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Abstract

This research paper describes the development of a deep learning approach for remote non-contact
heart rate estimation. The field of non-contact HR detection is vast, therefore all previously pro-
posed methods are investigated and analysed. In addition, a previous work is selected to be ex-
tended and improved. The deep learning approach hereby presented is called NrPPG-NNET and
was developed by applying the knowledge of a previously trained Convolutional Neural Network
to the task of predicting HR from video footage alone. NrPPG-NNET achieves competitive results
in terms of bpm Mean Absolute Error but does not reach the state of the art. However, it is sig-
nificantly lighter than most of the previously proposed methods and can be run in real-time on
mid-range laptops (even without GPU). Thanks to its speed and ease of use, NrPPG-NNET could
potentially find application in the field of human-computer interaction. In addition, clues emerged
during development that are important for future work and provide a solid foundation for further
research.



Chapter 1

Introduction

1.1 Project Description and Motivation

Heart Rate (HR) assessment has a wide variety of uses, ranging from tracking fitness behaviours
to detecting acute heart accidents. HR is usually measured by palpating the pulse or using spe-
cialised instruments such as pulse oximeters or electrocardiographs. Because of their close proxim-
ity to the subject, such touch sensors can accurately identify the underlying vital signs (e.g. Res-
piration Rate), and thus have applications in sensitive areas such as patient monitoring. However,
the ability to remotely obtain such measurements through a camera/webcam - though with less
precision - cannot only allow applications outside of the medical domain (for example, effective
computing, human-computer interaction) but it can also increase accessibility to these measure-
ments to individuals with sensitive skin or dermatitis.
All in all, vital signs monitoring is ubiquitous in clinical environments and emerging in home-based
healthcare applications. Since modern techniques necessitate the use of uncomfortable sensors, a
focus should be put on systems able to remotely detect clinical parameters.

This work goal is to study the algorithms already implemented in the field of remote clinical
parameters estimation, and modify them in order to fit heterogeneous setups and test their perfor-
mance.

The system proposed takes care of Human and Heart Rate detection. Through the implementa-
tion of a computer vision software, it is possible to identify a human subject within a given image
(or frame). Additionally, an image segmentation process is performed and only a respiratory region
of interest (RoI) is cropped out. From the latter, hearth (HR) is extrapolated in the form of BPM
(beats per minute).

From the above, a question stems out:
Research Question: Does video footage of a human convey enough graphical information to accurately
estimate clinical parameters such as Heart Rate?

This paper tries to answer this question by building an end to end system which receives images
(or frames) as an input and it outputs a predicted BPM. We call this NrPPG-NNET. NrPPG-NNET
does not only try to estimate the average BPM over a one minute window, but is able to predict the
BPM every 10 seconds instead. In several areas, such as health monitoring and emotion detection,
a more detailed HR prediction is much needed, and this is what motivates this research.

1



1.2 Terminology and Taxonomy

Figure 1.1: Example of an PPG signal from Moraes et al.
2018.

This paper will occasionally present some terms
the reader may not be aware of - hence the com-
ing section aims at giving an overview of these ter-
minologies and their meaning. By observing small
variations in skin tone, visual HR prediction tech-
niques calculate the heart rate (HR). These variations
are thought to be caused by blood circulation in the
peripheral arteries, hence the examined signal be-
ing the "blood volume pulse" (BVP) sensed through
plethysmographic data.

Plethysmography has traditionally been used to
study peripheral circulation. From the plethysmo-
graphic signal (shown in Figure 1.1), besides BVP, is

possible to derive Heart Rate, Respiratory Rate, SpO2 (measurement of blood oxygen) and other
clinical parameters.

An Electrocardiographic (ECG) signal represents the voltage of the electrical activity of the body.
In order to acquire such signal, electrodes placed on the skin are used to measure the voltage versus
duration of the heart’s electrical operation. During each cardiac cycle, these electrodes sense the
minor electrical changes that occur as a result of cardiac muscle depolarization and repolarization
(i.e. a heartbeat).

Figure 1.2: Example of an ECG signal (source).

Several heart irregularities, such as cardiac
rhythm disruptions (including atrial fibrillation and
ventricular tachycardia), insufficient coronary artery
blood supply and electrolyte disturbances, induce
variations in the normal ECG sequence. An example
of a segmented ECG signal can be seen in Figure 1.2.
As shown in the figure, different waves appear in
the signal. R complex is the actual beat, whereas the
other peaks represent variations for the pre and post
beat, and are labelled accordingly. This work will of-
ten refer to these parts of the signal. In reading liter-
ature on Remote Photoplethysmography, it becomes
evident that confusion is made between terms used
to define this concept and other affiliating ones. The
taxonomy proposed by Špetlík 2018 is adopted, as it
is based on a clear distinction between the approaches.

Photoplethysmography (PPG) is an elementary optical procedure used to recognize volumetric
changes in the blood at a peripheral level. It is a minimal-effort and non-obtrusive strategy that
makes estimations based merely on the surface of the skin.
The estimation can be done remotely (the sensor is not touching the skin) or in contact with the
subject. Non contact Photoplethysmography will be called NrPPG. rPPG alone refers to Reflectance
Photoplethysmography, whereas tPPG refers to methods making use of Transmittance Photoplethysmog-
raphy.

The distinction between these two deals with the way light changes when the skin is captured.
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More formally, in PPG, a volume of peripheral tissues is lit by optical radiation that goes through
numerous occasions of dissipation and assimilation as it navigates through various tissue layers.
Lastly, it is transmitted through (transmittance) or reflected from (reflectance) the tissue volume -
Barun and Ivanov 2009.

Both rPPG and tPPG can be remote or contact based, as this research only focuses on remotely
operated techniques, it suffices to define not-contact reflective PPG as NrPPG.
A PPG strategy may aim for a blood volume imaging or a blood volume signal (BVS) recreation.
Both the blood volume imaging and BVS allude to the assessed quality, i.e. the volume of blood
going through the tissue.
Heart Rate (HR) might be assessed from the BVS, for example by including the number of peaks
in a given time-spanned signal. HR captured from the BVS is at times called the "blood volume
pulse". Visual HR assessment is an NrPPG technique performing blood volume pulse estimation -
and it is what this research is about.

1.3 Project Embedding

This project has been developed as an internship work within a company, namely Teoresi Group.
Quoting from the company’s website, Teoresi is high profile engineering. It offers an innovative approach
in close synergy with the Research & Development departments of the main industrial players. Teoresi pro-
vides turn-key solutions accelerating the customer’s time-to-market. This paper has been developed while
in constant contact with Teoresi’s research department. The work is not towards the realisation of a
specific (market ready) product, but is rather mostly focused on innovative methodologies.

Possibly, the end product is based on a previously built method and tries to enhance it by modi-
fying it in order to yield better results. Given that the product won’t need to be marketed, there are
a few requirements that need to be matched - and these are listed in Section 2.3.
Generally, the field of NrPPG is still at a very early stage with very few companies claiming to
have a market/clinic ready product. Given that the aim is to detect clinical parameters, the error
margin for which the method can be allowed needs to be extremely small as there is no space for
unconfident decisions.
Interestingly, it has been noted that methods producing a fairly good pulse detection can still be
used in the field of HCI (Human-Computer Interaction). Here these systems can detect (trough
the user webcam) the subject behaviour on a clinical level (e.g. heartbeat) to infer the software or
visualisation quality based on the subject physiological reaction.

1.3.1 Contacts

This project is supervised by three company employees:
Francesco De Nola, Technology Leader
Vincenza Tufano, Junior Engineer
Annalisa Letizia, Junior Data Scientist

1.4 Thesis structure

The paper is developed in 6 chapters - each with related sections and subsections. For clarity
sake, a detailed explanation is listed below.
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Section 1.2 clarifies what terms are adopted and their definitions, explaining the notation consis-
tently used throughout this work. Section 1.3 provides an overview of the company this work is
being developed with.

Chapter 2 describes both the work previously done in the field (with the necessary conclusions)
and also deals with how these methods have been evaluated. More specifically, Section 2.2 delves
into the description of methods thus far developed in the field and tries to list a preliminary set
of requirements needed towards its realisation. These helped shaping the chosen method as a core
idea for the project itself. Section 2.1 expands on things such as metrics usually proposed in the
NrPPG field.

Furthermore, Chapter 3 analyses the data at hand in more details as well as evaluating appro-
priate methods for some steps of the pipeline (e.g. which face detector). The information provided
in this chapter is propaedeutic to a better and smoother development as well as a clearer under-
standing of final results.

Chapter 4 details the approach taken for developing this research project. This means both objec-
tively describing the procedures employed as well as critically assessing every possible downsides.
This chapter also explores the architecture and the inner functioning of the system itself, address-
ing both how the input has been pre-processed and how the model interprets and learns from it in
order to give an accurate prediction.

Chapter 5 delves into analysing the results obtained as well as benchmarking the method with
other proposed approaches and some different versions of the method itself. Lastly, in Chapter 6

results are discussed and possible improvements assessed accordingly.
In Section 7.1, a visual representation of the timeline for the project is proposed. The real-time

development is then discussed accordingly.
Finally in Section 7.2, a list of all the abbreviations used in this research is given along with their

meanings.
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Chapter 2

Related Work

The aim of this chapter is manifold. Firstly, Section 2.1 will explain the most common metrics
used in the NrPPG field to evaluate methods. Secondly, Section 2.2 will give an overview of the
method so far developed in the field of NrPPG detection. Rather than being just a list of papers
studied, each paper explanation will highlight the pros and cons - and even issues - faced when
trying an implementation of the approach proposed by the authors. Thirdly, Section 2.3 will list the
requirements that should be fulfilled by the method chosen as a baseline for this research project.
Lastly, Section 2.4 will rank the methods accordingly, so to find the best candidate and also explain
the reason leading to such conclusion.

2.1 Evaluation Methodologies

This will describe what metrics have been developed to serve the purpose of comparing and
evaluating methods in the NrPPG field.

Since Verkruysse, Svaasand, and Nelson 2008 introduced the very first method that made it pos-
sible to estimate HR merely using light reflectance, a whole field has been developed around this
notion. At first, authors suffered from great discrepancies in how they presented their work. These
could be found in how methods were evaluated in terms of surrounding conditions, subject motion,
subject skin type and general experiment setup.

Figure 2.1: Results table for RhythmNet, borrowed from Niu, Shan,
et al. 2020 as a showcase of a typical results depiction in the NrPPG
field.

It was only in between 2005 and 2010

that researchers started to align their pro-
cedures to mutual standards. Mostly,
these standards concerned the metric with
which methods have been evaluated. This
definitely aided the comparison between
different methods as it unified the results
obtained by different authors. These met-
rics are also the ones used in this re-
search, so to conform to the standards pro-
posed. Whereas during training, all the
mentioned metrics have been studied, the

final results will only be presented in terms of MAE. A classic results table for NrPPG methods can
be seen in Figure 2.1. Besides the main metrics, some authors introduced more of their own, but
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always as an addition to the main ones listed below.

1. MAE: Mean Absolute Error (MAE) is often also known as L1 Loss, and mathematically repre-
sents the mean of distance between the predicted and actual values. As it is a distance, there
is no negative value, and it follows the absolute value operator. Alternative formulations
may include relative frequencies as weighting factors. The scale for the mean absolute error
needs to be the same as for the calculated results. This is referred to as a scale-dependent
precision metric, meaning that it can’t be used to compare series of different sizes. Mean
absolute error is a common measure of prediction error in time series analysis. Referring to
the aforementioned notation the MAE can be expressed as:

MAE =
1
N ∑

t
| ĥ(t)− h(t) | (2.1)

where ĥ(t) and h(t) represent the predicted and the actual values.

2. RMSE: The Root-Mean-Square Error (RMSE) represents a disparity between two variables as
the square root of the average of squared differences. RMSE represents the sample standard
deviation of the absolute difference between reference and measurement, i.e. smaller RMSE
suggests more accurate extraction. Deviations here are squared to prevent positive and neg-
ative values from cancelling each other out. With this measure, larger value errors are also
amplified - a feature that can facilitate the elimination of methods with the most significant
errors. It is formally noted as below:

RMSE =
1
N

√
∑

t
(ĥ(t)− h(t))2 (2.2)

3. PCC: Pearson Correlation Coefficient (PCC) represents the correlation between the estimate
ĥ(t) and the ground truth h(t). The value of this (and others) correlation coefficient varies
between -1 and +1, where both extreme values represent perfect relationships between the
data, while 0 represents the absence of relation. This is true as long as we consider linear
relationships. A positive relationship means that data points that obtain high values in one
variable tend to obtain high values in the second variable. And this works the other way
around too, where those who have low values on one variable tend to have low values on the
second variable. Conversely, a negative relationship means that low scores on one variable
correspond to high scores on the other variable. Formally PCC is expressed as below and is
often abbreviated to r:

PCC =
∑t(ĥ(t)− µ̂)(h(t)− µ)√

∑t(ĥ(t)− µ̂)2
√

∑t(ĥ(t)− µ)2
(2.3)

Where µ̂ and µ denote the means of the respective signals.

