
replaced with return statements returning the variable.

For every substitute variable indicated as a parameter, a parameter is added to
the method signature.

The method is created by creating an instance of the appropriate AST node and
adding the correct children for it. Only code duplications within types themselves
are sought, this means the extracted method can be added to this type. This is
easily done by adding the AST node representing the method to the list of
declarations within the AST representation of the type.

Regard the example in section 5.5.3, the list of parameters is as follows.

Variable First
expression

Second
expression

Is
parameter

Needs to be
returned

c c c X X

131

a a b
newVar0 10 100 X

The list contains one variable which needs to be returned ‘c’, thus the method
created is a ‘Function’, the return type is that of the returned variable ‘c’ which is
‘Integer’. After this the two variables marked as parameter ‘c’ and ‘newVar0’ are
added to the signature. Because the method is a ‘Function’ a return statement is
added after the method body returning the variable marked as return variable.
The result looks as follows.

1 Function NewFunc(ByVal c As Integer, ByVal newVar0 As
Integer) As Integer
2 c += 1
3 For a As Integer = 1 To newVar0
4 c += a
5 Next
6 Return c
7 End Function	

6.3.6 Replacing the code fragments with a call to the extracted method

In the previous section was explained how an extracted method is added to the
AST. Now a replacement method is available, the matching code fragments can
be replaced by calls to this method.

The first step is to create the call statements. In section 6.3.3 is discussed how
was determined which substitute variables should be parameters and how with
every parameter the two substituted expressions are saved. These expressions
can now be used as the arguments in the method call.

In section 6.3.3 is explained variables which are declared within the fragment,
don’t have to be a parameter. If such a declaration is extracted, this means the
variable does not exist in the original scope anymore. If however the variable is
used after the method, a declaration for the variable needs to be added to the
replacing code of the original fragment. Is the value of this variable used after
the fragment, then the return value of the extracted method must be assigned to
this variable.

Regard the next two fragments:

1 Dim a As Integer
2 For a = 1 To 10
3 SomeProperty += a
4 Next
5 a = SomeProperty

1 Dim b As Integer
2 For b = 1 To 10
3 SomeProperty += b
4 Next
5 SomeProperty = b

The first four lines match and can be unified to the following method:

132

1 Protected Function ExtractedFunction() As Integer
2 Dim a As Integer
3 For a = 1 To 10
4 SomeProperty += a
5 Next
6 Return a
7 End Function

Because the declaration of the variables ‘a’ and ‘b’ are extracted, they are no
longer available in the original scope when the fragments are replaced with a call
to the new method, the declaration thus has to be added as follows:

1 Dim a As Integer = ExtractedFunction()
2 a = SomeProperty

And:

1 Dim b As Integer = ExtractedFunction()
2 SomeProperty = b

It is possible the original fragments contain return statements. In section 6.2.2 is
explained how is ensured return statements in the fragments are only accepted if
the fragment unconditionally returns. If the original fragments unconditionally
return, it means the method the fragments originally reside in, should after the
refactoring still return at this position. A new return statement thus needs to be
inserted.

If the expressions in the return statements in the fragments are not substituted,
or they originally returned local variables, the result of a call to the extracted
method can directly be returned.

Regard the following example:

1 Dim a As Integer
2 a = 10
3 Return a

1 Dim b As Integer
2 b = 10
3 Return b

These fragments can be extracted to the following method:

1 Protected Function ExtractedFunction() As Integer
2 Dim a As Integer
3 a = 10
4 Return a
5 End Function

Here the original expressions in the return statements ‘a’ and ‘b’ are local
variables, the extracted method call can thus directly returned, both fragments
can be replaced with the following statement:

1 Return ExtractedFunction()

 Is one of the substituted expression in the return statements a non local
variable or a property, the value first needs to be saved in the original variable or

133

property before it can be returned. This has to be done to ensure the state of the
program will be the same as it would be before the refactoring.

Regard the following expression:

1 SomeProperty = 10
2 Return SomeProperty

1 SomeOtherProperty = 10
2 Return SomeOtherProperty

In both fragments 10 is assigned to a property, after this the property is
returned. These fragments would be too short to refactor but are used for
explanatory reasons, the extracted method for these fragments would be as
follows:

1 Protected Function ExtractedFunction(ByVal SomeProperty As
Integer) As Integer
2 SomeProperty = 10
3 Return SomeProperty
4 End Function

Note that in the extracted method ‘SomeProperty’ is a substitution variable. In
the execution of the original fragments properties ‘SomeProperty’ and
‘SomeOtherProperty’ get assigned the value 10, after that their value is returned.
To preserve the external behaviour of the fragment after refactoring the result
value of the extracted method must be assigned to the properties. Because in
the original fragments the containing method returned, the replacement should
return as well. The replacement call is thus formed as follows:

1 SomeProperty = ExtractedFunction(SomeProperty)
2 Return SomeProperty

And:

1 SomeOtherProperty = ExtractedFunction(SomeOtherProperty)
2 Return SomeOtherProperty

If the original fragments did not contain a return statement, and the extracted
function does return a value, it means this value should be assigned to the
appropriate variable or property. In section 6.3.4 is shown that substitute
variables which are returned by the extracted method always substitute an
expression which classifies to a variable or a property. This means the
substituted expression replaced by the substitute variable which is returned can
be used as the target expression of an assignment statement having the method
call as a source expression.

For the example shown in section 6.3.5 the method is a ‘Function’, an
assignment statement is thus created. The target expressions are the substituted
expressions substituted by the returned variable, this expression is in both cases
‘c’. The arguments for the method call in the source expression are the
substituted expressions which are substituted by the parameters of the extracted

134

method. This is ‘c’ for as the first argument in both cases and ‘10’ and ‘100’ as
the second argument. The statements will now be as follows.

c	 =	 NewFunc(c,	 10)	
	

c	 =	 NewFunc(c,	 100)

After the replacement statements are created, statements in the fragments can
be removed from the lists of statements in the AST containing the fragments,
after this the new statements can be inserted.

6.4 Summary
In this chapter was shown how matching statements are found by comparing the
kind of statement and the resulting type of expressions. An expression is
considered a match if the resulting type is the same because this means a
substitution variable of that type can be used to hold the resulting value of the
expression and leave the different expressions out of the matching code.

Runs of matching statements are combined to a matching code clone to be
removed using the extract method refactoring. Because the substitutions in the
statements are not always compatible with each other, it can be that some code
clone matches cannot validly be removed by method extraction, such code clones
are rejected. Because methods can only return one value, method extractions
which require more than one return value are rejected as well.

Because seven parameters is the maximum before a method becomes less
readable, code clones which require more than seven parameters are rejected. If
there are less than four lines of code in a match, the extraction of a method to
remove the code clone is regarded undesirable; code clones less the four lines of
code big are therefore rejected.

Because the substitution of expressions can result in that member calls are
evaluated in a different order, theoretically side effects can occur when this
happens. If there is change side effects occur the user is notified.

The code clones are ordered on size and the user can choose a code clone to
remove. For the selected code clone first a method body is constructed by
copying the AST of one of the matching fragments and substituting the different
expressions with placeholders. The placeholders are then substituted with
substitution variables in such a way that all placeholders that substitute equal
expressions are replaced by the same substitution variable.

For every variable is determined if it needs to be a parameter or a return
variable. A variable needs to be a parameter if it is not declared within the
method body and the value of the variable is retrieved before assigned. A
variable needs to be returned if it substitutes a variable or property, except the
substituted variable is local and used anymore after the method.

135

	

7 Application
In the previous chapters was explained how a project was analyzed and after
that code clones were detected so that they can be automatically removed by
applying a unifying method extraction. All this functionality was implemented in
the tool DejaVu presented in this chapter. Section 7.1 present the tool built. In
section 7.2 two case stusies are presented to show the practical use of the tool.

7.1 Show case
To start analyzing a project, a project file can opened as shown below:

136

Opening a project file in the tool triggers the complete code analysis described in
section 4. After the code analysis is complete, all loaded projects and their
contained source code files are displayed in a tree in the right top pane. Now
code clone detection can be done on all these projects, one of the projects or on
one file. A file or project can be selected and with ‘Find all code clones’, ‘Find
code clones in selected project’, or ‘Find code clones in selected file’ in the
‘Analyse’ menu can be selected to start the detection as described in chapter 6.1,
where necessary expressions are classified using the process in section 5.
Results from the classification process are buffered so they do not have to be
reclassified every time the expression needs to be compared to another
expression. The code clone detection process is very time consuming, so to
utilize the multiple cores most computers nowdays have, for each type a new
thread is started so multiple instances of the algorithm run parallel. The progress
of each currently running thread is shown in a list of progress bars below that the
total progress of the batch, as can be seen below:

137

When the code clone detection process is finished, the found code clones which
meet the preconditions discussed in section 6.2 are displayed in the right bottom
pane ordered by size. In the list, from each match the length and the two files
containing the matching fragments and the start position of the fragments in
shown.

