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Abstract

Shaded direct volume rendering is a common volume visuadizdechnique. Whenever there is a
desire to mask out a part of the volume data set, this techrdgn be combined with volume clipping.
However, the combination of volume clipping with shadecdedirvolume rendering leads to visible
artifacts in the final image if no special care is taken. Is thiesis a depth-based volume clipping algo-
rithm is presented that minimizes these artifacts, whilgimeing both performance and interactivity.
The resulting algorithm allows the clipping volume to bedfied as a high-resolution polygon mesh,
which has no direct correlation with the volume data. Ondefadvantages of this method is that both
the resolution and orientation of the clipping volume canrmalified independently from the volume
data set during visualization without a decrease in perdmge. To achieve a high performance, the
possibilities of consumer-level graphics hardware ardogqol.

The algorithm is integrated into two different ray castlased shaded direct volume rendering imple-
mentations. The first is an existing software-based impigation. The optimizations it contains, both
for performance and for image quality, are described, caetbivith the modifications to support vol-
ume clipping. The second volume renderer is a new implertientthat uses consumer-level graphics
hardware. This volume renderer was developed as a partsopithject. Since there are currently very
few implementations of ray casting-based volume rendesimggraphics hardware, this offers many
interesting research possibilities. A number of optimaa specific for ray casting-based volume
rendering on graphics hardware are discussed, as well astégeation with the volume clipping al-
gorithm. The result is a volume renderer which is able toradf¢rade-off between performance and
image quality. A comparison of both volume renderers is mjitegether with an evaluation of the
volume clipping technique.






Samenvatting

Shaded direct volume rendering is een veel gebruikt algerin het gebied van volume visualisatie.
Dit algoritme kan worden gecombineerd met volume clippingeen specifiek gedeelte van de volume
data set te maskeren, zodat deze niet meer zichtbaar is. eéashaded direct volume rendering en
volume clipping worden gecombineerd, dient er rekening meslen gehouden dat er diverse arte-
facten in het uiteindelijke beeld op kunnen treden. In dezgtie wordt een algoritme beschreven
voor volume clipping dat met behulp van de diepte structwaur ket clipping object dergelijke arte-
facten minimaliseert, terwijl de prestaties en interaigity met de data wordt gemaximaliseerd. Het
resulterende algoritme accepteert het clipping objeaerspolygonale mesh van hoge resolutie, welke
geen directe relatie heeft met de volume data set. Een vanatdelen hiervan is dat zowel de res-
olutie als de oriéntatie van het clipping object onafhdifik#an de volume data set kunnen worden
gekozen en zelfs worden veranderd tijdens de visualisaiiger dat de prestaties afnemen. Om hoge
prestaties te leveren, maakt het algoritme gebruik van dgefijikheden van grafische hardware, zoals
die momenteel aanwezig is op de markt voor consumenten.

Het algoritme is geintegreerd met twee verschillende ethaitect volume rendering implementaties,
welke beide gebaseerd zijn op ray casting technieken. Dtecisreen bestaande implementatie die
geen gebruik maakt van speciale hardware. Om een hoge beeliticit tezamen met hoge prestaties
te kunnen leveren, bevat de volume renderer een aantalagaties. Deze worden beschreven, samen
met de nodige wijzigingen om volume clipping mogelijk te raak De tweede volume renderer is een
eigen implementatie die wel gebruik maakt van grafischevinare, welke gedurende dit project is on-
twikkeld. Dit is een interessant onderwerp, omdat er reflatieinig onderzoek is gedaan in het gebied
van ray casting gebaseerd volume rendering met behulp adisajre hardware. De optimalisaties die
specifiek zijn voor deze manier van volume rendering wordespioken, tezamen met de integratie
met het volume clipping algoritme. Het resultaat is een n@uenderer welke schaalbaar is in beeld
kwaliteit tegenover prestaties. Tot slot worden de tweewa rendering implementaties met elkaar
vergeleken en wordt een evaluatie gegeven van het volumgiradj algoritme.
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Chapter 1
Introduction

The human visual system is a very powerful mechanism. It cangss large amounts of data and
extract various kinds of information. Scientists have ugiedalization since long ago to exploit the
human visual system by turning abstract data into imagesaatling a user to literally see patterns
and structure in the data. Often various interactions vrithisualization are offered to increase the
efficiency of comprehending the data.

1.1 Volume Visualization

Volume visualization is characterized by that the data teibealized is of a volumetric nature. Put
differently, the data represents a three dimensional sdi@lal defining a mapping : R3 — R.

If the data is uniform, which is a common property, it can bwred as a three dimensional matrix.
The elements of the matrix are often callakelsand they usually contain a single scalar, the voxel
intensity value. This kind of data appears in various aréagertise, such as seismic scans of a planet
surface structure in the oil and gas industry, simulatidnghysical processes or in medical imaging
where they are produced by Computed Tomography (CT) and dagResonance (MR) scanners.

The purpose of volume visualization is no different thart tifamost types of visualization; to gain
understanding of the data. For volume visualization the&d$ds on helping to understand the spatial
structure and orientation of the data. The volumetric ratfrthe data imposes a problem on the
process of visualization, as most display devices canaiisphly two dimensional images. Many so-
lutions to this problem exist, these form a set of volume afigation methods. A short and incomplete
list of methods is given here. An overview of available vokumisualization methods is also given in
[Yagel, 2000] and [Kaufman, 2000].