The above metrics are the ones commonly used when evaluating NrPPG methods and among
have been chosen to create a mutual ground for comparison.
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2.2 Methods

This section provides an overview of the work previously done in the NrPPG field. Many
different approaches have been taken, ranging from employing computer vision algorithms to the
use of (supervised ans unsupervised) deep learning techniques. A summary of this comprehensive
literature review is hereby proposed, where the most interesting methods taken in consideration for
this research have been marked accordingly.

First of all, the main distinction can be made on the approaches taken so far. In fact, researchers
either took a "deterministic approach" (meaning they employed algorithms that, when given an in-
put, will always return the same output) or a Machine Learning (ML) approach. Some might argue
that neural networks can be considered deterministic in some sense, and this would be partially
correct.
The reason being that once a Neural Network’s weights and structure are fixed (say, after it has
been trained), it does become a deterministic function. The training technique, on the other hand, is
not always deterministic: it typically employs some form of a stochastic gradient descent method; it
almost certainly employs some random weight initialization; it may exhibit some chaotic behavior
due to nonlinearities, and so on. As a result, it is possible that the same training technique used
for the same dataset creates two distinct neural networks - despite the fact that they’re intended to
function similarly in terms of training criterion. Each of the two networks would be a deterministic
function in this scenario, but the training method would be stochastic.

While more deterministic methods are reported in Figure 2.2, this project employs a supervised
ML approach.

In the next paragraphs, I will elaborate on some of the considered Machine Learning methods
and illustrate the reasons why some of the approaches are not suitable for this specific case - and
why some others might be.

2.2.1 Janssen et al. 2016, ‘Video-based respiration monitoring with an automatic
region of interest detection.

Figure 2.3: The pipeline of the work presented in Janssen et al. 2016, with a focus on the feature extraction bit of the process.
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The method (illustrated in Figure 2.3) is outdated and the results are not comparable with
more recent methods. That said, the focus put on the relevance of the ROI (Region Of Interest) is
still worth mentioning. In fact, the method contribution is twofold. Firstly, it proposes a robust
feature representation for respiratory signal based on motion features, which exploits the intrinsic
properties of respiration. Secondly, it enables the automatic respiratory ROI detection to enhance
the monitoring performance. Once again, many methods make use of automatic ROI detection. The
ROI detection topic has first been investigated by the authors of this work. It is very important to
determine what region of interest the model should be looking at or, in other words, which region
contains the most PPG signal information. Having said this, the method proves to be effective only
on the dataset created ad-hoc for this research, and it shows results in metrics that are not the
suggested ones for this field. Additionally, many methods outperformed the results here reported
since the publication. Overall, it suggested that certain face regions - such as forehead and cheeks
- are the most relevant to perform a convolution (i.e. these areas are the ones that convey the most
information in terms of clinical parameter estimation).

2.2.2 Špetlík 2018, ‘Visual heart rate estimation with convolutional neural net-
work’.

This method has been researched to the point of trying to replicate the work. A convolutional
neural network (denoted as HR-CNN) is proposed to approximate a subject’s heart rate (HR) in a
video series. The network’s input is a time-lapse series of frames of a subject’s face. A single scalar
– projected HR – is the output. The network is comprised of two parts: the extractor and the HR
estimator. The extractor transforms an image into a single digit. A sequence of scalar outputs (i.e.
the PPG signal) is produced by running the extractor over a series of images. The HR estimator
receives the PPG signal and emits the HR. The two components are trained separately. First, the
extractor is trained to increase the signal-to-noise ratio (SNR) when given the real heart rate. The
estimator is then trained to minimize the mean absolute error between the approximate and real
HR. The real innovation introduced by this method is in the loss function of the first network.

Let T =

{(
xj

1, . . . , xj
N , f j

)
∈ X N ×F | j = 1, . . . , l

}
be our training set comprised of l sequences

of N facial RGB image frames x ∈ X and their corresponding HR labels f ∈ F. The symbol X
denotes a set of all input images and F is a set of all sequence labels, i.e. the true HR frequencies
measured in Hertz. Additionally, the output of the first CNN for the nth image is noted as h (xn; Φ),
where φ is a concatenation of all convolutional filter parameters.

PSD( f̂ , X; Φ) =

N−1

∑
n=0

h (xn; Φ) · cos

(
2π f̂

n
fs

)2

+

N−1

∑
n=0

h (xn; Φ) · sin

(
2π f̂

n
fs

)2

(2.4)

SNR( f , X; Φ) = 10 · log10

 ∑
f̂∈F+

PSD( f̂ , X; Φ)/ ∑
f̂∈F\F+

PSD( f̂ , X; Φ)

 (2.5)

`(T ; Φ) = −1
l

l

∑
j=1

SNR
(

f j, Xj; Φ
)

(2.6)

A signal to noise ratio function is used between the power spectral densities of the signal to as-
sess the efficiency of the derived signal. More intuitively in Equation (2.5) the numerator captures

9



the strength of the true HR signal frequency, whereas the denominator represents the energy of
the background noise, excluding the tolerance interval. The latter accounts for the true HR un-
certainty (e.g. due to HR non-stationarity within the sequence). The resulting loss function (i.e.
Equation (2.6)) seemed to make a lot of sense, so this method was cherry-picked as one of the most
valid ones.

Though when further researching, some incongruities started to raise - especially between the
full PhD thesis (from which the paper derives) and the paper itself. In fact, not only the loss function
was completely changed for no apparent reason whatsoever, but many pitfalls were also discovered
in development (requires more than 12GB of VRAM, the input for the second model is not as ex-
plained in the paper and more). The one great contribution the authors indeed took towards the
research of this field is the creation of a massive and uncompressed dataset (tens of TB). The latter
one was accessible upon request, and it stands out in the field as subject motion and light changes
are extremely emphasized - to the point where experiments are performed during fitness training
procedures.
In conclusion, the method has been outperformed by more recent ones. Given the many discrep-
ancies between what has been written and done, it is plausible that researchers have not reported
the method thoroughly - hence making it un-reproducible. The methodology reported still carried
great addition to the thought process of the end system.

2.2.3 Yu, Peng, et al. 2019, ‘Remote Heart Rate Measurement from Highly Com-
pressed Facial Videos: an End-to-end Deep Learning Solution with Video
Enhancement’.

During the exploration of this field, it has become clear that the main issue with obtaining
an accurate prediction of PPG signal from a video is the video quality itself - for quality is not
just the stability and definition of the camera, but rather the compression techniques used in the
process. This issue is well discussed in both Mironenko et al. 2020 and McDuff, Blackford, and
Estepp 2017. Video compression resulted to be a determinant factor towards the accuracy of the
prediction. Firstly, let’s assess compression quickly. Data compression is a way of minimizing
data size without losing information. Data compression methods are divided into two categories:
lossy compression and lossless compression. The key distinction between the two compression
methods is that lossy compression does not recover data in its original state after decompression,
while lossless compression does. The aim of lossy compression is to reduce the number of bits
absorbed by an image while ensuring that the gaps between the initial (uncompressed) image and
the restored image are not perceptible to the human eye — or at least not objectionable. In practice
and for our specific case, models trained and/or validated on uncompressed videos yielded way
better performance.

From the above, it follows the author intuition of preprocessing the video to enhance the quality
of this. The approach taken is to employ an initial Spatial-Temporal Video Enhancement Networks
(STVEN) that parses video frames and enhances their quality. Secondly, the video is used as input
for rPPGNet, composed by a spatial-temporal convolutional network (a skin-based attention mod-
ule and a partition constraint module). As previously mentioned, separate skin areas have differing
degrees of blood vessel density as well as biophysical parameter maps (melanin and haemoglobin),
thus contribute to different levels for rPPG signal measurement. The Skin Segmentation and Atten-
tion mechanism determine which skin regions are the most important to examine and could help
the most in generating a clean PPG signal. Skin-based attention aids in the adaptive selection of
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skin areas. Whereas via the partition constraint, the output signal is taken and processed in order
for the model to focus more on the rPPG signals instead of interference. Additionally, a major role is
played by loss functions of the spatial-temporal NN (reported on the rightmost side of Figure 2.4).

Figure 2.4: Models architecture, overall pipeline and loss formulae from Yu, Peng, et al. 2019.

There are two main takeaways: the stress the authors put on the quality of video compression,
and the engineering behind the loss functions. Additionally, it is worth to notice that the authors
are among the first ones to have used Pearson correlation as a loss function. This is to minimise the
linear similarity error instead of the point-wise intensity error.

Overall, this method presents little if no issues. Nevertheless, it is worth mentioning that the
model itself is quite deep and might prove to be resource hungry. The two main reasons this was
not taken in consideration are: the final model will ideally be ran on an embedded device, and the
lack of a computational power for training the model in the first place.

2.2.4 Niu, Shan, et al. 2020, ’RhythmNet: End-to-end Heart Rate Estimation
from Face via Spatial-temporal Representation’

Figure 2.5: Overall method pipeline from Niu, Shan, et al. 2020

RhythmNet is a very promising method that focuses more on the processing of the input rather
than the complexity of the model itself. RyhthmNet uses a spatial-temporal representation as to its
input, decoding HR signals from different ROI volumes. The spatial-temporal representations are
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fed into a convolutional network for HR estimation. The Gated Recurrent Unit (GRU) accounts for
the relationship of neighbouring HR measurements from a video series, resulting in effective HR
calculation. The overall pipeline of the method can be seen in Figure 2.5. There are two things that
need to be explained in order to understand why this method stands out. First, let’s take a look
at the pre-processing pipeline applied to an input video sequence, which is turned into a so-called
spatial-temporal feature map.

Given an input of frames depicting a person, the subjects’ faces are first aligned with each frame
in respect of the viewpoint - where the alignment is based on face landmarks. The output is pro-
jected in YUV coordinates (an alternative colour space). The Y’UV model defines a colour space
using one luminance component (Y’) and two chrominance components (UV). The face (trans-
formed and aligned) is then divided into N blocks of interest, the average colour value is taken
for each YUV colour channel for each block. The same averages in the same block but in different
frames are concatenated to form a sequence. The various sequences are allocated one on top of the
other to form a space-time map (T× n× c, i.e. n sequences of T frames for c colours). The pipeline
described above is best pictured in Figure 2.6.

Figure 2.6: Zooming in onto the spatial-temporal maps creation, from Niu, Shan, et al. 2020

It is interesting to note that this method is one of the few using some kind of Recurrent Neural
Network (RNN). These are a class of artificial neural network that includes neurons connected
together in a loop. Usually, the output values of a higher layer are used as an input of a lower
layer in these kind of architectures. This interconnection between layers allows the use of one
of the layers as a state memory and to model a temporal dynamic behaviour dependent on the
information received at previous time instants, by providing a temporal sequence of values as an
input. Generally, the peculiarity of Recurrent Neural Network is the ability to work on sequences
of arbitrary length, overcoming the limitations imposed by other structures, such as Convolutional
Neural Network (CNN) that require an input of fixed length.

As shown in Figure 2.5 , the map created from video clips is fed as an input to a convolutional
network (in this case ResNet18, from He et al. 2015). Here convolution is applied to each map
conveying all the information pertinent to a given temporal window. The sequence of convoluted
maps is then fed to a Gated Recurrent Unit to better model the time dimension of the input. At last,
a mean HR within the T continuous measurements (output of the recurrent unit) is computed.

Overall, this method presents: an innovative formulation of the input; an efficient modelling of
the temporal dimension; it achieves promising results on both the public-domain and the created
VIPL-HR estimation databases; and it does work in real-time (given that the computational cost is
quite low). Drawbacks could be pinned down in terms of the output and code availability. The
former concerning the possibility of outputting more HR values rather than one minute mean HR,
could be solved by trying to remove the last averaging layer and reducing the time of each time
window (e.g. making it less than 10 seconds). Technically one could think of removing the final
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averaging layer so to obtain a discrete value for each time window. In terms of code availability,
this issue is shared among all the methods presented, as none really gives out a replication of the
method in terms of a packaged application - though the implementation does seem feasible for
what described in the paper.

