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A B S T R A C T

Skeletons are good 2D or 3D shape descriptors. However, so far they
have only been used to encode simple, compact, closed boundaries
such as isolines or isosurfaces. In this project, we study an extension of
classical 2D multiscale skeletons to a new notion: dense field skeletons.
Dense skeletons will be used to encode an entire 2D field, such as a
monochrome image, into a scale-space of skeletons. By this method,
operations such as image compression, progressive image encoding
and/or transmission will be approached using the robust, well-proven,
descriptive powers of skeleton features. Efficient storage is achieved
by skeleton simplification and a state history based neighbour-coding
scheme to encode skeleton-trees. The result is then further compressed
using the Lempel-Ziv-Markov Chain Algorithm (LZMA). Reconstruc-
tion is done by inflating skeletons per layer, and smoothly interpolating
the edges to reduce sharp transitions on high compression.
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Part I

T H E S I S





1
I N T R O D U C T I O N

Image compression is essential in many application fields, and serves
many purposes. For example it can be used to reduce file size, in order
to make it fit on low capacity chips - such as present in modern bio-
metric passports - or to store images in large quantities for databases.
It can also be used to store only relevant features of an image (i.e.
switching to a different representation), in order to optimize pattern
matching techniques.

Classical image compression uses relatively low-level representa-
tions of the input data. Typically, images are subdivided into small
blocks, and each block is compressed using signal-processing meth-
ods. For example the current camera standard (JPEG) compresses 8× 8
blocks with a Discrete Cosine Transform (DCT), or Google’s alterna-
tive “WebP”, which encodes blocks of similar size using a prediction
scheme.

Apart from the above, image analysis methods have looked into
the extraction of relevant ’features’ from images. Such features are
meant to capture the most salient items present in an image. Different
feature extraction techniques and methods exist. In shape processing
skeletons, or medial axes, are an important class of features. They
capture the symmetry, geometry, and topology of a binary shape.

However, skeletons cannot be directly used on continuous images,
since they are designed to work on binary shapes. Yet, it is interesting
to consider their usage for image simplification and/or image com-
pression. For this, suitable methods must be found to (a) reduce a
continuous, grayscale, image to a set of binary images; (b) efficiently
and effectively extract skeletons from these images in order to capture
the essential structure and shape of these images; and (c) use the
extracted skeletons to reconstruct a simplified grayscale version of the
original image.

In this thesis, we study the usage of skeletons for the task of image
simplification and image compression. For this, we proceed as follows.

First, we reduce a grayscale image to a set of binary shapes. For this,
we threshold an image for all possible intensities (assuming 8 bits),
and the result of each threshold becomes a layer in a threshold set. We
use a threshold set as this creates larger shapes, which are better to
describe with skeletons. All layers which contribute very little to the
image are discarded to keep the file size to a minimum.

Secondly, we encode each threshold set using the Medial Axis
Transform (MAT). For this, we use an efficient and effective skele-
tonization method which can treat any 2D shapes, regardless of their

3



4 introduction

geometric complexity or genus [30], and also allows skeleton simplifi-
cation in order to retain only the most salient aspects of the shapes
to be encoded. The skeletons are first simplified using the saliency
metric defined by Telea in [29]. Then small and unimportant objects
are removed, as they are likely to be (a) perceived as noise; or (b) take
up a lot of space whilst contributing very little to the reconstruction.

Thirdly, we encode the skeleton (and its distance transform) of
each shape using an efficient method which attempts to minimize the
amount of data stored. For this we make use of an efficient neighbour-
chain encoding scheme, exploiting the sparse and elongated structure
of skeletons, and the continuous variation in maximally inscribed disc
radius.

The output of the three steps above is a compact representation of
the initial image, which trades off the amount of image detail retained
in the encoding against the amount of data used for the encoding. In
the final step, we use this representation to reconstruct a simplified
version of the initial image using a combination of distance transforms
and blending on the encoded skeletons to achieve gradual changes in
intensities. The result is a simplified rendering of the initial image.

The overall method exhibits some interesting similarities and differ-
ences with classical image compression methods such as JPEG. First,
our global aim is similar: we want to encode a grayscale image in a
compact representation whose (binary) size is smaller than the original
image. In this sense, our encoding is also lossy. However, the types of
artifacts our lossy encoding generates are different from JPEG: while,
at high compression ratios, JPEG will create high-frequency ringing
artifacts which follow a grid pattern, our encoding creates smooth,
round, shapes, since simplified skeletons ignore sharp details on their
shape boundaries. Secondly, we encode the image one grayscale level
at a time (thus, in grayscale space), rather than one block at a time
(thus, in geometric XY space).

Our method is a first attempt to explore the usage of multiscale
skeletons for image simplification and compression. So far, the results
of our method cannot compete with methods such as JPEG in terms
of compression ratio and perceptual quality of the compressed image.
However, the results obtained so far are promising and show that
skeletons can be used for representing simplified images in a compact
way, with different trade-offs and with a fundamentally different
approach than classical image compression methods. Our approach,
if extended, could be used for different image simplification and
compression tasks, in cases where shapes in the image are central, e.g.
shape-based image manipulation and editing, or nonphotorealistic
rendering, as the occuring compression artefacts somewhat resemble
paint-strokes.

The structure of this thesis is as follows. It is split in two parts:
Part I is the actual thesis, and Part II is an explanation on how the
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accompanying software functions. Part I consists of the following
chapters: Chapter 2 provides some insight in the JPEG and WebP image
compression techniques, necessary to understand the fundamental
difference in approach, and provides some theoretical background in
skeletons. Chapter 3 describes how to create segments from a grayscale
image. Chapter 4 describes the full encoding process of these skeletons,
up to and including the file format used. Chapter 5 describes how
to reconstruct an image, and demonstrates a blending technique to
reduce boundary artefacts. Chapter 6 contains examples on the various
parameters used in our program, and their effects. It also contains
a few example images, which show our current status. Sections 7, 8

conclude this thesis and discuss the obtained results.





2
R E L AT E D W O R K

This chapter aims to provide relevant background data and some
insight in the methods used in this thesis. As we aim to create a lossy
image compression, it is relevant to understand – at a coarse scale – the
way the current leading image compression technique (JPEG) works,
and how it fundamentally differs from our approach. We will also
glance over a recent alternative: “WebP” in section 2.1.3. Section 2.2
will cover the Structural Similarity Index (SSIM), which we use to
measure the quality of the output. Finally in section 2.3 we provide
some background theory into skeletons.

2.1 lossy image compression

In 1992 the Joint Photographic Experts Group (JPEG) introduced the
ISO 10918-1 standard, which describes a lossy compression method
aimed at storing photographic images, aptly named: “JPEG” [8]. This
standard defines how to convert an image into a stream of bytes, and a
stream of bytes back to an image, and is based on the DCT. The original
specification spans 186 pages, yet did not define a file standard [18].
Section 2.1.1 will coarsely describe how JPEG’s most common encoding
technique works. It is not possible to cover the full JPEG specification,
as it covers four encoding techniques, two different entropy encodings,
supports multiple numbers of bits per pixel, etc. Finally section 2.1.2
will briefly discuss the file formats.

2.1.1 JPEG Encoding

The JPEG standard defines more than one method to encode an image
in a stream of bytes. The most straightforward method is the Sequential
encoding method. This method consists of encoding an image single
pass from top to bottom. A singe pass through an image (for one or
more components) is called a scan, and is stored in a distinct data
block [8].

The second method is Progressive encoding. This consists of multiple
passes through the image, where each pass enhances the detail of
the image. This is useful for sending large images over a slow data-
connection, as an image can be shown in multiple stages, each stage
increasing the resolution. One of the downsides of this method is that
it is harder to implement, and thus not as widely supported as the
sequential method.

