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Abstract

Multidimensional projection have been a common technique to aid the
analysis high dimensional data, techniques exist that attempt to explain
the projection using per point or global techniques. Neither can convey
to the user why points are placed in a certain neighborhood. We will
implement a localized explanation technique which achieves this based on
the attributes [1] and dimensionality [2] and extend them to 3D. We aim
to make a tool which is both correct and works at interactive rates, by
doing so making the techniques more accessible. We will also use this
tool to apply the techniques to a series of real world dataset to provide
examples of the types of insights possible. We also compare 2D and 3D
for 29 projections techniques to investigate the additional value of the 3rd
dimension.
Keywords: Visualization, Multidimensional projections, Localized expla-
nation
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Chapter 1

Introduction

Visual exploration of high-dimensional data is a key component of modern data
science. We live in an era of big data where it is cheaper to collect more data
points with more attributes that to actually think about it1. This brings with
it the need for techniques to reduce this data again to something humans can
interpret. Many visualization methods have been proposed for this type of data,
such as parallel coordinates [3], table lensing [4], [5], and scatterplot matrices [6].
Multidimensional projections, also known as dimensionality reduction, is one of
these methods, arguable one of the most important ones. Numerous implemen-
tation have already been proposed by the information visualization and machine
learning communities [7]–[10] and the topic is still being worked on as no per-
fect solution exists. This method helps battle the curse of dimensionality by
projecting entries of a dataset into typically screenspace coordinates. They are
able to handle datasets which are large both in terms of observations (i.e. points
or samples) and attribute (i.e. dimensions or variables). Doing so allow this
users to gain insight into relative point distances, structures like clusters and
finding similar points or outliers. However explaining in terms of attributes why

these structures appear in the projection and thus the dataset is not trivial.
This brings us to the topic of explanatory techniques which empower the user
to solve this problem.

Global explanations, such as biplot axis [11], [12] and axis legends [13], [14]
provide the insight into how the dimensions influence all the points but as a
consequence provide no information about local structures. conversely Local ex-

planations such as tooltips provide an annotation for each point in the dataset
but still require the user to select which point to explain. Last we have image

based or localized explanations, these techniques provide an annotations for each
point which is so simple it can easily be encoded into a color in the visualization.
As a consequence we no longer need the user to select a single point, we can
display the local explanation everywhere. The user can now perceive the anno-
tation for numerous points at once by looking at the image. These techniques
often scale well both visually, computationally and can generally handle high
dimensional data well.

Da Silva [1] conceived of a image based technique which find within a user de-
fined neighborhood size which attribute best explained the commonality based

1Paraphrased from Prof A. Siebes during the Big Data course at Utrecht University
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on either euclidean distance or variance. Later Van Driel [2], [15] build upon
this idea of neighborhood explanations by encoding color based on the intrinsic
dimensionality for a point and its surroundings. With this the user can sep-
arate regions based on the underlying dimensionality and identify areas that
are difficult to explain (i.e. high dimensionality). This set of techniques of-
fer very insightful additions to the classical techniques, they are also agnostic
to which projection technique is being used and theoretically scale well since
the dependency between points for the explanations is rather low. Sadly the
practical aspects of these works are lacking. The actual explorations of real
world datasets and different projection techniques are sparse and only the 2D
dimensional case is considered. The reference implementation are also limited,
it can be used to generate static explanations and the given performance figures
are bleak. The works also provide arguably radically different techniques which
makes them very difficult to relate to classical methods, and with it to adopt
into data analysis pipelines. We aim to find find ways lower the barrier of entry,
to achieve this we offer this work to outline the issues and systematically combat
them.

In short we set out the following goals for this work and the accompanying
tool:

• Build a correct, scalable and general implementation. It needs to produce
the same images as the reference implementation at fast rates for any
projection and dataset.

• Ensure produced images are interactive and subject configurable rendering
settings.

• Include support for displaying and explaining 3D dimensional projection
and discuss the challenges that arise from the rendering and interaction
with it.

• Perform an quantitative and qualitative comparison between 2D and 3D
projections.

• Explore 8 real datasets in the form of a series of case studies.

All this packaged together will form a solid basis for data analysts to explore
these novel techniques, justify their use and incorporate them into their toolbox!

To start our work we will create an extensive overview of theory behind the
techniques in chapters 2. Here we outline all the concepts and intuition behind
the explanations, selection of projections and related research. Moving on we
will outline our own implementation and what makes it tick in chapter 3. Here
we talk through all the requirements focussing on the gap between what was
originally proposed and the real world and how we meet them. We will also
outline how the user can interact with the data and how we validated that the
produced images are correct. In chapter 4 we will use our own implementation
to explain 8 real world datasets and provide more in depth analysis of the input
parameters for the explanations. This will allow the future users to learn by
example and intuition instead of dense math. Then in the chapter 5 we will
discuss the difficulties surroundings a possible a user study and other issues we
encountered, here we also include the conclusion for a summary of our most
important findings.
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Chapter 2

Background

In this chapter I will discuss related works that form the basis of my thesis
and outline its context. Here I will also discuss related techniques and provide
overviews of projection methods (sec 2.1), quality metrics (sec 2.2), explana-
tion procedures (sec 2.3) and interaction techniques (sec 2.4). Each will be
accompanied by formal definition where applicable.

2.1 Multidimensional Projections

The context in which our area of research exists is that of multidimensional
projections , also referred to as dimensionality reduction. This is a set of mech-
anisms that compute a projection of typically high-dimensional data points into
a low-dimensional space, often two dimension, where visual exploration can be
performed. More formally we can consider a dataset of size N to be defined
as D = {p1, ..., pN } ∈ R

n where each element p is an n-dimensional point
pi = (p1

i , ..., pn
i ). Here a projection transforms each point in D from being n-

dimensional to a typically lower m-dimensional point, using this transformation
we can also define the projected dataset DP .

P : Rn → R
m (2.1)

DP = {P (pi) | pi ∈ D} (2.2)

This function P has many different implementations, each has benefits in
different areas. We would like to outline some of the main classes of techniques
as it can help us reason about generated visualizations later on. Do note that
the techniques we will use are agnostic to which P is selected. For our research
we will consider techniques that are suited well towards 2 and 3 dimensional
projections and use a variety of different underlying methods.

In the following section we will elaborate on which set methods we used.
After we will dive into two classes of methods for which the context is important
for reasoning about results or explanations later on.
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2.1.1 Selected projection techniques

The works which propose the explanation techniques both claim that the method
of projection does not matter and reason using the general projection P . We
have no way to validate that it is truly general but we can explore a broad
range of techniques and find which techniques perform better. For the selection
process we relied on a recent survey done by Espadoto et al [10]. Here a set of
44 techniques were used in a 2D benchmark over numerous datasets. For our
work we select 29 projections which, out-of-the-box, can be used for both 2D
and 3D projections and are open source.

Table 2.1 lists, for these techniques, whether they are (non)linear, accept
samples or sample-pair distances as input, project local neighborhoods differ-
ently or work globally the same for the entire dataset, their computational com-
plexity, whether they have out-of-sample quality, whether they are deterministic
or stochastic, and the public source of their implementation (for replication pur-
poses). Complexity is a function of the number of dimensions n, number of sam-
ples N , number of iterations i (for iterative methods), and number of weights
w (for deep learning methods). As visible, the selected projections cover a wide
spectrum of methods.

2.1.2 Principal Component Analysis (PCA)

The first set of projection techniques we would like to pick out is the concept
of Principal Component Analysis (PCA). This technique is especially relevant
since it is also at the basis of the dimensionality based explanation, for this
reason we will discuss it in more detail than all others. It is technique well
known in the data analysis space as it is one of the simplest methods available,
the dimensions under consideration are transformed into a new set of axis which
are a linear combination of the input. They ordered in such a manner that the
first component captures for as much variation from the original data, the second
follows up with the same goal. Each additional component will explain less or
equal amount of the variance until all component explain 100% of the variance.
The way to utilize this property in a reduction can be done with thresholding in
two manners. The first and most common is limiting the amount of components,
here we take the top 2 or 3 components, we effectively maximized the amount
of variance explained by this limited amount of axis available through linear
combination [41]. While quality of these projections has been shown to be
limited [42] it is a relatively simple, fast and predictable method. This makes
it very a powerful tool in the validation of our explanation techniques, we can
generate structures in 3D about which we can easily reason. Then using PCA
project it into 2D where the relative positions of points is preserved.

Another method of thresholding is on the amount of variance, here we re-
duce the dataset removing components that explain little of the variance. We
simply collect the top n components until the cumulative proportion of vari-
ation explained exceeds a threshold. This is also commonly used to find the
intrinsic dimensionality of a dataset, i.e. how many latent variables are needed
to explain 95% of the variance. This concept will come back later on in the
localized explanation methods.

Another interesting application of PCA is finding the general shape and
orientation of objects in 2 and 3 dimensions. Intuitively if all of the variance is
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explained along a single Component we can argue that the points of the input
object are only spread along a line, with 2 component we have a flat surface
and with 3 components we would have a spherical shape. This characteristic is
referred to as eccentricity, it is defined by the dividing the largest Eigen value
by the smallest one. The orientation of the component can also help you align
objects with a xyz coordinate system, a common preprocessing step in 3D mesh
classification [43].

2.1.3 Stochastic methods

To illustrate the wide variety of these technique I would also like to bring up
another class of techniques, namely non deterministic methods. One of these is
Multidimensional scaling (MDS) which works with the distances between each
point as input and outputs point on an abstract cartesian space, commonly 2/3
when used for visualization. The core idea behind the technique is to minimize a
loss function based on the stress between the actual distances and the distances
in the current arrangement, here the data is randomly initialized and the in an
iterative process the stress is lowered until you get the resulting projection.

t-SNE is another stochastic approach which differs in that it does not try to
project data by looking at the pairwise distances, instead if makes tha assump-
tion that there exists a low-dimensionality manifold in the high dimensional data
along which the points lie. In other words it assumes that there is a limited
amount of continuous latent variables which describe can be used to segregate
the data. t-SNE tries to find this manifold and unrolls it to display the full data
in two or three dimensions. It has a parameter called perplexity is an adjustable
parameter that controls the size of the neighborhood around each object that it
attempts to preserve. Here the data is also randomly initialized and the solution
is found using a gradient descent method.