2.2.5 Brieva, Ponce, and Moya-Albor 2020, ‘A contactless respiratory rate es-
timation method using a Hermite magnification technique and convolu-
tional neural networks’.

Figure 2.7: The pipeline for method explained in Brieva, Ponce, and Moya-Albor 2020, additionally an example of what the
Hermite video magnification techniques is illustrated in the top right.

This method is very innovative. It is among the first ones that tried to borrow from previously
developed deterministic methods and it uses the conclusions drawn from these to improve the
training of simple Convolutional Network. More specifically, it exploits the inferred knowledge
that colour channels of the pixels where the skin is depicted retain most of the information useful
towards the detection of HR. An instance of the above-mentioned knowledge is the green channel
of the RGB spectrum reflecting light changes in a machine perceptible way.
The pipeline followed by the researchers (depicted in Figure 2.7) is as follows:

• Carrying out a spatial decomposition of the image sequence using Hermite transform (first
introduced in Martens 1990).

• Performing temporal filtering of the spatial decomposition to retain the motion components.
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• Amplifying the different spatial frequency bands by a given factor α.

• Reconstructing the magnified motion components through an inverse spatial decomposition
process.

• Adding the reconstructed magnified motion components to the original image sequence.

• Outputs may be cropped depending on ROI and fed to a NN which binarily classifies each
frame.

The only issue one could see with this method is that the out prediction of the Neural Network is
a binary classification of each frame where Convolution is performed. The classification is between
E(xhaling) and I(nhaling). This surely helps to detect the respiratory rate, but much more work
should be added when trying to reconstruct a BPM signal. Eventually, the end system aimed to
be built should be able to output HR values every 10 - or so - seconds (and not just per minute
averaged HR and RR values).
In conclusion, the method is valid and the magnification technique employed (i.e. Hermite) might
still be relevant if coupled with another methodology.

2.2.6 Song et al. 2020, ’PulseGAN: Learning to generate realistic pulse wave-
forms in remote photoplethysmography’.

Figure 2.8: Example of a GAN architecture.

This method acts as a supplement to a pipeline
that already determines the plethysmographic signal
and exploits the discriminative power of a generative
adversarial network (GAN).

GANs are a clever way to train a generative
model, framing the problem as a supervised learn-
ing problem with two sub-models: the generator
model that is trained to generate new examples, and
the discriminator model that tries to classify exam-
ples as real (from the domain) or false (generated) - a
classical GAN architecture can be seen in Figure 2.8.

Both networks try to play their competing roles. When the discriminator detects false data, it re-
turns the data. In this case, the generative network is not yet effective enough and therefore must
continue to learn. At the same time, however, the discriminator has also learned. The generator
tries to create data that looks so real that it can be categorized as such by the discriminator. The
discriminator, on the other hand, tries to analyze and understand the real examples so precisely
that the falsified data have no chance of being identified as real.
In the specific case of PulseGAN, the model takes a plethysmographic signal as an input generated
by any method and tries to improve it by making it as close to ground truth as possible. In the
method described by Song et al., the authors use a deterministic algorithm (CHROM) based on the
light reflectance given by an analysis of the skin colour space and its change over time (the overall
architecture is depicted in Figure 2.9). The authors point out that the method that provides the GAN
network input is replaceable by a Deep Learning method, and so a possible approach could be to
use RhythmNet as the first step and use the output signal from RhythmNet as input to PulseGAN.

As this method works as an add-on to another method, it can be considered as a second phase
of the work, if time allows.
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Figure 2.9: The framework of the proposed PulseGAN method, from Song et al. 2020

2.3 Requirements

Given the long list of methods taken into consideration, it has been difficult to just opt for one.
Luckily, a list of requirements was provided by Teoresi - making it a simpler and more direct choice.
The requirements are listed below and the conclusion is drawn accordingly in the next section. A
simple ordinal scale has been adopted: "Critical" (is fundamental for the method to have satisfy this
requirement), "Major" (is important to have this requirement matched, though the method doesn’t
strictly require it in order to be selected), "Minor" (it would be nice for the method to implement
this feature, but it can function without).

1. Method reliability - Major: First and foremost, it is necessary to understand that the system
will neither be marketed nor is it a strict aim to employ the end product into the medical
industry right away. This implies that it does not need to match industry device accuracy
(depending on the type of device ECG signal can be estimated with a 90%-99% accuracy,
which translates to a mean absolute error not larger than 3 bpm - Anh, Krishnan, and Bogun
2006 and Rui Zou et al. 2016). This project goal is to reach an error margin that is as close
as possible to the state of the art. Considering the methods seen so far and their evaluation
benchmarks, we can empirically set the end Mean Absolute Error to be in the 5 - 10 (bpm)
range during inference, when evaluated on the COHFACE dataset (by Heusch, Anjos, and
Marcel 2017). Given its large usage in the field - as explained in more details in Section 2.1 -
the MAE metric has been picked.

2. Speed - Critical: Although the system might not be used for medical purpose, it will most
likely be employed in HCI studies and surveys where system speed is required. It is necessary
for the system to be able to perform in real-time. To be more specific, if the system can only
support one video frame at a time and the video is coming in at 30 frames per second, the
system must process each frame in 1/15 of a second or less to satisfy real-time constraints.
The reason is twofold: firstly, it would be good to give results on the spot for this kind of
frameworks monitoring, while the subject is taking actions and performing experiments; and
secondly, with the future possibility to employ this in health care, it would be necessary for
screening clinical parameters on the fly rather than on a second stage.

3. Robustness to light and movements - Minor: In the field, very few methods have dealt
with realistic body motion (only the one by Špetlík), and only more recent methods propose
datasets head movements are considered (i.e. speaking, turning the head). On the other hand,
light is stressed in every method quite a lot, where most of the dataset varies in terms of
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light conditions and light type (halogen, natural or LED). Accordingly, the method hereby
proposed aims at resisting light but being potentially sensitive to changes in movement.

4. Lightweight hardware - Major: The system not only needs to perform in real-time but also
needs to do so on middle-end laptops and, if possible, it should not necessarily require a
GPU to reach real-time performance. Additionally, given that the system might be installed
on an embedded device, the randomly allocated memory consumed cannot be very high.
RAM is used to store both the outputs of intermediate layers (forward pass) and parameters
at inference time. Models that have a number of parameters in the million or less order of
magnitude should be able to run on any device (whether embedded or not).

5. Replicability - Minor: Ideally, one would have a code repository to get an idea of the possible
implementations, the frameworks used and other technical details. Unfortunately, none of the
methods presented (or more in general analysed in the literary review) has an open-sourced
code to start with. As a consequence, it becomes hard to make procedure explanations detailed
and flawless in order to make it replicable.

2.4 Selection of Optimal Method

After carefully matching each method with how well it scores in the given requirements, the
one by Niu, Shan, et al. 2020 turned out to be the most approachable - and the full score evaluation
can be seen in Table 2.1. In fact, this is not only real-time, but it also has a very detailed and
intuitive description of the method employed. Additionally, the light conditions scenario have been
extensively studied and they concluded that even under dim light condition, the HR estimation error by
RhythmNet is lower than 8 bpm, which is an encouraging result for practical application usage (Niu, Shan,
et al. 2020).
Overall, the method proved to be robust, feasible to implement and to yield very good result against
the state of the art methods. Therefore, this is the method selected for inspiring this work.

Besides the above methods, there are many others that have been researched. Some of them
were very outdated and results could not hold against newer systems, whereas more recent ones
were simply too complicated or too big for this paper time frame.. Overall, researching the field
has allowed for the understanding of not only facts pertinent to computer vision field (i.e. video
magnification, colour spaces and working with video data processing) but also information bor-
rowed from the medical environment. Strengthened by this knowledge, a better understanding of
the differences between the various methods was achieved and allowed to classify and rank them
accordingly.
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Method Reliability Speed Computational Complexity Code Availability
Robustness to light and
body movements

Total

Janssen et al. (2015) 0 1 1 0 0 2

Spetlik et al. (2018) 0 1 0 2 2 5

Yu et al. (2019) 1 1 0 0 1 3

Niu et al. (2019) 1 2 2 0 1 6
Brieva et al. (2020) 2 0 1 1 0 4

Song et al. (2020) 2 1 1 0 1 5

Table 2.1: Method comparison based on a 0 to 2 score (0 - poor, 1 - neutral, 2 - good), 0 means the method does not match
the proposed requirement at all (a 0 scored method on speed means it is too slow to function for the scope of this project).
1 entails that the method has a possibility to improve in the given requirement but it doesn’t fully match it yet (a 1 score in
speed means the method is almost fast enough and a possibility to improve its speed is foreseeable). lastly, a 2 score means
the method matches and works well enough with the requirement (such a score in speed means the method as is already
matched the minimum requirement).

Neural networks can sometimes result hard to interpret and reproduce due to their high number
of hyperparameters that need to be tuned. In the method proposed by Niu, Shan, et al., a very
classic Neural Net (ResNet18) is proposed as the main block of the pipeline, given the fame of this
network, fine-tuned, pre-trained versions can be downloaded from the web. If needed, there is
the possibility to make it more suitable for the NrPPG case through transfer learning. RhythmNet
does put most of the work in the preprocessing of the input. This intuitively makes more sense
than building a deep enough network that will eventually learn the signal construction. It has been
proven by more deterministic methods and years of research in this field that insightful information
is conveyed by a certain region (the face) and certain features of the image (colours and reflectance).
The method proposed exploits these points of interest by both projecting the usual RGB space into
the YUV space (where reflectance has greater weight) and by more accurately selecting the ROI by
using face landmarks rather than just face detection techniques.

17



Chapter 3

Components Investigation

Although a method has been selected already, each component takes care of a part of the pipeline
overall. In fact, the ANN plays a minor role in the construction of the system. Tasks such as face
detection, cropping and input pre-processing, are needed in other parts of the project. In return,
these parts can be built with different approaches. For example, a wide range of face detectors is
present in the literature, and choosing one over another must be done carefully. Accordingly, each
method taken in consideration is compared to other available ones, and performances are evaluated
with the end task in mind.

Therefore, an overview of the face detectors considered for the project - and their evaluation - is
presented and discussed in Section 3.1.

Section 3.2 provides a detailed overview what the pool of possible datasets looks like. Only
one of the datasets will be selected from this list (i.e. COHFACE, presented by Heusch, Anjos, and
Marcel 2017) and explanations for such choice can be found in Section 3.2.4.

Finally, the dataset chosen in the previous section is studied in terms of lighting condition
variations and the subject’s body movements, so to understand the model limits and strengths that
will train on this data. Consequently, the dataset selected in Section 3.3 is qualitatively assessed
in the analysis and in its interpretation, in terms of how it reflects on the data itself. Accordingly,
Section 3.4 briefly explores how any of the previous conclusions can possibly affect the model
performance.

3.1 Quantitative evaluation of face detectors

Face detection is that process where a human face is automatically recognised in a picture or a
video frame, and it can be done in several different ways. In recent times, Deep Learning methods
have taken over thanks to their speed and reliability. Yet a variety of approaches and models have
been released in this field too. Some of these methods are hereby considered, the best ones are
selected and then compared through a quantitative analysis.

A list of all models considered in the evaluation first step is here to follow.

1. Haar cascade face detector:
It is an Object Detection Algorithm applied on face detection from video or image data, it is
very well known and still used in many devices as of now. The algorithm firstly proposed in
Viola and Jones 2001, leverages the use of Haar Features to detect pixel patterns that recall the
ones associated with a face. In a nutshell, the algorithm makes use of a given number of Haar
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filters (two valued filters) to determine which face features are most valid. The final classifier
makes the face decision (face or not face) based on the output of all the features. Each feature
cannot categorize the picture alone, instead it becomes powerful when combined with others.
Most of the work boils down to which features the classifiers are trained on. These features
are extracted by sliding a filter (or kernel) over a set of face images and on an equally large
set of faceless images. This kernel is split into regions or parts. To compute a large number
of features, each kernel potential sizes and positions are employed. The sum of each pixel
value for each region of each kernel is evaluated. Because this procedure can become very
expansive very fast, the authors used the integral picture to solve the problem. An integral
image is a data structure for quickly calculating the sum of values in a rectangular subset of a
grid. This lowers the calculations for a particular pixel to a four-pixel process, no matter how
big the image is. Because there are still a lot of regions left, an optimizer (namely Adaboost)
is employed. This finds the best threshold to classify the faces as present or not present.
AdaBoost stands for "Adaptive Boosting" and was originally presented in Freund and Schapire
1997. It was the first highly successful boosting algorithm developed for binary classification.
Adaboost represents a popular boosting technique for combining multiple "weak classifiers"
into a single "strong classifier". By putting many such models together, AdaBoost is able to
generate a model that overall is better than the individual weak classifiers taken individually.
Adaboost makes use of many decision trees with some level of depth. At each iteration, a
new weak classifier is introduced sequentially and aims to compensate for the "shortcomings"
of previous models to create a strong classifier. The overall goal of this is to consecutively fit
new models to provide more accurate estimates of the response variable. In fact, AdaBoost
does not only accept decision trees as weak learners: any machine learning algorithm can be
used as a base classifier if it accepts weights on the training set.