7



8 related work

The third method is called Hierarchical encoding. This method aims
at getting smaller image files than other JPEG modes. Each pass consists
of a few stages:

1. Down-sample image in both dimensions by a factor of 2 (e.g. 640×480 becomes
320× 240)

2. Encode the smaller image using on of the other JPEG encoding techniques.

3. Decode and upsample the encoded image.

4. Compute the difference between the original and the upsampled image.

5. Encode this result using one of the other JPEG encoding techniques.

Even though the details of the aforementioned methods differ, they
are all based on the same technique: Discrete Cosine Transform encod-
ing. 1

An image is first separated in the components Y, Cb and Cr, which
respectively denote a luma component (brightness) and the blue-
difference and red-difference components from the chroma color space.
Since the human eye is noticeably better at perceiving differences in
the brightness of an image than in the hue and color saturation of
an image, the Cb and Cr are usually reduced in spatial resolution.
This process is called “Chroma subsampling”. The most common sub-
sampling rate for JPEG is 4 : 2 : 0, which means that the Cb and Cr
are reduced to half the spatial resolution of the Y component. Other
possible subsampling rates are 4 : 4 : 4 (which is no downsampling),
and 4 : 2 : 0 (which is a reduction of a factor two in the horizontal
direction) [33].

Each channel is then split into 8× 8 blocks, and transformed using
the DCT (as shown in eq. (2.1)).

Gu,v =

7∑
x=0

7∑
x=0

α(u)α(v)gx,y cos
[
π

8
(x+

1

2
)u

]
cos
[
π

8
(y+

1

2
)v

]
(2.1)

where
• u is the horizontal spatial frequency, for the integers 0 6 u 6 8.

• v is the vertical spatial frequency, for the integers 0 6 v 6 8.

• α(u) =


√
1
8 , if u = 0√
2
8 , otherwise

is a normalizing scale factor.

• gx,y is the pixel value at coordinates (x,y).

• Gu,v is the DCT coefficient at coordinates (u, v).

The result of this transformation is an 8× 8 matrix, with the DCT

coefficients. After this transformation most information of the signal
will be concentrated in the upper left corner of the matrix. The high

1 There is also a method for losless storage in the JPEG specification, but this is based
on a predictive process in contrast to DCT. It is therefore not mentioned further in
this thesis.
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frequencies (towards bottom-right) are harder to perceive for the
human eye. Therefore their precision is deemed less important. The
resulting coefficients are usually multiplied by a “Quantization Matrix”,
and then rounded to the nearest integer. This is done such that the
higher frequencies are rounded to zero, while the lower frequencies
remain, and is called “quantization”.

Given that the DCT is performed with enough precision, this round-
ing process is the only lossy step in the DCT compression. As the
top-left corner now contains mostly non-zero values, and the bottom-
right mostly zeroes, the entropy coding is performed in a “zig-zag”
ordering (as shown in fig. 1), rather than left to right, top to bottom.

Figure 1: The zig-zag like pattern the entropy encoding follows for the DCT-
coefficients (note: lower frequencies are stored top-left, and high
frequencies are stored bottom-right)

This result is then stored in one of the JPEG file formats. Further
explained in section 2.1.2.

As high frequencies are rounded and stored, artefacts appear mostly
at borders in the image. This effect can be seen in fig. 2.

2.1.2 The “JPG” File Format

The current standard file format is the JPEG File Interchange Format
(JFIF), which was developed by Hamilton [10] in 1992. In 1996 JPEG

tried to fill the lack of a file format in their standard by releasing
theStill Picture Interchange File Format (SPIFF) [9]. Despite SPIFF being
the official standard file format, virtually all JPEG files are stored as JFIF.
This is probably due to the fact that JFIF was released four years earlier,
combined with the fact that the SPIFF standard is considered “too
inclusive” [14]. As an example: The format is defined for 11 different
color spaces. 2 This makes it hard for decoders to fully support the file
format.

2 [14] incorrectly claims that SPIFF supports 13 color spaces. There are 15 accepted
values, of which the value 2 denotes an unsupported value, and 5-7 are merely
reserved values.
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(a) Mandelbrot Original (b) Mandelbrot JPG (c) Difference (multiplied by
3)

(d) Mandelbrot Original Zoom (e) JPG Compression Zoom

Figure 2: Artefacts caused by JPEG compression.

2.1.3 WebP

Recently Google Inc. released a new lossy image compression format
“WebP”. In a large scale study of 900,000 web images, WebP images
were 39.8% smaller than jpeg images of similar quality (using the
SSIM [37]). The WebP technique is open-source, and is in essence
an intra-frame encoded with the VP8 video compression format [3],
stored in a Resource Interchange File Format (RIFF) container [15].

Similar to JPEG an image is divided in to blocks, and each block
is encoded separately. VP8 uses a predictive encoding scheme. This
means that given some datapoints, it predicts neighbours, and encodes
the difference between the actual value and the prediction. These
difference-values are smaller than the original values, and can thus
be encoded more efficiently. Figure 3 shows the classification of an
encoding block (VP8 supports 4× 4 and 16× 16).
C,Ai,Li are either stored values, or values computed from previ-

ous frames (for video, WebP uses only intra-frame encoding), and
Xij are values which are approximated. Approximation of X occurs
following eq. (2.2).

Xi,j = Li +Aj −C (i, j ∈ {0, 1, 2, 3}) (2.2)
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C A0 A1 A2 A3

L 0

L 1

L 2

L 3

X₀₀ X₀₁ X₀₂ X₀₃

X₁₀ X₁₁ X₁₂ X₁₃

X₂₀ X₂₁ X₂₂ X₂₃

X₃₀ X₃₁ X₃₂ X₃₃

Figure 3: VP8 Encoding Block

Although on average outperforming JPEG, there are a few disad-
vantages to WebP. It does not support a lossless mode, and only has
support for 4 : 2 : 0 chroma subsampling, while JPEG can also handle
4 : 2 : 2 and 4 : 4 : 4.

2.2 structural similarity index

In order to measure the visual accuracy of our compression algorithm
we need a full-reference quality metric; A metric which denotes the qual-
ity as one of the images being compared, provided the other image is
regarded as of perfect quality. The simplest and most widely used full-
reference quality metric is the mean squared error (MSE), computed by
averaging the squared intensity differences of distorted and reference
image pixels, along with the related quantity of peak signal-to-noise
ratio (PSNR). These are appealing because they are simple to calculate,
have clear physical meanings, and are mathematically convenient in
the context of optimization. But they are not very well matched to
perceived visual quality [36]. In 2004 Zhou and Bovik proposed the
Structural Similarity Index (SSIM) [37]. SSIM is an objective method
for measuring the similarity between two images and is specifically
designed to match the quality as perceived by the human eye. It is
computed over multiple N×N windows of an image and is defined
as shown in eq. (2.3).

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ
2
y + c1)(σ

2
x + σ

2
y + c2)

(2.3)

with:
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µx,y the average of x and y respectively

σ2x,y the variance of x and y respectively

c1 = (κ1L)
2, c2 = (κ2L)

2) two variables to stabilize the divi-
son with weak denominator

L the dynamic range of the pixel-
values

k1 = 0.01,k2 = 0.03 by default.

A SSIM score lies in the interval [−1..1], and a value of SSIM(x,y) = 1
is only possible for x = y. A mean SSIM (or MSSIM) is used to denote
the quality of an image, and is computed according to eq. (2.4).