Both these methods can have identical inputs and parameters and have vary-
ing outputs, this is important to keep in mind when considering the reproducibil-
ity of our research. For this reason we will also provide all the precomputed
projections on all the datasets that we will use in the later chapters, this allows
third parties to replicate our results with relative ease. For more in-depth anal-
ysis of all the techniques I would like to refer back to the other works which
include significant efforts to surveys the problem space [7]–[10], [44]–[50].

2.2 Quality metrics

As mentioned earlier, there is no one projection method that can perfectly embed
the original nD data into a lower dimensional space. We have many methods
what vary wildly in how they function, an important topic here of course is
how to compare these. This is exactly where quality metrics come into play,
when performing a survey or introducing a new projection these can be used
to objectively analyse the results. Many surveys exist which introduce such
metrics [42], [51]–[54] but personally I will consider a very recent entry made
by Espadoto et al [10]. The general definition for these metrics is given by
equation 2.3

M : {(D, DP )} → R+ ∈ [0, 1] (2.3)
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A metric M measures how well the projection DP captures specific properties
of the dataset D, the underlying idea being that a good projection will preserve
relative distances between points. Here 0 denotes the minimal quality and 1 the
maximal value. In the following section we discuss a series of these metrics, we
will use these later on to compare between projections and between 2D and 3D.

2.2.1 Trustworthiness and Continuity

The first metric we will discuss is the trustworthiness and continuity of a pro-
jection. The core idea of dimensionality reduction is to lower the amount of di-
mensions while attempting to keep the relative distance between all the points.
Trustworthiness measures the proportion of points that are close in D that are
also close in DP . We call this measure Trustworthiness because if can give an
idea how much you can trust that the observed patterns actually represent ones
in the dataset.

Continuity is closely related as it measures the amount of points that are
close in DP that are also close in D. It gives you an idea of missing neighbors, if
this ratio is low you know that displayed neighborhoods are actually might not
be a good representation of the original data. This metric is important when
considering the explanation techniques from section 2.3. There we assume that
neighborhoods in DP are directly linked to neighborhoods in D, this metric is
key when using our analysis tool. If we see that the continuity is poor we know
that the explanation technique cannot be trusted either.

Both of these techniques are defined on a global scale in the works of Mateus
et al [10], it they yield a single scalar value between 0 and 1 for the entire
projection. This metric also lends itself to being used in local manner, we simply
use the value per point by looking only at it’s neighborhood and computing the
proportion there. This can then be used to color code each point and give the
user an idea of where the projection should not be trusted.

For the formal definition we first define UK
i to be the set of points that are

among the K nearest neighbors of point i in the projected space but not in
R

n. Conversely we have V K
i for points that are neighbors in Rn but not in the

projected space. We also use r(i, j) to denote the rank of the projected point
in the order set of neighbors in UK

i , for the nD space we define r̂(i, j) which is
the same for V K

i . Finally we use N to denote the amount of samples in D. We
can now combine these into equations 2.4 and 2.5 to get the formal definition
of both metrics, these are taken from Table 5 of the survey paper [10].

Trustworthiness = 1 −
2

NK(2n − 3K − 1)

N
∑

i=1

∑

j∈UK
i

(r(i, j) − K) (2.4)

Continuity = 1 −
2

NK(2n − 3K − 1)

N
∑

i=1

∑

j∈V K
i

(r̂(i, j) − K) (2.5)

2.2.2 Shepard diagram correlation

To access the so called goodness of fit you can utilize the shepard diagram, it
plots the distance between points before and after a transform / projection in a
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scatter plot. points close to a diagonal indicate good distance preservation [55].
Points below, respectively above, the diagonal tell distance ranges for which false
neighbors, respectively missing neighbors, occur. To compress this concept into
a single scalar value we use the Spearman rank correlation of the plot, here 1
indicates perfect positive correlation and 0 denotes a complete lack thereof.

2.2.3 Stretching and compression

Stretching and compressions is a measures that illustrates the relation between
distances for point p ∈ D and all other points versus the same distances in the
projected space. Compression is when these distances shrink in the projected
space and respectively the stretching is when the distances grow. We might
be able to apply this method using the neighborhoods in vP

i and their original
points vi.

2.3 Explanation techniques

When explaining projected different types of metrics can be used to convey
information to the end user. Simplest method is to just color code the points
conveying the value of a point for a certain dimension, this sadly does not scale
well. There also exist global metrics that provide information over all the given
points, an example of this would be drawing the bi-plot axis [11], [12]. These can
be used to find relevant view ports but are lacking when looking at subsets of
the data. Conversely you have local explanation than only provide information
about a single or subset of point(s), the most common example of this would
be labeling each point.

The works of Da Silva [1] which was later extended by Van Driel [2] propose
a local method to explain neighborhoods of points. They calculate this local
metric for all points in the dataset and color code based on global rankings. Da
Silva annotates the points based on the dimension that contributes most to mak-
ing points in a neighborhood similar. Van Driel extents this idea by annotating
points based on their local intrinsic dimensionality. Both these methods are
originally designed to work in 2D but can easily be lifted to 3D. An interesting
aspect of this metric is that we can also compute it in local region with different
neighborhood sizes to find more information. It also provides information about
which regions of a point cloud can be explained well, a property which could be
useful when augmenting the interactions. In the rest of this section I would like
to outline the formal definitions of both these methods.

Explanation techniques attempt to convey information about D while the
user interacts with DP combined with output of the explanations. Both works
consider the neighborhoods of points in DP and encode their color based on
some metric in this neighborhood. These neighborhoods are defined by either an
absolute radius value (r-nearest) or a certain amount of neighbors (k-nearest).
In the papers radii are normalized using the projection width. We can now
define a neighborhood in the projected space as follows:

vP
i = {q ∈ DP | ‖q − pi‖ ≤ r} (2.6)

Here we will also define vi which consist of the nD points that form a neigh-
borhood in around pi in the projected space. Using these neighborhoods we
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compute metrics that look at either which attribute contribute most or the
local dimensionality.

vi = {q ∈ D | P (q) ∈ vP
i } (2.7)

2.3.1 Attributes based explanation

For the attribute based explanation we will be using the aforementioned neigh-
borhoods to determine which dimension (i.e. attribute) for the original points
contributes the most to that points location. Here we will consider the eu-
clidean distance or variance along said dimensions locally and normalize it used
the global values.

For the euclidean method we will need to fist define the contribution Cj
p,r

of dimension j as the squared distance between two nD points p and r. Note
that we will use superscript to denote the dimension and the subscript to denote
indexes.

Cj
p,r =

‖pj − rj‖
2

1

‖p − r‖
2
n

(2.8)

Here we use ‖ · ‖n to denote the n-dimensional euclidean distance. With the
definition of the contribution between two points we can now move to finding
the contribution of each dimension between a point pi ∈ D and all its neighbors
r ∈ vi.

Cj
i =

∑

r∈vi
Cj

pi,r

|vi|
(2.9)

Note that we use | · | to denote the size of a set. This can be translated
to finding the average euclidean distance per dimension from the point to its
neighborhood. The authors also propose to use the variance in a similar manner
for an alternative metric, one that is shown to be more resistant to noise. For
this we define V j

i :

V j
i = var(rj ∈ vi) (2.10)

For both these cases we will need a global normalization term because the
distribution and scale might not be equal across all the dimensions. For this
we first need to find the global equivalent of both metrics, for the variance it is
quite simple, we just take the variance over each dimension for all points in the
dataset. With the euclidean based contribution we take will use the distance to
the nD centroid of the dataset. The formula for both methods can be generalized
to one, consider here that (lj

i ), a local term, either Cj
i or V j

i and gj
i is the global

term as described in this paragraph. The result if a ranking rj
i for dimension j

and the neighborhood vi.

rj
i =

lj
i /gj

∑n

d=1(ld
i /gd)

(2.11)

For each index i in the dataset we will sort all the ranking values on de-
scending order, we will use the top dimension j, i.e. attribute, to annotate the
point. The last thing to do is the confidence encoding, here we simply look
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at all the annotations found in a points neighborhood. The confidence is de-
fined by the amount of neighbors that share the same annotation divided by the
neighborhood size.

2.3.2 Dimensionality based explanation

The work of Van Driel [2] builds upon the same core idea of using local neighbor-
hoods and their respective nD points to explain the reduction, where it differs
is in how it uses this neighborhood. Instead of seeking to explain the variance
or distance contribution within a single dimensions it turns to principal com-
ponent analysis to find how many components are needed to explain a certain
amount of variance in the data. They propose a set of thresholding methods for
these components and with it varying ways to find the confidence. The actual
variance threshold, referred to as θ, can be defined by the user.

There are three different methods proposed to create annotations based on
the output of the PCA. They all only consider the so called Eigen values found
with the analysis, each value denotes the portion of the variance explain along
the principal component. We sort these values in descending order and then use
the three different methods to determine the dimensionality i.e.

Ei = {E1
i , ... , En

i | Ej
i ≥ Ej+1

i } (2.12)

Here the subscript denotes the index for the vector of Eigen values in the
dataset and the superscript is used for indexing said vector. Using this set of
values we can start discuss the methods, the first being a Cumulative approach.
The user gives a threshold θ and then we annotate based on how many of
the components are needed to exceed θ when added together. Formally the
annotation asum

i can be found using the Eigen values E computed from vi as
follows:

asum
i = min

k

{(

∑k

j=1 Ej
i

∑n

j=1 Ej
i

)

≥ θ

}

(2.13)

For encoding the confidence we know that the k first Eigen values explain at
least the portion θ of the variance by construction. Using this we can define find
that the confidence is high if we explain exactly θ and the more we overshoot
it, the lower the confidence.

csum
i = 1 −

(

∑asum
i

j=1 Ei
∑n

j=1 Ei

− θ

)

(2.14)

It is crucial to note that the this definition differs from what is mentioned in
the source paper, we do this because we believe that explanation is very difficult
to reason about and slightly ill defined. Our method of encoding does penalize
choosing low θ values, if you have a cumulative threshold on 50% of the variance
and one area is dominated by 2 variables each explaining 40% you will see a
very low confidence, especially with normalization on the confidence bounds. If
this is observed the users will need to fine tune the θ which might be counter
intuitive as that area is actually explained very well by these 2 variables.
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The next method is better equipped to handle this case and is based on a
Minimal approach, here the annotation is based by checking each Eigen value
individually and counting how many exceed θ. This can be summarized as:

amin
i = |{ei ≥ θ | ei ∈ Ei}| (2.15)

The confidence encoding is defined by how much of the variance the top
amin

i Eigen values cover of the total. With it the definition is almost trivial, we
simple sum the top amin

i values and divide it by the total, i.e.

cmin
i =

∑amin
i

j=1 Ei
∑n

j=1 Ei

(2.16)

The final method of annotating based on the PCA output is to use a ratio

based technique. Here the ratio between Ei and Ei+1 is used, you count the
number of steps i you can make before the ratio dips below a certain threshold.
This method is very hard to interpret, it was omitted from the published paper
and only defined in the thesis of van Driel [15]. Since it shows mixed results I
will also not consider it in my work.