Advantages

• Functions almost in real time on the CPU.

• Simple architecture.

Disadvantages

• Many false predictions (Rosebrock 2021).

• Does not perform well under occlusion.

• Scale of Haar Filter needs to match scale of face.

2. MultiBox single shot (SSD) detector:
The single shot detector is a simple solution to the problem of face detection, but it has shown
to be quite successful thus far. As clearly explained on the ArcGis developers website, an
SSD model (first introduced in Liu et al. 2016) is made of two parts: a backbone convolutional
model and the SSD head. The Backbone CNN is a feature extractor-trained image classification
network. In most models, the fully connected classification layer is omitted. The outputs of
the SSD Head are interpreted as the bounding boxes and object classes in the spatial position
of the final layer activations. Instead of using sliding windows, SSD divides the image into
grid cells. Each grid cell is in charge of recognizing items in its own area of the picture. When
there are multiple elements in a single grid cell, the anchor box and receptive field approaches

19

https://developers.arcgis.com/python/guide/how-ssd-works/


are applied. Each grid cell in SSD can have several anchor/prior boxes. These anchor boxes
are pre-defined, and each one controls the size and shape of a grid cell. During the training,
SSD employs a matching step to match the proper anchor box to the bounding boxes of each
ground truth. The basic assumption of the SSD design is the receptive field. This allows for the
detection of objects at various sizes and the production of a tighter bounding box. The easiest
way is to apply a convolution on this feature map and transform it to a NxN grid. SSD goes
one step further, as it applies additional convolutional layers to the backbone feature map,
resulting in each of these convolution layers producing object detection results. Predictions
from previous layers can aid when dealing with smaller sized things since earlier layers with
smaller receptive fields can represent smaller sized objects. As a result, SSD allows you to
create a grid cells hierarchy at different tiers. For example, a 4x4 grid can be used to locate
little items, a 2x2 grid for medium-sized objects, and a 1x1 grid for objects that span the whole
image.

Advantages

• The most accurate of the four methods.

• Functions in real-time on CPU.

• OpenCV version performs well with not frontal faces too.

Disadvantages

• Long training time

• Might be hard to detect small objects

3. Histogram of Oriented Gradients (HOG) detector:
The histogram of oriented gradients (HOG) has been first applied to the human detection
domain in Dalal and Triggs 2005. As clearly described in Nagaraja and Prabhakar 2015, the
method counts the number of times a gradient orientation appears in a certain picture area.
This method differs from other feature descriptors in that it is computed on a dense grid
of evenly spaced cells and it employs overlapping local contrast normalization for increased
accuracy. The basic idea behind the histogram of directed gradients descriptor is that the
distribution of intensity gradients or edge directions may be used to characterize local objects’
look and form within an image. The image is split into small linked areas called cells, and a
histogram of gradient directions is created for the pixels within each cell. The concatenation
of these histograms is the descriptor. Local histograms can be contrast-normalized for better
accuracy by computing an intensity measure across a wider portion of the picture, known
as a block, and then using this value to normalize all cells inside the block. Because of this
normalization, the invariance to changes in light and shadowing is improved.

Advantages

• Dlib implementation works fast even on the CPU.

• Functions very well for frontal and slightly non-frontal faces.

• Lightweight model.

Disadvantages

• Doesn’t detect small faces.

• Bounding box are often miscalculated.
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4. Maximum margin object (MMOD) detector:
To achieve state-of-the-art results, the max-margin object-detection method (introduced in
King 2015), or MMOD, employs a CNN to extract features from a windowed picture. This
is not appropriate for real-time applications, unlike the previously described face detection
solution, although it does perform slightly better when identifying faces at unusual angles.

The way MMOD works is that it calculates the scalar product between a given feature vector
and a previously trained vector to determine if it belongs to a specific class. This already
trained vector is a vector that generalizes the features that any target object has. The intuition
is that MMOD wants to maximize the margin between the correct class and any other class,
in this case between faces and anything else.

Advantages

• Functions for different face orientations.

• Dlib implementation resists well to occlusion.

• Very fast on GPU.

Disadvantages

• Very slow on CPU.

• Doesn’t work well with small faces.

5. Multi-task Cascade CNN (MTCNN) detector:
This model is based on K. Zhang et al. 2016 and it sees 3-stage neural network detector. To
detect faces of various sizes, the picture is first scaled several times. The P-network (Proposal)
then searches the pictures for a first detection. This first detection has a low confidence
threshold and it purposely identifies a large number of false positives. The identified faces
(again, containing many false positives) are sent into the R-network (Refine), which, as the
name implies, filters detected areas to get accurate bounding boxes. The O-network (Output)
conducts the final refinement of the bounding boxes in the last step. This method not only
detects faces, but also ensures that bounding boxes are accurate and exact.

Advantages

• Fast on GPU.

• High accuracy.

Disadvantages

• Very slow on CPU.

• Not working well on oriented faces.

In order to come to an appropriate conclusion, some numerical and visuals performance tests
have been run on a subset of the above-mentioned detectors. When analysing the performances,
three key factors have been researched: speed, accuracy and confidence. A summary of the results
is shown in Table 3.1. In terms of face found, a confidence threshold value should be introduced
for the SSD detector. In fact, other detectors take into account the possibility of not returning a
face at all - when they do they also return a confidence score which can be as low as 0.1. The SSD
detector, on the other hand would always return a face if the confidence threshold was set to 0.0.
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Figure 3.1: The result of the detectors taken into consideration. On the first row we have an histogram of the confidence
for each model, on the second row piecharts have been employed to show the percentage of faces detected vs. the ones not
detected. Lastly, an histogram shows the time taken to make the prediction in the third row. The above results have been
obtained on an Intel Core i7-7500U Intel HD Graphics 620 CPU.

This means that the user needs to set a threshold over which a face can be classified as such. Basing
it on literature, this threshold has been set to 0.95 for this experiment.

For each of these factors, an appropriate visualisation of the end results has been selected, as
shown in Figure 3.1. Additionally, the methods have been evaluated on two different datasets. The
first one is a small custom made dataset containing 125 high resolution pictures (all containing a
face) with different sizes. The second one is a known dataset in face recognition (namely extended
Yale Face Database B) that contains 16128 images of 28 human subjects under 9 poses and 64 illu-
mination conditions, created by Georghiades, Belhumeur, and Kriegman 2001. Out of this last, a
subset of 1795 data points has been selected.
The main distinction between the two is that the former one presents way more realistic and chal-
lenging situations (varying in picture size and resolution), whereas the latter one presents small
pictures of only faces, all of the same size. In Figure 3.1, only the results for the Extended Yale B
dataset have been reported. It is evident that SSD is the detector that performs best in almost any
category. Though, when tested on the other dataset is noticeable that speed performances majorly
decrease.

It must be noted that this experiment does not account for false positives. Only faces containing
data was used, so the experiment really only accounts for those cases where the detector does not
find a face where the face is present. Additionally, no annotation came along the datasets used, so
this would have made it tedious to check every bounding box returned by the detectors with the
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Confidence level Face found Time taken

HOG D1: m = 0.235, std = 0.244

D2: m = 0.209, std = 0.231

D1: m = 0.672, std = 0.471

D2: m = 0.587, std = 0.492

D1: m = 7.312, std = 3.237

D2: m = 0.331, std = 0.101

SSD D1: m = 0.869, std = 0.255

D2: m = 0.896, std = 0.254

D1: m = 0.87, std = 0.33

D2: m = 0.849, std = 0.357

D1: m = 0.065, std = 0.006

D2: m = 0.068, std = 0.026

MTCNN D1: m = 0.649, std = 0.467

D2: m = 0.776, std = 0.409

D1: m = 0.664, std = 0.474

D2: m = 0.783, std = 0.412

D1: m = 3.797, std = 1.647

D2: m = 0.815, std = 0.256

Table 3.1: Summary of results for both datasets (D1 being the custom made one and D2 being the Extended Yale B) for each
predictor model. For each of the factors studied the mean (m) and standard deviation (std) have been reported.

original position of the face in the picture. Therefore, examining false predictions fell out of the
scope of this experiment.

Given the information listed above, it seems clear that the most suitable method for our specific
case is the Single Shot Detector. This results to perform best on the accuracy score (without consid-
ering possible false positives), but most importantly it is the fastest face detector out of all of those
taken in consideration. Additionally, the SSD model is simple compared to methods that require
object proposals because it completely eliminates proposal generation and the subsequent pixel or
feature resampling step and encapsulates all computations in a single network. This makes SSD
extremely fast and simple to integrate, making it the best fit for our specific case scenario.

3.2 Data

The data for this project will be requested from different sources and then one will be selected
based on data availability and quality: Generally, a good dataset should contain different setups in
both lighting and point of view. This is essential as we aim to make the model generalise across
different scenarios well. As previously mentioned, the data comes with labels: a matching EEG (or
PPG) signal comes along with the video footage.

3.2.1 ECG-Fitness database

This data has been collected a few years ago by both a PhD student and a fellow junior researcher
for his own research at the Czech Technical University. In Špetlík 2018, authors describe the dataset
extensively, and here some information are reported.
The data has the following description:

• Data: Realistic corpus of subjects performing physical activities on fitness machines, 6 x 1

minute video recording (no sound) + ECG per subject (207 videos in total).

• Subjects: 17 subjects (14 males, 3 females) with an age range of 20 to 53 years.

• Camera: two RGB Logitech C920 webcameras - 30fps, 1920 x 1080 pixels stored in an uncom-
pressed YUV planar pixel format (approx. 6GB per video).

• Camera setup: one Logitech camera was attached to the currently used fitness machine, while
the other was positioned on a tripod as close as possible to the first camera.

• ECG: two-lead Viatom CheckMe™ Pro device with CC5 lead.

• Activities: speaking, rowing, exercising on a stationary bike and on an elliptical trainer. Speak-
ing and rowing performed twice - once with halogen lighting resulting in a strong 50Hz
(100Hz) temporal interference, and once without.
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• Lighting setup: three lighting setups were used: (i) natural light coming from a nearby win-
dow, (ii) 400W halogen light and (iii) 30W led light.

• Hearth rate: the lowest 56 bpm, the highest 159 bpm, the mean 108.96 bpm, standard deviation
23.33 bpm.

This dataset turned out to be very confusing (and inconsistent with what is described in Špetlík
2018). We have been in touch with the author, who could not answer some of the questions exten-
sively enough as he himself had doubts about some of the values. After spending time trying to
understand the data, the focus has shifted on a clearer and better-documented one (i.e. COHFACE).

3.2.2 DEAP: A Database for Emotion Analysis using Physiological Signals

This dataset is also available on request. DEAP (by Koelstra et al. 2012) is a collection of data
used to study human emotional states. While watching 40 one-minute long clips from music
videos, the electroencephalogram (EEG) and peripheral physiological data of 32 individuals were
monitored. Each movie was assessed on arousal, like/dislike, dominance, and familiarity by the
participants. The only data relevant to this research is face video data along with the matching
plethysmographic (lung volume measure) signal, from which HR and RR can be estimated.
Commercial cameras are promising contact-free sensors, and remote photoplethysmography (rPPG)
has been studied to monitor heart rate from face videos.

3.2.3 COHFACE

This dataset is publicly available and contains RGB video sequences of faces, synchronized with
the heart and breathing rate of the recorded subjects. In Heusch, Anjos, and Marcel 2017 and
Špetlík 2018, this dataset is described as a publicly accessible database for evaluating the algorithms
performance for remote pulse rate monitoring. This collection contains a video of 12 subjects under
a variety of lighting situations. The video sequences have been recorded with a Logitech HD C525

at a resolution of 640x480 pixels and a frame rate of 20Hz. Physiological recordings, namely blood
volume pulse (BVP) and breathing rate, have also been recorded. Physiological signals have been
acquired using devices from Tought Technologies and using the provided BioGraph Infiniti software
suite.