A simple visualization method is to display a single two disienal slice of the data by directly
mapping the intensity values to a grayscale gradient. Bsrioif interactivity that enables the user to
browse through the individual slices, the user can stilhgasight by viewing all of the volume data.
This method is frequently used in practice. Variations @ thethod include the planar reformatting
method, where the data along an arbitrarily positionedelarprojected on the screen. This allows
the user to view the data from different angles, althoughassingle slice at a time. The curvilinear
reformatting method allows the use of a ribbon instead ohagl meaning that the plane may be bent
along one dimension. Figure 1.1 (a) gives an example of aplaiormatting rendering of a human
hart.

Another class of methods projects the volume data on thescr&here are numerous ways to do
this. The Maximum Intensity Projection (MIP) method prdgethe maximum intensity value of the
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(d)

Figure 1.1: Different methods of volume visualization agglto a volume data set of the human hart;
planar reformatting (a), maximum intensity projection, ({spsurface rendering (c) and direct volume
rendering (d).

volume data along the viewing direction on each pixel of trean. Variations of this method project
the minimum or average intensity values. Figure 1.1 (b) shaw example of a maximum intensity
projection.

Isosurface rendering is a visualization modality that a@ihgisualizing an isosurface defined within a
volume dataset. The isosurface is characterized by a volaitheee-dimensional interpolation function
and a threshold value. The resulting image shows a surfaog athich the voxel intensities are equal
to the threshold value. All other areas of the volume datdedteompletely transparent. Figure 1.1
(c) shows this technique in action.

The last method of this short list is that of Direct Volume Bering (DVR). This method is a general-
ization of the isosurface rendering method. With DVRaasfer functioris used to map a voxel value
to an opacity and color. The transfer function defines a nmappi: R — S, whereS denotes a color
and opacity space, such as RGBA (Red/Green/Blue/Alpha)isbsurface rendering, the opacity com-
ponent of this mapping is defined as a step function. Theiadditfunctionality offers a much wider
range of visualizations, but also increases the compl@fithe rendering algorithm. An example of
a volume rendered with DVR is shown in figure 1.1 (d). Becaus® s the volume visualization
method that is the focus of this project, a more elaboraterigg®n is given in the next section.

1.2 Direct Volume Rendering

The purpose of Direct Volume Rendering is to create a rendesf a volume data set where each
voxel intensity is mapped to a color and opacity. Ideall§fedéent regions in the volume correspond
to different voxel intensities. This allows to visualize Iitiple voxel intensity ranges simultaneously,
while still being able to separate them in the final image. fedical volume data for example, one
can use this technique to give blood vessels and skin tisffeestt colors and opacities.

A common implementation of DVR is based on ray casting, buiynthfferent methods for DVR exist
[Lacroute and Levay, 1994], [Levoy, 1988], [Kaufman et 2D00], [Hauser et al., 2000], [Nielson and
Hamann, 1990]. For each pixel of the viewing plane, a rayssazhin the viewing direction. When this
ray intersects the volume, samples are taken at a regutandes Figure 1.2 shows this in a schematic
way. In this figure, the samples appear at a regular distanoethe viewer, and the samples are taken
not at the voxel boundaries but at arbitrary locations. Beedhe sample locations are generally not at
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Figure 1.2: Schematic overview of Direct Volume Renderitigs left image shows how samples are
taken along a ray while the right image shows how the actuaptavalue is computed using interpo-
lation.

the exact voxel positions, an interpolation function iscuddsing trilinear interpolation to compute the
interpolated voxel intensity is common practice and givesdgresults. Different sampling strategies
also exist to reduce the required amount of interpolatiom ekample is object-aligned sampling,
where all the samples are taken at the voxel boundaries. ¥angabe of this method is that it requires
only bilinear interpolation.

Once the voxel intensity is interpolated for a particulampke, atransfer functionis used to map
this value to an opacity and color value. This transfer fiamcis a one-dimensional function that
allows certain voxel intensity ranges to be mapped to diffecolors and opacities, thereby controlling
the visualization result. To compute the final color for aghiall samples along the ray need to be
accumulated. The accumulation can be done either befordéter applying the transfer function.
Considering the latter method, the opacity of the curreptaan be updated when accumulating a
sample using the following formula.

Qout = Qlrgy + Xsample * (1 - O‘ray)'

The result is an approximation of an integral of light inignslong the ray by means of a Riemann
sum. The complicated maths are not given here, but knowiagttie computation is indeed an inte-
gration is useful when implementing optimizations. A moetailed mathematical approach to DVR
is given in [Levoy, 1988] and [Chen et al., 2003]. The sanwplilistance, which is often also referred
to as the step size, is important when accumulating colsri,rapresents the length of the interval at
which the color and opacity are assumed to be constant ingi@e@mation. Having a higher sam-

pling rate, corresponding to a smaller sampling distartugs teads to a better approximation of the
integral which in turn leads to a better image quality, atdbst of a more expensive computation.