2.4 Interaction techniques

Since we will be building a tool from the ground up we can also consider how
the user interacts with the data. Instead of producing a static image the users
should be able to navigate it and explore what they deem interesting. They
can guide the tool to regions they want to know more about and ask the tool
to provide information on said area. We can split up the interactions into two
different categories.

First we have the interaction used for viewpoint selection, when navigating
the projection the user can use these to move what they actually see. Most tools
provide basic camera controls that can be used to select the view points but with
the move to 3D more complex navigation becomes available. An example of this
is proposed in the works of Zhai [56], it allows you to rotate the entire cloud
around structures in visible points. It works based by taking the screen space
representation of the point cloud, calculating the skeleton and rotating around
these skeleton vertices. Intuitively this is similar to holding a point of the object
with you hands and rotating it. They show that this method of interaction
is very intuitive and fast. implementing this technique is out of scope for our
current version of the tool but might pose an interesting extension in the future.

The second type of interaction would be for selection of data, providing the
user with ways to highlight a subsection of points. It can be beneficial to zoom
into a certain area of interest and recompute the metrics on this subset of the
original data. Local patterns might can clearer and the computations faster.
It could also be used for navigation by finding the centroid of a set of selected
points and moving the cameras focus there. To use these techniques you first
need a robust way to select points using a 2D screen bound input method. A
common solution for this are lasso’s, simply draw an figure around the points you
want to select. This works very well in 2D but can fail in 3D because then you
are actually selecting a cylinder. You could solve this using multiple selections
from different view ports and combining these using boolean operations, but
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another option exists, namely LassoNet [57]. Its goal is to provide an easier
and more intuitive way to do this. It is based in deep learning and provides a
model that is trained using 2D lasso selections combined with the set of correct
points that should be selected. It has been proven as a powerful data selection
tool. Another way to aid selection process is to have the use select a single point
and have the tool expand this outwards from this point to select a region that
it thinks it can explain well, a good way to achieve this is to use the quality
metrics discussed in section 2.2. For our use case neither will be applied, we
will only allow selection of single points which can be found with some simple
algebra.
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Chapter 3

Implementation

This chapter will focus on our implementation which build upon the techniques
discussed in chapter 2. Previously the focus was on individual techniques and
now we will combine these into a real world application. For this application we
set 3 key requirements namely, correctness, interactive usage and ease of use.
We will elaborate on this in section 3.1. Section 3.2 is more related to system
architecture, we illustrate and explain how data flows through our tool. Next we
will dive into more details, first we discuss how we achieve interactive rates in
section 3.3, then in section 3.4 we outline the aspects of the visualization itself.
Finally in section 3.5 we will validate that the produced results are correct using
primarily synthetic datasets.

3.1 Requirements

When moving from theory to practice a range of new consideration come into
question, we aim to build a real world system which people can, and want to
use after reading the works. As with any system it is important to outline the
focus and key requirements of the system before building. In this section I will
enumerate all the requirements.

Correctness: First and most important point is that our system actually
produces images that are correct with the definition in the source papers and
with similar visuals. Without this the tool is not usable, all other aspects build
upon this. We will focus on this topic in section 3.5.

Interactive: Users should be able to interact with projections at interactive
rates, this includes changing rendering settings, navigating and running actual
explanation algorithms. Section 3.3 will outline how our tool handles this.

Accessibility: Our application should be simple to install and run for gen-
eral data analysts, ideally the program fits within more traditional work flows.
The works provide visualization that strongly differ from the norm, our tool
needs to include well known explanations as well.

3.2 Data processing pipeline

The point processing pipeline can be split into 2 sections, an offline section and
an online section. Offline implies that this section will be run while the program
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is not in use, i.e. before starting the viewer. The online section work in realtime
while the viewer is active. A complete high level overview of the pipeline can
be found in figure 3.1. In this section we will talk through the elements of this
pipeline.

Raw
Dataset

Clean and normalize

nD Data

projection
method

projected
data

Offline phase

Command line
interface

Program state
and search
structures

start program

1

2

3

Explanation
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Request explanation
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Annotations

Rendering
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User settings
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Viewer
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Camera interaction
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Change rendering
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/ reload action

Run explanation

Context about 
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current explanation

User

Interact

Input commands

Online phase
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5

6

7

8

9

10

Figure 3.1: High level overview of the structure of our tool

The offline part of the pipeline consists of only the projection method. The
program is agnostic to what reduction method is used, an assumption is made
that the end user want to use this program to annotate a reduction plot not to
create one. It is possible to run the explanation module without starting the
viewer itself, this would make it part of the offline phase as this will only output
the annotations. To do this you can start it via the command line interface.
The main reason this is included is for testability and benchmarking purposes,
it allows us to run part of the online phase with a deterministic input which is
nice when comparing versions of the program.

Using the the original and reduced data we can enter the online phase of the
pipeline. The user can start it using 2D and/or 3D data, you can switch between
the 2 while running the program if both are loaded. Both will be stored in an
data structure optimized for nearest neighbor searches, in the diagram this is
labeled with 5. Using this data the rendering engine is initialized without any
annotations (8) and UI is also loaded with default parameters (7). The output of
the render is shown in the viewer with the UI as an overlay (12), together the are
shown to the user. The UI allows the user to modify the current gamma, point
size, rendering method and also recompute the current metric using different
parameters (see figure 3.2). UI delegates these tasks to either the rendering
engine or the program state. When running a calculation the the program state
will borrow the data structure to the explanation module, this will return the
annotations which are cached in the state and then passed on to the rendering
engine again. During this process we display progress bars if the computation is
not completely realtime. The caching allows the user to quickly switch between
two different explanations without having to recompute the whole metric.
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Figure 3.2: Generic screenshot of the viewer with the user interface enlarged

3.3 Interactive computation

Arguably the most difficult constraint on our entire program is the fact that
we want it to run these explanations in realtime, this lifts the tool from just
another novel implementation for the exploration technique into one that can be
used to explore and tune varying explanation. The core bottle neck in the entire
computation are the explanation algorithms themselves, the rough goal we set
for ourselves is that we can process 100.000 points and get results within a
minute (given reasonable neighborhood sizes). The thesis of Van Driel [15] only
shortly mentions computational scalability, for this he utilizes the wine quality
dataset containing 6773 observations and 12 dimensions. His implementation
could compute the PCAsum metric for that dataset with radius 0.1 in 1 minute

and 8 seconds excluding precomputing of distances. Our program can run the
same explanation including computation of distances in 0.28 seconds. This
computation also scales into reasonable run times for datasets which are an
magnitude larger. In this section I will discuss what we did to make this possible.

3.3.1 Programming language (Rust)

The previous works had a strong focus on a proof of concept for the explana-
tion techniques, they relied on Python code to compute the annotations and
visualization. A good choice given that the goal of just generating results of the
paper, one down side is that while easy to get running Python is notoriously
slow for pure compute. For this specific reason we opted to look at a lower level
language, here we get more control over data layouts and memory management.
The obvious choice in this case would be to employ C++, it has a strong com-
munity and presence in among info visualization program. It also provides good
ways to handle graphics bindings and has a lot of resources on how to us them.
But it is not all good news, the manual control of memory can lead to data
races and can make it challenging to parallelize part of your program.

This is where our language of choice comes in, Rust, a young language which
aims to provide safety guarantees like high-level languages and performance effi-
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ciency like low-level language. At the core stands a set of strict safety principals
which are enforced at memory safety at compile time. This so called ownership
model allows users to exactly track where data is mutated and in turn makes
parallelization easier to attain.

With Rust we will able to build a fast implementation using modern build
tool that are easy to use for others. It also has a robust testing suite we can
use to write tests for properties we implement. These are the first step towards
meeting our requirements.

3.3.2 Data structures

An important consideration for our program is the algorithmic complexity, if
we want to achieve interactive rates large datasets our the computations need
to be optimized. The first high level consideration is choosing data structures
that scale well of the operations needed by the explanation algorithms. The
core problem we need to solve is a fast nearest neighborhood search in both two
and three dimensions. For this we need to consider a class of data structures
called spatial indices.

Structure Memory usage Search Construction cost K nearest neigh-

borhood

Z-order [58] O(n) O(n) O(n) O(n)
kd-tree [59] O(n) O(log n) O(n log n) O(k log n)
VP-tree [60] O(n) O(log n) O(n log n) O(k log n)
R*-Tree [61] O(n) O(log n) O(n log n) O(k log n)

Table 3.1: Comparison of spatial indexing methods.

In table 3.1 we enumerate a series of structures for consideration, we can
already determine that the first option is not suitable from the search costs.
Two closely related methods are KD and R* trees, each has different benefits
but from my research there exist more optimizations for searching in the later.
The main reason for this is that the KD variant works with strictly disjoint
partition (one point per region) where they can overlap in R trees [62]. R-trees
and by extension R*-trees are also flexible in what is stored, instead of points
it can store rectangles or polygons as well [61].

The last contender are vantage point trees, they work based on using position
as vantage point and then segregating the rest of the points based on a distance
threshold. This allows for a nice abstraction from the dimensionality of data
and it can also be used for different distance metrics (e.g. earth mover distance
between vectors [63]). While these are nice they are not requirements in our
cases, this leaves us with one important final consideration, namely, availability.