If a match is selected, for each of the fragments, the containing file is opened
next to eachother and the fragments are highlighted. Below that, the unifying
method extraction refactoring proposed is shown. This proposition consists of an
extracted method and two method calls which should replace the highlighted
fragments. The tool with a selected match is shown below:

138

If the user agrees with the proposed refactoring, the button ‘Apply refactoring’
can be clicked to apply the refactoring, shown below:

7.2 Case Study
To show the practical use of the tool, we run it on an approximal 100.000 LOC
project known to contain a lot of copy-pasted code. The tool found about 500
code clones with an average length of 5 lines.

One example of the code duplicates found by the tool are the following two
fragments:

139

1 readr.Close()
2
3 ProgressFormMax = colItems.Count
4 ProgressFormValue = 0
5
6 For Each objItem As ABControls.ListRow In colItems
7 ProgressFormValue = ProgressFormValue + 1
8 Dim personId As Integer =
 GetPersonIdByAzr(Convert.ToString(objItem.Col03),
 Convert.ToString(objItem.Col02))
9 objItem.Col02 = MCon.GetEntityName(EntityType.eClient,
 personId)
10 objItem.Tag = objItem.Tag & "<personID " & personId & "/>"
11
12 commnd = GetDBCommandQuery(_
13 "SELECT DAGTEKENING_VERZENDING " & _
14 "FROM AZR_AW36_01 " & _
15 "WHERE tabelID = " & CInt(objItem.Col04), _
16 conn)
17 readr = commnd.ExecuteReader()
18 If readr.Read Then
19 objItem.Col03 =
 DateNumToDateString(CInt(readr("DAGTEKENING_VERZENDING")))
20 End If
21 readr.Close()
22 Next
23 conn.Close()

140

1 readr.Close()
2
3 ProgressFormMax = colItems.Count
4 ProgressFormValue = 0
5
6 For Each objItem As ABControls.ListRow In colItems
7 ProgressFormValue = ProgressFormValue + 1
8 Dim personId As Integer =
 GetPersonIdByAzr(Convert.ToString(objItem.Col03),
 Convert.ToString(objItem.Col02))
9 objItem.Col02 = MCon.GetEntityName(EntityType.eClient,
 personId)
10 objItem.Tag = objItem.Tag & "<personID " & personId & "/>"
11
12 commnd = GetDBCommandQuery(_
13 "SELECT DAGTEKENING_VERZENDING " & _
14 "FROM AZR_AW310_01 " & _
15 "WHERE tabelID = " & CInt(objItem.Col04), _
16 conn)
17 readr = commnd.ExecuteReader()
18 If readr.Read Then
19 objItem.Col03 =
 DateNumToDateString(CInt(readr("DAGTEKENING_VERZENDING")))
20 End If
21 readr.Close()
22 Next
23 conn.Close()

It is obvious these two fragments are copy-pasted. The only difference is the
part of the SQL query in which the name of the table is specified. When we
proceed by automatically refactoring the code duplicate we get the following
extracted method.

1 Protected Sub ExtractedSub(ByVal readr As DbDataReader, ByVal
colItems As Collection, ByVal newVar0 As String, ByVal conn As
DbConnection)
2 Dim commnd As DbCommand
3 readr.Close()
4
5 ProgressFormMax = colItems.Count
6 ProgressFormValue = 0
7
8 For Each objItem As ABControls.ListRow In colItems
9 ProgressFormValue = ProgressFormValue + 1
10 Dim personId As Integer =
 GetPersonIdByAzr(Convert.ToString(objItem.Col03),
 Convert.ToString(objItem.Col02))
11 objItem.Col02 =

141

DateNumToDateString(CInt(readr("DAGTEKENING_VERZENDING"))),
12 objItem.Tag = objItem.Tag & "<personID " & personId & "/>"
13
14 commnd = GetDBCommandQuery("SELECT DAGTEKENING_VERZENDING
" & newVar0 & "WHERE tabelID = " & CInt(objItem.Col04), conn)
15 readr = commnd.ExecuteReader()
16 If readr.Read Then
17 objItem.Col03 =
 DateNumToDateString(CInt(readr("DAGTEKENING_VERZENDING")))
18 End If
19 readr.Close()
20 Next
21 conn.Close()
22 End Sub

	
The	 two	 fragments	 are	 replaced	 by	 a	 call	 to	 this	 method	 with	 the	 following	 statements.	
	
ExtractedSub(readr, colItems, “FROM AZR_AW36_01”, conn)

	
ExtractedSub(readr, colItems, “FROM AZR_AW310_01”, conn)	
	
The	 novelty	 here	 is	 not	 the	 detection	 of	 the	 code	 duplicate,	 even	 a	 text	 based	 code	 clone	 detection	
algorithm	 would	 have	 found	 this	 duplicate.	 Method	 extraction	 is	 not	 new	 either.	 But	 to	 our	
knowledge	 this	 tool	 is	 the	 first	 to	 combine	 the	 two	 	 and	 perform	 a	 unifying	 method	 extraction	 on	 a	
detected	 code	 clone	 without	 the	 need	 for	 the	 user	 to	 check	 the	 semantic	 invariance	 of	 the	
refactoring	 operation.	 Also	 the	 fact	 that	 the	 method	 extraction	 is	 not	 done	 on	 one	 piece	 of	 code,	 but	
on	 two	 pieces	 combined,	 crafting	 it	 in	 such	 a	 way	 it	 is	 suitable	 to	 replace	 both	 fragments	 at	 the	 same	
time	 is	 novel,	 although	 (12)	 describes	 a	 (different)	 method	 to	 do	 so,	 it	 was	 only	 partially	
implemented.	 Also	 the	 method	 describes	 in	 (12)	 only	 allowes	 for	 exact	 matching	 statements	
although	 the	 order	 may	 differ,	 the	 implications	 of	 such	 a	 method	 extraction	 do	 not	 differ	 with	 a	
“normal”	 method	 extraction.	 	 A	 “normal”	 method	 extraction	 would	 not	 have	 to	 handle	 the	
differences	 between	 code	 fragments	 like	 in	 the	 example	 the	 name	 of	 the	 table.	 	
	
In	 a	 second	 case	 the	 tool	 was	 applied	 to	 the	 source	 of	 the	 open	 source	 project	 mono	 (20)	 a	 project	
which	 consists	 of	 20.000	 LOC.	 Fifthy	 matches	 where	 found	 with	 an	 average	 length	 of	 9	 lines.	
	
One	 of	 the	 matching	 fragment	 pairs	 found	 in	 the	 mono	 source	 code	 is	 the	 following:	
	
1 If CBool(Me.TraceOutputOptions And TraceOptions.DateTime) Then
2 builder.Append(m_Delimiter)
3 builder.Append(eventCache.DateTime.ToString("u",
 System.Globalization.CultureInfo.InvariantCulture))
4 End If	
	
1 If CBool(Me.TraceOutputOptions And TraceOptions.Callstack) Then
2 builder.Append(m_Delimiter)

142

3 builder.Append(eventCache.Callstack)
4 End If	
This	 is	 a	 typical	 example	 of	 a	 near	 code	 clone	 none	 of	 the	 methods	 discussed	 in	 section	 3	 would	 find.	
The	 difference	 between	 the	 two	 fragments	 is	 the	 different	 expressions	 in	 line	 3:	
	
eventCache.DateTime.ToString("u",
 System.Globalization.CultureInfo.InvariantCulture)	
	
And:	
	
eventCache.Callstack	
	
These	 expressions	 differ	 in	 such	 a	 way	 other	 methods,	 which	 only	 abstract	 away	 variable	 names	 and	
literal	 values,	 would	 not	 find	 them.	 Both	 expressions	 result	 into	 a	 value	 of	 the	 type	 string,	 because	 of	
this	 they	 can	 be	 substituted	 by	 a	 variable	 and	 the	 value	 of	 the	 evaluated	 expressions	 can	 be	 passed	
to	 the	 unifying	 extracted	 method	 as	 an	 argument.	 The	 expressions	 do	 however	 contain	 member	 calls,	
the	 match	 was	 thus	 marked	 as	 a	 potential	 risk	 for	 the	 semantic	 invariance	 when	 the	 refactoring	 as	
applied.	 Reviewing	 shows	 the	 refactoring	 in	 this	 case	 is	 safe.	
	