MSSIM(X, Y) =
1

M

M∑
j=1

SSIM(xj, yj) (2.4)

Where X, Y denote the full images, and xj, yj the content of the j-th
window. Interpretation of this metric is best described using an actual
human reference. It is therefore matched in a case study against a
Mean Opinion Score (MOS). A MOS-score is the average score given by
a group of human participants. Figure 4 shows the correlation between
MOS and MSSIM in a case study of 29 high-resolution images (with over
300 distorted images), and between 13− 25 human participants per
image. The MOS was graded on a continous linear scale with adjectives
“Bad”, “Poor”, “Fair”, “Good”, “Excellent”, and then filtered and
rescaled to [0..100] (0 denoting “Bad”).

Figure 4: MSSIM versus MOS
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2.3 skeletons

Skeletonization is a transformation of a component of a digital image
Ω into a subset S of the original component, so that S is locally
centered within Ω. The resulting reduced shapes appear to have
some interesting properties, and thus have been utilized in a very
diverse set of problems, such as: shape recognition [31, 39, 41], shape
representation [19, 21, 22, 38], flow visualization [20], animation of
computer models [24, 34, 35] and data compression [5, 12].

There are different methods to calculate a skeleton, and each method
produces slightly different skeletons (according to slightly differing
definitions). It is important to note that in this thesis the words skeleton
and medial axis are used interchangeably to denote the same thing. Our
definition of a skeleton follows Blum’s [4], and is included below for
clarity’s sake:

skeleton / medial axis

Let A be the object to be skeletonized, ∂A its boundary and
d(x,∂A) the distance from x to A’s boundary. The skeleton S is
then defined as:

S = {x ∈ A | ∃y, z ∈ ∂A,y 6= z,d(x,∂A) = ||x− y|| = ||x− z||}

(2.5)

Or in words: S(A) is the set of all centers of maximum discs
inscribed in A.

medial axis transform

The MAT is a full descriptor of an object, and can be used for
reconstruction. The MAT consists of the locus of disks in the
skeleton S, along with their radius. A set definition:

MAT(A) = {(x,d(x,∂A)) : x ∈ S} (2.6)

reconstructed object

An object Ω can be reconstructed from the union of all the discs
in the skeleton S. LetD(x, r) be the disk characterized by position
x, of radius r. The reconstruction is defined by:

A =
⋃

{D(x) : x ∈MAT(A)} (2.7)

2.3.1 Computation of Skeletons

There are various methods for computing a skeleton. Morphological
computation is done by repeatedly morphologically thinning an ob-
ject [13, 32, 40]. Each iteration boundary points which do not affect an
objects topology are identified and removed. This process is repeated
until no further points can be removed. This method is conceptually
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rather straightforward, however implementations need intricate heuris-
tics to ensure skeletal connectivity. Moreover, several thinning methods
do not produce a true skeleton according to our definition [30].

Geometric methods compute the Voronoi diagram of a discrete polyline-
like sampling of the boundary. The Voronoi diagram is the boundary’s
medial axis. Although these methods produce accurate connected
skeletons, they are complex to implement, computationally expensive
and require a robust boundary discretization [30]. The resulting skele-
tons are usually referred to as straight skeletons, and are first introduced
in [2] for simple polygons. Later they have been refined for general
polygonal figures [1].

The method we have used, and will describe in more detail is from
a third family of methods, and is based on the Distance Transform (DT)
of the objects boundary. The DT provides a description of the min-
imal distance to the boundary for each point in an object. Recent
approaches of this family use the robust and simple to implement Fast
Marching Method (FMM), first introduced in [26] as an O(n log(n))
algorithm to solve the Eikonal equation. The drawback of the DT is the
difficulty in detecting singularities. Direct computation of singularities
is numerically unstable and not trivial. In 2002 Telea and Van Wijk
proposed the Augmented Fast Marching Method (AFMM), which over-
comes this problem, and can produce skeletons of large 2D datasets
in real-time [30]. This method is described in detail in section 4.1.

2.3.2 Salience Skeletons

To explain the essence of salience skeletons it is necessary to first
provide a clear definition of saliency:

salience The salience (also called saliency) of an item – be it an
object, a person, a pixel, etc. – is its state or quality of standing
out relative to neighboring items.

As small pertubations are extremely common in measured data,
there is a variety of algorithms to try and simplify objects, such that
salient features are preserved [6, 7, 11]. Each with a different definition
of features and noise. In 2011 Telea proposed a feature-preserving
smoothing method based on saliency skeletons [29]. Saliency skeletons
are defined as: skeletons which try to simplify / smooth objects, while
preserving the salient features of this object. Thus removing branches
in a skeleton, while trying to keep the object perceptually as equal as
possible. An example is given in fig. 5.

In order to simplify a skeleton without removing perceptually impor-
tant features, Telea defines a saliency-metric σ for each skeleton-point
x ∈ S(Ω) of object Ω as in eq. (2.8).
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(a) (b) (c) (d)

Figure 5: Removal of non-salient points. a) is the original object, b) is the
skeletonized version, with non-salient points marked in green, c) is
the simplified object. Notice the perceptually similar object, whilst
being reconstructed by a hugely simplified skeleton, d) Some salient
points are removed as well. Notice the perceptual difference.

σ(x) =
ρ(x)

D(x)
, ∀x ∈ Ω (2.8)

where ρ(x) denotes the length of the border between the two boundary
points of x, and D(x) is the distance to the border, as given by the
Distance Transform (DT).The saliency metric σ(x) only takes border
irregularities and corners into account, and does not look at other
features of shapes. This is justified by the fact that, ultimately, border
irregularities and corners determine the essence of a shape. It is based
on the following two observations:

I. Saliency is proportional with size, which can be measured by
boundary length. Longer features are more salient than shorter
ones. [16]

II. Saliency is inversely proportional with the local object thickness.
A feature located on a thick object is less salient than the same
feature located on a thin object. [28]

An example of this saliency measurement applied to the jagged
rectangle shown in fig. 6 is shown in fig. 7.

The main drawback of this method is that it does not monotonically
increase over a skeleton, i.e. after thresholding we will get discon-
nected skeleton branches, shown in fig. 7d. However, this is easily
remedied by using a connected-component filter to removes all but the
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Figure 6: Jagged Rectangle

(a) (b) (c)

(d) (e) (f)

Figure 7: a) Boundary length ρ(x), b) Distance D(x), c) Saliency metric σ(x),
d) Thresholded, e)Removed small components, f) Reconstruction

largest skeleton in the image. To demonstrate its simplicity, a possible
matlab implementation is shown in lst. 1. The resulting skeleton is
shown in fig. 7e, and its corresponding reconstruction in fig. 7f.

Listing 1: Remove all but largest component

% Let IM contain our bitmap

CC = bwconncomp(IM);

numPixels = cellfun(@numel,CC.PixelIdxList);

[biggest,idx] = max(numPixels);

out = zeros(CC.ImageSize);

out(CC.PixelIdxList{idx}) = 1; �
This saliency filtering provides a feature-preserving smoothing al-

gorithm, while still greatly reducing skeleton complexity. And does so
at the cost of just 1 extra parameter (threshold for σ).
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S H A P E E X T R A C T I O N F R O M I M A G E S

The strength of skeletons is that they can be a very compact represen-
tation of large objects. However, skeletons are only defined for binary
images (0/1 denotes inside / outside object). For this thesis we are
looking at grayscale images. One way to use the powerful properties
of skeletons for encoding would be, here, to reduce such grayscale
images to sets of binary images (by segmentation), and next apply our
skeleton-based encoding on these binary images. After segmenting
the grayscale image we refine our data, such that unimportant parts
are removed.

3.1 segmentation

For our segmentation algorithm we propose to use a “Threshold-set”.
We define a threshold-set T on an image I as shown in eq. (3.1).

Ti(x,y) =

1, if I(x,y) > i

0, otherwise
(3.1)

Using this segmentation, we try to introduce more coherency within
each layer i (i.e. we try to make larger objects). Figure 8 tries to
visualize why a normal set is not suitable for extracting objects, by
showing the low coherency in a normal layer.