3.2.4 Dataset selection

The above mentioned datasets provide the same kind of data (i.e. video coupled with some
sort of signal from which HR can be derived). Though, they do differ in terms of what signal is
provided as ground truth as well as data quality/size, subject distribution (in terms of gender and
ethnicity) and light and movements conditions.
ECG-Fitness is simply too big to just perform some analysis on it or to be stored in an average range
laptop. All the 200 one-minute-videos are uncompressed in order to facilitate the ECG extractor
model tasks. In fact, as mentioned in Yu, Peng, et al. 2019, video compression has a great impact
on how well the model can predict the HR. Indeed, this dataset aids model prediction capabilities,
at the expenses of ease of use. Additionally, confusion occurred on how to extract the HR signal
from the data provided and the authors did not seem keen in answering any doubts about it. As
mentioned by the author, the confusion might come from the data being the result of a complicated
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process of reverse-engineering of a portable ECG device. For these reasons, this dataset has not
been considered.
In PURE, the lighting conditions were not particularly varied. In fact, there was only frontal daylight
with clouds slightly changing the illumination conditions over time (as mentioned in Boccignone
et al. 2020). This dataset has also been discarded as it is crucial for the system to be well resistant
to a variety light conditions.
Finally, COHFACE presents an easy to read BVP signal, both being lightweight (less than 1GB) and
accurately synced with the videos. The ease of use and the different light scenarios played a major
role for this dataset to be selected over the other ones.

3.3 Exploratory data analysis

This section aims at explain the analysis conducted on the COHFACE dataset by Heusch, Anjos,
and Marcel 2017. A better explanation of what COHFACE contains in terms of a number of video
and light conditions can be found in Section 3.2. Generally, COHFACE contains many videos of
relatively stationary people facing a camera. Analysis has been carried on both aggregate (all videos
together) and individual (per video) data. The latter makes it easier to see each video condition,
while it is also difficult to get a general idea around the dataset. The former gives a more general
idea of data distribution overall. All the data taken into consideration is graphically shown by this
demo gif, where the numbers on each quadrant of the screen represent its luminance factor. The
aim of this analysis is to understand what limitations the data could introduce to the final model.
As discussed in section 3.4, the data distribution and the characteristics researched in the following
analysis brought to light the model possible limitations or advantages. Finally, Section 3.3.4, will
give an overview of the subjects distribution in terms of skin colour and gender.

The goal of this exploratory analysis is to research the following:

1. Distance between the nose tip reference landmark and the centre of the screen

2. Roll, pitch and yaw of the subject’s head

3. Illumination for each of the four quadrants of the image

In the next sections, there comes a more in-depth analysis of each factor and its trend for both
the individual video analysis and the more coarse one.

3.3.1 Distance nose - screen centre

For point 1 (distance), a line graph has been chosen so that the distance variation could be
studied over time. The distance in turn was calculated using the Euclidean formula: d(p, q) =√

∑n
i=1
(
qi − pi

)2, the two points in question being the one at the tip of the nose and the exact
center of the frame. The point of the nose is calculated using the same landmark positioning model
mentioned in subsection 4.1.1 (presented in Kazemi and Sullivan 2014).

The line graph is meant to represent how distance varies over time. In a situation of complete
immobility, we should expect the distance value to remain constant throughout the video. Though
the distance is not necessarily zero in the ideal case because the subject may never have the tip of his
nose coinciding with the centre of the screen. This is determined by the aspect ratio of the screen
and the position of the subject in front of the camera. Additionally, a min-max normalization is
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Figure 3.2: The figure shows the value trend for the distance for one specific video. On the x axis there is time and on the y
axis the value of the normalised distance.

applied to make the various single graphs more comparable with one another. An example of the
generated graphs can be seen in Figure 3.2.

Figure 3.3: The plot shows an histogram of all the normalised distances for all the video in the dataset. Again is noteworthy
how the majority falls in the last bin, meaning the subject quite always remained firm when in front of the camera.

It is noticeable how the distance variation is quite insignificant (i.e. the line seems to always
remain in the 0.6 - 0.8 range), and this implies that the subject is mostly sitting at the same distance
she was when the video began. The same behaviour is reflected in the data aggregated version. In
this case, a histogram plot might better convey the distribution of the data overall. Specifically, it is
interesting to see how most of the normalised distances follow in the last bin. Again, the distance
magnitude is not relevant, but it is rather interesting to look at how "constant" the distance value is.
As one might notice from Figure 3.3, the distance between the nose and the screen center mostly
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seems to be around 0.7− 0.8. Because the distance always falls around the same value, it follows
that the subjects remain steady (in terms of body motion) during the whole recording and for most
of the recordings in the dataset.

In light of this, we can claim that the characters from most of the videos do not move too much,
making it easier for a NN to learn the function extracting HR from skin pixels.

3.3.2 Head orientation movements

Another factor that is worth looking at is how the subjects head moves along the three axis
(i.e. roll, pitch and yaw). The data for such evaluation has been obtained from a customised
implementation of this python framework that, in turn, employs a pre-trained MTCNN model, fine
tuned for this task.

From Figure 3.4, it is easy to infer which videos have the most and least movement, but the
magnitude of these is hard to interpret. In addition, there were some outliers in the data collected.
These have been removed when laying within more than two standard deviations from the mean.
Generally, it can be observed that the head movement is almost always minimal - which can be
empirically confirmed by watching the analysed videos. Again, an ideal situation is one where the
values for the three variables considered remain constant over time (i.e. a flat line).

Figure 3.4: The line plot represents the movements of roll pitch and yaw along the whole duration of the video clip. It can
be noted that the subject does not move his/her head too much (this visually translates to the line not varying too much
from its start value).

The results perfectly match with what is observable from the videos in general. All results show
to be very stable in terms of head movements both from the graphs produced and the videos linked
to them.

As opposed to the single videos charts, the goal entailed in the coarsed data representation is to
show the distribution of the dataset in general. Therefore, for the visualisation of such aggregated
data a box and whisker chart has been used. These generally represent five summary ratings, but
for this analysis the mean is shown too:
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1. Minimum value

2. First quartile

3. Median (in green)

4. Third quartile

5. Maximum value

6. Mean (in red)

The box represents the quartiles bisected by the median. The whiskers represent the difference
between the quartiles and the minimum and maximum values - or otherwise exceptional values
(outliers) - that are beyond the whiskers. The distribution is symmetric when whisker lengths
and rectangle heights are similar to each other. The whiskers length shows the normality (short
whiskers) or exceptionality (long whiskers) of the phenomena, and the aberrant values that lie
beyond the whiskers. This type of visualization is useful in our case because it represents the
deviation of the data set from the mean particularly well. For example, the most evident case of
non-deviation is that of head movement. In fact, we have already seen that the subjects (at least for
the dataset in question) do not move from the original point. The graph in Figure 3.5 is therefore
"skewed" on the vertical axis, indicating the little variation of the value.

Figure 3.5: The plot shows the distribution of the orientation movements of the head for all the videos in the dataset.

The presence of many outliers must be noticed, as these likely due to the mentioned noisiness
of the algorithm used to detect motion.

3.3.3 Per quadrant luminance

Finally, illumination has been analysed to study the light conditions of the room in which the
subjects sit. This value is not easy to capture because there is not exactly a univocal way to calculate
colour intensity. There are several ways that deal with calculating relative illumination and contrast,
trying to make the values obtained more comprehensible to the human eye, emphasizing the phys-
iological aspects: the human eyeball is more sensitive to green light, and less to red and blue. Since
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we need to observe illumination in terms of how the artificial neural network will read it, intuitively
we do not need to worry about emphasizing the physiological component. The approach consisted
in dividing the image into four equal parts. Then, for each pixel in each quadrant, colour values
(so as to determine the intensity) have been aggregated and normalized w.r.t. the three channels
(divided by three). The results are extremely static throughout the dataset which could be explained
by the left side of the image having much more light (there seems to be a window or a light source).

Figure 3.6: In the plot we can see a sample frame on the left and the representation of its luminance values (per quadrant)
on the right. The face of the subject has been blurred out due to privacy concerns. On the x axis the number of frames.

In Figure 3.6 the y-axis scale is an arbitrary number that varies between 0 and 1500. In this
instance, normalizing would not make sense because we would lose too much useful information
when comparing one quadrant with another. In general, we can see that the results also make sense
from the confirmation for an opposite situation where the light comes from both sides (depicted
below in Figure 3.7).

Figure 3.7: In the plot we can see a sample frame on the left and the representation of its luminances values (per quadrant)
on the right. The face of the subject has been blurred out due to privacy concerns. On the x axis the number of frames.

Generally, the cases where the light is induced on both sides are way less frequent in the dataset.
This characteristic (represented well in Figure 3.8) makes it easier for the model to learn about
the dataset but, in turn, it makes the model ability to generalise less robust. In the coarse data
representation (once again through a box and whisker plot) we can clearly see how the scenario
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where the light only comes from the right-hand side of the subject is way more frequent than the
one where artificial light is shed on the left-hand side of the subject.

Figure 3.8: In the plot above is easy to determine that the light mostly comes from the RHS of the subject. Just by looking at
the mean this information results evident.

3.3.4 Gender and skin colour distribution

The data consists of 40 video from 38 different subjects. The characteristics considered in this
analysis are ethnicity and gender. This because subjects from different genders and nationalities
carry very different physiological features (e.g. facial characteristics for gender, and skin tone for
ethnicity).

Because we don’t want any of the nationalities or genders to be over-represented, it is crucial
that we try to balance the available data before training. Unfortunately, as shown in Figure 3.9, the
data itself is not well balanced. White men are overly represented and we surely cannot discard
subjects with these characteristics as the data is already scarce. The best we can do is to balance the
subjects when training as much as possible.

As noted in Johnson and Khoshgoftaar 2019, highly skewed data can be dangerous for neural
networks performance because most networks will be biased towards the over represented group -
and, in certain circumstances, it may completely disregard the less represented group.
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Figure 3.9: Distribution of subjects gender and skin colour.

3.4 Conclusions

Having performed such data analysis, some characteristics became blatant. The data at hand
does not contain many challenging scenarios in terms of subject movements, but it does contain
different lighting conditions.
Furthermore, there is poor balance between subjects ethnicity - where Caucasian people are present
more than any other ethnicity. Additionally, more men than women are represented in the data.
From this, it is possible to conclude that the model won’t be particularly accurate when predicting
women or not-white subjects heart rate. As mentioned in Section 4.3.4, an attempt to create balanced
training/validation subsets was made.

Moreover, the model won’t be particularly robust to abrupt subjects movements as it has been
trained on subjects sitting quite steadily. On the other hand, changes in lighting conditions should
not affect the model performance. These characteristics are consistent with the previously set goals.
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Chapter 4

Proposed approach

The aim of the following chapter is to explain the method implemented in this research project.
Firstly, an overview of the thought pipeline is provided, assessing each step and going through
its implementation details. As the pipeline can easily be divided into sections, this chapter will
follow the same approach. Section 4.1 will explain the landmarks positioning process as well as the
segmentation technique used to divide the image in ROI’s.
Section 4.2 will explain how the data resulting from the processing has been handled to create the
spatial-temporal map.
Section 4.3 will detail the network architecture and its hyperparameters tuning. Finally, in Sec-
tion 4.4, an analysis of the issues encountered is reported. Here, problems faced during the devel-
opment and their solutions will be detailed.

All of the face processing functionalities listed in the following sections have been nicely wrapped
in a python package, called FaceManager. This package implements four classes (FaceDetection,
FacePoseEstimator, FaceProcessing, FaceStabilizer) that deal with every bit of the face regions pro-
cessing pipeline. This package will also be made available to the Python community through the
Python Package Index.

4.1 Face processing

Face processing in the system proposed concerns a set of steps, depicted in Figure 4.1. This sec-
tion deals with everything concerning face detection, landmark positioning, face alignment, diving
the image in N regions of interest, padding, and projecting the output image onto a new chromatic
space (i.e. YUV).

According to the pipeline shown in Figure 4.1, we can identify several steps in the overall pro-
cess. These steps take a whole video frame as input and output a segmented region containing
a face within the same frame. This region is both projected into the YUV chromatic space and is
divided into N regions of interest.