When	 proceeding	 with	 automatic	 refactoring,	 the	 following	 method	 is	 extracted:	
	
1 Protected Sub ExtractionSub(ByVal builder As StringBuilder,
ByVal newVar0 As String)
2 If CBool(Me.TraceOutputOptions And TraceOptions.Callstack)
 Then
2 builder.Append(m_Delimiter)
3 builder.Append(newVar0)
4 End If
5 End Sub	
	
The	 original	 fragments	 are	 replaced	 with	 the	 following	 method	 calls:	
	
ExtractedSub(builder, eventCache.DateTime.ToString("u",
 System.Globalization.CultureInfo.InvariantCulture))	
And:	
	
ExtractedSub(builder, eventCache.Callstack)	
	

	 	

143

8 Discussion
The	 case	 studies	 show	 the	 tool	 has	 potential	 for	 practical	 use;	 it	 finds	 interesting	 code	 clones	 and	 is	
able	 to	 refactor	 the	 clones	 away.	 A	 big	 advantage	 of	 the	 approach	 used	 in	 this	 thesis	 in	 respect	 to	
other	 approaches	 is	 that	 code	 clones	 found	 by	 this	 approach	 always	 can	 be	 refactored	 using	 the	
method	 extraction	 pattern.	 The	 tool	 finds	 code	 clones	 which	 can	 be	 automatically	 refactored	 without	
the	 user’s	 need	 of	 checking	 the	 consistency	 of	 the	 refactoring.	
	
The	 performance	 of	 the	 tool	 though,	 makes	 the	 tool	 unpractical	 to	 use	 as	 is	 in	 a	 real	 life	 application.	
There	 are	 different	 approaches	 to	 make	 the	 tool	 more	 usable.	 In	 section	 8.1	 discusses	 what	 could	 be	
done	 to	 increase	 the	 usability	 of	 the	 tool.	 Although	 it	 is	 not	 deductable	 from	 code	 clones	 if	 they	
originate	 from	 copy-‐pasting,	 the	 code	 clones	 found	 by	 the	 tool	 give	 the	 impression	 they	 originated	 by	
copy-‐pasting,	 for	 the	 same	 reasons	 it	 is	 useful	 to	 remove	 code	 clones,	 it	 is	 useful	 to	 find	 and	 remove	
code	 fragments	 which	 is	 semantically	 similar	 but	 did	 not	 originate	 from	 copy-‐pasting,	 section	 8.2	
discusses	 what	 could	 be	 done	 to	 find	 more	 of	 these	 cases.	 The	 tool	 supports	 the	 detection	 and	
removal	 of	 pairs	 of	 code	 clones,	 more	 than	 two	 instances	 of	 clones	 can	 exist	 though,	 section	 8.3	
discusses	 how	 these	 could	 be	 handled.	

8.1 Increasing usability
As can be seen in chapter Error! Reference source not found. the
performance of the tool is not really practical. To really be of any practical
dynamic use, it would be preferable the performance of the tool would be
increased considerable. One way of increasing performance is to use faster but
less reliable methods to pre select potential clones. Code clone detection using
lexicographic information does not find code clones which guaranteed to be
semantically the same, but will find code clones much faster. In Aries Error!
Reference source not found. lexicographic information is used to find code
clones, syntactical information then is used to suggest which code clones are
appropriate to remove by using method extraction. A similar approach could be
applied to this project; a lexicographic or other hash based approach could be
used to find code clones or fragments of code which suggest they could be
semantically the same; the match detection currently implemented could be
applied to these suggested fragments instead of all the code. This way
performance should go up dramatically, but it still would be possible to
automatically remove the code clones with the use of method extraction.

One of the differences with other code clone detections is that because of the
semantic analysis the algorithm can identify matching statements containing
different expressions of resulting in the same type, therefore code clones which
would not be found by other code clone detection algorithms. These faster
algorithms abstract away variable names and literal values, but generally these
are the only differences between fragments which are allowed in a match. Using
these algorithms to preselect code clone candidates would thus mean losing a
part of the code clones found.

The algorithm is based on matching continuous runs of statements where pairs
of statements are the same kind. Because of this, in practice the code clones

144

found will be mostly results of copy-pasting. It could be researched if a faster
algorithm could be found which finds matches as the algorithm in the thesis does
or it could be decided that the performance increase gained by using a faster
algorithm justifies the loss of a few code clones found.

A different approach to make the tool more usable is to change the intendend
usage. Instead of searching code clones in a complete project, the tool could be
rewritten in such a way the user could select a fragment of code it intents to
change so the tool can search for code clones for just that fragment. Instead of
comparing all statements with all other statements, only the statements in the
selected code would have to be compared with other code thus decreasing the
time the tool needs to perform its task.

8.2 Increasing the number of code clones found
As already mentioned in section 8.1 most code clones found by the algorithm
seem to originate from copy-pasting. Fragments of code which are incidental
semantically similar generally differ too much to be found by the algorithm
presented in this thesis because at the matching and rewriting phase, only
substitutions are applied and no transformations.

It is just as useful to remove code clones which arise by coincidence as it is to
remove code clones which arise by copy-pasting, because of the same reasons.
In (12) a technique called program slicing is used. Program dependency graphs
are used to find statements which are dependant of each other, if groups of
dependant statements match in two fragments, they are considered a clone.
Because the order of dependency is used instead of the physical order of the
statements, the groups of matching statements don’t have to be continuous or
even in the same order. In (12) some interesting results were reported,
combining this method with the expression substitution presented in this thesis
potentially results in even more interesting matches.

8.3 Finding more than two instances of a clone at once
The matching algorithm and the unifying method extraction algorithm only match
two fragments and remove the code duplicates. Often though, more than two
clones of a fragment exist. If code clones are removed, it is obviously preferable
to remove all instances clone. It is therefore useful to adapt the match and
refactor algorithm in such a way it can handle more than two instances of a
clone. An approach which could be used is the following. Pairs of fragments can
be matched as is done by the current algorithm. If one fragment of code has
more than one match, the fragment and all permutations of the matches are
candidates for refactoring. The matching and rewriting algorithms could easily be
adopted, instead of that the kind of two statements need to be the same, the
kind of N statements need to be the same. Instead of that two expressions need
to be the same or substitutable to be a match, N expressions need to be the
same or substitutable to be a match. The biggest set of fragments that can be

145

matched this way can be regarded as a set of code clones and be refactored
away.

 	

146

9 Conclusions
When coding large projects, chances are that existing code fragments will be re-
written over and again. This can be done unconsciously but also by copy-pasting,
this is unfortunately a widespread practice. In some case studies of commercial
software 5% of the code were clones. It is well-known that code duplication
decreases the maintainability of the code rapidly. Detecting clones and remove
them using method extraction will improve maintainability and understandability
because only one copy of the clone needs to be maintained and understood.

 In this thesis a tool is presented which can detect code duplicates in programs
written in Visual Basic. The tool offers the possibility to automatically remove
these duplicates by using a method extraction refactoring. The novel part of this
tool is that it can ensure that the code clones presented for refactoring actually
can be refactored without changing the external behaviour of the refactored
program. To our knowledge this is tool is the only one existent which can
perform a fully automated code extraction which is constructed on the bases of
more than one fragment of code.

The code clone algorithm used is AST based, but unlike other implementations
using this approach, it does not ignore variable names or literal values. The code
clone algorithm is designed in such a way it searches code clones which can be
removed using the method extraction refactoring. A semantic analysis is used to
classify each expression, the algorithm compares the types and origin
expressions classify to. Parts of expressions that are not the same but do classify
to the same type can be substituted by a variable holding the result value of the
evaluated original expressions or if the original expression is a variable or
property act as a temp variable. These variables can be parameters via which
these values are passed to the extracted method or be returned if the value is
used after the fragments the extracted method is based on.

To regard two fragments a match, other methods only allow for different variable
names or literal values and is some novel cases a different order of statements.
In the method presented in this thesis, the statements in matching fragments
must be in the same order and of the same kind, but expressions can be
substituted with variables as long as the data flow is not affected. Because of this
it is possible to find code clones which other methods know won’t find.