An important observation for this segmentation is that ∀i, j : i 6
j =⇒ Tj ⊆ Ti, or in words: Each layer in the thresholdset is a subset
of (or equal to) its previous layer. A proof is given below.

Proof: A threshold-set consists of subsets.
if i 6 j ∧ (∀x ∈ Tj : x > j), then:
∀x ∈ Tj : i 6 j 6 x, therefore (by definition):
∀x : x ∈ Tj =⇒ x ∈ Ti

This observation is important, because this guarantees that if we
delete a point in a layer Ti, the point is still in Ti−1 (i.e. by removing a
point (x,y) from the highest layer it is in, we reduce the intensity of
that pixel by exactly 1).

3.2 removing small objects

Looking at fig. 8c, we still see a lot of noisy edges. The problem
with these noisy edges is that they introduce a lot of small objects

17



18 shape extraction from images

(a) Original (b) Thresholded at the inten-
sity with the most pixels
(i = 155)

(c) Thresholdset level i = 155

(d) 3D View Intensities (e) 3D View Threshold Set

Figure 8: Different segmentation methods for shape extraction. Notice how
(b) and (d) show that there are no large objects.

(hard to compress using skeletons), and a lot of small holes in objects
(increases complexity of the skeleton), while these small segments are
fairly unimportant in the image (see fig. 9). This claim is in accordance
with the saliency metric σ mentioned in section 2.3.2: we only want to
retain features which are visible on a coarse scale.

In order to get a good compression rate it is therefore vital to remove
such small segments. We therefore introduce a new parameter ω to
our algorithm, which denotes the minimum size an object must be in
order to be retained.

Because both foreground and background pixels need to be filtered,
we perform our Connected Component Analysis (CCA)-algorithm
twice. Filtering happens as shown in alg. 1 (for brevity’s sake we have
ommitted the second pass).

3.3 removing layers

The fact that a layer Ti contains a complex and / or large skeleton does
not guarantee that it is important for the reconstruction. It is therefore
important to define a Γi which provides an intuitive importance metric,
such that we can remove layers by thresholding Γ . We propose the
definition given in eq. (3.2), for three reasons: 1) The metric has an
intuitive scaling factor, where 0.0 represents a layer which is not used
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Algorithm 1 Removing Small Objects

labels← CCA(im)
hist← histogram(labels)
for all pixels (x,y) do

if (x,y) ∈ background ∧ (hist(labels(x,y)) < ω then
Remove (x,y) from background
Add (x,y) to foreground

end if
end for

(a) Crop (b) Connected Component Analysis (ran-
dom colors, 118 objects)

Figure 9: A small crop of T155 of lena showing the need for small object
removal.

for the reconstruction at all, and 1.0 is the layer which contributes
the most to the reconstruction. 2) To compute this metric you only
need to look at the next layer, because x /∈ Ti =⇒ x /∈ Ti+n(n ∈N0).
3) This metric has an intuitive interpretation: The set Γ is equal to
the normalized histogram of the image. Thus thresholding effectively
means that all layers are removed for which the pixel ratio Γi : max Γ
is smaller than TΓ : 1.

Γi =
γi

maxγ
, with: (3.2)

γi = #{ x|x ∈ Ti ∧ x /∈ Ti+1 }





4
S H A P E E N C O D I N G W I T H S K E L E T O N S

After we have segmented our image, we have increased our data by a
factor 32 (a monochrome m×n image, with 256 intensities takes 8mn
bits. Our thresholdset contains 256 binary m× n layers, thus takes
256mn bits). This section describes the transformation from segments
to skeletons, the filtering of data in skeleton-space, and the storage
format.

4.1 skeletonisation

For the skeletonisation of each layer Ti we use the FMM based algo-
rithm, called: Augmented Fast Marching Method (AFMM). The layers
are processed one at a time, due to the high amount of memory
involved otherwise.1

4.1.1 FMM

The full imple-
mentation is
given in [30].

The FMM [26, 27] is a scheme to solve the Eikonal equation (see eq. (4.1)). 2

FMM propagates from T upwards from the smallest known values for
T . This is done by considering a thin zone around the existing front
– also referred to as narrow band [30] – and marching this thin zone
forward, freezing the values of existing points and bringing new ones
into the narrow band structure.

|OT |F = 1, with F = 1 (4.1)

In order to maintain such a narrow band, each pixel with coordinate
(i, j) gets a flag fi,j, which can be either of these 3 values:
band The point belongs to the current position of the moving front. Its T value is

undergoing update.

inside The point is inside the moving front. Its T value is not yet known.

known The point is behind the moving front. Its T value is already known.

The initialization of the values T and the flags f is shown in alg. 2.
The algorithm itself is described in high-level pseudo-code in alg. 3 Efficient

computation of
Tn is not
trivial. See [30]
for a C++ im-
plementation of
an efficient
upwinding
scheme.

4.1.2 AFMM

The main difference between FMM and AFMM lies in a single extra
value Ui,j for each pixel (i, j). This value Ui,j is set to 0 on an arbitrar-
ily chosen boundary point, and is then increased monotonically along

1 For example an image of 1024× 1024 would take 10242 · 256 · 2·sizeof(float)= 2GB.
2 The Eikonal equation is a non-linear differential equation used to describe the travel-

time propagation in an isotropic medium.

21
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Algorithm 2 Initialize T and f for FMM

for all (i, j) do
if (i, j) is on boundary then
fi,j ← BAND ; Ti,j ← 0

add (i, j) to NarrowBand
else if (i, j) is inside boundary then
fi,j ← INSIDE ; Ti,j ←∞

else {(i, j) is outside boundary}
fi,j ← KNOWN ; Ti,j ← 0

end if
end for

Algorithm 3 FMM Band propagation

while NarrowBand 6= ∅ do
A← (i, j) with lowest value T in NarrowBand
fi,j ← KNOWN
Remove A from NarrowBand
for all n← Neighbours((i, j) do

if fn = INSIDE then
fn ← BAND
Add n to NarrowBand

end if
end for
for all n← Neighbours((i, j) do

if fn = BAND then
Compute new Tn

end if
end for

end while



4.1 skeletonisation 23

the boundary, starting from the U = 0 pixel. U is thus a boundary
parameterization with the property that the distance between any
two boundary points measured along the boundary is equal to the
difference in the corresponding U values (see fig. 10). U is then propa-
gated along with T . They are interpolated, via averaging, on concave
boundary segments (as the segments increase length when marching
inwards). On convex segments when a point has neighbours with a
difference in U greater than

√
2, one of the U’s is simply propagated

further. The result is not averaged, since a difference greater than
√
2

means it is a skeleton point, as the difference in U for two neighbours
can never exceed

√
2 (see fig. 11).

Figure 10: Objects(a,c) and the order
in which U is assigned to
their boundaries (b,d) by
AFMM

1px

√2px
Figure 11: ∆U >

√
2 ≡ skeleton

point

After U is computed, the skeleton points can be detected by finding
sharp discontinuities. The discontinuities are “strong enough” in the
sense that a simple differentation scheme is sufficient to find skeleton
points. Due to the order of visitation of the FMM algorithm the algo-
rithm generates connected skeletons. All points that have a difference
in U with their neighbours higher than some threshold t are retained,
while the others are discarded. This is the only parameter of the algo-
rithm, and has a well-defined and intuitive meaning, such that even
non-expert users can set appropriate values. Figure 12 is a graphical
representation of the aforementioned stages of the AFMM process.

The original AFMM implementation has been further refined to
better numerically handle several border cases. For details, we refer to
[23].