Since DVR is a computationally intensive rendering methodny optimizations and variations are
implemented. Some of these take advantage of by impositigctess on the transfer function. A
trivial example is when the transfer function used for thaaiy is a step function. In this case DVR
is equivalent to isosurface rendering. Another commonnaigttion is early ray termination. The
traversal of a ray can be terminated as soon as the accuchwlpéeity becomes close to one, as any
new samples would contribute for a negligible amount to twieulated pixel color.

Apart from directly implementing the ray casting method alibed above, other methods also ex-
ist. There are variations of the ray casting method, suchrasngegrated volume rendering [Eric
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B. Lum, 2004]. Among the methods that take a completely difieapproach is the shear-warp method
[Lacroute and Levoy, 1994]. Because DVR is such a compurtaliyp expensive visualization method,

much research has been done in performing DVR on graphicsvaae. This includes both hardware

specifically designed for DVR [Pfister, 1999] and using cometilevel programmable graphics cards
[Kniss et al., 2001].

1.3 Shaded Direct Volume Rendering

To enhance the ability to recognize the spatial structurthefdata visualized, shading can be added
to the DVR method. Before accumulation of each sample, thepkais lit using a lighting model

of choice. For this, the surface normal needs to be recarstitat each sample. A good and cheap
way of computing this vector is by considering the renderatbse to be a special kind of isosurface,
giving that the normal vector is equivalent to the normaliggadient of the data. Popular lighting
models are the ones developed by Phong and Blinn [Phong ], f8in, 1977]. Adding lighting
information to the rendered image greatly increases theuatraf information on the spatial structure
and orientation of the volume data embedded in the rendegisygecially when the rendering can be
interactively manipulated. This can lead to a better unideding of the data. To see what shading adds
to standard DVR, figure 1.3 shows a volume dataset rendeneg D¥R with and without shading.

Figure 1.3: A volume rendered using DVR without (a) and withghading applied.

1.4 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a method of constngatiomplex objects by combining several
simpler objects using a set of boolean operations. Thesetipes include the union, intersection,
difference and conjugation. For example, when the unionvofdbjectsA and B is computed, each
point in the resulting object is both ihand inB, thus(Vz : x € R" : x € AUB = x € AANx € B).
Similar relations can be constructed for the intersectiod difference operators. The union of an
object and the conjugate of another object is equal to tlierdiice of the two objects. An example of
a CSG operation is shown in figure 1.4.

The objects involved in the CSG operations can be describésbaurfaces, polygon meshes, or any
other representation that allows a classification of a pioirgpace to be either inside or outside the
object. When using isosurfaces for example, the applicaifdCSG is very direct. Given two surfaces
f(T) = cg andg(7) = c1, the intersection of the two would be the surface where bbthese
equations holds.
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One of the strengths of CSG is that the input of a CSG operat@onbe the output of a previous
operation. This allows the construction of very complex mlsdising only simple primitives. This is
why this concept is very popular in the modeling business.

1.5 Combining DVR with CSG

An interesting feature of DVR is that the transfer functidiowas one to map different voxel intensity
ranges to different colors and opacities. However, areabefolume that have the same intensity
cannot be separated. This is a problem if some part of thenmlueeds to be isolated from other part
that has equal intensity. In medical imaging for exampleptlvessels and bone have equal intensity
in a CT scan. Among others, this is a reason to combine CSGupes with DVR. This combination

is often referred to asolume clipping[Weiskopf, 2003] or renderingttributed volume datTiede

et al., 1998]. This allows only part of the volume to be reedereffectively cutting out a piece of the
original data. The interest is primarily in the visualizattiof the volume data, so often the object used
to clip the volume, which is called the clipping volume, ig 0o partially rendered. This means that
the most common CSG operation is the difference operation.

In order to perform a valid CSG operation between a voluma dat and a clipping volume, the
clipping volume should meet a number of requirements. Thiace described by the clipping volume
should be closed and not contain any self-intersectiorthele requirements are not met, the inside of
the object is not well-defined and there are no CSG operagiossible. Given a well-defined clipping
volume, there are two possible ways of using it to render palgt of the volume; either the part of
the volume that is inside or the part that is outside the ailippolume can be rendered. The former is
referred to avolume probingand the latter is calledolume cutting Figure 1.5 gives an example of
these two concepts.

Most current volume renderers that support volume clippsupport only the use of clipping planes
instead of arbitrarily definable clipping volumes. Usingpping planes severely limits the possible
clipping geometry. Although some convex objects can beagmated using multiple clipping planes,
most implementations are built with the use of only very fdipging planes in mind. This renders
them not suitable for the approximation of curved surfacgsing concave surfaces or performing
volume cutting (even with convex objects like a cube) is isgible with support for only clipping
planes. Thus there is a need for arbitrarily definable afigpiolumes.

Volume renderers that do support more complex clipping gagpmoften offer volume clipping in

the form of a binary volume or an isosurface to act as a maskihgne. This method has several
downsides. Since the original volume data usually reqanedatively large amount of memory (in the
order of one gigabyte), using a second dataset of similarisinnacceptable. Binary volumes offer a

P90

Figure 1.4: An object constructed using CSG as the differdratween a cube and a sphere.
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(b)
Figure 1.5: Examples of volume cutting (a) and volume prglfly) applied to a volume data set of an
engine.