To make it possible to compare nodes in the way needed for the matching
algorithm and the nature of the target language; Visual Basic 8, deep semantic
analysis is needed. This is because the language contains different constructions
which make classification non trivial. Because none was available for the target
language, a semantic analyzer had to be implemented. In this thesis a semantic
analyzer is presented, which can classify any expressions to the type and origin
of the contained value.

The matching algorithm first finds pairs of matching statements, allowing
expressions to be substituted where necessary and possible. These matching

147

statement pairs are combined in such a way that the resulting fragments are
maximized but the original data flow stays intact and the selection criteria are
fulfilled.

To construct an extracted method, one of the fragments is used as the method
body with the appropriate expressions substituted as variables. Data flow
analysis is used to determine which of the substitute variables need to be
parameters and which one needs to be returned if any. Declarators are added to
the method body for the substitute variables which are not already implicit
declared in the body and are not parameters.

To increase performance and usability, future work on the tool could include
using a crude clone detection algorithm, for example token based, to find
potential code clones much faster, the matching algorithm currently used could
then only be applied on the clones found by this algorithm.

We feel that using slicing techniques in the matching and rewriting algorithm
would increase the number of interesting clones found and removed. The core
elements that are necessary to implement slicing are already in place; the
dependency and data flow consistency check. The only thing that needs to be
altered is the algorithm which combines matching statement pairs.

 	

148

10 References
1. Clone Detection Using Abstract Syntax Trees. Baxter, Ira D, et al. 1998.
14th IEEE International Conference on Software Maintenance (ICSM'98). p. 368.

2. On Finding Duplication and Near-Duplication in Large Software Systems.
Baker, Brenda S. 1995. IEEE Second Working Conference on Reverse
Engineering. pp. 86-95.

3. Does code duplication matter? SolidSource BV. [Online] 15 January 2010.
http://www.solidsourceit.com/blog/?p=4.

4. CCFinder: A Multilinguistic Token-Based Code Clone Detectino System for
Large Scale Source Code. Kamiya, Toshihiro, Kusumoto, Shinji and Inoue,
Katsuro. 7, July 2002, IEEE Transactions on Software Engineering, Vol. 28, pp.
654-270.

5. Aries: Refactoring Support Environment Based on Code Clone Analysis. Higo,
Yoshiki, Kamiya, Toshihiro and Kusumoto, Shinji. Cambridge, MA, USA :
s.n., 2004. Proceedings of the Eight IASTED International Conference Software
Engineering and Applications.

6. A Language Independent Approach for Detecting Duplicate Code. Ducasse,
Stéphane, Rieger, Matthias en Demeyer, Serge. 1999. 15th IEEE
International Conference on Software Maintenance (ICSM '99). p. 109.

7. SolidSDD Software Duplication Detector. SolidSource BV. [Online]
http://www.solidsourceit.com.

8. Pattern Matching for Clone and Concept Detection. Kontogiannis, K A, et al.
1-2, 1996, Automated Software Engineering, Vol. 3, pp. 77-108.

9. Clone Detection using Abstract Syntax Suffix Trees. Koschke, Rainer, Falke,
Raimar en Frenzel, Pierre. Benevento : sn, 2006. 13th Working Conference on
Reverse Engineering. (WCRE '06). pp. 253-262.

10. Komondoor, Raghavan V en Horwitz, Susan. Using Slicing to Identify
Duplication in Source Code. [boekaut.] Patrick Cousot. Static Analysis. sl :
Springer Berlin/Heidelberg, 2001, pp. 40-56.

11. Fowler, Martin. Refactoring: Improving the Design of Existing Code. sl :
Addison Wesley, 1999.

12. Komondoor, Raghavan V. Automated Duplication-Code Detection and
Procedure Extraction. Madison, WI, USA : Springer, 2003.

13. Grune, Dick, et al. Modern Compiler Design. s.l. : Wiley, 2000.

14. Vick, Paul. VBParser. Panopticon Central. [Online] 27 March 2006.
http://panopticoncentral.net/archive/2006/03/27/11531.aspx.

149

15. —. Visual Basic Language Specification 8.0. MSDN. [Online] 15 11 2005.
http://msdn.microsoft.com/en-us/library/ms234437(VS.80).aspx.

16. Tool Support for Refactoring Duplicated OO Code. Ducasse, Stéphane,
Rieger, Matthias en Golomingi, Georges. Lisbon : sn, 1999. Preceedings of
the ECOOP '99 Workshop on Experiences in Object-Oriented Re-Engineering.

17. Opdyke, William F. Refactoring Object-Oriented Frameworks. sl, Illinois :
University of Illinois, 1992.

18. Breaking the Barriers to Successful Refactoring: Observations and Tools for
Extract Method. Murphy-Hill, Emerson and Black, Andrew P. Leipzig,
Germany : ACM, 2008. Proceedings of the 30th international conference on
Software engineering. pp. 421-430.

19. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capicity
for Processing Information. Miller, G A. 2, March 1956, The Psychological
Review, Vol. 63, pp. 81-97.

20. Mono. [Online] http://www.mono-project.com/VisualBasic.NET_support.

150

11 Appendix 1: Visual Basic 8.0 grammar

11.1 Lexical Grammar

Start ::= [LogicalLine+]

LogicalLine ::= [LogicalLineElement+] [Comment] LineTerminator

LogicalLineElement ::= WhiteSpace | LineContinuation | Token

Token ::= Identifier | Keyword | Literal | Separator | Operator

11.1.1 Characters and Lines

Character ::= < any Unicode character except a LineTerminator >

LineTerminator ::=
 < Unicode carriage return character (0x000D) > |
 < Unicode linefeed character (0x000A) > |
 < Unicode carriage return character > < Unicode linefeed character > |
 < Unicode line separator character (0x2028) > |
 < Unicode paragraph separator character (0x2029) >

LineContinuation ::= WhiteSpace _ [WhiteSpace+] LineTerminator

WhiteSpace ::=
 < Unicode blank characters (class Zs) > |
 < Unicode tab character (0x0009) >

Comment ::= CommentMarker [Character+]

CommentMarker ::= SingleQuoteCharacter | REM

SingleQuoteCharacter ::=
 ' |
 < Unicode left single-quote character (0x2018) > |
 < Unicode right single-quote character (0x2019) >

11.1.2 Identifiers

Identifier ::=
 NonEscapedIdentifier [TypeCharacter] |
 Keyword TypeCharacter |
 EscapedIdentifier

NonEscapedIdentifier ::= < IdentifierName but not Keyword >

EscapedIdentifier ::= [IdentifierName]

IdentifierName ::= IdentifierStart [IdentifierCharacter+]

IdentifierStart ::=
 AlphaCharacter |
 UnderscoreCharacter IdentifierCharacter

IdentifierCharacter ::=
 UnderscoreCharacter |
 AlphaCharacter |
 NumericCharacter |

151

 CombiningCharacter |
 FormattingCharacter

AlphaCharacter ::=
 < Unicode alphabetic character (classes Lu, Ll, Lt, Lm, Lo, Nl) >

NumericCharacter ::= < Unicode decimal digit character (class Nd) >

CombiningCharacter ::= < Unicode combining character (classes Mn, Mc) >

FormattingCharacter ::= < Unicode formatting character (class Cf) >

UnderscoreCharacter ::= < Unicode connection character (class Pc) >

IdentifierOrKeyword ::= Identifier | Keyword

TypeCharacter ::=
 IntegerTypeCharacter |
 LongTypeCharacter |
 DecimalTypeCharacter |
 SingleTypeCharacter |
 DoubleTypeCharacter |
 StringTypeCharacter

IntegerTypeCharacter ::= %

LongTypeCharacter ::= &

DecimalTypeCharacter ::= @

SingleTypeCharacter ::= !