4.1.3 Image space skeleton simplification

The boundary of the segments of which we compute the skeletons
are virtually always noisy, which means that the skeletons have a lot
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Original Image Boundary count Result of 
propagation U Derivative Skeleton

(+ boundary)

Initialization AFMM Derivative 
Computation Thresholding

(a) Original (b) Boundary
detection

(c) Boundary
propagation

(d) U Derivative (e) Skeleton

Figure 12: The steps of- and data generated by the AFMM

of unimportant branches. We filter these branches by computing the
saliency metric σ, as defined in eq. (2.8). The problem of the saliency
metric is that thresholding results in disconnected skeletons, of which
we want to filter all but the largest. Our segmentation however, does
not guarantee that one layer will consist of one object. Because we
want to retain the largest remaining skeleton from each object, we
need to perform some additional object analysis, such that we retain
the largest skeleton per object. The algorithm is shown in alg. 4.

Algorithm 4 Saliency Thresholding Multiple Objects

obj← CCA(I)
for all pixels (x,y) do

if saliency(x,y) < κ then
I(x,y)← 0

end if
end for
post← CCA(I)
for all o ∈ obj do
m← largest(o, post) {Get largest segment in post from o}
keepSegments.add(m)

end for
for all pixels (x,y) do

if post(x,y) /∈ keepSegments then
I(x,y)← 0

end if
end for

After thresholding we perform a morphological closing IK ((I⊕
K)	K)) on I, with a block-kernel K of 1’s [25]. This connects skeletons
which are close to each other, by inserting skeleton points with a DT

value of 0. This helps optimize our encoding process described in
section 4.4.
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Finally we remove all points which are not critical for preserving
the shape. Even though AFMM guarantees that skeletons are one pixel
thick, this holds only for 4-connectedness. Our encoding method
supports 8-connectedness, thus we can remove additional skeleton
points. For each point (x,y) ∈ S we take a 3× 3 window, and check if
it is not an endpoint. If not: the point is removed, and we verify if the
skeleton is splitted. Points which do not split the skeleton are removed.
Note that this could also have been implemented using morphological
thinning / erosion. A graphical explanation is shown in fig. 13. A
proof demonstrating that these “redundant” points do not contribute
very much to the reconstruction of the object is shown in appendix A.

1 Object 1 Object

Safe to remove

Important point

1 Object 2 Objects

Check skeleton point
for redundancy

Remove Skeleton Pixel.
Go to next pixel

Do Nothing.
Go to next pixel

When done

Simplified skeleton

Figure 13: Graphical explanation of the removal of “redundant” skeleton
points

4.2 tree representation of skeletons

After having filtered the skeletons on image-space, it becomes more
convenient to switch to a different representation: Trees. Trees are
favourable over image-space because (1) they take up far less space
(it does not represent non-skeletonal points); (2) they combine the
skeleton map with the DT map; and mostimportantly (3) They have
a well defined beginning and end. In image-space it is possible for a
skeleton to have neither (e.g. the skeleton of a donut). A well defined
beginning and end drastically eases the encoding process, and is
therefore favourable.

Each skeleton in a layer is represented by a tree. This is done by
scanning a layer in image-space, until we reach a skeleton point. That
point is ”promoted” to root of the tree, and the image is recursively
traveled in a Depth First Search (DFS) manner along all neighbours,
until the entire skeleton is represented in the tree. This is then repeated
for all skeletons in the image. To avoid cycles we keep track of the
skeleton points we have visited. A few examples are shown in fig. 14.
The algorithm is shown in pseudocode in alg. 5.
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Algorithm 5 Convert image skeleton to tree

Function: traceLayer

Require:
DT Distance Transform Map

SKEL Skeleton Map

l← ∅
for y = 0 to height do

for x = 0 to width do
if SKEL(x,y) > 0 then {Skeleton point}
p← tracePath((x,y), SKEL, DT)
add p to l

end if
end for

end for
return l

Function: tracePath

Require:
(x,y) Location of current skeleton point

DT Distance Transform Map

SKEL Skeleton Map

Node n← {x,y,DT(x,y)}
SKEL.remove(x,y)
while (x,y) has neighbouring skeleton-points do

ne← first neighbour of (x,y)
n.addChild(tracePath((x,y), SKEL, DT)

end while
return n
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Figure 14: Examples of skeletons in image space and represented in a tree. a)
Shows multiple objects, b) Shows how cycles are handled.

4.3 filtering tree skeletons

The goal is to further reduce the presence of points which do not
contribute much to the reconstruction. We do so by removing “small
paths” from the tree. For each node which has more than one child, we
check the depth of those children. Branches whose depth is smaller
than a threshold is removed. This is done using Breadth First Search
(BFS) to avoid removing longer paths (which would happen with DFS,
as we would then first remove a child and then check the length of its
parent).

Furthermore we remove unimportant objects o, where we define
importance as ϕ(O) =

∑
p∈O

rp, where rp denotes the radius of p. If ϕ

is below the threshold, then the object has neither large discs, nor a
lot of discs. It is therefore deemed unimportant, and removed.

4.4 encoding trees

Each node in a a tree has a different (x,y) coordinate, and a radius r.
A naive method would be to store each (x,y, r) triple as three “shorts”.
But due to our segmentation this would result in a file larger than a short is 16

bits in C, thus
limiting the
dimensions to
65536× 65536.

the raw format. This is because our threshold set most likely contains
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more than m×n discs for an m×n image. We therefore need a more
sophisticated encoding scheme. A key observation is that for each
node we roughly know where the children will be. Children are always
adjacent (8-connectedness) to the parent. This observation enables us to
encode a skeleton “path” using the scheme shown in fig. 15. As this
limits the possible values to a mere 8, we only need 3 bits, rather than
2× 16. A similar trick is performed for storage of the radii. We know
that the radius of two adjacent skeleton points cannot differ more than√
2 (see Appendix A). As we do not need sub-pixel accuracy, all radii

are rounded to their nearest integer. Due to some rounding errors, the
difference in two adjacent radii is in [−2,−1, 0, 1, 2]. This means that
storing the radii differences, rather than radii values we only need 3
bits, in contrast to the 16 raw storage takes.

0 1

3 P

5 6

2

4

7

Figure 15: Neighbour encoding

As we want to convert a tree with all its branches into a single
difference-stream, we encode using a state-history. When the encoder
reaches the end of a branch ( but not the end of the object ), a GO-
BACK-tag is inserted, which contains the length l of the branch it
encoded. If the state is then restored to l states earlier, it contains the
(x,y, r) values at the start of the branch. It can then continue storing
differences for another branch, without wasting bits by storing new
start points. This process is demonstrated in fig. 16. Note that for
brevity’s sake we have omitted the radii corresponding to the skeleton
points.

4.5 skeletonal image representation file format

In order to measure the compression rate, we have developed a prelim-
inary file-format. The file format has the extension .sir, which stands
for Skeletonal Image Representation. To store the data as compact as
possible, we encode the stream using the Lempel-Ziv-Markov Chain
Algorithm (LZMA)[17]. A Skeletonal Image Representation (SIR) file
consists of the following data :The superscript

denotes the
number of bits

reserved
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Write location 5,6

6

633

1

GOBACK 1

3

GOBACK 1

6

GOBACK 3

6

6

GOBACK 1

4

END OBJECT

5 - 6 - 6 - 6 - 3 - 3 - 1 - GB1 - 3 - GB1 - 6 - GB3 - 6 - 6 - GB1 - 4 - END

a) b)

Resulting sequence:

Figure 16: Encoding process. a) Shows a skeleton, b) shows a possible tree
representation. The arrows denote the order in which they are
processed. At the bottom is the encoded sequence.

VERSION16 The version number of the file. (Currently: 9) Useful
for backwards compatability.

WIDTH16 The width of the image

HEIGHT16 The height of the image

LZMA-PROPERTIES40 LZMA requires 5 bytes of properties to be supplied
for decoding.