Figure 1.6: Artifacts caused by volume clipping and volurnading.

solution to this problem in that they reduce the amount of wrymequired. However, binary volumes
also give rise to aliasing artifacts, which require intégtion functions to be removed. Isosurfaces
defined by a volume dataset usually do not suffer from algpsirtifacts, but require considerably
more memory than binary volumes. These additional memayirements are unacceptable for most
practical cases. Thus there is a need to store the clippilugneoin a memory-inexpensive way while
avoiding both aliasing artifacts and the need for interpafa

Another problem with most implementations of volume clippis that artifacts appear near the bound-
ary of the clipping volume at areas in the volume where thiedihces in intensity of neighboring
voxels are small, especially when volume shading is appligtw artifacts are caused by a not well-
behaving gradient in those areas of the volume. This meatdtdctause the gradient of the data in
those areas of the volume is close to zero, the variationsechly noise in the data suddenly have a
large effect on the gradient, causing th@malizedgradient to show non-continuous behavior. The
gradient is used in the illumination terms, where the noislgavior becomes visible. Other artifacts
that may appear are interpolation artifacts, for examplemthe clipping is determined on a per-voxel
basis, causing jagged edges of the clipping volume boundargxample of both noise and interpola-
tion artifacts is given in figure 1.6.
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1.6 Requirements

To overcome these problems with current volume clippinglémgntations, a new volume renderer
was engineered. A list of requirements that his volume rmrdeas designed to meet is given below.
The problems mentioned above are contained within this list

RO The clipping volume does not require much memory as stoBgeause volume datasets are often
large, other data should be as memory-conservative aspmssi

R1 The resolution of the clipping volume is independent of dfidhe volume dataTo allow smooth
curved surfaces to be used, a high resolution for the clipplume is required. To prevent
aliasing artifacts, it should be possible for the clippir@wne to be specified with sub-voxel
accuracy.

R2 The clipping volume is stored in a general forRor the volume renderer to be applicable in many
different cases, a general form should be chosen to stordigipéng volume. This allows it to
be specified by many different representations, makingaghderer more flexible.

R3 The clipping volume can be transformed independently fltwrvblume Being able to translate,
rotate and scale the clipping volume independently fromvtiieme greatly increases both the
interactivity with the visualization and ability to appesid the spatial structure of the clipped
volume.

R4 The artifacts caused by not well-behaving gradients neardtiges of the clipping volume are
minimal. The presence of noise in the gradients not only decreasesvérall beauty of the
visualization, it also destroys the ability to use the lightto perceive the spatial structure of the
volume. Therefor these artifacts should be minimized.

R5 The overhead caused by the use of a clipping volume is minindalume rendering without
clipping is already a computationally expensive rendernmgthod. To keep the interactivity
as high as possible, the addition of volume clipping shoalase minimal overhead.

R6 The volume renderer is built on top of the Volume VisualmatComponent (VVC) libraryThe
VVC is a library designed by Philips that provides an aratiiteal framework suitable for vol-
ume rendering. It offers functionally for constructing aise to applications that wish to perform
volume rendering. The VVC dispatches the actual renderfnpeoscenes constructed by an
application to one of thdrivers a software module that is capable of performing the actral r
dering of a scene from the VVC. By implementing the volumeleer as a driver for the VVC,
other software components that use the VVC can use the negr grith only few modifications.

Requirement®R0, R1, R2 and R3 were met by storing the clipping volume as a polygon mesh. A
polygon mesh does not require much memory to store, they @aa dresolution that is independent
of the resolution of the volume data and they provide a gérmar flexible way of storing geometry.
Other forms of specifying a surface such as an isosurfacsetraf Bézier patches can all be converted
to polygon meshes. By transforming the vertices of a polygesh with a transformation matrix prior
to processing, the clipping volume is effectively transied independently of the volume.

Meeting requiremenR4 was achieved by using the gradient of the clipping volume tleaedges of
the clipping volume. In the case that the gradient of the maus not well-behaving in those areas,
the possible noise is suppressed by using the normal vekctoe alipping volume. This relies on the
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assumption that the clipping volume is smooth. This apgrdas the additional advantage that the
spatial structure of the clipping volume is visualized mdisinct.

Another advantage of using polygon meshes as a representitithe clipping volume is that they
can be rendered very fast by current graphics hardwarelyeamdilable in consumer-level PCs. This
feature was exploited to meet requiremB&; while still offering a high-resolution clipping volume.

Apart from the volume renderer, implemented as a VVC driv&8)( a stand-alone application that
demonstrates the various possibilities of the driver aeddlchniques implemented, allowing interac-
tion with the scene, was also made.

1.7 Report Layout

A more detailed discussion of what has been done before irard of volume clipping is given
in chapter 2. In this chapter, possible volume clipping téghes are evaluated, including volume
based methods and depth based methods. A technique thaaldestor performing volume clipping
with polygon meshes, a depth based method, is discussedrm detail in chapter 3, in which two
possible approaches are evaluated. Chapter 4 deals withtdggation of these clipping techniques
with two volume rendering engines. The first one is a softvie®ed component provided by Philips,
the second engine uses modern graphics hardware and wdspadelvas part of this project. Some
minor implementation details are listed in chapter 5, nyainé modifications made to the VVC and the
description of the driver that was developed. The resultsaeacomparison of the different techniques
is given in the conclusion in chapter 6.