As it turn out no solid implement exists for VP trees in rust, we have one
version1 that has seemingly been abandoned and thus poses a liability to the
maintainability of our program. Conversely we have broadly used and actively
maintained implementation2 for R*-trees, with this in mind we choose this data
structure for our program. Another advantage this library has is tight and exact
packing of data, this means more of our computations can be preformed on the
stack and this will lead to significant speed gains [64]. A set of benchmarks for
this final data structure can be found in table 3.2

1https://github.com/kornelski/vpsearch
2https://docs.rs/crate/rstar
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benchmark Tree size Timing

bulk loading 2000 112.50 us
nearest neighbor (bulk loaded tree) 100k 1.22 us
successful point lookup 100k 167.32 ns
unsuccessful point lookup 100k 263.ns

Table 3.2: Benchmarks for the Rust R*-Tree implementation for 2D points.
Computed using criterion on a AMD Ryzen 3900X @ 4.2GHz over averaged
1000 runs

3.3.3 Parallelism

Moore’s law tells us that transistor density in computers doubles roughly every
1.5 years [65]. This is a trend we still see today and besides seeing more complex
cores we are also seeing more cores per computer. This increase in cores does
not directly translate into faster programs in practice, it requires developers
to consider working with concurrent tasks and data instead of sequential ones.
Running our computation in parallel also does not allow you to ignore bad
algorithmic complexity, at best we can expect linear increases in performance
over the sequential variant. Amdahl’s law [66] computes the maximal amount
of performance increase we can expect given which proportion P ∈ (0, 1] of
the program is run in parallel and the speed up gained by parallelization said
portion S (i.e. the amount of cores).

1

1 − P +
S

P

(3.1)

Our plan of approach is to parallelize the computation of metrics over the
points, so all the computations listed in the source works except the creation
of the search structures, this is roughly 90% of the programs run time. Using
the aforementioned formula we can extrapolate a best case 10x performance
increase with an arbitrary amount of cores, and 3x performance using 4 cores.
A plot of this behavior can be seen in figure 3.3. We argue that this increase in
performance outweighs the additional time spend on implementation.

Lets us now discuss how we made the program make use of the cores available
in the system, To achieve this we need to consider two main problems, concur-
rency of both tasks and data. On a high level this problem is actually quite
simple, we first create a search structure based on the 2D and 3D point clouds.
From then on this search structure is immutable and thus safe to read from
using multiple threads. We then start create parallel tasks per point, each task
computes the neighborhood and then uses it to compute the metric. We then
collect the results. After the search structure is mutated from a single thread
to store the data again. Using Rusts strong ownership model this approach
becomes feasible.

With this implement we can verify our hypothetical gains, sadly we have
no machine huge amount of cores available but we can use a workstation with
24 threads3. For this we will run our the variance based explanation for the
TSNE projection of 3 datasets. We use default credit rate for its size along the
sample axis, reuters for the amount of dimensions and finally wine for having
neither. We will use 3 different radii settings averaged over 5 runs. We will

3tested on a AMD Ryzen 3900x

20



plot the percentage of performance gained over the single threaded baseline by
moving to 2, 4, 8, 12, 18 and 24 threads. The result is shown in figure 3.3
and raw results in table 3.3. We averaged based on radius as this was the one
factor which determined the ratio of runtime between loading in the dataset and
computing the metric.

Figure 3.3: Benchmarks for various datasets averaged by radius and Amdahl’s
law P = 0.9 over core count. Each benchmark ran 5 times

We can conclude that the hypothetical gain was inline with the real world
application, we see an increase of almost 250% using a 4 cores machine and 500%
using 24 thread workstation. An great step towards our interactive requirement
and improving the scale of datasets that could be handled. We find that that
the as more of the runtime is spend on the metric (i.e. large neighborhood size)
the use of more cores because increasingly more important. With Amdahl’s law
in mind we can also extrapolate that that running the program on specialized,
highly threaded, hardware is not worth it unless you have very large neighbor-
hoods. There is more to gain by speeding up the sequential section with better
single core performance.

3.3.4 Accessability

From my personal experience I found that implementing these algorithms in a
fast manner can be a time consuming process, implementations exist but are
not easily accessible which make further research cumbersome. With this in
mind I will create and publish a Python 3 package and make the Rust code
publicly available. While I am a strong advocate for Rust I simply cannot deny
the strong presence of Python in the Data Science landscape. This work can
serve as a know good and slightly optimized implementation of the explanation
metrics. With this I aim to make further research easier and adoption into other
tools more attainable. Links to these can be found in section 3.6.
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Dataset Radius Threads Timing (seconds) Increase over single thread
0 Default cc 0.1 1 2.371 100.00%
1 Default cc 0.1 2 1.539 154.06%
2 Default cc 0.1 4 1.092 217.12%
3 Default cc 0.1 8 0.869 272.84%
4 Default cc 0.1 12 0.798 297.12%
5 Default cc 0.1 16 0.767 309.13%
6 Default cc 0.1 24 0.739 320.84%
7 Default cc 0.2 1 6.940 100.00%
8 Default cc 0.2 2 3.895 178.18%
9 Default cc 0.2 4 2.307 300.82%
10 Default cc 0.2 8 1.482 468.29%
11 Default cc 0.2 12 1.233 562.85%
12 Default cc 0.2 16 1.127 615.79%
13 Default cc 0.2 24 1.016 683.07%
14 Default cc 0.3 1 17.098 100.00%
15 Default cc 0.3 2 9.206 185.73%
16 Default cc 0.3 4 4.957 344.93%
17 Default cc 0.3 8 2.846 600.77%
18 Default cc 0.3 12 2.168 788.65%
19 Default cc 0.3 16 1.954 875.03%
20 Default cc 0.3 24 1.699 1006.36%
21 Reuters 0.1 1 10.685 100.00%
22 Reuters 0.1 2 6.071 176.00%
23 Reuters 0.1 4 3.548 301.16%
24 Reuters 0.1 8 2.310 462.55%
25 Reuters 0.1 12 1.894 564.15%
26 Reuters 0.1 16 1.758 607.79%
27 Reuters 0.1 24 1.626 657.13%
28 Reuters 0.2 1 35.901 100.00%
29 Reuters 0.2 2 19.874 180.64%
30 Reuters 0.2 4 10.845 331.04%
31 Reuters 0.2 8 6.315 568.50%
32 Reuters 0.2 12 5.234 685.92%
33 Reuters 0.2 16 5.377 700.68%
34 Reuters 0.2 24 6.530 710.79%
35 Reuters 0.3 1 79.763 100.00%
36 Reuters 0.3 2 42.159 189.20%
37 Reuters 0.3 4 22.845 349.15%
38 Reuters 0.3 8 13.984 570.39%
39 Reuters 0.3 12 12.835 621.45%
40 Reuters 0.3 16 11.709 681.21%
41 Reuters 0.3 24 11.124 717.04%
42 Wine 0.1 1 0.250 100.00%
43 Wine 0.1 2 0.198 126.26%
44 Wine 0.1 4 0.171 146.20%
45 Wine 0.1 8 0.156 160.26%
46 Wine 0.1 12 0.153 163.40%
47 Wine 0.1 16 0.149 167.79%
48 Wine 0.1 24 0.146 171.23%
49 Wine 0.2 1 0.466 100.00%
50 Wine 0.2 2 0.309 150.81%
51 Wine 0.2 4 0.225 207.11%
52 Wine 0.2 8 0.182 256.04%
53 Wine 0.2 12 0.168 277.38%
54 Wine 0.2 16 0.167 279.04%
55 Wine 0.2 24 0.157 296.82%
56 Wine 0.3 1 0.798 100.00%
57 Wine 0.3 2 0.490 162.86%
58 Wine 0.3 4 0.310 257.42%
59 Wine 0.3 8 0.230 346.96%
60 Wine 0.3 12 0.201 397.01%
61 Wine 0.3 16 0.194 411.34%
62 Wine 0.3 24 0.179 445.81%

Table 3.3: Raw benchmark results for parallelism test, each row is averaged over
5 runs.
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3.4 Point cloud visualization

One more practical aspect of working with point clouds is how these should be
visualized. After reducing the data and running an explanation techniques we
are left with a set of annotated discrete points. Points per definition have no
surface area, to display them on a screen we need to change this. In section 3.4.1
I will discuss how to resolve this. Following this I will discuss a method to add
approximate shading to three dimensional points which can be used convey
shape in section 3.4.2.

3.4.1 Rendering methods

The easiest and most common approach is to simply draw a small square around
the point, the size of these points can be configured at an early stage of the ren-
dering pipeline and the size proportional to each other is handled by the render
as well. Points further away are smaller with a lower bound on a minimal size,
point closer appears larger with an upper bound. This basic technique has the
advantage of being very fast but has a few drawbacks. The most relevant ones
are that it has poorly handles differing density areas in the dataset, when using
small point the sparse areas can look poor and vice versa for the dense area with
large points. Another key aspect is that these points can not convey occlusion
in three dimensions, point drawn directly next to each other in screen space
might have wildly varying Z position. From now I will refer to this approach as
the discrete method.

A slightly more advanced approach to this problem is rendering each point
as disk with an opaque center and transparent edges. Using this technique
will allow point to blend together at the edges, this becomes relevant when
we start color coding all the points based on the annotations. It will offer an
approximate explanation for the area between the points as well. This is a crude
but a common solution to the problem. This approach is relatively simple in
2 dimensions but the element of opacity will cause problems in 3 dimensions.
The reason of this is that in 2 dimensions the depth or Z value is constant for
all the points relative to the camera position, in 3 dimensions this is not the
case. The solution for this is to simply sort the points based on the screen space
Z coordinate and rendering the points from back to front, each point will be
over layed on all currently rendered points. In this order the point closed to the
camera will always be visible and can (partially) occlude other points behind it.
I will refer to this method as the continuous rendering method. A side by side
comparison of the described methods can be found in figure 3.4.

Figure 3.4: Two nearby points rendered in a discrete (left) and continuous (right)
manner
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One aspect that I glanced over while discussing both methods is the orien-
tation of the flat shapes we used to represent the point. This is no problem in
two dimension since the camera orientation is static, this is not the case in three
dimensions. Here we need to ensure that the normal of these shapes faces the
camera. Luckily this can easily be solved in the vertex shader of the rendering
pipeline.