DoubleTypeCharacter ::= #

StringTypeCharacter ::= $

11.1.3 Keywords

Keyword ::= < member of keyword table in 2.3 >

11.1.4 Literals

Literal ::=
 BooleanLiteral |
 IntegerLiteral |
 FloatingPointLiteral |
 StringLiteral |
 CharacterLiteral |
 DateLiteral |
 Nothing

BooleanLiteral ::= True | False

IntegerLiteral ::= IntegralLiteralValue [IntegralTypeCharacter]

IntegralLiteralValue ::= IntLiteral | HexLiteral | OctalLiteral

IntegralTypeCharacter ::=
 ShortCharacter |
 UnsignedShortCharacter |

152

 IntegerCharacter |
 UnsignedIntegerCharacter
 LongCharacter |
 UnsignedLongCharacter |
 IntegerTypeCharacter |
 LongTypeCharacter

ShortCharacter ::= S

UnsignedShortCharacter ::= US

IntegerCharacter ::= I

UnsignedIntegerCharacter ::= UI

LongCharacter ::= L

UnsignedLongCharacter ::= UL

IntLiteral ::= Digit+

HexLiteral ::= & H HexDigit+

OctalLiteral ::= & O OctalDigit+

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

HexDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F

OctalDigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

FloatingPointLiteral ::=
 FloatingPointLiteralValue [FloatingPointTypeCharacter] |
 IntLiteral FloatingPointTypeCharacter

FloatingPointTypeCharacter ::=
 SingleCharacter |
 DoubleCharacter |
 DecimalCharacter |
 SingleTypeCharacter |
 DoubleTypeCharacter |
 DecimalTypeCharacter

SingleCharacter ::= F

DoubleCharacter ::= R

DecimalCharacter ::= D

FloatingPointLiteralValue ::=
 IntLiteral . IntLiteral [Exponent] |
 . IntLiteral [Exponent] |
 IntLiteral Exponent

Exponent ::= E [Sign] IntLiteral

Sign ::= + | -

StringLiteral ::=
 DoubleQuoteCharacter [StringCharacter+] DoubleQuoteCharacter

153

DoubleQuoteCharacter ::=
 " |
 < Unicode left double-quote character (0x201C) > |
 < Unicode right double-quote character (0x201D) >

StringCharacter ::=
 < Character except for DoubleQuoteCharacter > |
 DoubleQuoteCharacter DoubleQuoteCharacter

CharacterLiteral ::= DoubleQuoteCharacter StringCharacter DoubleQuoteCharacter C

DateLiteral ::= # [Whitespace+] DateOrTime [Whitespace+] #

DateOrTime ::=
 DateValue Whitespace+ TimeValue |
 DateValue |
 TimeValue

DateValue ::=
 MonthValue / DayValue / YearValue |
 MonthValue – DayValue - YearValue

TimeValue ::=
 HourValue : MinuteValue [: SecondValue] [WhiteSpace+] [AMPM]

MonthValue ::= IntLiteral

DayValue ::= IntLiteral

YearValue ::= IntLiteral

HourValue ::= IntLiteral

MinuteValue ::= IntLiteral

SecondValue ::= IntLiteral

AMPM ::= AM | PM

Nothing ::= Nothing

Separator ::= (|) | { | } | ! | # | , | . | : | :=

Operator ::=
 & | * | + | - | / | \ | ^ | < | = | > | <= | >= | <> | << | >> |
 &= | *= | += | -= | /= | \= | ^= | <<= | >>=

11.2 Preprocessing Directives

11.2.1 Conditional Compilation

Start ::= [CCStatement+]

CCStatement ::=
 CCConstantDeclaration |
 CCIfGroup |
 LogicalLine

CCExpression ::=
 LiteralExpression |

154

 CCParenthesizedExpression |
 SimpleNameExpression |
 CCCastExpression |
 CCOperatorExpression

CCParenthesizedExpression ::= (CCExpression)

CCCastExpression ::= CastTarget (CCExpression)

CCOperatorExpression ::=
 CCUnaryOperator CCExpression
 CCExpression CCBinaryOperator CCExpression

CCUnaryOperator ::= + | - | Not

CCBinaryOperator ::= + | - | * | / | \ | Mod | ^ | = | <> | < | > |

 <= | >= | & | And | Or | Xor | AndAlso | OrElse | << | >>

CCConstantDeclaration ::= # Const Identifier = CCExpression LineTerminator

CCIfGroup ::=
 # If CCExpression [Then] LineTerminator
 [CCStatement+]
 [CCElseIfGroup+]
 [CCElseGroup]
 # End If LineTerminator

CCElseIfGroup ::=
 # ElseIf CCExpression [Then] LineTerminator
 [CCStatement+]

CCElseGroup ::=
 # Else LineTerminator
 [CCStatement+]

11.2.2 External Source Directives

Start ::= [ExternalSourceStatement+]

ExternalSourceStatement ::= ExternalSourceGroup | LogicalLine

ExternalSourceGroup ::=
 # ExternalSource (StringLiteral , IntLiteral) LineTerminator
 [LogicalLine+]
 # End ExternalSource LineTerminator

11.2.3 Region Directives

Start ::= [RegionStatement+]

RegionStatement ::= RegionGroup | LogicalLine

RegionGroup ::=
 # Region StringLiteral LineTerminator
 [LogicalLine+]
 # End Region LineTerminator

155

11.2.4 External Checksum Directives

Start ::= [ExternalChecksumStatement+]

ExternalChecksumStatement ::=
 # ExternalChecksum (StringLiteral , StringLiteral , StringLiteral) LineTerminator

11.3 Syntactic Grammar

AccessModifier ::= Public | Protected | Friend | Private | Protected Friend

QualifiedIdentifier ::=
 Identifier |
 Global . IdentifierOrKeyword |
 QualifiedIdentifier . IdentifierOrKeyword

TypeParameterList ::=
 (Of TypeParameters)

TypeParameters ::=
 TypeParameter |
 TypeParameters , TypeParameter

TypeParameter ::=
 Identifier [TypeParameterConstraints]

TypeParameterConstraints ::=
 As Constraint |
 As { ConstraintList }

ConstraintList ::=
 ConstraintList , Constraint |
 Constraint

Constraint ::= TypeName | New

11.3.1 Attributes

Attributes ::=
 AttributeBlock |
 Attributes AttributeBlock

AttributeBlock ::= < AttributeList >

AttributeList ::=
 Attribute |
 AttributeList , Attribute

Attribute ::=
 [AttributeModifier :] SimpleTypeName [([AttributeArguments])]

AttributeModifier ::= Assembly | Module

AttributeArguments ::=
 AttributePositionalArgumentList |
 AttributePositionalArgumentList , VariablePropertyInitializerList |
 VariablePropertyInitializerList

156

AttributePositionalArgumentList ::=
 AttributeArgumentExpression |
 AttributePositionalArgumentList , AttributeArgumentExpression

VariablePropertyInitializerList ::=
 VariablePropertyInitializer |
 VariablePropertyInitializerList , VariablePropertyInitializer

VariablePropertyInitializer ::=
 IdentifierOrKeyword := AttributeArgumentExpression

AttributeArgumentExpression ::=
 ConstantExpression |
 GetTypeExpression |
 ArrayCreationExpression

11.3.2 Source Files and Namespaces

Start ::=
 [OptionStatement+]
 [ImportsStatement+]
 [AttributesStatement+]
 [NamespaceMemberDeclaration+]

StatementTerminator ::= LineTerminator | :

AttributesStatement ::= Attributes StatementTerminator

OptionStatement ::=
 OptionExplicitStatement |
 OptionStrictStatement |
 OptionCompareStatement

OptionExplicitStatement ::= Option Explicit [OnOff] StatementTerminator

OnOff ::= On | Off

OptionStrictStatement ::= Option Strict [OnOff] StatementTerminator

OptionCompareStatement ::= Option Compare CompareOption StatementTerminator

CompareOption ::= Binary | Text

ImportsStatement ::= Imports ImportsClauses StatementTerminator

ImportsClauses ::=
 ImportsClause |
 ImportsClauses , ImportsClause

ImportsClause ::= ImportsAliasClause | ImportsNamespaceClause

ImportsAliasClause ::=
 Identifier = QualifiedIdentifier |
 Identifier = ConstructedTypeName

ImportsNamespaceClause ::=
 QualifiedIdentifier |
 ConstructedTypeName

157

NamespaceDeclaration ::=
 Namespace QualifiedIdentifier StatementTerminator
 [NamespaceMemberDeclaration+]
 End Namespace StatementTerminator

NamespaceMemberDeclaration ::=
 NamespaceDeclaration |
 TypeDeclaration

TypeDeclaration ::=
 ModuleDeclaration |
 NonModuleDeclaration

NonModuleDeclaration ::=
 EnumDeclaration |
 StructureDeclaration |
 InterfaceDeclaration |
 ClassDeclaration |
 DelegateDeclaration