Chapter 2
Volume Clipping Techniques

In this chapter an overview is given of some of the researahtths been done in the areas of volume
rendering and volume clipping. As discussed in chapteréd ptioject focuses on the part of volume
clipping. Two popular methods of volume clipping are explhrgiving a listing of their advantages
and disadvantages. Out of these two techniques, the sesexglored in greater detail and a starting
lead is given for chapter 3.

2.1 Literature Research in Volume Clipping

Many research has been done in the area of volume renddtargfure offers a wide variety of meth-
ods for DVR such as the shear-warp method [Lacroute and L.e\#84] or methods based on ray-
casting [Levoy, 1988] and many variations of these two. Retast few years also a lot of research has
been done on the implementation of various volume rendexiggrithms on modern programmable
graphics hardware [Roettger et al., 2003], [Pfister, 19%4{ster et al., 1999], [Kaufman et al., 2000],
[Engel et al., 2001a]. Most of these sources that perforranael rendering on hardware use methods
that are significantly different from the ray casting baseadering methods. Most of the prominent
hardware-focused algorithms render the volume as a sebeflimnensional slices perpendicular to the
viewing direction.

As mentioned in [Weiskopf, 2003], the research in the areaobime clipping is relatively limited
and there is much left to explore. Although there exist Bichat cover the area, virtually all of
these are occupied with using clipping planes [Chen et@03Rinstead of arbitrarily defined clipping
geometries. This is likewise true for most existing impletagions of volume clipping. Even the
current VVC to be used in this project has an architecturé dlaws a user to define only clipping
planes instead of arbitrary clipping volumes.

One of the very few to investigate the possibilities of maymplicated clipping geometries is Weiskopf
et al., who give an overview of suitable rendering methods&tume clipping with arbitrary clipping
volumes in [Weiskopf, 2003]. This article is an update of daglier article [Weiskopf et al., 2002].
The prime focus of this article is the use of modern grapharshivare to achieve volume rendering
with interactively changeable arbitrarily defined clippivolumes. Adding an illumination model to
the presented rendering methods is also covered. With ttepérn of the strict focus to perform the
volume rendering on programmable graphics hardware, nhesiesits of that work are applied in this
project.

Most methods for volume clipping can be assigned to one ofdlasses; the class of methods that
take volume-based approach and methods that take a degg-Bpproach. The same classification is
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made in the work of Weiskopf et al. [Weiskopf, 2003]. The nev sections explore these two classes
in greater detalil.

2.2 \olume-Based Clipping Approach

The methods that take a volume-based approach at volunpéngjiponstruct a second volume dataset
of the clipping volume (often referred to as the 'voxelizdigging volume’) and use it while perform-
ing the volume rendering of the original volume dataset tmjgote the (in)visibility of the voxels. The
clipping volume can be represented by any three-dimenissnaar field defining an isosurface. A
disadvantage of this method is that in order to make the mgneguirements acceptable, the second
volume dataset is to be defined as a binary volume. In thisease voxel is represented by a single
bit indicating that the voxel either belongs or does not hglto the clipping volume.

A problem with using a second volume dataset is that sligtttgnging the clipping volume requires
updating the related volume dataset as well. Even when belytientation of the clipping volume

with respect to the volume dataset is changed an updateusedq This is usually a time consuming
process, thereby reducing the degree of interactivityo A& use of binary volumes is not available
on current programmable graphics hardware, as these aneizgad for floating point operations and

offer no instructions for bit operations.

Weiskopf mentions another problem in [Weiskopf, 2003] witsing binary volumes; the gradient
information available from the clipping volume is very limdl, causing the surface to look very jagged
when volume shading is applied. A solution is to store or cot@pghe Euclidean distance to the
clipping volume. This makes trilinear interpolation dgisampling possible and a gradient in distance
gives a good approximation of the gradient of the clippinyree at that location. Storing the distance
is however unacceptable from a memory-consumption poiniienf, while computing the distance
during rendering is computationally expensive.

Specifying the clipping volume as a volume dataset offdetively few restrictions to the complexity
of the clipping volume. Moreover, there are no ambiguitiest timay appear with surfaces, such as
self-intersections or gaps. However, the resolution ofdipping volume is limited to the resolution
of the volume data. The aliasing effects that may appear dweldw resolution can be somewhat
reduced by interpolation, but most simple (and fast) fildwa't perform well for generic volumes.
Linear interpolation cuts off corners of hard-edged sw@$aavhile nearest neighbor sampling causes
jagged edges on rounded surfaces.

The numerous disadvantages mentioned above renders tthisdnet suitable for this project. Cur-
rently the volume data may well be over one gigabyte. Coositrg a second volume dataset would
enforce the use of binary volumes, while the need for a highgenquality would in turn enforce the
use of interpolation to smooth out the jagged edges. Theedsed interactivity due to modification
restrictions adds to the reasons to reject this method. @égoof the goals of the project is to find an
alternative to current methods that take this approach.

2.3 Depth-Based Clipping Approach

A depth-based approach exploits the depth structure of lthpireg volume to compute the depth-
segments which should be rendered for each pixel. This rdetfwrks particularly well with ray
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Figure 2.1: Intersection segments; intervals on the depththat are inside the clipping volume.

casting-based volume renderers. For every pixel of theimigwlane, there is a corresponding ray to
be used by a ray casting-based volume renderer. Findinghtbevals along this ray that are on the
inside of the clipping volume provides enough informatiorrénder only those parts that should not
be clipped; when these intervals are known, volume rengesiperformed only on those intervals of

the ray. This reduces problem of volume clipping to findingisections of the clipping volume along

a ray and then applying a modified volume rendering technidjbés process is depicted in figure 2.1.
The intervals along the ray that should not be clipped afedaitersection segments the ray.