LZMA-ENCODED-DATA The actual image is stored here. Size varies.

The decoded LZMA data is stored as a list of: ALL values are
unsigned, and
stored
little-endian

INTENSITY8 The intensity of the objects that will now follow.

NUMPATHS16 The number of paths for this intensity

PATH DATA The path of skeletons

Where PATH-DATA is stored as:

X16 The initial X coordinate.

Y16 The initial X coordinate.

R16 The initial X coordinate.

{{ CHAIN PATH }}8n A list of bytes, where the high nibble represents the next
position of the skeleton, according to the values in fig. 15.
The lower nibble represents the difference in radius. To
avoid the signed bit all values are shifted to positive
values by adding 8 to the real value.

- A neighbour value of 10 is a GOBACK-tag, the radius value
of a GOBACK-tag is undefined. A GOBACK-tag is followed by
16 bits, which is the number of states to go back.

- A neighbour value of 9 is an END-tag. The path ends after
this tag. The radius value of a END-tag is undefined.
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S I M P L I F I E D I M A G E R E C O N S T R U C T I O N

This section will describe how we can reconstruct an image from a set
of points (x,y, r, i), where (x,y) is the position of the center of the disc,
r the radius, and i the intensity. Reconstruction happens on a per-layer
basis, and is done from the lowest intensity to the highest intensity
(due to the threshold-set definition). After all layers are reconstructed,
they are visualized using a smooth transition function, in order to
reduce boundary artefacts. This chapter assumes the reconstructed
images are in grayscale, although the reconstruction technique can be
applied to all monochrome images.

5.1 layer reconstruction

Reconstruction of a layer li is an inflation of the layer’s skeleton
with equal speed until the inflated shape locally reaches a distance
from the skeleton equal to the radii values stored on the skeleton. The
reconstruction provided here has the main advantage of simplicity and
a relatively efficient implementation in graphics hardware. However,
the same result can be obtained using the Fast Marching Method
(FMM), starting from the skeleton outwards with the local stop criterion
given by the skeleton radii, as described in e.g. [29].

Our reconstruction method for a layer li with intensity i iteratively
draws all discs with the intensity i on a 0/1-map, denoting outside/in-
side object respectively (this corresponds to the alpha-map as used
in OpenGL). Due to the fact that the actual algorithm contains a few
subtleties (such as texture coordinates), it is possibly best explained by
providing a hybrid between pseudocode and OpenGL-calls, as shown
in alg. 6. This shows C style calls to OpenGL, and iteratively draws all
points as quads on the screen. The quads are then textured, using four
channels RGBA. For each pixel it is computed if it is inside our outside
the corresponding disc. If it is inside, the pixel is drawn full white,
and placed “in front”. Otherwise it is drawn as black, and “far-away”.
As we have enabled depth-testing, the result is a 2D-texture where
all pixels that have been “on” (white) at least for one disc are drawn
white, and all other pixels remain black.

5.2 transition function

One of the key-points of our compression algorithm is the ability to
remove entire layers of information. In order to compensate for the
“border-artefacts” that may occur due to this compression (see fig. 18

31
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Algorithm 6 Reconstruction of a layer

Function: Reconstruct()
Require: P list of points

glEnable(GL_DEPTH_TEST);
glBegin(GL_QUADS);
for all p ∈ P do

glTexCoord2f(-1.0, -1.0) ; glVertex2f(xp − rp, yp − rp);
glTexCoord2f(-1.0, 1.0) ; glVertex2f(xp − rp, yp + rp);
glTexCoord2f( 1.0, 1.0) ; glVertex2f(xp + rp, yp + rp);
glTexCoord2f( 1.0, -1.0) ; glVertex2f(xp + rp, yp − rp);

end for
glEnd(GL_QUADS);

Function: Fragment Shader
float alpha = TexCoord.x2 + TexCoord.y2 6 1.0 ? 1.0 : 0.0;
gl_FragColor = vec4(alpha,alpha,alpha,alpha);
gl_FragDepth = 1.0-alpha;

for an example), we have looked at a transition function to create
more gradually changing intensities. As a reference fig. 19 shows the
border of a single layer without interpolation. To generate a smooth
border we set a parameter b, denoting the maximal distance from the
border for which the opacity will be lowered (thus every point which
is farther from the border is left untouched).

This is done by calculating the DT, using AFMM. The DT is then
transformed using the function t(x,y) = min(1.0

b DT(x,y), 1.0) (E.g.
for b = 5 this would lead to an alpha map of [0.0, 0.2, 0.4, 0.6, 0.8] for
distances: [0, 1, 2, 3, 4] respectively, and 1.0 otherwise). The result of
this transformation is shown in fig. 20, and a full reconstruction using
this transition function in fig. 21.

The main issue with this transition function is that it modifies the
shape of the object (thicker border results in a smaller object). We tried
to overcome this by - rather than changing the opacity from 100%− 0%
inside the object - expanding the object by half the border size, and
creating a transition function such that the transition from 100%− 50%
opacity happens inside the object, and the transition of 50% − 0%
opacity happens outside of the object (see fig. 17). The transition is
rotated 180◦ (i.e. area A = area B), such that we have the theoretical
advantage that we modify equally much inside as outside the object.
Unfortunately the visual results are far from optimal. Even for small
border ranges - e.g 2px - the image becomes gravely deformed, as
shown in fig. 22. This is most likely due to the asymmetry in the
threshold set. A light spot is a segment, while a dark spot is a hole
in one or more segments. Thus this effectively expands all the white
areas, while shrinking dark areas.
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h/2

h/2

A

B

Figure 17: Transition function which keeps objects the same size

5.3 visualization

To reconstruct the image, we draw each layer iteratively, starting from
the lowest layer. The output of the transition function as explained in
Section 5.2 can be used as an alpha map for our visualization. This is OpenGL note:

Depth testing
should be
disabled, as we
always want to
overwrite
previous layers

done by setting the OpenGL colour state (glColor3f ) to the intensity
of the layer, and drawing a quad of that color over the entire window,
using the alpha map as a stencil.

5.3.1 Base color

Let i be the lowest intensity in an image, then our algorithm does not
store layers 0− i, as we can easily see that using a background intensity
of i is equal to using the (perfect) reconstruction of the skeleton of i. In
other words: the reconstruction of the first layer contains “holes”. This
means that if i is much larger than 0 (e.g. 25− 50), the reconstruction
will show prominent gaps. To avoid this problem we use an estimate
of the background color, such that the gaps of the lowest layer Lj have
an intensity of j− 1. Although it is not guaranteed that i = j, this
estimate suffices for most purposes.
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Figure 18: Border effects due
to heavy layer com-
pression (removed
154 layers)

Figure 19: Single layer of lena,
reconstructed with-
out interpolation

Figure 20: Interpolation function for values b = 5, 10, 15, 25
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(a) b = 2 (b) b = 25

Figure 21: Transition function which alters the object’s form by making the
boundary transition happen solely inside the object.

(a) b = 2 (b) b = 25

Figure 22: Transition function which enlarges objects, such that the boundary
transition happens equally much inside as outside the object.
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E X A M P L E S

In order to provide a good impression of what our method can and
cannot do, we use two well known images mandril and peppers, as
shown in fig. 23. We have chosen these images in particular, as they
represent an example of an image which can be compressed very well
with our method (peppers), and an image which compresses not very
well (mandril). The file sizes of the raw images are 256KB.

(a) Mandril (b) Peppers

Figure 23: Reference images for parameter testing

The subsections below will consider one parameter per section, to
provide a feeling of the meaning of each parameter, as well as its
effectiveness. While looking at the arising artefacts, it is crucial to keep
the segmentation algorithm in mind. Due to the fact that a threshold
set is used, some of these filtermethods are not symmetric (i.e. dark
spots are actually holes in lighter segments).