To achieve this effect we will render a two triangles forming a square con-
sisting of a total of 6 points (of which 4 are unique) on a 2D plane. These 6
points are all offset by consistent amount determined by the size of the blob or
point. These 2D dimensional offset along the x− and y−axis will be applied to
the point in the the view space, i.e. the coordinates system with the camera at
the origin. With this we know that the normals are in parallel with the z−axis.
The final step is to project these into the screen space using the projection ma-
trix, since we are using a pinhole camera this will be a perspective projection.
Summarized we have the transformations in equation 3.2.

Pworld =









xworld

yworld

zworld

1









Pview = Mview × Pworld

P ′
view = Pview + Offset

Pscreen = P ′
view × Pprojection

(3.2)

This trick is referred to as bill-boarding and can often be found in older
video games to save on resources. It is fast and easy to implement which is
great for our use case. Two real world examples can be found in figure 3.5, The
continuous technique allows you to more easily spot regions of related points
and can also provide proper occlusion in 3D where the discrete method lacks.
Sadly the user can still ont distinguish between the convex and concave areas.
The solution for this problem, shading, will be discussed in the following section.
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Figure 3.5: Comparison of discrete rendering (left) with continuous rendering
(right)

3.4.2 Pseudo shading the point cloud

While viewing 3D datasets it is natural for the viewer to relate their perception
of the point cloud to what it would look like in real life. You try to perceive
which part occludes what other section and which areas are concave or convex.
The way to convey this to the user when rendering objects is to use a light
source and shading, it can be used to convey to orientation of a surface while
in the 2 dimensional screen space.

The first option that might come to mind is recreating a triangle mesh from
the point cloud, with such a mesh shading the dataset would become trivial.
Sadly this is an approach which has two significant drawbacks. First being that
I would give us information that we gain information about the normals of the
faces, not the vertexes. We could approximate this via by looking at the adjacent
faces and edges. Sadly this leaves us again with just an approximation while
it costs a lot of compute to find, this cost is also our second large drawback.
reconstruction of a mesh can easily take minutes to compute when the point
set is large enough. This would be disastrous for the useability of our tool.
Instead of a full mesh reconstruction we could also look into doing one based
on the current viewport, one of these methods is proposed in the works of Katz
et al [67]. It is shown to be significantly faster but the main downside is that
we would have to recompute it every time the viewport changes. This makes
this interesting work unusable as well. With all of this in mind we can conclude
that we would need to look in another avenue.
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A completely different approach to the same problem is to try and find
the orientation and shape local areas. This might seem very familiar to what
we already did for the dimensionality based explanation, here we will again
use a neighborhood based explanation method in only the 3 dimensional space.
Within the neighborhood we perform PCA to find out along which axis the least

amount of variance occurs, i.e. the minor Eigen vector. Intuitively the cloud of
points is thinnest along this axis, you could argue that this vector can be seen
as a normal along the flattest part of the neighborhood. This in combination
with the aforementioned eccentricity ratio we can also say how confident we are
that this is a proper normal, we know that if the eccentricity is 1 the variance
point cloud is perfectly distributed along the axis i.e. it is round. When this is
the case the normal we found is not very useful. This is often an indication that
the point is actually under the surface of the mesh, these points should not be
included in the shading process. Conversely when we find a low eccentricity we
know that the point cloud is shaped more like a line of disk, this also indicates
that the point is on a surface and that shading it would be beneficial.

With this method we can relatively quickly find an approximate normal and
we can find how confident we are in that it is a proper normal. These values
can be used later on in the rendering pipeline to shade all the points in the
continuous and discrete representation. Here we will use the camera position
as a light source, we can cast a ray from our camera to the faces of the points.
For each we find the angle between the normal and said ray. If the angle is
small much of the light would be reflected back at the camera so it will result
in a bright color, if the angle is closer to perpendicular then all the light would
be reflected away leading to a dark color. During this process we will use a
certain upper bound for the eccentricity between 0 and 1, the higher the value
the further under the surface of the cloud points will be shaded.

Application on point clouds

Let us now look at some concrete applications of this, we start by looking at
the shading computed for a plane in 3D. The goal is to get a general idea of
the orientation of that plane. For this we use a synthetic dataset in where the
original data is along the faces of a cube in 3D and projected into 2D using
PCA (a linear transformation). For this test we pad an extra z coordinate to
the 2D projection with value 0 everywhere. Shading over this dataset is shown
in figure 3.6. While explanations are included here it is advisable to tune the
parameters (i.e. neighborhood and shading intensity) on the grey points.
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Figure 3.6: Shading approximation for points on a plane. Without explanation
on left, with on the right. Right in the couples is with shading.

Another example of this method in action is a synthetic dataset where all
the points align with the cases of a cube. Without shading it is impossible to
determine the shape without moving the shape around and piecing it together by
looking at silhouettes. This dataset is depicted in figure 3.7, here the faces and
edges of the cube shape become apparent. In figure 3.8 you will find a slightly
modified version of the same dataset, here the entire filled up with points. The
technique will shade the points under the surface for 50%, the layer underneath
is visible but it fact that these points are not on the surface is conveyed well.
The last basic shape used during validation is a set of points along a sphere,
this is displayed in figure 3.9. Again the benefits of the shading process are
apparent, you can make out that this is a concave shape instead of a flat area.

Figure 3.7: Shading approximation of point on a hollow cube, first left without
any shading.
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Figure 3.8: Shading approximation of point on a full cube, first left without any
shading.

Figure 3.9: Shading approximation of point on a sphere

Besides looking at basic shapes I also considered more complicated shapes,
for this I used the infamous Stanford Bunny [68]. This is a mesh originated from
a dataset of scanned objects, as a result it contains only points on the surface.
The results are shown in figure 3.10, a another clear example where shading
gives insight into which areas are concave or convex, the area around the ears
especially. The final test for this method is a real world dataset, for this I turned
to the TSN-e reduction of the Wine quality dataset. The reasoning here is that
here the points are roughly aligned along a 2 dimensional manifold in 3D. This
lends itself nicely to shading, the result of this are shown in figure 3.11.

Figure 3.10: Shading approximation of faces of the Stanford bunny [68], first
left without any shading.
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Figure 3.11: Shading approximation of TSN-e reduced Wine quality dataset [69],
first left without any shading.

From working with this shading process it has become very clear that the
neighborhood size required to get a clean normals differs per dataset used. I used
a default radius of 10% of the projection width which works well for the basic
shapes but produced to much noise in an actual dataset. It is advisable to tune
this parameter on the grey points before running the explanation techniques,
namely because these will also use the brightness to convey information about
confidence and this might interfere with finding the correct shading.

3.4.3 Color encoding

A key aspect of displaying the outcome of our explanations is how we encode
these results into a color. Within the tool we have 3 different types of color
maps, categorical, ordinal and single value.

The single value color map is the simplest one, here we only have one input
value between 0 and 1 and convert this into a shade between red and green.
Here the perceived brightness of colors is not taken into consideration. Next we
have the categorical version, here we use the color to encode the top-8 categories
of points and then the brightness for the confidence. Since brightness is also
relevant the colors we use for the categories need to appear equally bright, this
property is called isoluminant. To find such a set of colors we turn to research
done on the topic of perceived distance between colors [70]. With such a color
map we can simply encode the confidence via V in the HSV color space and
pick the color based on the dimension. Lastly we have the ordinal color maps,
here instead of categories the explanation output has both confidence and an
attribute subject to a natural ordering (i.e. number of dimensions). Here we
combine the two previous ideas, we create a shade between blue and yellow to
plot the ordinal attribute on, using the brightness we then encode the confidence
again.

3.5 Validation of explanations

An important step for out tool is verifying that the produced images are correct,
as stated in section 3.1 this is the most important part of our tool. Via unit
tests we can test if small computations have been implement correct but for end
to end testing we will need datasets for which we already have explanations.
To get such a dataset we need to generate them, this way we can control the
underlying variance for separate areas of the projection. In this section we will
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talk through the key explanation methods and reason about their correctness
given the synthetic datasets.

3.5.1 Attribute based explanation

The work of Da Silva provides an attributes based local explanation that is com-
puted for every point in the dataset, it is displayed using a color map based on
the global ranking. Two metrics are proposed, one that measures the euclidean
distance contribution of each dimension within a neighborhood and another that
does the same for variance. The paper mentions that the variance based metric
is more resistant to noise and faster to compute, I implement both and observed
very similar results for the cube data set. This dataset consists of 10.000 points
along the faces of a cube and introduced a spatial noise of max 5%, the reduc-
tion is done using PCA [71] giving us a very predictable outcome. The expected
explanation is that there are 3 regions that are close because they are roughly
along a plane in the original data. At the border of these regions the confidence
drops as the neighborhood now contains points from 2 planes. Here employ
neighborhoods using a radius that is normalized using the projection width.
The results of this explanation for euclidean metrics can be found in figure 3.12,
the variance based approach in figure 3.13. We can very clearly see that both
approaches result are comparable with the ones from the source paper figure
1 [1]. Here you can see that the borders are clearer for euclidean, the larger the
radius the larger the uncertainty is along the border of the regions.

Figure 3.12: Da Silva’s distance metric on a PCA reduced synthetic cube with
5% spatial noise. Neighborhood is radius based with 5%, 10%, 20% and 30% of
the projection width.

30



Figure 3.13: Da Silva’s variance metric on a PCA reduced synthetic cube with
5% spatial noise. Neighborhood is radius based with 5%, 10%, 20% and 30% of
the projection width

An extension we did to the explanation the introduction of a per attribute
view, here you can see for each point how well variance along said attribute
explains it. For the PCA cube example these views are shown in figure 3.14.
Here we can clearly see the expected regions are green, the areas along the face
of the cube are green and the rest is red.