A well defined depth-structure is required for the depthebdaspproach to work. This means that there
are a number of restrictions to the clipping volume. Thepilig volume should be representable by
a closed and non-self-intersecting surface. Note thatwhis one of the assumptions on the clipping
volume made in chapter 1. The volume-based approach itplinakes a similar assumption, since
it is impossible to represent a self-intersecting or opeafasa by a volume dataset. Apart from this
restriction however, there are no strict limitations on Hbe clipping volume itself is defined. Binary
volumes, isosurfaces and polygon meshes are all allowabhteats. Therefore a suitable format can
be chosen to meet requireme®8 andR2.

The biggest difference between the depth-based and vohased approaches is that there is no direct
relation between the volume dataset and the clipping volurhes allow for interactively changing the
clipping volume independently from the volume, meetinguisementR3. More important, sub-voxel
accuracy is achieved without the need for interpolatioresas, since the resolution of the clipping
volume is independent of that of the volume, meeting requéngt R1. In fact, due to the nature of
the approach, the intersections are always computed witpipel accuracy. The sub-voxel accuracy
prevents various aliasing effects mentioned earlier, Wwiridurn provides smoother gradients. Infor-
mation required for proper shading, such as the surfacealorector, is also often readily available,
making it possible to meet requiremedrd.

The depth based approach igeometry dependemjpproach, opposed to the volume based approach
which is geometry independent. The term geometry heregdéethe orientation of the clipping
volume, the volume dataset, the camera and the projectitingse basically all settings that control
the projection to the viewing plane. This is an importantesiénce, as this means that with the depth-
based approach the clipping volume may have its own georttaityis independent of the rest of the
geometry. This results in great interactivity, as the dhigpsolume can be rotated, translated and scaled
without any additional costs. Such degrees of interagtiaite in general not available for geometry
independent approaches. This property also helps meeatesmntR3.

Since the depth-based approach has many advantages oveslihge-based approach, the latter
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method is not further explored. Instead, a more detailek o the depth-based approaches is taken,
exploring various algorithms and different optimizatighsreof. This decision was made based upon
the information available in literature and the large numifadisadvantages of the volume-based ap-
proaches.

2.3.1 Ray Casting Method

Although Weiskopf solely mentions the use of graphics hamwo implement the depth-based ap-
proach of finding intersections, there are a different smhst Figure 2.1 explains volume clipping for

ray casting based volume rendering and in fact the deptbtataican also be computed by directly
applying ray casting. To do this, aray is casted for each pitde viewing plane in the same direction

as will be done for the volume rendering. Assuming that tigpeig volume is defined as a triangular

mesh, the set of triangles that the ray intersects is corddoteeach ray that is casted. Using this
set of triangles, a sorted list of depth values and gradiesntseasily be constructed, yielding the ray
segments on which volume rendering should be applied.

Ray casting has a reputation of being relatively slow, butH particular purpose only the intersec-
tions with the clipping volume need to be computed, so nacate lighting or shadow computations
are required. On the other hand all intersections are redyuwhile for ordinary ray casting applica-
tions the ray traversal is terminated after the first (oftisest) hit. This makes it difficult to estimate
the performance in terms of speed compared to traditioyataiating. As this approach is interesting
to compare with a rasterization based one, the idea of uaingasting to compute the ray segments is
explored in more detail in section 3.1.

2.3.2 Rasterization Method

An alternative use of the depth structure of the clippinguad is to use a rasterization technique
to project the clipping volume onto the viewing plane. If ttig@ping volume is represented by a
polygonal mesh, this means that each triangle (or polygopyadjected on the viewing plane and the
intersection data (such as depth and gradient vector) tegpolated along the pixels covered by the
polygon. This approach is particularly interesting sincerent graphics hardware is specialized in
performing rasterization. Modern graphics hardware efarsa programmable pipeline along that
process, yielding a high flexibility and a wide range of pbiisies. The high performance offered by
the use of graphics hardware should help to meet requireRtent

There is a problem however on how to store the data. Ofter tisesnly a single plane available to

store the data, especially when the approach is implememtédrdware. Storing only a single depth
value for the clipping volume would make the resulting imaggnificantly deviate from the desired

result. Weiskopf offers some solutions in [Weiskopf, 2068th as front- and back-face culling and
the use of depth-peeling to combine multiple rendering gm#s find multiple layers of intersections.

These solutions, among others, are discussed in more mhesaittion 3.2 where this method is treated
in more detail.
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2.3.3 Comparing Ray Casting to Rasterization

The ray casting approach differs a lot from the the rastkomaapproach. While the ray casting
approach maps the pixels of the viewing plane to the triangi¢he clipping volume, the rasterization
approach does the opposite. The two approaches offerea a@iew differ a lot in complexity. It is
common for ray casters to be well scalable in the number gfgoois, while increasing the dimensions
of the viewing plane usually decreases performance. Forabierization method the opposite is
commonly true. Increasing the number of polygons meansntioaé polygons need to be rasterized,
while the area of the viewing plane usually is of less impurta This difference in complexity makes
it interesting to compare the two methods.