11.3.3 Types

TypeName ::=
 ArrayTypeName |
 NonArrayTypeName

NonArrayTypeName ::=
 SimpleTypeName |
 ConstructedTypeName

SimpleTypeName ::=
 QualifiedIdentifier |
 BuiltInTypeName

BuiltInTypeName ::= Object | PrimitiveTypeName

TypeModifier ::= AccessModifier | Shadows

TypeImplementsClause ::= Implements Implements StatementTerminator

Implements ::=
 NonArrayTypeName |
 Implements , NonArrayTypeName

PrimitiveTypeName ::= NumericTypeName | Boolean | Date | Char | String

NumericTypeName ::= IntegralTypeName | FloatingPointTypeName | Decimal

IntegralTypeName ::= Byte | SByte | UShort | Short | UInteger | Integer | ULong |
Long

FloatingPointTypeName ::= Single | Double

EnumDeclaration ::=
 [Attributes] [TypeModifier+] Enum Identifier [As QualifiedName]
StatementTerminator

158

 EnumMemberDeclaration+
 End Enum StatementTerminator

EnumMemberDeclaration ::= [Attributes] Identifier [= ConstantExpression]
StatementTerminator

ClassDeclaration ::=
 [Attributes] [ClassModifier+] Class Identifier [TypeParameterList]
StatementTerminator
 [ClassBase]
 [TypeImplementsClause+]
 [ClassMemberDeclaration+]
 End Class StatementTerminator

ClassModifier ::= TypeModifier | MustInherit | NotInheritable | Partial

ClassBase ::= Inherits NonArrayTypeName StatementTerminator

ClassMemberDeclaration ::=
 NonModuleDeclaration |
 EventMemberDeclaration |
 VariableMemberDeclaration |
 ConstantMemberDeclaration |
 MethodMemberDeclaration |
 PropertyMemberDeclaration |
 ConstructorMemberDeclaration |
 OperatorDeclaration

StructureDeclaration ::=
 [Attributes] [StructureModifier+] Structure Identifier [TypeParameterList]
 StatementTerminator
 [TypeImplementsClause+]
 [StructMemberDeclaration+]
 End Structure StatementTerminator

StructureModifier ::= TypeModifier | Partial

StructMemberDeclaration ::=
 NonModuleDeclaration |
 VariableMemberDeclaration |
 ConstantMemberDeclaration |
 EventMemberDeclaration |
 MethodMemberDeclaration |
 PropertyMemberDeclaration |
 ConstructorMemberDeclaration |
 OperatorDeclaration

ModuleDeclaration ::=
 [Attributes] [TypeModifier+] Module Identifier StatementTerminator
 [ModuleMemberDeclaration+]
 End Module StatementTerminator

ModuleMemberDeclaration ::=
 NonModuleDeclaration |

159

 VariableMemberDeclaration |
 ConstantMemberDeclaration |
 EventMemberDeclaration |
 MethodMemberDeclaration |
 PropertyMemberDeclaration |
 ConstructorMemberDeclaration

InterfaceDeclaration ::=
 [Attributes] [TypeModifier+] Interface Identifier [TypeParameterList]
StatementTerminator
 [InterfaceBase+]
 [InterfaceMemberDeclaration+]
 End Interface StatementTerminator

InterfaceBase ::= Inherits InterfaceBases StatementTerminator

InterfaceBases ::=
 NonArrayTypeName |
 InterfaceBases , NonArrayTypeName

InterfaceMemberDeclaration ::=
 NonModuleDeclaration |
 InterfaceEventMemberDeclaration |
 InterfaceMethodMemberDeclaration |
 InterfacePropertyMemberDeclaration

ArrayTypeName ::= NonArrayTypeName ArrayTypeModifiers

ArrayTypeModifiers ::= ArrayTypeModifier+

ArrayTypeModifier ::= ([RankList])

RankList ::=
 , |
 RankList ,

ArrayNameModifier ::=
 ArrayTypeModifiers |
 ArraySizeInitializationModifier

DelegateDeclaration ::=
 [Attributes] [TypeModifier+] Delegate MethodSignature StatementTerminator

MethodSignature ::= SubSignature | FunctionSignature

ConstructedTypeName ::=
 QualifiedIdentifier (Of TypeArgumentList)

TypeArgumentList ::=
 TypeName |
 TypeArgumentList , TypeName

11.3.4 Type Members

ImplementsClause ::= [Implements ImplementsList]

160

ImplementsList ::=
 InterfaceMemberSpecifier |
 ImplementsList , InterfaceMemberSpecifier

InterfaceMemberSpecifier ::= NonArrayTypeName . IdentifierOrKeyword

MethodMemberDeclaration ::= MethodDeclaration | ExternalMethodDeclaration

InterfaceMethodMemberDeclaration ::= InterfaceMethodDeclaration

MethodDeclaration ::=
 SubDeclaration |
 MustOverrideSubDeclaration |
 FunctionDeclaration |
 MustOverrideFunctionDeclaration

InterfaceMethodDeclaration ::=
 InterfaceSubDeclaration |
 InterfaceFunctionDeclaration

SubSignature ::= Identifier [TypeParameterList] [([ParameterList])]

FunctionSignature ::= SubSignature [As [Attributes] TypeName]

SubDeclaration ::=
 [Attributes] [ProcedureModifier+] Sub SubSignature [HandlesOrImplements]
LineTerminator
 Block
 End Sub StatementTerminator

MustOverrideSubDeclaration ::=
 [Attributes] [MustOverrideProcedureModifier+] Sub SubSignature [
HandlesOrImplements]
 StatementTerminator

InterfaceSubDeclaration ::=
 [Attributes] [InterfaceProcedureModifier+] Sub SubSignature StatementTerminator

FunctionDeclaration ::=
 [Attributes] [ProcedureModifier+] Function FunctionSignature [
HandlesOrImplements]
 LineTerminator
 Block
 End Function StatementTerminator

MustOverrideFunctionDeclaration ::=
 [Attributes] [MustOverrideProcedureModifier+] Function FunctionSignature
 [HandlesOrImplements] StatementTerminator

InterfaceFunctionDeclaration ::=
 [Attributes] [InterfaceProcedureModifier+] Function FunctionSignature
StatementTerminator

ProcedureModifier ::=
 AccessModifier |
 Shadows |

161

 Shared |
 Overridable |
 NotOverridable |
 Overrides |
 Overloads

MustOverrideProcedureModifier ::= ProcedureModifier | MustOverride

InterfaceProcedureModifier ::= Shadows | Overloads

HandlesOrImplements ::= HandlesClause | ImplementsClause

ExternalMethodDeclaration ::=
 ExternalSubDeclaration |
 ExternalFunctionDeclaration

ExternalSubDeclaration ::=
 [Attributes] [ExternalMethodModifier+] Declare [CharsetModifier] Sub Identifier
 LibraryClause [AliasClause] [([ParameterList])] StatementTerminator

ExternalFunctionDeclaration ::=
 [Attributes] [ExternalMethodModifier+] Declare [CharsetModifier] Function
Identifier
 LibraryClause [AliasClause] [([ParameterList])] [As [Attributes]
TypeName]
 StatementTerminator

ExternalMethodModifier ::= AccessModifier | Shadows | Overloads

CharsetModifier ::= Ansi | Unicode | Auto

LibraryClause ::= Lib StringLiteral

AliasClause ::= Alias StringLiteral

ParameterList ::=
 Parameter |
 ParameterList , Parameter

Parameter ::=
 [Attributes] ParameterModifier+ ParameterIdentifier [As TypeName] [=
ConstantExpression]

ParameterModifier ::= ByVal | ByRef | Optional | ParamArray

ParameterIdentifier ::= Identifier [ArrayNameModifier]

HandlesClause ::= [Handles EventHandlesList]

EventHandlesList ::=
 EventMemberSpecifier |
 EventHandlesList , EventMemberSpecifier

EventMemberSpecifier ::=
 QualifiedIdentifier . IdentifierOrKeyword |
 MyBase . IdentifierOrKeyword |
 Me . IdentifierOrKeyword

162

ConstructorMemberDeclaration ::=
 [Attributes] [ConstructorModifier+] Sub New [([ParameterList])]
LineTerminator
 [Block]
 End Sub StatementTerminator

ConstructorModifier ::= AccessModifier | Shared

EventMemberDeclaration ::=
 RegularEventMemberDeclaration |
 CustomEventMemberDeclaration