Figure 3.14: Single attribute views for cube from figure 3.13, attribute Y, Z
then X. R = 10%

3.5.2 Dimensionality based explanation

Next we will discuss the dimensionality based extension as proposed by Van
Driel. This work will look at the intrinsic dimensionality of a point in its neigh-
borhood. For the formal definition I would like to refer back to section 2.3,
here we will show our own implement and argue that the results produced are
correct. Similar to the attribute based technique starts by checking our own
results against images produced in the source paper, there a series of synthetic
datasets were used that we will also produced.
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Figure 3.15: Dimensionality metric (min) for the nD clusters synthetic dataset

Figure 3.16: Dimensionality metric (min) for the nD fade synthetic dataset

The first generated dataset I use for validation is the so called 7D-clusters

set. Here we start by generating 7 non overlapping clusters using gaussian blur,
each with about 2500 points. Then per cluster of points we generate the 7D
”unprojected” point with gaussian noise across a set amount of dimensions. For
the first cluster we only use 1 dimension and we increment it for each cluster
until we have the noise across all 7 dimensions. For this dataset we know the
intrinsic dimensionality per cluster. Using the dimensionality based explanation
method we should be able to find how many dimensions are needed to explain
the variance in said cluster. The results of this can be found in figure 3.15. This
dataset will provides us with a basic sanity check. The next dataset I would like
to discuss is the 7D-fade, here instead of distinct clusters all points are arranged
in perfect squares directly adjacent to each other. in this use case we should start
seeing the confidence encoding doing its work at lines where the dimensionality
jumps. This explanation is shown in figure 3.16. Both show that the outputted
image shows a clean heat map like color scale for the dimensionality of the data.
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Figure 3.17: Dimensionality metric on a PCA reduced synthetic cube with 5%
spatial noise. Radius is 0.1 and minimal threshold is 0.05

The next basic case we need to consider is the cube dataset we used in
the attribute based explanation. Here we expect that the variance along the
faces of the cube can be explained using 2 dimensions and the edges along 3.
InThe results of this are shown in figure 3.17. We can clearly see the that the
explanation fits our expectation, one observation to make is that the confidence
in the 3 dimensional area does not drop towards the 2 dimensional areas, in
the inverse case we do observe lower confidence along the edge. This is to be
expected with the way the confidence function works for the minimal approach
(see sec 2.3.2). We can also directly compare these images to the one in the
thesis of Van Driel [15], more specificity figure 4.13 and 4.14. We can observe
that method is visually similar. We now have high confidence in our explanation
and believe we can start using it in real world cases, which is exactly the main
topic of our next chapter.

3.6 Source Code

The tool developed and the source code for this thesis is publicly accessible
via the GitLab server of Utrecht University via https://git.science.uu.nl/

vig/mscprojects/Pointctl. Within this repository all the 8 datasets and 27
projection for each are also stored.
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Chapter 4

Application to real-world
data

With an understanding of the techniques and our own implementation validated
it is time to explore the range of inputs for the techniques and walk through
the results. We will start in section 4.1 again with simple synthetic datasets
and use them to explore the parameters that can be set and reason about how
to set them. Following this in section 4.2 and 4.3 will elaborate on our choice
of datasets and the process of selecting the correct projection method. Finally
in section 4.4 we explore each dataset and explain how our tool can be used to
preform an analysis.

4.1 Parameter analysis

Our tool combines various input together to find generate the image the user
eventually sees, we have the dataset, projection, explanation, viewport, shading,
gamma, normalization, point size and more. In this section I would like to
classify the inputs and also outline their effects. The later two

Source data: To start we have the static stored normalized dataset and
projection, these can only be set when starting up the program. There is no
way to compute a projection in the online phase of the pipeline (see sec 3.2).
We will analyse various datasets selected in section 4.2 in section 4.4.

Rendering parameters: These are variables that determine the way colors
are shown on screen and the size of points. Here you can think about fields like
gamma and confidence encoding (i.e. how it maps to brightness) but also the
camera. All of these parameters can be changed realtime via the UI.

Explanation parameters: As discussed in the preliminaries both explana-
tion techniques are subject to inputs besides the dataset and the projection, here
we have the neighborhood size used in the algorithm and for the dimensionality
based explanation the thresholding method and value θ. There we explained
the consequences of changing them, here we will elaborate using examples.

Dimensionality: We will can also consider the dimensionality of the pro-
jected space as a parameter, moving from 2D to 3D has large implications for
how the projection is explored.
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We will explore each class of parameters one by one, freezing all the parame-
ters from the other classes in the process. If we were to consider the combination
of all possible values we would have to discuss thousands if not millions of com-
binations (the problem suffers from the curse of dimensionality).

4.1.1 Rendering parameters

Like discussed in the previous section these parameters control the shader
pipeline, table 4.1 provides an overview of the inputs to this pipeline which
are determined by the user. In this section we will elaborate on each.

Parameter Scale Range Interaction Occurs when

Gamma Real [0, 1] Slider Always
Point size Integer [1, 16] Slider Using discrete rendering

Splat size Real

[

1

4
D, 4D

]

1 Slider Using continuous render-
ing

Camera position Real matrix () Mouse Always
Shading intensity Real [0, 1] Slider In 3D when shading has

been computed
Confidence normalization Real tuple [0, 1] Double slider When explanation is be-

ing displayed
Color map override Ordinal map Drop down When explanation is be-

ing displayed
Render mode Binary {0, 1} Button Always

Table 4.1: Overview of rendering parameters

Brightness correction

Fist we have gamma correction, it is a commonly used non linear transformation
used for encoding and decoding the luminance of colors. Given an sRGB color
space where each value is between 0 and 1 this correction works by raising the
value of each channel to a power γ. The formulas used in the shader can be
found in equation 4.1. Note that here light colors (i.e. low values) change very
little with this operation, the reasoning here is that we humans perceive more
detail in the light areas.

(Rout, Gout, Bout) = (Rγ
in, Gγ

in, Bγ
in) (4.1)

A value γ < 1 is often referred to as an encoding gamma value, conversely
γ > 1 is used for decoding. Our tool allows the user to adjust this γ using a
slider and can set a value between 1.0 and 3.4, the effect of this on the colors of
an image is displayed in figure 4.1.

1Here D denotes the average first nearest neighborhood distance
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Figure 4.1: Gamma parameter setting, left to right 1.0, 1.6, 2.2, 2.8 and 3.4.

This allows our users to choose which part of the color space they want to
focus on. Since every explanation can yield varying ranges of confidence values
we need to give our user control so they can find where they perceive the nuances
in regions of interest best. It is very important to note that this operation is not
linear, the power-law comes into play. If one channel shifts more than another
the hue of a color will shift with it. Perceptually this effect is not very strong
but it become more apparent with high values of γ, figure 4.1 captures this well.

To aid the user towards this goal even further we also provide a way to adjust
the normalization of the confidence encoding. Since we are normalizing using the
global minimal and maximal confidence outliers can form trouble. A common
case is points with no neighbors within a radius that we need to explain, here we
fall back to a confidence of 0. If all other points have confidence values ≥ 0.8 all
nuance in this top end is lost. The user can then shift the lower bound to focus

on the confidence range of interest and use the full brightness range to show it.
The effects of these bounds and the aforementioned principle is illustrated in
figure 4.2.

Figure 4.2: Differing normalization bound settings. Left to right the bounds are
(50%, 100%), (25%, 100%), (0%, 100%), (0%, 75%) and (0%, 50%).

Point and splat size

The user can also configure the size of a points in the discrete rendering mode
and splats in the continuous mode. While the concept is very self explanatory
why we implement it is not, the main reason is the differing sparsity between
projections and regions within a projection. This allows the user to choose the
optimal value when inspecting a region of interest. It can be set using a slider
and changes in real time. For the discrete representation the point size variable
in openGL is used, the effects are shown in figure 4.3.

36



Figure 4.3: Point size for discrete rendering, left to right size is 1, 3, 6, 10 and
16.

For the continuous rendering method this concept changes a little, the splat
is rendered using world coordinates. For this we use the average first nearest
neighbor distance as a default value and make the setting relative to this, fig-
ure 4.4 shows the effects. One known short coming of this technique is that
some projections have overlapping points as a result, this can yield a default so
small nothing appear to be rendered. It is a rare case but to work around this
users will need to switch to the discrete method.

Figure 4.4: Splat size for continuous rendering, left to right size is d
1

4
, d

1

2
, d, d2

and d4 where d is default size based on average first nearest neighbor.

Shading intensity

Finally for 3 dimensional projects we have can tune the intensity of the shading.
The idea behind this is explained in section 3.4.2, however there we do not
consider the problem that we are encoding both point orientation and confidence
into brightness. Using this parameter you can turn of the shading and also shift
which proportion of the brightness encodes orientation. In figure 4.5 we use a
sphere to show increasing intensity of shading.

Figure 4.5: hading intensity for a sphere, left to right 0%, 25%, 50%, 75% and
100%.
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4.1.2 Explanation parameters

Besides the rendering setting we can also change the inputs that go into our ex-
planations techniques, while there are fewer parameters these are arguably more
important to fully understand. For our metrics we have 2 key input variables,
the neighborhood size and the thresholding method / value for dimensionality
based explanation.

Neighborhood size

For our tooling we have defined two different types of neighborhood, a radius r
based variant where the neighborhood vary in neighbor count by have a constant
max distance and a count k variant here the inverse is true. We found that
the radius version is easier to reason about since the regions it concerns are
consistent, the variably density from area to area within a projection make the
k variant complicated. One clear upside of this variant is the compute required,
we know the exact upper bound on neighborhood size. Here an absolute radius
can cause very large neighborhood sizes making the explanations difficult to
compute. In a pervious section we used figure 3.13. Here in figure 4.6 we
show what happens when very large radii are used, here the metrics failed to
be useful and at 100% every point becomes each others neighbor and we get a
perfect single attribute explanation.