An explanatory subsection will follow for each of the identified steps.
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Figure 4.1: The overview of the pipeline until the segmentation of the detected face. Starting from the original image, a face
is detected, and the same face is then aligned. Face alignment allows for the creation of correspondences between different
images, enabling the execution of subsequent activities on a consistent basis. The aligned face is then projected on another
color space and subsequently padded, so that the number of pixels becomes divisible by the number of ROI’s (in the example
N ROI’s= 49).

4.1.1 Face detection and landmarks positioning

As the performance of different face detectors has already been quantitatively analysed in Sec-
tion 3.1, the scope of this section is limited to explaining how the chosen detector is employed in
the overall pipeline.

In order to remove parts of the image that do not carry useful information towards the HR
estimation, only the face region has been taken into account. As previously mentioned, studies
report that the areas that mostly pertain the skin colour change due to the heartbeat are the cheeks
and forehead. Hence, a robust detector is used to segment out the face region. This segmentation
will also make it easier for the next step to place landmarks on the given image. The performance
of all the face detectors considered can be seen in Figure 4.2, where both the region that shall be
cropped out (i.e. the green rectangle around the face) and the landmarks placement are displayed
on three different head orientations and backgrounds.

Once the face has been cropped out, the resulting image will be fed as an input to a face land-
mark estimator, pre-trained on the ibug 300-W dataset Sagonas et al. 2013. Because this model is
meant to work with the HOG face detector, some tweaking in getting it to work as well with the SSD
face detector has been performed. Facial landmarks detection has been investigated for decades.
Many neural network (NN)-based techniques for detecting landmarks have been suggested, partic-
ularly convolutional neural network (CNN)-based approaches. Regression and heatmap methods
are the two types of CNN-based methodologies. This study employs a model that was originally
presented by Kazemi and Sullivan 2014 and that is made out of an ensemble of regression trees that
is used to evaluate the face’s landmark positions from a small set of pixels with different intensities,
resulting in real-time performances and accurately confident predictions.

The model has been downloaded with pretrained weights from this ddlib repository. This out-
puts location indices for 68 facial landmarks, from which different parts of the face can be estimated.
These landmarks will become extremely relevant when detailing the alignment and eye region re-
moval parts of the pipeline.
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Figure 4.2: A visual representation of how the three face detectors set basis for landmarks positioning. An interpolation has
been performed between landmarks, so to see the area they are supposed to refer to.

4.1.2 Alignment, projection and division

The last three steps of the pipeline are alignment, colour space change and segmentation into
ROI’s. Face alignment may take many different shapes. Some approaches attempt to impose a
(pre-built) 3D mesh on the input picture and then transform it so that the landmarks on the input
face match the landmarks on the 3D model.

Other more straightforward approaches (as the one used in this research) depend solely on fa-
cial landmarks (particularly the eye regions) to generate a normalized rotation, translation, and
scale representation of the face. Because many facial recognition algorithms and deep learning
techniques benefit from performing facial alignment before attempting to identify the face, we too
perform this normalization. The method employed to perform such normalisation does not utilise
Deep Learning approach. In fact, speed and simplicity have once again been placed before robust-
ness and completeness. The overall alignment pipeline can be observed in Figure 4.3.

Figure 4.3: The proposed alignment pipeline.

To align the face image, mainly three landmarks are utilised: two marking the center of the eyes
and one placed in-between both eyes. Given these landmarks, a straight line is identified starting
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from the landmark on one eye and going through the one in the middle and ending on the last
landmark on the second eye. Another line is drawn from the end of the previous one to the x
coordinate of the first eye, while having a constant y value. Finally, the triangle (i.e. the three
identified points) is closed and the angle θ is evaluated as shown in Equation 4.1 - where x is given
as all sides are known.

(4.1)

Opposite/Hypotenuse = x

sin(Θ) = x

Θ = sin−1(x)

As previously mentioned, face landmark positioning plays a great role in the picture alignment.
Consequently, the face detector originally used to detect the face also becomes of big influence, as it
sets the base for the positioning of face landmarks. Given the landmarks, the different performances
in terms of alignment are displayed in Figure 4.4. From the latter image, it is possible to see
how face-alignment results only change in terms of output image resolution, and no major visual
difference can be seen on how the alignment is performed on the examples provided. Accordingly,
not much accuracy was given to the landmarks placement, as the focus was placed on how often
the detector fails to assign landmarks on the provided image (i.e. find a face in each image).

Figure 4.4: A visual comparison of how the alignment is performed given that the landmarks are set on the basis of each
face detector considered.

After the alignment, the detected face is projected from RGB onto the YUV chromatic space. As
also stated on the relative Wikipedia page, YUV is a colour-coding system typically used as part
of a colour image pipeline. It encodes a colour image or video by taking human perception into
account, allowing reduced bandwidth for chrominance components and typically allowing trans-
mission errors or compression artefacts to be masked more efficiently by human perception than
when using a "direct" RGB representation. The YUV model defines a colour space in terms of one
luma (Y) and two chrominance (UV) components. This encoding intensifies the luminance aspect,
which is exactly what the neural network should focus on - as this enhances the way skin pixels
change when the heart beats. The transformation from RGB to YUV is formalised in Equation (4.2). Y

U
V

 =

 0.299 0.587 0.114
−0.169 −0.331 0.5

0.5 −0.419 −0.081


 R

G
B

+

 0
128
128

 (4.2)
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Once the face has been projected onto this new chromatic space, it is split into N regions of
interest. If the size of the output image is not truly divisible by the chosen number of ROI’s, an
average pooling padding is applied.

4.1.3 Eye region and background removal

The literature also suggests two additional steps to be beneficial for a better HR prediction from
images: the removal of both the eyes and the background.

Figure 4.5: Example frame containing a face after the
removal of the regions around the eyes.

Though, no accurate and real-time method to re-
move the background has been found yet. Even
when using a deep learning approach, the model
was too slow on the CPU. Additionally, if we
look at the segmented image that is produced
by the last-mentioned step (Figure 4.5), the ra-
tio backgroundpixels/ f acepixels is extremely low -
hence this step has been discarded altogether.

The same landmarks that were used to align the
face have been employed to remove the eye region
(i.e. the landmarks indicating where the eyes are in
the image). More specifically, the region around the
eyes is detected by taking the convex hull between
the landmarks marking the eye region. The region
described by the convex hull is the region to be re-
moved (i.e. set to black). The convex hull of a subset

A of a real vector space is called the intersection of all the convex sets containing A or, equivalently,
the smallest convex set containing A. The convex hull of a convex set coincides with the set itself.
An example of the convex hull of the landmarks marking eye regions can be seen in Figure 4.5

4.2 Map creation

It is important to stress that each map encodes a given number of frames that fall into a certain
time window. This time window is sliding and overlapping between frames. Better explained, let
the window size be 10 seconds, the frame rate be 20fps and the step size be 0, 5. The first map will
include information from the very first frame to frame number 200 (fps x window size). The origin
frame of the second map will then be shifted by 10 frames (step size x fps) and will include all the
frames between 10 and 210. This means that every map has an overlap with the adjacent one (or
ones) of 190 frames (fps x window size - step size x fps) or 9, 5 seconds. This overlapping fashion works
well for two reasons: first, because it works as a sort of data augmentation (more images equals
more training data) and second, because it makes the model understand the relationship between
adjacent frames by always looking both at the new data and the previously seen data. More details
regarding the choice behind window overlapping are provided in Section 4.4.
Because of the major overlap between maps, the pre-processing steps are first performed for all the
frames and then the map creation starts. This way, it does not make the same computations on the
same data.

Once the aligned and projected face from each frame has been divided into regions, the mean
of each color channel is evaluated for each region of interest (each ROI evaluating to a scalar per
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Figure 4.6: In the second step of the pipeline, the nxn blocks resulting from the previous stage are considered and the mean
per color channel is taken in order for each block to evaluate to a 3x1 array (one scalar per color channel). The arrays per
frame are thereafter flattened and horizontally stacked one next to the other. This results in a final map having dimensions
TxNxC (number of frames, number of ROI’s and number of color channels).

colour channel, i.e. NROI′sx3x1). The mean resulting for each frame over a given temporal window
(i.e. N frames) is then concatenated, so to form a final map with dimensions TxNxC (number of
frames, number of ROI’s and number of colour channels).
This second phase of the pipeline is depicted in Figure 4.6

Essentially, the map produced has information about both time and space. Additionally, because
each map has an overlap with the next one, the map also delivers all the details that tie two adjacent
frames together.

The final map will be the input to the network described in Section 4.3, the network will be
able to both see humans and their movements, all encoded in a single image. This procedure has
the main advantage to be simple. In fact, only a CNN is needed to regress over a time period.
Generally, techniques such as 3D CNN’s or RNN’s are employed when dealing with video data.
The notion of these spatial-temporal maps saved a lot of work and computation, that might have
been redundant after all.

4.3 NrPPG-NNET

The next sections will elaborate on the creation of the system produced during this thesis work
(i.e. NrPPG-NNET). The aim of these sections is not only to detail the training parameters and
procedure, but it also provides insights on the challenges faced during the development.

4.3.1 Architecture

The architecture of the neural network employed in this research consists in a pre-trained
ResNet50 Neural Network, presented in He et al. 2015. Residual neural networks (or ResNet)
are a particular type of CNN devel, which uses an innovative type of block - the residual block -
and exploits the concept of residual learning.
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ResNet was born out of a simple observation: "why is it that adding additional layers to deep neural
networks does not improve accuracy but, in fact, worsens it?"
It is known that in the Deep Neural Network a training algorithm defined as backpropagation is
commonly used, coupled with an optimisation method (e.g. Stochastic Gradient Descent). In this
way is possible to calculate the gradient of the cost function, which indicates how much our net-
work is wrong in the predictions. The goal is to calculate the value of all the parameters such
that the cost function is minimised, i.e. to reach the global minimum point found by the given
optimization algorithm. Once the gradient is evaluated, the network weights are updated and the
error back-propagated. However, if the number of levels increases, the gradient mathematically
calculated with the help of the chain rule can become:

1. Very large (exploding gradient), causing problems of instability and generating parameters
(weights) that exceed those manageable by the computer, giving rise to NaN values not further
updatable.

2. Extremely small (vanishing gradient), determining a minimal update of the weights and caus-
ing a slowing down of the training process.

In a ResNet the process of computing the gradient is similar, but a trick to speed it up and increase
its efficiency is employed. Instead of waiting for the gradient to propagate back one block at a time,
the skip connection path allows it to reach the initial nodes effectively by skipping the intermediate
ones. This gave rise to the famous ResNet blocks, depicted in Figure 4.7.

Figure 4.7: Example of a residual block (source).

Each ResNet "block" is made up of a set of layers
and an identity mapping that connects the block’s
input to its output. This "addition" process is car-
ried out one element at a time. Zero-padding or
projection techniques can be used to achieve equiva-
lent sizes when the input and output are of different
sizes.
This allowed for the built of huge networks with
hundreds of layers without having to worry about
the gradient vanishing while travelling back to the

initial layers as it could travel back directly via these shortcut connections.
Another component that is widely used in ResNets is represented by the layers of batch normal-

ization, used after each convolution and activation. The batch normalization is an operation that
allows to normalize the data present in the mini-batches and, thanks to this, to reduce the limita-
tions on the learning rate value that typically exist in the training of deep neural networks. It also
makes the weights initialization phase less complex. All this brings to a notable reduction of the
time needed for the network training process. All in all, the central idea in ResNet paper is that, in
the construction of a neural network with an elevated number of levels, the representation of the
input data should remain as unaltered as possible - going deep into the network so as to preserve
the information.

In this work, a pre trained ResNet18 was used as a feature extractor. The network is pre-
trained on the ImageNet dataset and fine-tuned for our specific map domain created from the
COHFACE dataset (by Heusch, Anjos, and Marcel 2017), following the procedure in Section 4.2.
The network follows the same architecture as a ResNet18, but the last layer is removed and a
Flatten and Dense layer are inserted as a head instead. The final dense layer basically just performs
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matrix multiplication to result in an output matrix, with a desired last dimension to be 1 (as this
problem can be modelled as a regression task).

4.3.2 Training

As mentioned, the network input is an image where the width is dependent on the number of
ROI chosen (subdividing the image in 5x5 ROI’s means the width will be of 25).

This actually induced a not so trivial problematic: the pre-trained ResNet18 that has been chosen
has a minimum input size of 35x35, so the number of ROI’s could not follow the one proposed in
the literature of 5. After some experiments, the optimal number for the regions of interest has
been evaluated to 49 (i.e. 7x7). Additionally, it is worth saying that scaling up the image was not an
option as it has been mentioned by previous researchers (especially Mironenko et al. 2020): scaling
the images makes them loose important information as it induces noise when the scaling function
(e.g. interpolation) is applied.