RegularEventMemberDeclaration ::=
 [Attributes] [EventModifiers+] Event Identifier ParametersOrType [
ImplementsClause]
 StatementTerminator

InterfaceEventMemberDeclaration ::=
 [Attributes] [InterfaceEventModifiers+] Event Identifier ParametersOrType
StatementTerminator

ParametersOrType ::=
 [([ParameterList])] |
 As NonArrayTypeName

EventModifiers ::= AccessModifier | Shadows | Shared

InterfaceEventModifiers ::= Shadows

CustomEventMemberDeclaration ::=
 [Attributes] [EventModifiers+] Custom Event Identifier As TypeName [
ImplementsClause]
 StatementTerminator
 EventAccessorDeclaration+
 End Event StatementTerminator

EventAccessorDeclaration ::=
 AddHandlerDeclaration |
 RemoveHandlerDeclaration |
 RaiseEventDeclaration

AddHandlerDeclaration ::=
 [Attributes] AddHandler (ParameterList) LineTerminator
 [Block]
 End AddHandler StatementTerminator

RemoveHandlerDeclaration ::=
 [Attributes] RemoveHandler (ParameterList) LineTerminator
 [Block]
 End RemoveHandler StatementTerminator

RaiseEventDeclaration ::=
 [Attributes] RaiseEvent (ParameterList) LineTerminator
 [Block]
 End RaiseEvent StatementTerminator

163

ConstantMemberDeclaration ::=
 [Attributes] [ConstantModifier+] Const ConstantDeclarators StatementTerminator

ConstantModifier ::= AccessModifier | Shadows

ConstantDeclarators ::=
 ConstantDeclarator |
 ConstantDeclarators , ConstantDeclarator

ConstantDeclarator ::= Identifier [As TypeName] = ConstantExpression StatementTerminator

VariableMemberDeclaration ::=
 [Attributes] VariableModifier+ VariableDeclarators StatementTerminator

VariableModifier ::=
 AccessModifier |
 Shadows |
 Shared |
 ReadOnly |
 WithEvents |
 Dim

VariableDeclarators ::=
 VariableDeclarator |
 VariableDeclarators , VariableDeclarator

VariableDeclarator ::=
 VariableIdentifiers [As [New] TypeName [(ArgumentList)]] |
 VariableIdentifier [As TypeName] [= VariableInitializer]

VariableIdentifiers ::=
 VariableIdentifier |
 VariableIdentifiers , VariableIdentifier

VariableIdentifier ::= Identifier [ArrayNameModifier]

VariableInitializer ::= RegularInitializer | ArrayElementInitializer

RegularInitializer ::= Expression

ArraySizeInitializationModifier ::=
 (BoundList) [ArrayTypeModifiers]

BoundList::=
 Expression |
 0 To Expression |
 UpperBoundList , Expression

ArrayElementInitializer ::= { [VariableInitializerList] }

VariableInitializerList ::=
 VariableInitializer |
 VariableInitializerList , VariableInitializer

VariableInitializer ::= Expression | ArrayElementInitializer

164

PropertyMemberDeclaration ::=
 RegularPropertyMemberDeclaration |
 MustOverridePropertyMemberDeclaration

RegularPropertyMemberDeclaration ::=
 [Attributes] [PropertyModifier+] Property FunctionSignature [ImplementsClause]
 LineTerminator
 PropertyAccessorDeclaration+
 End Property StatementTerminator

MustOverridePropertyMemberDeclaration ::=
 [Attributes] [MustOverridePropertyModifier+] Property FunctionSignature [
ImplementsClause]
 StatementTerminator

InterfacePropertyMemberDeclaration ::=
 [Attributes] [InterfacePropertyModifier+] Property FunctionSignature
StatementTerminator

PropertyModifier ::= ProcedureModifier | Default | ReadOnly | WriteOnly

MustOverridePropertyModifier ::= PropertyModifier | MustOverride

InterfacePropertyModifier ::=
 Shadows |
 Overloads |
 Default |
 ReadOnly |
 WriteOnly

PropertyAccessorDeclaration ::= PropertyGetDeclaration | PropertySetDeclaration

PropertyGetDeclaration ::=
 [Attributes] [AccessModifier] Get LineTerminator
 [Block]
 End Get StatementTerminator

PropertySetDeclaration ::=
 [Attributes] [AccessModifier] Set [(ParameterList)] LineTerminator
 [Block]
 End Set StatementTerminator

OperatorDeclaration ::=
 UnaryOperatorDeclaration |
 BinaryOperatorDeclaration |
 ConversionOperatorDeclaration

OperatorModifier ::= Public | Shared | Overloads | Shadows

Operand ::= [ByVal] Identifier [As TypeName]

UnaryOperatorDeclaration ::=
 [Attributes] [OperatorModifier+] Operator OverloadableUnaryOperator (Operand
)

 [As [Attributes] TypeName] LineTerminator

165

 [Block]
 End Operator StatementTerminator

OverloadableUnaryOperator ::= + | - | Not | IsTrue | IsFalse

BinaryOperatorDeclaration ::=
 [Attributes] [OperatorModifier+] Operator OverloadableBinaryOperator
 (Operand , Operand) [As [Attributes] TypeName] LineTerminator
 [Block]
 End Operator StatementTerminator

OverloadableBinaryOperator ::=
 + | - | * | / | \ | & | Like | Mod | And | Or | Xor |
 ^ | << | >> | = | <> | > | < | >= | <=

ConversionOperatorDeclaration ::=
 [Attributes] [ConversionOperatorModifier+] Operator CType (Operand)
 [As [Attributes] TypeName] LineTerminator
 [Block]
 End Operator StatementTerminator

ConversionOperatorModifier ::= Widening | Narrowing | ConversionModifier

11.3.5 Statements

Statement ::=
 LabelDeclarationStatement |
 LocalDeclarationStatement |
 WithStatement |
 SyncLockStatement |
 EventStatement |
 AssignmentStatement |
 InvocationStatement |
 ConditionalStatement |
 LoopStatement |
 ErrorHandlingStatement |
 BranchStatement |
 ArrayHandlingStatement |
 UsingStatement

Block ::= [Statements+]

LabelDeclarationStatement ::= LabelName :

LabelName ::= Identifier | IntLiteral

Statements ::=
 [Statement] |
 Statements : [Statement]

LocalDeclarationStatement ::= LocalModifier VariableDeclarators StatementTerminator

LocalModifier ::= Static | Dim | Const

WithStatement ::=
 With Expression StatementTerminator

166

 [Block]
 End With StatementTerminator

SyncLockStatement ::=
 SyncLock Expression StatementTerminator
 [Block]
 End SyncLock StatementTerminator

EventStatement ::=
 RaiseEventStatement |
 AddHandlerStatement |
 RemoveHandlerStatement

RaiseEventStatement ::= RaiseEvent IdentifierOrKeyword [([ArgumentList])]
 StatementTerminator

AddHandlerStatement ::= AddHandler Expression , Expression StatementTerminator

RemoveHandlerStatement ::= RemoveHandler Expression , Expression StatementTerminator

AssignmentStatement ::=
 RegularAssignmentStatement |
 CompoundAssignmentStatement |
 MidAssignmentStatement

RegularAssignmentStatement ::= Expression = Expression StatementTerminator

CompoundAssignmentStatement ::= Expression CompoundBinaryOperator Expression
StatementTerminator

CompoundBinaryOperator ::= ^= | *= | /= | \= | += | -= | &= | <<= | >>=

MidAssignmentStatement ::=
 Mid [$] (Expression , Expression [, Expression]) = Expression
StatementTerminator

InvocationStatement ::= [Call] InvocationExpression StatementTerminator

ConditionalStatement ::= IfStatement | SelectStatement

IfStatement ::= BlockIfStatement | LineIfThenStatement

BlockIfStatement ::=
 If BooleanExpression [Then] StatementTerminator
 [Block]
 [ElseIfStatement+]
 [ElseStatement]
 End If StatementTerminator

ElseIfStatement ::=
 ElseIf BooleanExpression [Then] StatementTerminator
 [Block]

ElseStatement ::=
 Else StatementTerminator
 [Block]

167

LineIfThenStatement ::=
 If BooleanExpression Then Statements [Else Statements] StatementTerminator

SelectStatement ::=
 Select [Case] Expression StatementTerminator
 [CaseStatement+]
 [CaseElseStatement]
 End Select StatementTerminator

CaseStatement ::=
 Case CaseClauses StatementTerminator
 [Block]