6.1 layer threshold

The layer threshold parameter TΓ filters layers as described in sec-
tion 3.3. Intuitively speaking: setting TΓ = 0.5 means that all layers
which have less than half the pixels compared to the most important
layer will be removed. Setting this parameter really low (e.g. 0.000001)
removes layers which are hardly visible, while still reducing file size.
It is therefore recommended to always choose TΓ > 0. Figure 24 shows
the mandril and peppers with various thresholding levels. It can be
seen that removing layers can have a lot of impact on the reconstruc-
tion. When removing too much layers (which is best shown in fig. 24d)
the image loses a lot of detail and contrast. Highlights become a flat
color, rather than a gradient, or are removed entirely.

37
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6.2 small component removal

The Small Component Removal tries to eliminate smaller objects on
a per layer basis, in order to remove small skeletons in the image.
This also has the side effect that it “smoothes” noisy images. fig. 25

shows the effects of this parameter. The effect is best seen on the detail
of the moustache of the mandril, where the thin hairs are gradually
replaced by “blobs”. The effect isn’t very clearly noticeable in the
peppers image, due to the fact that it consists of relatively large shapes.
This also shows in the relatively poor compression with respect to the
mandril (40% : 20%).

6.3 saliency thresholding

Saliency thresholding tries to remove all the features from a segment
which are perceived as noise. It can be seen that shapes in general
become “simpler”, best seen in the pepper image in fig. 26. The gradient
of the pepper in the back has more straight lines when increasing the
saliency threshold.

6.4 skeleton distance transform thresholding

This method removes points in a rather naive way. Generally this value
is set to ∼ 2− 3, and the filtering is done via saliency thresholding.
Although it is somewhat easy to visualize the effects for grayscale
images, it might not be as straightforward to visualize the effect for
monochromatic images. The effect is best seen in the peduncle of the
red pepper in fig. 27, which becomes disconnected due to its short
and long appearance.

6.5 short path removal

Short Path Removal removes all branches in a skeleton which are below
a certain length. This method is based on the encoding technique used,
where a branch is more expensive to represent as a normal path.
Thus short paths (which should contribute little to the image) are best
removed to achieve a better compression. The effects can be seen in
both images from fig. 28, where highlights are removed, and small
branches. The mandril has larger artefacts at the bottom of the image,
probably due to boundary artefacts.
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6.6 structural similarity index

6.7 general examples

To demonstrate the strengths and weaknesses of our compression,
we have compressed a few well known images in the field of Image
Processing. This section provides more details of these images, to
provide more insight in what the method can and cannot do. We also
use the Structural Similarity Index (SSIM) to provide a metric for the
image quality.

Cameraman

Original file-size: 256.0KB.

Compressed file-size: 102.6KB.

MSSIM: 0.835

Computation time: 148 seconds

Mandril Gray

Original file-size: 256.0KB.

Compressed file-size: 195.9KB.

MSSIM: 0.547

Computation time: 126 seconds
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Peppers

Original file-size: 256.0KB.

Compressed file-size: 57.4KB.

MSSIM: 0.728

Computation time: 91 seconds

Lake

Original file-size: 256.0KB.

Compressed file-size: 160.1KB.

MSSIM: 0.688

Computation time: 145 seconds

The above examples demonstrate that even though the images
are compressed and still provide a visually attractive image, more
work needs to be done in order to compete with other compression
techniques (such as the JPEG family). As a comparison: the cameraman
saved as JPEG with an MSSIM-score of 97% only takes 29KB.

It also tells us that the weakness of our method lies in areas with
high detail and a lot of different intensities (e.g. the hairs on the
mandril). They take up far more space than larger objects, such as the
peppers image.
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(a) T=0.0, size=373.4KB (b) T=0.0001, size=373.4KB

(c) T=0.1, size=364.3KB (d) T=0.4, size=274.5KB

(e) T=0.0, size=79.6KB (f) T=0.0001, size=78.5KB

(g) T=0.04, size=75.1KB (h) T=0.4, size=37.3KB

Figure 24: Demonstrating the effect of Layer Thresholding
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(a) T=5, size=373.4KB (b) T=10, size=303.3KB

(c) T=15, size=265.1KB (d) T=30, size=215.3KB

(e) T=5, size=78.5KB (f) T=10, size=72.0KB

(g) T=15, size=68.9KB (h) T=30, size=63.4KB

Figure 25: Demonstrating the effect of Small Component Removal
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(a) T=2.0, size=373.4KB (b) T=3.0, size=332.9KB

(c) T=4.0, size=303.5KB (d) T=5.0, size=282.8KB

(e) T=2.0, size=78.5KB (f) T=3.0, size=64.5KB

(g) T=4.0, size=57.2KB (h) T=5.0, size=51.7KB

Figure 26: Demonstrating the effect of Saliency Thresholding



44 examples

(a) T=3, size=450.8KB (b) T=6, size=401.8KB

(c) T=9, size=368.2KB (d) T=12, size=343.5KB

(e) T=3, size=114.0KB (f) T=6, size=101.4KB

(g) T=9, size=92.0KB (h) T=12, size=84.0KB

Figure 27: Demonstrating the effect of Distance Transform Thresholding
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(a) T=10, size=292.1KB (b) T=20, size=246.9KB

(c) T=30, size=216.2KB (d) T=50, size=183.3KB

(e) T=10, size=67.9KB (f) T=20, size=58.6KB

(g) T=30, size=52.3KB (h) T=50, size=43.9KB

Figure 28: Demonstrating the effect of Distance Transform Thresholding
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D I S C U S S I O N

Although we have a skeleton based image representation technique,
which can restore a monochromatic image using a lossy compression
technique, it is not yet ready to compete with JPEG. Chapter 6 supports
this with various examples. For all of these examples holds that -
although they closely resemble the original - their file size is too large
and their SSIM value is too low. In order to decrease the file size further,
it is probably best to look at inter-level coherence. A visualization of
the skeletons of the mandril, and the peppers shown in fig. 29 supports
the fact that levels have a high coherence.

(a) Mandril skeletons (b) Peppers skeletons

Figure 29: Skeletons of the images show the need to further explore inter-
level coherence.

An interesting feature of our technique is that the artefacts very
much resemble a non-photorealistic painting effect. In contrast to for
instance JPEG, where the aim is to minimize the artefacts, the artefacts
of our method might have desired properties in e.g. image filters. An
example of an image for which the painting effect is striking is shown
in appendix B.

At this stage there are quite a few parameters, namely:

layer importance tΓ threshold This threshold uses layer im-
portance as defined in section 3.3 to remove layers which do not
contribute much the reconstruction.

small component removal Remove small spots in the image, to
remove small skeletons, which take up a lot of space, but are
hardly visible.
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skeleton saliency σ threshold This threshold uses the saliency
of a skeleton point as defined in section 4.1.3, to simplify the
skeleton by removing non salient features.

skeleton distance transform threshold Used to define which
points on the distance transform are used as skeleton point. Used
in combination with the saliency.

skeleton path threshold Remove small paths in skeleton trees,
as they take up a lot of space and are not very salient.

Although all of these parameters have an intuitive explanation,
properly configuring all parameters such that a high compression is
achieved while retaining detail is cumbersome. For further research
it would be sensible to look at either a reduction in parameters, or a
better indication / full computation of sensible values.

The AFMM implementation we have used has been superseded by a
much faster variant, running on the GPU instead of the CPU. The newGPU

skeletonization
available here:
http://www.

cs.rug.nl/

svcg/Shapes/

CUDASkel

version is between 20..80 times faster than the CPU implementation,
which effectively means that switching to the new implementation
would reduce our computation times from ∼ 2 minutes to a few
seconds. The GPU version is favored over the CPU implementation,
but at the time of writing a few important bugs were still present
in the CUDA code which made it too unreliable to use for research
purposes.