2.4 Combining Volume Clipping with Shaded DVR

As mentioned in chapter 1, the use of volume shading in coatilbim with volume clipping may cause
artifacts in areas where the gradient of the volume is notleftaving. The reason is that the gradient
in such areas cuts through a part of the volume data where thdittle variance in the values of
neighboring voxels. The obvious solution is to use the gnatdof the clipping volume in these areas.
However, if the gradient is used only at the intersectiom{®piartifacts may remain.

To explain this in more detail, some more theoretical bamlgd is required. Weiskopf mentions four
criteria that should be met in order to achieve successiuhwve shading in combination with clipping
in [Weiskopf, 2003]. The firstis that in the vicinity of thembing volume, the shading should allow the
viewer to perceive the shape of the surface. Second, trereliff optical models used for the volume
and the clipping volume should be compatible and not caugalsaontinuities. Third, areas of the
volume not in the vicinity of the clipping volume should net &ffected by any different optical models
used for areas that are. Finally, the volume clipping shbldndependent of the sampling rate used
for the volume rendering.

The solution mentioned above meets the first three critbrianot the fourth. The intersections of
the rays with the clipping volume define an infinitely thinfage. Thus if the gradient is only used at
the exact point of intersection, it is used in only a singlmgie during the volume rendering. Since
the amount a sample contributes to the final pixel color ieddpnt on the sampling rate, the fourth
criteria is not met. A solution offered by Weiskopf et al. hretsame article is to “impregnate” the
gradient of the clipping volume along a layer of finite thieks into the volume data. This is shown in
figure 2.2, which originates from [Weiskopf, 2003].

With this solution, the gradient of the clipping volume isdgor multiple samples during the volume
rendering, and that number of samples depends on the sgmaten The actual length of the segment
of the ray where the modified gradient is used is constantigirout the entire image and is a parameter
of the visualization; it defines the thickness of the impedgm layer. The gradient used by the samples
that are inside the layer should be computed using

whereSdZ-p(?) and S, (') represent the gradient at locatian of the clipping volume and volume
dataset respectively andz") defines a weighting functiow : R? — Rio,1;-
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Figure 2.2: Using the gradient of the clipping volume on dmitely thin layer (a), or a thick boundary
(b) of the volume data.
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Figure 2.3: If the gradient impregnation algorithm is onphed after an intersection with the clipping
volume, sudden changes in the optical model may appear.

If the voxel values at the clipping edge are mapped to a loveibpahe voxels beyond the edge may
give a significant contribution to the pixel color. If the \yhting function is defined as a step function,
the sudden change of the optical model near the end of theegnption layer may become visible. To
prevent these discontinuities from being visible, a linfeaiction can be used.

Note that if the thickness of the impregnation layer is to@kbnthe contribution of the samples that
use the gradient of the clipping volume may become insigaifi@and the noise caused by not well-
behaving gradients of the volume may still be visible. Thigficourse not true for isosurface rendering,
since there are no transparent areas in that case, so eatlnpilie viewing plane is made up of at
most one sample. If the layer thickness is too large on therdtand, the gradient information of the
volume is lost and the spatial structure of the volume becomaeder to perceive.

It is vital that the gradient impregnation is applied in akas of the volume that are near the edge
of the clipping volume, even if there is no intersection witlat clipping volume. Figure 2.3 shows
the problem that may arise if this is not done. The left figurevss a sharp edge where the gradient
impregnation layer ends. In the final image, this often cgroads to a steep change in color intensity,
as there is a steep change in the average gradient. By usadgegt impregnation throughout the
entire volume, the situation of the right of figure 2.3 is &sleid. In this case the effect of the gradient
impregnation layer is smoothly decreased, yielding a smtranhsition in edge intensity.
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The solution of gradient impregnation works well in combioa with the volume-based approaches
where the Euclidean distance to the volume is known, as tsiarce can be used during the volume
rendering to determine whether the gradient of the volunta dliathe clipping volume should be used.
For the depth-based methods however, this informationtisveilable.

A solution for the depth-based method is to use the distamdbet clipping volumdn the viewing
direction, which corresponds to the difference between the depthedfadt intersection with the clip-
ping volume and the depth of the sample where the gradieatjisned. This may give mathematically
incorrect results near an edge of the clipping volume that Ie with the viewing direction, since
the gradient may not reflect the correctly interpolated igrétd Fortunately any artifacts that may be
caused by this limitation are not noticeable.

As an optimization, it is sufficient to apply the above tecjug only for edges of the clipping volume
that are facing the viewer. Edges that are not facing theesdwave a number of samples that are used
for volume rendering in front of them. If the ray is not alrgadrminated by early ray termination, any
noise that may originate from not well-behaving gradiestasually hardly visible. Moreover, these
backward facing edges are not used to perceive the spatiatiee and orientation of the volume and
clipping volume, so mathematically correct behavior isssIgtrict requirement in these areas as well.
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Chapter 3
Depth-Based Volume Clipping Techniques

Due to the large number of advantages over volume-baseditpes, the depth-based approach for
performing volume clipping is further examined. In this ptex two depth-based volume clipping

techniques are explored in detail. In the first section tlyecessting method is examined. The raster-
ization method is explored in the second section. Finaldyttho methods are compared. Note that
during the project this comparison was done at a stage wherasterization method was only roughly
examined. At that time tests indicated that the rastedmathethod was, at least for practical cases,
many times faster than the ray casting method. That is treonethat research was directed at the
rasterization method. Therefore the section on the rast#sn method is much more elaborate than
that of the ray casting method.