Figure 4.6: Variance metric on a PCA reduced synthetic cube with radius r =
40%, 50%, 60%, 75% and 100%

Using the same dataset we can also explore the effects of differing theta
values, sadly since the intrinsic dimensionality throughout this dataset is rather
low the nuances are lacking. Figure 4.7 shows the differing θ values when using
a minimal treshold and figure 4.8 does the same of the total method. Note
that the color map changes between the images, it captures the dimensions
currently being displayed and this range changes with the differing θ values.
The explanation behind the metrics can be found in section 2.3.2.
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Figure 4.7: Dimensionality metric on a PCA reduced synthetic cube with min-
imal tresholding and θ = 2.5%, 5%, 10%, 20%, 30%, 50%, 75% and 100%

Figure 4.8: Dimensionality metric on a PCA reduced synthetic cube with total
tresholding and θ = 0%, 40%, 60%, 80%, 90%, 95%, 97.5% and 100%

4.2 Selected real-world datasets

We have selected 8 datasets with differing characteristics to compare during
our comparison between 2D and 3D explanations. Table 4.2 lists their details,
including their sparsity ratio γn = 1 − u

nN
, γn ∈ [0, 1], where u is the number

of non-zero data values; and intrinsic dimensionality ρn ∈ [0, 1], defined as
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the percentage of principal components (of the total n), computed by PCA,
needed to explain 95% of the data variance. These values show that our selected
datasets cover quite different characteristics, in line with those selected in the 2D
benchmark. Using more datasets is definitely desirable. However, this would
be too expensive, given that we aim next to project each of them by several
techniques, both in 2D and 3D, and compute several quality metrics for each
combination.

Dataset Type Samples N Dimensions n Intrinsic

dimensionality

ρn

Sparsity γn

Air quality [72] tables 9357 13 5 0.1372
Breast cancer,[73] tables 569 30 10 0.0059
City pollution,[74] tables 32681 10 6 0.0052
Concrete [75] tables 1030 8 6 0.1773
DefaultCC [76] tables 30000 23 8 0.1070
Reuters,[77] text 8432 1000 696 0.9488
Software,[78] tables 6773 12 7 0.0818
Wine [69] tables 6497 11 8 0.0023

Table 4.2: Selected datasets and their trait values.

The low dimensionality across the first datasets was chosen on purpose, we
argue that if our explanation mechanisms cannot explain data with few dimen-
sion well it will have also be ill equipped to handle data with high (intrinsic)
dimensionality. We did include the Reuters dataset as a control for this state-
ment. One characteristic the first 7 datasets have in common is that all the
dimensions are named, this makes interpreting the attribute explanation easier,
this helps reasoning about the produced images.

4.3 Selection of projection and dimensionality

To analyse datasets it is also crucial to decide which projections and its dimen-
sionality you decide to use. The tool we developed has already been deployed in
a research paper which provides a quantitative and qualitative comparison of 2D
and 3D projection techniques. There we compare the quality of all the projection
techniques from table 2.1 for the datasets from table 4.2 using trustworthiness,
continuous and spearman correlation as defined in section 2.2. Additionally we
also consider the quantitative approach and used domain experts to mark which
projections worked well which do not. It is important to note that this is still
a very limited subset the datasets available, we cannot give a definitive answer
to which you projection and dimensionality you should use when exploring an
arbitrary dataset. All we can do is provide this comparison and highlight the
considerations we make, it is up to researcher to make their own considerations
with other datasets.

Figure 4.9 shows the results per quality metrics for all the projections in
2D and 3D summarized over all datasets, the techniques are sorted ascending
on trustworthiness. It is important to note that some datasets are results are
missing, here the quality metrics was not 0 but instead the projection technique
failed to execute here. The figure illustrates that except one outlier in the
form of N-MDS the measured quality does not vary much over the techniques.
Another observation is that the gain from adding an additional dimension seems
marginal at best, the average increase in quality for trustworthiness is 5%, with
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Projection
technique Trustworthiness Continuity Shepard correlation2D/3D

Wine

Air quality
City pollution
Concrete

Reuters
Software

Breast cancer

Defaultcc

Figure 4.9: Quality metrics per projection technique (rows), dataset (colors),
and projection dimension (2D vs 3D, second column), sorted ascendingly on
technique trustworthiness.

continuity it is only 2% and finally for the sheppard correlation we get 3% but
with a much higher variance. Based on these measurements the gain does not
seem worthwhile when the additional complications of 3D are taken into account.
What we can do here is discard a series of projection techniques from even being
considered, if the trustworthiness is low the assumption, neighborhoods in DP

are the same as in D, which is the base of our localized explanation technique
does not hold. This means the resulting visualization also can not be trusted.

The quantitative experiment is best summarized by figure 4.10 attempt to
capture the perceived quality difference. We manually merged the color mapping
so the attributes retain the same color when moving from 2D to 3D, this makes
observing similar structures a lot easier. Here again we can observe that the
that the quality across 2D and 3D are closely correlated. In this image we have
included the projections that have clear structure visible above the horizontal
line and conversely the ones without below. We find that projections that
perform poorly in 2D dimension benefit little from a 3D dimension, for example
N-MDS, it has issues with a region of point surrounding all others. With the
extra dimension the projection explanation is still subject to this problem, only
now occlusion hinders the user more. On the contrary projections like FA, MDS
or T-SNE the extra projection allows it to show more nuance in the borders
between regions and clusters. While regions might be interleaved in 2D they
can be separated in 3D. In short we can see that the measured correlation also
holds for the perceived quality. For a more in-depth analysis of this topic can
be found in the source work [79] together with additional considerations on the
topic of useability. For our research here we will use the dimensionality which
best suites the explanation and only consider exploring using the projections
techniques in the top 10 of figure 4.9.
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Figure 4.10: Comparison of 2D and 3D projections of the Wine dataset explained
by dimension variance.
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4.4 Dataset analysis

In this section we will go through the 8 selected datasets and for each show how
our tool can be used to find insights. We will start with an in-depth look at
datasets which are well known to us and then move on the lesser known ones.

4.4.1 Wine quality

The vinho verde wine quality dataset [69], this consists of 12 measurements for
6497 wines. This dataset includes a LAMP [80] based projection that was also
used in the metrics paper, with this we can now compare using a real dataset
but with an identical projection. We will start by recreating this view and move
on with our observation from our own extensions from there. The projection
produces a single clump of points with varying density, this variance can be
explained by the fact that the this data set contains 4898 red and 1599 white
whines. In the reduction these 2 sets are projected in 2 barely overlapping
clusters as shown in figure 4.11.

Figure 4.11: Attribute based variance metric using for the wine quality
dataset [69]. Left only the white wines, middle only red wines and right all
wines (r = 10%)

Figure 4.12: Da Silva’s euclidean metric on the a LAMP projection of the Wine
quality dataset [69]. Neighborhood is radius based with 10% and 20% of the
projection width and then KNN based using k = 75 and k = 250

Lets first look at the euclidean in figure 4.12, it produces very noise results
regardless of what radius is used. Here absolute radius and neighbor count
based neighborhoods where used, the reasoning behind the KNN approach is
that the absolute size can vary to handle the varying density. Sadly both radii
types produced poor results, this confirms that this metrics is more noisy. The
source papers briefly mentions this as well but never elaborate, in the rest of
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the paper they only use the variance based explanation, we will do the same for
our further analysis.

Figure 4.13: Variance metric on the a LAMP projection of the wine quality
dataset [69]. Neighborhood is radius based with 5%, 10% and 20% of the pro-
jection width

Figure 4.14: Variance metric per attribute, low contribution is lower variance.
In reading order we have alcohol, chlorides, residual sugar and volatile acidity

Using the variance based metric for the wine quality dataset did prove useful,
producing the results in figure 4.13. Here the middle images uses the exact
same parameters as shown in figure 2 of the source paper for the attribute
based explanation [1]. The exact same regions can be observed, top left we find
the Residual sugar, right we find Alcohol and at the bottom Sodium chloride.
Between each region there is a lower confidence transition area, this indicates
that the area can not be explained by a single dimension. Between the Alcohol

and Sodium chloride regions we also find a small region where the variance is
best explained by Volatile acidity. Our tool extends this with the single attribute
explanations view displayed in figure 4.14. Here we again find the distinct green
areas where the attribute explains the dataset to the best of it’s ability. We can
also notice some overlap between the green areas, here the area is well explained
by both attributes. Note that the green is also subject to normalization, so for
sugar the green area denotes contribution lower that 0.001 while for the alcohol
it means lower than 0.005. This explain why the full image uses the sugar

explanation for this overlapping region.
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Figure 4.15: Dimensionality total metric on LAMP projection reduced Wine
datasets [69]. Radius is 0.1 and threshold θ = 0.9

Finally we can utilize the dimensionality view to highlight the localized in-
trinsic dimensionality as shown in figure 4.15, here we utilize the total threshold
of 90%, so by running PCA how many of the top n principal components are
required to capture 90% of the variance. Here we can say that the left of the
image only 1 or 2 such components are needed, while on the right there is a
certain hot spot where up to 8 components exceed this threshold. This knowl-
edge can tell us that even though Residual sugar has the least variance in the
left area there are probably more attributes that vary very little in that region,
the variance is limited to 1 or 2 components. Conversely the highly dimensional
area likely has few other attributes that vary little.

4.4.2 Software attractiveness

The software quality dataset aims to link metrics between code metrics over
6773 free software projects from the SourceForge.net repository and the attrac-
tiveness towards contributors [78]. For this dataset we will again use the T-SNE
projection in 2 dimensions.
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Figure 4.16: Variance based metric on TSNE projection reduced Software
datasets [78]. Radius is 0.1.

Unlike the wine quality here in figure 4.16 we observe more distinct clus-
tering for this dataset, we can see 3 larger clusters and a series of smaller ones
above. Interesting to note is that our method is able to give high confidence
explanations for each. Lack of cohesion explains the largest regions in pink,
then we have the number of methods in red and between the lines of code in
yellow.

With the knowledge of which attributes vary least in the clusters we can
then use the tooltip to find the actual values. An interesting observation is that
by a rough estimate most points share the exact same value for lack of cohesion,
namely 0.2501. For the green region we can make a similar observation, these
code bases all have exactly zero public attributes / values (ln sum npv).

4.4.3 Air Quality

The Air quality dataset contains 9358 instances of hourly averaged response
form an set of 5 metal oxide chemical sensors. These sensors are placed by
roadsides and in Italian villages.
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Figure 4.17: Attribute variance metric on 2D AE projection air quality dataset.
Radius is 0.1.

Figure 4.18: Attribute variance metric on 3D AE projection air quality dataset,
same legend as figure 4.17. Radius is 0.1.