One of the major limitations of our algorithm in its current state is
the fact that it only runs on monochromatic images. In our opinion
an extension to colors is not trivial, as simply skeletonizing each color
channel separately will produce border artefacts in the reconstruction.
Due to the removal of skeleton points it is possible that objects are
dismissed in some layers, while retained in others. This would produce
large perceptual differences. To overcome this further research is
necessary.

http://www.cs.rug.nl/svcg/Shapes/CUDASkel
http://www.cs.rug.nl/svcg/Shapes/CUDASkel
http://www.cs.rug.nl/svcg/Shapes/CUDASkel
http://www.cs.rug.nl/svcg/Shapes/CUDASkel
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C O N C L U S I O N

With this thesis we have presented a first exploration of the usage
of skeletons for image simplification and compression purposes. We
provide a segmentation algorithm for monochromatic images, and a
multitude of filter algorithms aimed at reducing size while retaining
salient features. Furthermore we have provided an efficient method to
store skeletons and their distance transform, using neighbour encod-
ing. Although our implementation in its current form takes in excess of
two minutes to compress an image, incoorporating a (already existing)
more efficient AFMM would make our method run in (near) real-time,
and with that proving viable to be used in every day applications.

The current compression results cannot compete with the JPEG-
family nor WebP, but a lot of research is to be done in inter-layer
encoding, as there seems to be a high coherency between layers.

Its fundamentally different way of looking images opens up several
new potential applications, such as non-photorealistic rendering, as the
characteristic artefacts of our compression resemble the outcome of
current non-photorealistic painterly rendering methods. It might also
be useful in shape-based image manipulation. Due to the fact that we
work with segments - rather than pixels - a new editor might enable
users to alter images on a shape-based level, rather than pixel level. A
third possible application is in shape-based image encoding. If we have
additional knowledge of an image, such that we know which shapes /
segments are most important to store, we can compress the interesting
shapes with higher detail than the less interesting shapes.

Our entire algorithm is very easily extendable to 3D. Skeletons
and Distance Transform (DT)’s are well defined for 3D and there are
readily implementations available. The chain encoding would become
a bit more sophisticated in choosing a path order, but the neighbour
encoding principle remains the same. This is particularly interesting in
medical applications (CT/MRI), where some shapes need to be stored
very accurately, while other features can be removed in their entirety.
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Part II

S O F T WA R E I N S T R U C T I O N S

This thesis is accompanied by two programs, namely im-
Convert and imShow. This section will describe how to
compile the software (it should work for Linux, Windows
and MacOS), what each program does, and how to create
and view SIR files.
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T H E S O F T WA R E

9.1 introduction and installation

The software accompanying this thesis is split into two parts: imConvert
and imShow. imConvert is the program responsible for the conversion
to our Skeletonal Image Representation (SIR) format, and imShow is
responsible for the reconstruction. Both programs are written in C++,
under Ubuntu. In order to compile them the system needs to contain
OpenGL development headers, OpenGL Utility Library headers (GLU)
and the toolkit (GLUT), and the OpenGL Extension Wrangler Library
(GLEW). Under a Debian based linux they can be installed using the
command shown in lst. 2.

Listing 2: Install necessary dependencies

sudo apt-get install libgl1-mesa-dev freeglut3 freeglut3-dev

libglew1.5-dev libglew1.5 �
The package consists of four folders:

imConvert The folder containing the imConvert program

imShow The folder containing the imShow program

examples The folder which has a few Portable Grayscale Map (PGM)’s,
and accompanying configuration files.

shared This folder contains libraries which both programs depend
on. They are compiled automatically along with the other
programs.

To compile either imConvert or imShow, go into the corresponding
folder and type make. This will also compile the shared libraries.

9.2 imconvert - generating sir images.

Using the imConvert program should be fairly straightforward. Simply
start the program using ./main <CONFIG_FILE>, where <CONFIG_FILE>

is a configuration file setting a few thresholds, the input image and
the output file. A configuration file can contain the following options: Note: The

configuration
file parser is a
bit sensitive,
always use
varname =

value

# Input f i l e ( make sure i t i s a binary PGM) :
f i lename = path _ to _ input _image
# Output l e v e l : { q , e , n , v } quiet , e r r o r s only , normal , verbose
outputLevel = n
# Layer threshold − F l o a t between [ 0 . . 1 ]
lThreshold = 0 .0001

# Small o b j e c t Threshold , i n t e g e r value denoting minimal o b j e c t s i z e
sThreshold = 20

# Skeleton Distance Transform Threshold .
sdtThreshold = 3

# Skeleton S a l i e n cy Threshold
ssThreshold = 2 . 0

# Skeleton Small Object Removal Threshold (OBSOLETE, SET TO 0 )
s iThreshold = 0

# Minimal Object S ize −> New Method
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minObjSize = 5

# Unimportant Object Threshold
minSumRadius = 25

# Minimal Path Length Threshold
minPathLength = 10

# Output F i l e
ou tput F i l e = cameraman_ bes t . s i r �

There are various examples in the example folder, for demonstration
purposes.

9.3 converting images to pgm

The current implementation works best with binary PGM’s. This due
to their easy decoding process. Converting images to PGM under linux
is done using: convert <IMAGE> pgm:<NEWNAME>.pgm. Converting a
batch of images to PGM can be done with a simple bash script, as
shown in lst. 3. This script converts all images in the folder input/ to
PGM and places them in img/.

Listing 3: Batch conversion to PGM

#!/bin/bash

IMDIR="img";
mkdir -p $IMDIR

for file in input/*; do

if [ -f $file ] ; then

# name without extension

name=${file%\.*}

name=‘basename ${name}‘

convert ${file} pgm:${IMDIR}/${name}.pgm

fi ;

done �
9.4 imshow - viewing sir images

To view an image, type ./main <SIR_FILE> while in the correspond-
ing folder, where <SIR_FILE> is the location to a file generated with
imConvert as shown in the previous section. This opens up an OpenGL
window, and will use the simple reconstruction shader. To use smooth
interpolation between layers, use: ./main <SIR_FILE> <BORDER_SIZE>,
where <BORDER_SIZE> is an integer denoting the width of the border
in pixels.

To make a screenshot (saved as PNG), press ‘s’. A file named “out-
put.png” will be generated in the same folder, which contains the
reconstructed image.
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A
M A X I M U M D I F F E R E N C E I N R A D I U S F O R T W O
N E I G H B O U R I N G S K E L E T O N - P O I N T S

Following is a topological proof that the maximum difference in radius
r for two skeleton points can not exceed

√
2.

Given two neighbouring skeleton-pointsA,B. If they are 4-connected,
their distance is d(A,B) = 1. Otherwise their distance is d(A,B) =

√
2.

Let rA = rB, then fig. 30a, 30c show the two possible objects. The
distance between the points is measured in pixels, thus it can be seen
that the distance in fig. 30a is d(A,B) = 1, and the distance in fig. 30c
is d(A,B) =

√
12 + 12 =

√
2.

Now let the radius rB 6 rA − d(A,B), it can easily be seen that
the area of B is completely in A. Since A 6= B, and a(B) ⊂ a(A) it
touches at most 1 point on the boundary of A, thus at most 1 point of
the boundary of the object. The definition of a skeleton-point is the
center of the maximal disc in an object, touching at least 2 points on
the boundary  

r r

(a)

r r-d

d

d=1

(b)

r

r

(c)

r

r-d
d

d = 2

(d)

Figure 30: Different configurations for skeleton sizes
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B
PA I N T I N G E F F E C T

This appendix provides an example of an image which has a striking
painterly rendering effect when compressed using our SIR-algorithm.

Original:

SIR-format:
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