Furthermore, an analysis of the optimal batch size has been carried out and results showed
improvements when going from 32 to 64, so this was selected as the final batch size, with an initial
Learning Rate of 0.001 We could notice a major improvement when removing the eye regions,
following the procedure stated in Section 4.1.3. The improvement of 1.5 in MAE hinted that not
only the eyes were not carrying any relevant information towards the estimation of the HR, but
also that they were inducing noise or in any way confusing the model predictions. An intuitive
explanation for this could be that the reflectance property of the pupil shed light in ways that
mislead the model. The model has been trained for 100 epochs and MAE has been used as a loss
function, and MAE has already been formalised in Equation (2.1).

4.3.3 Shuffling

It is not ideal for a neural network to look at the data in the same order it has been generated.
This is because many samples from one class or category are put as first when generating the data.
If the data is then split in train and test sets, an over representation of the first category might be
induced.
In our instance, if all men were to be put first and the model was to read the data in sequential order,
the validation on a woman subject (never seen before) would fail. This is not due to the model’s
inability to generalise (i.e. it has over-fitted on males), but it is rather due to the impossibility to
learn features that are peculiar to both sexes as it has only been proposed one while learning.

An effective solution to this problem is to shuffle the data before feeding it to the network. In
the case of NrPPG-NNET the input is modelled as a series of videos (around 4 videos per subject).
After being processed, each video is transformed in images (spatial-temporal maps), so for each
subject we now have different folders with, in turn, several images. The shuffling in this case needs
to be done pertaining the sequentiality of one image after the other (within the same video), as well
as paying attention to not give videos of the same subject during training and testing. In fact, doing
such mistake could possibly make the model overfit on some subjects (already seen during training
time), for which it will be better at predicting HR values in the validation phase.

Given the above, the data shuffling is carried out by shuffling by subject, so to avoid the afore-
mentioned issue. Additionally, a thought criterion has been applied when doing the data split (train
/ test) so to avoid imbalanced classes representation in the two sets. An overview of the split is
given in Section 4.3.4. Note that for reproducibility purpose, when random shuffling a seed has
been set to 12.
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4.3.4 Data balance

As mentioned in Section 3.4, the data at hand has quite a disparity in both gender and skin tone.
In order to provide the fairest representation possible for each category, the data has been manually
split so to make the model see both men and women of any skin tone in both the train and the
validation set. The distribution of the two sets is depicted in Figure 4.8.

Figure 4.8: Distribution of subjects gender and skin colour when split in train and test, following a criterion so not to have
over-represented categories.

4.3.5 Weight Map

From literature, it becomes clear that some regions of the face hide more information about the
HR than others (K. Zhang et al. 2016, Niu, Shan, et al. 2020, Speth et al. 2021). Specifically, regions
such as the forehead and the cheeks tend to take more information because of the strong presence
of flat skin. Given the flatness of the surface and the concentration of blood vessels underneath,
when the light is shed on these regions at the time of a heartbeat, the colour change (due to the
increasing volume of blood) is more evident. Human eyes cannot still perceive such changes, but
computer vision can. Here the variation of chromatic and brightness values are correlated with the
variation in HR.

Stemming from previous research, an analysis has been performed on the regions that vary the
most in terms of color change. In better details, the variance has been evaluated on each of the 49
ROI’s (7x7) for all the video frames.
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Figure 4.9: How the variance has been evaluated in space dimension of the map, for all the 33 maps of a video, for all the
videos.

Figure 4.10: How the variance has been evaluated in time dimension of the map, for all the 33 maps of a video, for all the
videos.

More specifically, the process of evaluating the variances starts with all the spatial-temporal
maps of a video (e.g. for a 60s video there are around 100 maps). A single map represents only 0, 5s
and it is not plausible that a relevant variation in HR happens in such small time frame. Hence, the
mean of every 3 maps is evaluated, resulting in one video being represented by around 33 spatial
temporal maps. Each map has a number of frames (or time) on the horizontal dimension and ROI’s
(space) on the vertical dimension. For instance, the first row of the map represents how the first
ROI evolves over the time frame captured by the map. Conversely, the first column represents all
the ROI’s at the very first instant in time.
The variance is then taken on both these axis for all the 33 maps of a video, for all the videos in
the dataset. A more visual explanation of this is depicted in Figure 4.9 (for space dimension) and
Figure 4.10 (for time dimension).

It is interesting to note how some regions vary more than others. A causal relationship has been
assumed between these regions chromatic variance and the information about HR. The assumption
is based on the knowledge borrowed from literature as well as the correspondence between the
regions carrying more of the HR information and the regions that seem to vary the most in the
videos presented.
In figure Figure 4.11, it is possible to note how there is an almost periodic increase in variance,
where on the x axis there are the 49 regions of interest. The periodicity is due to the fact that not all
regions vary in the same way, but some do more than others. Additionally, it is worth to note how it
is mainly the first channel (in YUV chromatic space) that varies with such frequency. The intuition
behind this could be that the first channel is actually the one carrying the luminance factor, so it
is not surprising that the channel Y specifically varies more than the other two in certain regions.
More specifically, the regions where most of the variance is encountered are the ones of the forehead
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(3,4,5 and 10,11,12), on the right cheek (23,24) and the left cheek (26,27).

Figure 4.11: Two videos sampled at random from COHFACE have been analysed in terms of per ROI variance. The variance
has been evaluated on all three channels of the YUV chromatic space.

After having obtained these results a more pleasant visualisation of said variation has been
created so to better match face regions and color variance. The visualisation can be seen per channel
in Figure 4.12. It is interesting to note how most of the variance is carried by the first channel in the
regions that are assumed to be the ones conveying the HR information. For this sampled video, also
the V channel seems to be playing a role in highlighting important regions (such as the forehead
ones). This can be explained by this channel ability to capture not just the luminance variance but
also the variation on a chromatic level. The second channel (U) on the other hand does not seem to
deliver any useful information.

The information on the variance has been used as a weight map for weighting the input of the
neural network. The idea behind this design choice is that the model could learn quicker where to
look. This intuition was confirmed and it will be shown in Chapter 5. Unfortunately, the model
with such weighted input never outperformed the one without this weight map, but this was an
interesting concept to explore and definitely deserves future work to be done on it.

Figure 4.12: Variance for a sampled video in COHFACE, plotted as to recompose the original frame and segregated per color
channel (Y, U, V).
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4.4 Challenges faced

The main challenges faced during the development have to do with some details missing from
the paper on which the architecture of the project is based (i.e. Niu, Shan, et al. 2020). These
challenges are here reported as a numbered list.

1. Overlapping windows: As discussed already, one created map corresponds to a set of frames
that falls under a given time window. When the map is created, the window is moved by a
step and the process is repeated. The issue here is that Niu, Shan, et al. 2020 never claimed that
the window was moved from the starting or the ending point of the previous one - boiling it
down to either having or not having an overlap. These two ways of creating a moving window
can be visualised in Figure 4.13, where the overlap in question is the coloured area for each
step and in Figure 4.14 where there is no overlap and the step between frames is colored in
green.
This issue has been overcome by looking at the data obtained by the researchers after the
processing (i.e. the number of maps given a certain number of frames). Because there is a
substantial majority of maps over a number of frames, this induces the reader to think that
the window is shifted with an overlap taken into account. Accordingly, this work implements
the sliding in the same manner.

Figure 4.13: Moving a sliding windows with an overlap.

Figure 4.14: Moving a sliding windows without an overlap.

2. Number of ROI’s: When looking at the previous publication of the authors, a second more
predominant issue has been raised. In fact, a previous paper (namely Niu, Han, et al. 2018)
offers a slight implementation variation. The discrepancies found mainly concern the number
of ROI’s. This issue was not tackled as there is no one way to understand whether the authors
have changed the method during all those years or if they just assumed that other researchers
had read their previous work. In fact, different numbers of ROI’s have been tested, and their
impact on the model performance has been evaluated accordingly, as detailed in Section 4.3.2.
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3. Synthetic Data: Another discrepancy presented in the previous work from authors and the
newer one is a pre-training run on synthetically generated data. This training is not mentioned
in the latest work, but it is explained in the former one. This is why it has been assumed that
authors would have at least mentioned it in the most recent paper - as it is a complex process
to realistically fake an ECG signal (or a signal in general). Furthermore, even preliminary
performances result have proven it to be unnecessary - and therefore disregardable.
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Chapter 5

Results

This chapter wants to explore the results obtained by NrPPG-NNET, putting them into context
with other methods, and benchmarking them as fairly as possible by using the same metrics and
the same validation data.

In Section 5.1, results are presented and different versions of the model are taken into consider-
ation. Additionally, improvements between one version and another are detailed and explained. In
Section 5.2, the model will be compared to other methods that utilised the same dataset and metrics
for evaluation.

5.1 Results

As previously mentioned in Section 2.3, the aim of NrPPG-NNET was not only to be as accurate
as possible but to also satisfy requirements such as being lightweight and working in real-time. Let
us assess all these characteristics in different subsections. Firstly, the time taken by the overall sys-
tem is reported in Section 5.1.1. Additionally, model size and resources consumption are reported in
the same section. Secondly, Section 5.1.2 reports the accuracy of the system in terms of prediction.

5.1.1 Speed

Speed Specific

38.7fps w/o Nrppg-NNET

22.7fps CPU

17.8fps GPU battery saving

35.4fps GPU

Table 5.1: This table shows the time taken
to render a single frame without NrPPG-
NNET, with it being run on a CPU, on a
GPU on power saving and on a normally
functioning GPU.

As shown in Table 5.1, OpenCV renders a frame from a
laptop webcam (Full HD, 2.07 MP, 17.54 MB/s bitrate) in a lit-
tle over 20ms. A minor difference is perceived when NrPPG-
NNET and all the input pre-processing (i.e. map making, face
cropping etc.) are run on a GPU in battery saving mode, but
it goes back to the 20ms range when the GPU runs at full
speed (without overclocking).. In this case, tests have been
performed on a GTX 1070 Laptop GPU and an i7 Intel 11th
generation CPU. Overall, the time difference is minimal even
when running solely on the CPU and no delay can be per-
ceived by the naked eye, making the system function in real-
time. This is a great achievement as a lot of matrix operations
are performed not only during inference, but also to manipulate the input to suit the Neural Net-
work input layer.
Additionally, the lightweight of the model is also satisfying when cross-checking it with the require-
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ments set before development. The model only weights 131, 392KB on disk space and takes around
2GB of RAM when executed. RAM usage has been evaluated by the difference in machine RAM
usage when idling and when running the program.

5.1.2 Accuracy

NrPPG-NNET reaches in its final version reaches an MAE of 7.288, given that MAE is expressed
in the same units as the original data, it means the model can predict Heart Rate with an error
of ±7.288 beats per minute. As previously mentioned in Section 2.1, a clinical device can always
guarantee an MAE of no more than 3 BPM. NrPPG-NNET does not qualify to be used in clinical
standards nor do any of the methods previously developed in literature.

Version MAE

Original 11.634

Changed input shape 9.167

Removed eyes 8.972

Chuncks Shuffled 8.455

Fine tuned 7.288
w/ Variance Map avg. 8.456

w/ Variance Map single 8.55

Table 5.2: This table shows different model
versions: from the first stable one to the last
fine-tuned and changed in parameters and
input size.

It is worth noticing the numerous versions of the model
shown in Table 5.2. Originally a naïve implementation saw
the model having the full frames as an input and no research
on the network parameters. As noticed in Section 4.3.2, dif-
ferent training parameters changed during the development,
yielding better results most of the time. Firstly, the input of
the network caused some issues - as noted in Section 4.4, there
was a minimal length and width the input needs to have in
order to be fed to a pre-trained ResNet. The input shape orig-
inally was the same as the input of the pre-trained network
(224x224), but this also implied that the images were stretched
using bilinear interpolation (first applied to the image resiz-
ing domain by Ke-jian 2008). Although this method is highly
reliable, it still adds data to the input which wasn’t in the orig-
inal image and could both induce noise and confuse the network. For this reason, the number of
ROI’s (that directly controls the height) has been increased from 5x5 to 7x7. This is mainly because
the minimum size of the ResNet input is 32x32. Having 5x5 ROI’s results in an input image of
25px height, whereas when increased to 7x7 it evaluates to 49px height. This change in input size
reduced the final MAE from 11.634 to 9.167.