This time we use the auto encoded projection with the same explanation
method for both 2D and 3D, I argue here that the 3D version is easier to
interpret as the overlapping clusters are now just neighbors when using the
right viewport. A good example is the pink and red clusters, in 2D these two
have regions that appear to intersect while in 3D there is a clearer separation
between the 2. Besides this overlap the other clusters are spaced far apart
and can then, with high confidence, be explained by a single attribute. Here
the researcher could progress by focusing on the clusters that have multiple
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attribute with lower variance.

4.4.4 Wisconsin Breast Cancer

The wisconsin dataset is an interesting addition here as it a relatively small
dataset with only 569 entries and a total of 30 attributes [73]. These 30 features
are extracted from digitalized images of a fine needle aspirate of a breast mass.
Here the target variable is binary, the tumor is either malignant or benign.

Figure 4.19: Dimensionality total metric on T-SNE projection reduced Wiscon-
sin Breast cancer dataset [73]. Radius is 0.1.

Figure 4.20: Dimensionality total metric on T-SNE projection reduced Wiscon-
sin Breast cancer dataset [73]. Radius is 0.1 and threshold θ = 0.9

We can quickly observe that the insights from the variance based explanation
in figure 4.19 are lacking, we get a single structure but no clear regions in that
cluster. We argue that here there are to numerous attributes that vary little
across the entire dataset, because of this no single explanation prevails. The
dimensionality explanation in figure 4.20 does give us some more interesting
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insights, we need at most 10 dimensions to explain 90% of the variance in the
center of the blob but at the edges only 7 dimensions are sufficient.

4.4.5 City pollution

City pollution is a dataset that described the pollution levels in cities over 10
attributes with over 32681 samples. For this dataset we choose to explore the
3D projection as there are more ways the regions can neighbor each other.

Figure 4.21: Attribute variance metric on 2D ISO projection reduced City pol-
lution dataset. Radius is 0.1.

Figure 4.22: Attribute variance metric on 3D ISO projection reduced City pol-
lution dataset, same legend as figure 4.21. Radius is 0.1.

Like the other datasets without any explanations we simply get a grey blob
which conveys very little information, the 2D explanation shown in figure 4.21
shows a blue region for Temperature to to be enclosed by 2 pink regions marked
by DEWP. With the extra degree of freedom provided by 3D we find out that
these two separate clusters are actually one, figure 4.22 shows a single pink
regions next to the blue one. This is a clear example of where 2D projections
might fall short, here the researcher could continue their exploration of the
dataset considering that there is one nD cluster that can be explained well by
Temperature.
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4.4.6 Defaulting Credit Cards

The default credit card dataset is aimed at determining which clients are and
are not credible, it does this based on a series of measurements and boolean
attributes. Interesting to note for the projections and our explanations here is
the strong effect of these binary variables.

Figure 4.23: Attribute variance metric on 2D K-PCA-P projection of the Default
cc dataset. Radius is 0.1.

Let us first look at how kernel PCA and most other projections handle this
dataset, shown in figure 4.23 is the kernel PCA projection. As we can note here
the projection produces 2 line like clusters which are perfectly explained by the
sex of the subject. This is of course an interesting insight, the dataset appears
to have 2 clusters that are clearly separate by this binary variable, but that is
the only conclusion we can get from this.

Figure 4.24: Attribute variance metric on 2D T-SNE projection of the Default
cc dataset. Radius is 0.2.
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Figure 4.25: Attribute variance metric on 2D T-SNE projection of the Default
cc dataset. Radius is 0.2, theta θ = 0.8

To investigate further we will look at T-SNE as it does not suffer from the
same problem, here we have the attribute based explanation in figure 4.24 and
dimensionality explanation in figure 4.25. Instead of two lines we get a series of
3 clusters that are close other. Again sex is the most prominent explanation for
followed by married (another binary variable). Interesting here is that the clus-
ters are still divided by these binary attributes, the top cluster from the bottom
two is determined by sex and the bottom two by marriage. The reasoning that
the binary attributes are an amazing explanation since the variance will 0 zero
per cluster still stands. Using the dimensionality based explanation we can also
see that these areas have a higher intrinsic dimensionality as well, but it also
shows the area surrounding the border of the clusters has low dimensionality.

With a focus on this region we can also see that PAY ATM2 and education

are also factors that explain areas around this border well. An intresting lead for
researchers, another option worth exploring is leaving out the binary values al
together before projecting and seeing if you can get a more general explanation.
We did not explore this option however.

4.4.7 Reuters

Contrary to the other datasets Reuters [77] has a high amount of attributes,
namely because it is a bag of words representation of news articles where the top
1000 most used words are kept. For each of the 8432 articles the row contains
the occurrences of words within it. We include this dataset because even though
our tool was not build for these high dimensional use cases we would like to show
an example of why.
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Figure 4.26: Attribute variance metric on 2D T-SNE projection reduced Reuters
dataset. Radius is 0.1.

Figure 4.26 shows the results of the dimensionality based explanation, from
the wisconsin breast cancer dataset we already know that using the attribute
based explanation for high dimensionality does not work well. The dimensional-
ity explanation here is also very lacking, our tool simply has a color map which
it to limited to get any meaningfully insight at a glance. Besides this fact it
is also extremely hard to compute localized metrics here since they are based
PCA. With a 1000 dimensions we will have a 1000x1000 covariance matrix for
each point that you need to preform PCA for, for this dataset our tool hardly
computes metrics in realtime. It took about 4 minutes to compute the annota-
tions. For the Reuters dataset our explanation add very little to classic global
explanations.
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Chapter 5

Discussion and conclusion

Chapter that closes of the thesis, here we will reflect on our research process,
shortcomings and outline the concrete results.

5.1 Discussion

Within the research area of data visualization one inherent problem is compli-
cations surrounding the subjectivity of the matter. We can argue that a user
might need certain configurable aspects and use sane defaults in other places
but all of these are all subjective to the person who need to interpret the im-
age. One might prefer darker shades with discrete points and another vise verse
with light shades and continuous points. All we can do is argue for and against
and provide the comparisons that a user can use to form their own view on the
matter.

This is theme that is most prevalent in chapter 4, here we provide examples
of how to use our tool in the form of case studies. While these are more extensive
that what has been done in the previous work it is by no means a complete view.
We make claims about generality but extrapolate this from testing 8 datasets
with 29 projection methods. Besides this all the interpretation are performed
by domain experts, especially in the case where we perform direct comparisons
this problem shows. Here a user study for the exploration process would be
in order and strengthen our claims that these insights are attainable for data
analysts.

Another very fundamental problem with the explanation techniques is the
fact that they assume the neighborhoods in projected space matches the one
in the ND. In other words, the projected technique is perfect. In reality this
assumption never hold. Conversely if we were to use the ND neighborhoods the
image would be hard to interpret. Using varying neighborhoods would break the
technique entirely. We could color encode the neighborhood hit rate between
these spaces but our tool currently has no support for this, a shortcoming of
the current tool.

The final shortcoming I would like to outline is how our tool handles the
color encoding, in 3D we currently encode the confidence of the explanation and
normal. When looking at still images there is no way to differentiate between
the two and can lead to hard to interpret images. In hindsight we should have
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explored encoding the confidence into for instance the saturation.s

5.1.1 User evaluation process

One goal that we initially had for ourselves was to perform a user study based
on our implementation so we can argue if this type of analysis is valuable for
data analysts when compared to classical techniques. Sadly we did not have
time to formally set up a full user study due to too many open questions on our
side and time constraints. We did have a discussion about two different users
studies that would be beneficial for this research.

First of we have a quantitative comparison between our technique and clas-
sic methods. Here the key goal would be to show our tool can aid analysts
find areas of interest with regards to variance fast. To tests this we planned to
setup a task based study that provides researchers with a set of tasks for the
dataset and different sets of tools. The largest problem we encountered here is
the potential bias included in tasks, tasks needs to be constructed from an an-
alysts perspective and as such can possibly be solved by both new and classical
techniques. This is complicated because our explanation might provide ques-
tions and answers about the dataset that have not been explored using classical
methods and vice versa. Some tasks might be steer to what is possible with
our work but very difficult with existing methods. We argue that in the case of
users study with bias it would be more valuable to find why the possibility of
bias exists instead of executing a time consuming study only to find expected
results.

Another angle to the user study we can take is using the same explanation
techniques but using a qualitative comparison between 2 and 3 dimensional
projections. This is a more well defined subsection of our problem space and
has fewer parameters. Here the core idea is to again use a task based evaluation
over a series of datasets and then use differing dimensions. Sadly we had no time
to explore this option but we did do an expert study for a separate paper [79].

5.2 Conclusion

For our work we build tooling around the mostly theoretical local explanation
proposed by Da Silva [1] and extended by Van Driel [15] were non existed. While
these works only consider the 2 dimensional cases, we included support for ex-
plaining 3D projections as well. We also provide a direct comparison between
2D and 3D. We thoroughly validated the correctness of the produced explana-
tions at interactive speeds and then utilized this in real world case studies. We
also make this code publicly accessible to everybody with complete instruction
so everybody can use it.

We consider 8 datasets each projected using 29 techniques to both 2D and
3D, using this large collection of data we explored two main questions. Is there
an advantage to using 3D over 2D and are how do explanation perform when
facing real datasets. The first is explored on a superficial level, we find that 3D
does provide a small advantage if and only if the 2D projection is sound while
coming at the cost of a small interaction effort. The code opened the opportunity
for more research spearheaded by A. Telea in the form of an article [79] which
is still under submission. In chapter 4 we answer the latter question, here we
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explore how the explanation works given all the varying inputs. Here the effects
of all parameters are outlined and using this knowledge we provide a case study
for for 8 datasets to show how the tool and explanations can be utilized. We
show that it meets the aim of finding new novel insights into actual data!

5.2.1 Future work

From a practical point of view the tool could be extended in various way, most
important is that the explanations are easily accessible for other researchers.
One could of instance produce a stand alone small program that produces only
the explanations so future users could implement into their pipeline.

A more theoretical take would be the exploration of more types of localized
explanations, we only explore two general metrics that use a points neighbor-
hood but more might exists. I also argue that preforming a formal users study
into 2D versus 3D using explanations might generate more interest into the
sparsely explored topic of 3D projections. The last points from the discussion
also come to mind, ensuring the luminance is not encoded by 2 values and
visualizing local quality metrics can elevate the quality of the tool even further.
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