CaseClauses ::=
 CaseClause |
 CaseClauses , CaseClause

CaseClause ::=
 [Is] ComparisonOperator Expression |
 Expression [To Expression]

ComparisonOperator ::= = | <> | < | > | => | =<

CaseElseStatement ::=
 Case Else StatementTerminator
 [Block]

LoopStatement ::=
 WhileStatement |
 DoLoopStatement |
 ForStatement |
 ForEachStatement

WhileStatement ::=
 While BooleanExpression StatementTerminator
 [Block]
 End While StatementTerminator

DoLoopStatement ::= DoTopLoopStatement | DoBottomLoopStatement

DoTopLoopStatement ::=
 Do [WhileOrUntil BooleanExpression] StatementTerminator
 [Block]
 Loop StatementTerminator

DoBottomLoopStatement ::=
 Do StatementTerminator
 [Block]
 Loop WhileOrUntil BooleanExpression StatementTerminator

WhileOrUntil ::= While | Until

ForStatement ::=
 For LoopControlVariable = Expression To Expression [Step Expression]
StatementTerminator

168

 [Block]
 Next [NextExpressionList] StatementTerminator

LoopControlVariable ::=
 Identifier [ArrayNameModifier] As TypeName |
 Expression

NextExpressionList ::=
 Expression |
 NextExpressionList , Expression

ForEachStatement ::=
 For Each LoopControlVariable In Expression StatementTerminator
 [Block]
 Next [Expression] StatementTerminator

ErrorHandlingStatement ::=
 StructuredErrorStatement |
 UnstructuredErrorStatement

StructuredErrorStatement ::=
 ThrowStatement |
 TryStatement

TryStatement ::=
 Try StatementTerminator
 [Block]
 [CatchStatement+]
 [FinallyStatement]
 End Try StatementTerminator

FinallyStatement ::=
 Finally StatementTerminator
 [Block]

CatchStatement ::=
 Catch [Identifier As NonArrayTypeName] [When BooleanExpression]
StatementTerminator
 [Block]

ThrowStatement ::= Throw [Expression] StatementTerminator

UnstructuredErrorStatement ::=
 ErrorStatement |
 OnErrorStatement |
 ResumeStatement

ErrorStatement ::= Error Expression StatementTerminator

OnErrorStatement ::= On Error ErrorClause StatementTerminator

ErrorClause ::=
 GoTo - 1 |
 GoTo 0 |

169

 GotoStatement |
 Resume Next

ResumeStatement ::= Resume [ResumeClause] StatementTerminator

ResumeClause ::= Next | LabelName

BranchStatement ::=
 GotoStatement |
 ExitStatement |
 ContinueStatement |
 StopStatement |
 EndStatement |
 ReturnStatement

GotoStatement ::= GoTo LabelName StatementTerminator

ExitStatement ::= Exit ExitKind StatementTerminator

ExitKind ::= Do | For | While | Select | Sub | Function | Property | Try

ContinueStatement ::= Continue ContinueKind StatementTerminator

ContinueKind ::= Do | For | While

StopStatement ::= Stop StatementTerminator

EndStatement ::= End StatementTerminator

ReturnStatement ::= Return [Expression]

ArrayHandlingStatement ::=
 RedimStatement |
 EraseStatement

RedimStatement ::= ReDim [Preserve] RedimClauses StatementTerminator

RedimClauses ::=
 RedimClause |
 RedimClauses , RedimClause

RedimClause ::= Expression ArraySizeInitializationModifier

EraseStatement ::= Erase EraseExpressions StatementTerminator

EraseExpressions ::=
 Expression |
 EraseExpressions , Expression

UsingStatement ::=
 Using UsingResources StatementTerminator
 [Block]
 End Using StatementTerminator

UsingResources ::= VariableDeclarators | Expression

11.3.6 Expressions

Expression ::=
 SimpleExpression |

170

 TypeExpression |
 MemberAccessExpression |
 DictionaryAccessExpression |
 IndexExpression |
 NewExpression |
 CastExpression |
 OperatorExpression

ConstantExpression ::= Expression

SimpleExpression ::=
 LiteralExpression |
 ParenthesizedExpression |
 InstanceExpression |
 SimpleNameExpression |
 AddressOfExpression

LiteralExpression ::= Literal

ParenthesizedExpression ::= (Expression)

InstanceExpression ::= Me

SimpleNameExpression ::= Identifier [(Of TypeArgumentList)]

AddressOfExpression ::= AddressOf Expression

TypeExpression ::=
 GetTypeExpression |
 TypeOfIsExpression |
 IsExpression

GetTypeExpression ::= GetType (GetTypeTypeName)

GetTypeTypeName ::=
 TypeName |
 QualifiedIdentifier (Of [TypeArityList])

TypeArityList ::=
 , |
 TypeParameterList ,

TypeOfIsExpression ::= TypeOf Expression Is TypeName

IsExpression ::=
 Expression Is Expression |
 Expression IsNot Expression

MemberAccessExpression ::=
 [[MemberAccessBase] .] IdentifierOrKeyword

MemberAccessBase ::=
 Expression |
 BuiltInTypeName |
 Global |
 MyClass |
 MyBase

171

DictionaryAccessExpression ::= [Expression] ! IdentifierOrKeyword

InvocationExpression ::= Expression [([ArgumentList])]

ArgumentList ::=
 PositionalArgumentList , NamedArgumentList |
 PositionalArgumentList |
 NamedArgumentList

PositionalArgumentList ::=
 Expression |
 PositionalArgumentList , [Expression]

NamedArgumentList ::=
 IdentifierOrKeyword := Expression |
 NamedArgumentList , IdentifierOrKeyword := Expression

IndexExpression ::= Expression ([ArgumentList])

NewExpression ::=
 ObjectCreationExpression |
 ArrayCreationExpression |
 DelegateCreationExpression

ObjectCreationExpression ::=
 New NonArrayTypeName [([ArgumentList])]

ArrayCreationExpression ::=
 New NonArrayTypeName ArraySizeInitializationModifier ArrayElementInitializer

DelegateCreationExpression ::= New NonArrayTypeName (Expression)

CastExpression ::=
 DirectCast (Expression , TypeName) |
 TryCast (Expression , TypeName) |
 CType (Expression , TypeName) |
 CastTarget (Expression)

CastTarget ::=
 CBool | CByte | CChar | CDate | CDec | CDbl | CInt | CLng | CObj | CSByte |
CShort |
 CSng | CStr | CUInt | CULng | CUShort

OperatorExpression ::=
 ArithmeticOperatorExpression |
 RelationalOperatorExpression |
 LikeOperatorExpression |
 ConcatenationOperatorExpression |
 ShortCircuitLogicalOperatorExpression |
 LogicalOperatorExpression |
 ShiftOperatorExpression

ArithmeticOperatorExpression ::=
 UnaryPlusExpression |
 UnaryMinusExpression |

172

 AdditionOperatorExpression |
 SubtractionOperatorExpression |
 MultiplicationOperatorExpression |
 DivisionOperatorExpression |
 ModuloOperatorExpression |
 ExponentOperatorExpression

UnaryPlusExpression ::= + Expression

UnaryMinusExpression ::= - Expression

AdditionOperatorExpression ::= Expression + Expression

SubtractionOperatorExpression ::= Expression - Expression

MultiplicationOperatorExpression ::= Expression * Expression

DivisionOperatorExpression ::=
 FPDivisionOperatorExpression |
 IntegerDivisionOperatorExpression

FPDivisionOperatorExpression ::= Expression / Expression

IntegerDivisionOperatorExpression ::= Expression \ Expression

ModuloOperatorExpression ::= Expression Mod Expression

ExponentOperatorExpression ::= Expression ^ Expression

RelationalOperatorExpression ::=
 Expression = Expression |
 Expression <> Expression |
 Expression < Expression |
 Expression > Expression |
 Expression <= Expression |
 Expression >= Expression

LikeOperatorExpression ::= Expression Like Expression

ConcatenationOperatorExpression ::= Expression & Expression

LogicalOperatorExpression ::=
 Not Expression |
 Expression And Expression |
 Expression Or Expression |
 Expression Xor Expression

ShortCircuitLogicalOperatorExpression ::=
 Expression AndAlso Expression |
 Expression OrElse Expression

ShiftOperatorExpression ::=
 Expression << Expression |
 Expression >> Expression

BooleanExpression ::= Expression