Additionally, the pre-processing step involving eye region removal has been performed on the
input (this procedure is better detailed in Section 4.1.3). Intuitively, eyes were not taking any
useful information because there is no blood vessel going through them. Additionally, the extreme
reflectance property of the pupils (due to them being always moist) might have confused the model
on where to focus and how to interpret that light variation. When eyes have been removed, the
MAE dropped to 8.87.

As explained in Section 4.3.3 and in Section 4.3.4, it was most likely the case that train and test
sets were both balanced in terms of gender and skin colour. Shuffling helped the model ability to
learn as it made it see videos of different subjects all at random (not necessarily N videos from
one subject in a row), while manually balancing the data ensured that the model would be able to
generalise among different genders and ethnicity. After these two operations on the dataset, the
MAE went down to 8.455. This was the last change made to the model training procedure overall
and the selected training run can be seen in Figure 5.1.

Using a pre-trained network means that during training, all layers of that network are frozen
(i.e., not learning). Usually only the last layers added are actually change their weights. The frozen
layers are still used to extract features and approximate the objective function, but actually only the
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Figure 5.1: The best run of the model that was picked as a final one with parameters explained in Section 4.3.2. Final MAE
reached is: 8.455

last layers adapt to the new task. In the case of NrPPG-NNET, the pre-trained ResNet18 was trained
on ImageNet. The last flattening layer and a dense layer (with one-dimensional output given the
regression task) adjusted their weights according to the HR detection task. After selecting the best
model and training its final layers, it is possible to adapt the previously frozen layers to the new
domain. This procedure is very common in the field of transfer learning (i.e., adapting a network
from one task to another) and means that the weights of all the layers of the pre-trained model are
unfrozen and made trainable. To avoid over-fitting to the new task, the learning rate was changed
and set to a very low number (in the case of NrPPG-NNET, this number is 1.0e− 7).

Figure 5.2: The two runs shown are the fine-tuning ones: the red one has been training for 50 epochs, while the orange one
only for 25. Finally, the orange has been selected as the final model yielding an MAE of 7.288.

According to the literature, the network has been trained for just 10 epochs during the fine-
tuning, but more epochs numbers have been tested as this did not show convergence. In figure
Figure 5.2, it is possible to see how after around 15 epochs the MAE tends to plateau (the wiggliness
of the line is due to the scale of the y axis). Conversely, it seems that after 50 epochs the MAE starts
rising up again, hence the model which training is displayed in orange is the one selected as the
best one, achieving a final MAE of 7.288.
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Additionally, during the last stage of development, the idea of weighting the input based on a so-
called variance-map has been implemented. The map is obtained following the procedure explained
in Section 4.3.5. The resulting variance map is min-max normalised and the weights (ranging from
0 to 1) are element-wise multiplied (i.e. Hadamard product) to the input of the neural network. The
weight map has dimensions 7x7, but it is flattened so to obtain a column vector, which is multiplied
by each column of the input matrix. In fact, the input matrix is sized 49x200x3.
A simplified example of this procedure is given in Equation (5.1), where column vector ~W is a
flattened input of weights and matrix I is the input matrix (a whole spatial-temporal map).

~W � I =

 w1

w2

w3

�
 i1,1 i1,2 i1,3

i2,1 i2,2 i2,3

i3,1 i3,2 i3,3

 =

 w1i1,1 w1i1,2 w1i1,3

w2i2,1 w2i2,2 w2i2,3

w3i3,1 w3i3,2 w3i3,3

 (5.1)

The input is weighted with two different versions of these variance maps. The first version
is evaluated by taking the variance over one single video, the other one is the average of all the
variances of all videos in COHFACE. Evaluating on one single video finds its explanation in the
stillness of the subjects in the dataset. As explained in Section 3.3.1, the subjects don’t move much
and they are all around the same point in the screen space. Additionally, because the same face
detector is used to crop the subjects’ face regions, the mapping ROI to face section will be consistent
throughout the all the subjects.

Figure 5.3: In the graph above, three runs are shown. The blue and orange ones have a weighted input based on the
procedure explained in Section 4.3.5. The green one is the previously trained model, with no weight applied on the input.

When training with these two versions of the variance map, the results are as shown in Fig-
ure 5.3. All in all, the three runs achieve approximately the same result. As stated in Table 5.2, the
model that yields the lowest result (lower only by .01) is still the one that has been trained without
the variance map.
Though it is interesting to note the behaviour the models have during the training run. The two
models trained with a weighted input seem to start with a significantly lower MAE. On the other
hand, the model trained without the variance maps starts with an MAE of around 30 bpm and
steadily decreases in the first 5 epochs or so. Intuitively, this behaviour could be explained in that
the regions that carry the most information are already emphasized, whereas it needs to learn what
regions to focus on when it comes to the model without pre-applied weights.
The model without variance maps is selected as the final one and the reason is twofold: first (of
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course) because it yields the best MAE. Secondly, because it is better for the model to learn to not
pay attention to some of the input data rather than being manually forced to do so.

5.2 Benchmarks

In terms of a quantitative assessment of how NrPPG-NNET performs, it is fair to claim that the
final MAE score is not the best when compared to methods using the same metrics and the same
data.
More specifically, NrPPG-NNET qualifies as third-best among the methods proposed in the litera-
ture. As shown in Table 5.3, only two other methods outperform the one proposed in this work,
and it generally performs better than the mean of all MAE’s (i.e. 10.46).

Table 5.3: A comparison of several approaches’ results in terms of mean absolute error in beats per minute (bpm). The root
mean squared error - which is always higher than or equal to the mean absolute error - is represented as < as no MAE was
provided by the authors. The precision attained by constantly forecasting a heart rate of 75 beats per minute (average HR
over COHFACE) is referred to as baseline.

Authors Method MAE
Us Baseline (75bpm) 9.35
Haan and Jeanne 2013 CHROM 7.8
Li et al. 2014 LiCVPR 19.98
Wang, Stuijk, and Haan 2016 2SR 20.98
Špetlík 2018 HR-CNN 7.8
P. Zhang et al. 2021 Zhang2021 5.57
Gudi, Bittner, and Gemert 2020 FaceRppg 10.8
Us NrPPG-NNET 7.28

Though, it must be noted that methods such as FaceRppg (Gudi, Bittner, and Gemert 2020),
CHROM (Haan and Jeanne 2013), 2SR (Wang, Stuijk, and Haan 2016), LiCVPR (Li et al. 2014), are
fully unsupervised - so the method employed was not trained on part of the COHFACE dataset.
This could make the comparison slightly biased in favour of those other methods (including NrPPG-
NNET) that learnt directly on a subset of the COHFACE dataset. In P. Zhang et al. 2021, there is
no mention or description of the evaluation protocol. On the other hand, the model presented in
Špetlík 2018 has been trained on its own custom dataset and performed validation on the whole
COHFACE dataset. All these different evaluation protocols hint that a fair comparison would need
more time to be performed. More validation data would need to be processed so to have a ground
truth signal that matches the shape of the one provided by COHFACE. Unfortunately, such an
evaluation could not be performed due to time constraints.

Additional empirical validation has been performed by matching the output predicted HR with
the one predicted by an Android app (namely Heart Rate Monitor). The predictions error never
exceeded the ±7bpm and overall seemed to match almost exactly the output of the mobile app.
Some recording of such validation experiments have been recorded and made available on a shared
folder, for everyone to investigate. Videos show various scenarios (e.g. different light conditions
and after sport activity). Additionally, videos show the ability of the network to not predict sensible
values when no face is present in frame, in such a case the system outputs an "invalid" error
message.

Even though the MAE does not prove to be the best, there are other factors to consider when
evaluating these kinds of work. In fact, as previously mentioned, there are other factors that play
a role in evaluating the quality of this system overall. As stated in Section 2.3, a crucial factor was
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for the model to be as lightweight as possible, due to the possibility of it running on an embedded
device in the future. The Neural Network was trained on a machine having a GTX 1070 Laptop GPU
and a i7 Intel 11th generation CPU. Even though these specifics belong to a mid-high end laptop, in
inference time the model makes a prediction in tens of milliseconds (full statistics are reported in
Table 5.1).
When trying to compare NrPPG-NNET with the other published so far in the field, it has been hard
to find proper benchmarks in terms of inference time, but some things are assumable. For instance,
the method proposed by Yu, Li, et al. 2020 uses two high-end GPU’s for training (P100 GPU). So it is
fair to assume that the model needs a great amount of VRAM to run. Additionally, even Niu, Shan,
et al. 2020 trivially produced a bigger model as they used both ResNet18 architecture and a Gated
Recurrent Unit, so they will necessarily have a bigger final trained Neural Network. Lastly, Špetlík
2018 proposes a method that requires at least 12GB of GPU memory when tested (quoting from their
GitHub repository). Many more methods do not present benchmarking in terms of space taken by
the final model and resources consumed during the inference - so a fair comparison is not really
possible.
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Chapter 6

Discussion and Conclusion

The goal of this work was to develop a method that could predict HR based on video footage
alone. In addition, the system had to run in real-time on the CPU and not take up too much
memory. NrPPG-NNET meets all of these requirements as well as the other requirements proposed
in section 2.3. The final MAE (i.e. 7.28 bpm) of the model compares well to other methods in the
literature, although it does not reach the state of the art. The presented work also makes good use
of spatial-temporal maps and manages to process the map making pipeline in real time. The potential
applications of this model are outside the clinical domain, as the accuracy is not comparable to
specialised medical devices. However, systems such as NrPPG-NNET are finding applications in
HCI field. The model will be deployed as soon as possible to monitor users’ HR using only the
laptop’s webcam.

Due to the lack of time, many different adjustments, tests and experiments have been postponed.
As previously mentioned, validation was done differently for all methods found in literature. For
better validation of NrPPG-NNET, the method would need to be tested on different datasets, and
such validation may be performed in future work. In addition, further studies will focus on a more
in-depth investigation of specific mechanisms. In particular, a better training procedure could be
applied that includes a greater variety of data in terms of number and characteristics of subjects.

Additionally, the analysis explained in Section 4.3.5 could potentially lead to interesting results.
Therefore, further research could be done on how variation in light and colour can be used to weight
some facial regions. Understanding that these changes are present in the videos was easy, but really
conveying what determines these changes and understanding the underlying function that better
approximates the covariance of skin colours with HR might be a fundamental improvement.
Furthermore, the method could be extended to predict an entire signal rather than just the HR value
every n seconds. Predicting signals is something that many authors in the field have attempted to
do and that we believe could potentially be achieved with NrPPG-NNET. For example, a different
formulation of both the ground truth and the spatial-temporal maps could lead the model to a more
continuous regression of HR values.

Everything about this method has been described as precisely as possible so that it fully repro-
ducible and allow for it to be extended by future researchers. In addition, the code for creating the
maps, retraining and evaluating the model is available at this GitHub repository.
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Appendix

7.1 Timeline

Each task takes a maximum of 3 weeks as the workload has been subdivided in many smaller
steps. Additionally, thanks to the modularity of the approach selected, it will be possible for me to
test each step as soon as I have finished working on it. Considering week one starting on the 26th
of April 2021, we can calculate the remaining weeks until the 1st of November 2021. The number of
weeks adds up to 27. In these 27 weeks, holidays are to be included and will be marked as such on
the Grantt Chart shown in Figure 7.1.

Figure 7.1: Timeline of the project.
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7.2 List of Abbreviations

1. NN: Neural Networks or Artificial Neural Networks (ANN) are mathematical models com-
posed of artificial neurons that are inspired by the biological functioning of the human brain.

2. CNN: A convolutional neural network (CNN or ConvNet) is a network architecture for deep
learning that learns directly from data, eliminating the need to manually extract features.

3. RGB: The "RGB" color space means red, green and blue, the primary colors of additive syn-
thesis.

4. YUV: YUV is a color space used for encoding images or videos. Designed to mirror the
behavior of human vision, it allows for a reduced chrominance bandwidth, where Y provides
the brightness information and U and V the color information.

5. PPG: PPG is a non-invasive optical measurement technique that can be used to detect blood
volume changes in the microvascular bed of tissues.

6. HR: Heart Rate indicates the number of heartbeats per minute (BPM).

7. RR: Respiratory rate is defined as the number of breaths taken by an individual over the
course of a minute.

8. GAN: Generative Adversarial Networks.

9. LED: A semiconductor diode that emits light radiation (Light Emitting Diode) when an electric
current passes through it.
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