3.1 Ray Casting Method

There are many volume rendering techniques that are basealyarasting. Therefore, using a ray
casting technique to perform volume clipping seems nat&®ay casting has a relation with ray tracing,
which is known to produce good results with respect to imagsity, but being relatively slow in doing
so. It is however not fair to make this comparison directigcs there are a number of differences to
classical ray tracing applications. If ray casting is usetly do find the intersection point with a
polygonal mesh, there is no need for lighting or shadow cdatfmns, which would lead to a better
performance. On the other hand, not only the first intersacthe one closest to the viewer, is needed,
but possibly all intersections along the ray. This leadsde@eased performance in turn, so it is hard
to make clear estimations of the performance.

A clear advantage of the ray casting approach is its sintyligVriting a brute-force ray caster can be
done in a very short time, using few lines of code. From thattpan, there are several optimizations
possible to increase the rendering speed.

In the rest of this section the basics of ray casting are dimifirst, after which various approaches
taken to improve the speed of the ray casting are discussédhefend of the section is a short
conclusion with the advantages and disadvantages of theasding approach.

3.1.1 Using Ray Casting for Volume Clipping

Since the basic concept of ray casting for use in volume mimgleas been explained in chapter 1, only
a short introduction is given with the elements specific fodifig intersections. As with most forms of
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ray casting, a ray is casted for every pixel of the viewingplan the viewing direction. For each ray,
the objects in the scene are tested for intersection withrétya If an object, which could be any type
of object, intersects with the ray, the intersection deptth tne gradient at the intersection point are
computed and stored for the pixel the ray belongs to. A difiee with most ray casting applications
is that for this particular purposal intersections of the ray with the objects in the scene shbald
stored, opposed to just the one closest to the viewing p&sis, common practice in most ray casting
applications.

This method of volume clipping integrates very well with regsting-based volume rendering tech-
nigues. The process of finding intersections along a rayddoeilperformed in parallel with the traver-
sal of the same ray used for the volume rendering. This woaklenthe volume clipping benefit from
early ray termination, preventing the computation of iséetions that are not used during the volume
rendering.

A brute-force implementation of ray casting has a very batbpmance. To increase this performance,
there exist many optimization techniques. The next fewactitns describe some common optimiza-
tions that were implemented. Section 3.1.2 deals with teght optimizations, while section 3.1.3
concentrates on low-level optimizations.

3.1.2 Spatial Subdivision

An important feature that many ray casting implementatiirege is a data-structure to arrarsgatial
subdivision This term refers to mapping the objects to be tested fordgattion to certain parts of the
virtual space that is to be traversed by each of the raysolildithen allow an efficient construction of
a list of objects that are close to a given point in that spd@bés removes the need to test all objects for
intersection with a particular ray, since only those olsj¢icat are close to the ray need to be tested. This
greatly decreases the number of intersection computati@isheed to be performed, thus increasing
performance. For virtually all ray casting and ray traciegderers, the spatial subdivision schema
is the most important element of the speed enhancing teebsiqThere are many different spatial
subdivision algorithms, among them are the uniform gri@, dlstree and the kd-tree. An overview
of the most popular algorithms is given in [Havran, 2000]t many more exist, such as the ones
described in [Arvo and Kirk, 1987].

Most popular ray tracing packages use kd-trees as theiabpabdivision schema. It has a reputation
as being very fast and suitable for ray tracing, which isifigst by literature such as [Havran, 2000].
Except for extremely dense scenes, the kd-tree perfornms blmvever, for this project the scenes
differ a bit from the general scenes frequently occurringaptracing. General ray tracing scenes are
usually very sparse, where a highly detailed object coveraall part of the screen, while other parts
of the screen remain relatively empty. When comparing apstibdivision algorithms, this problem is
referred to as the “bunny in stadium” problem, which will bepkained in more detail in section 3.1.2.

Although literature recommends using kd-trees [Havra®020the choice here is made for octrees.
First of all, octrees are the next best thing to kd-treesrimseof performance, but the most important
argument originates from the possibilities with volumed®iing. The volume data set is organized as
a grid-like structure. Often volume renderers contain aiv@-based optimization that allows them
to discard entire blocks of voxels at a time based on certétieria. If the spatial subdivision scheme
used for the volume clipping also contains these blocksyahene renderer could also discard a block
of voxels if it is entirely outside the clipping volume. Tlegossible optimizations lead to the choice
of grid-like spatial subdivision schema’s like the unifogmnd and the octree.
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Figure 3.1: A triangle located in a two dimensional spatidddivision structure. The left image (a)
shows a uniform grid, the right image (b) a quadtree, whicthéstwo dimensional equivalent of an
octree.

Both the uniform grid and the octree are described here. @rgfiort summary of the algorithms
is given, together with the most important features. Moreitkrl description of both the methods,
possible variations and construction and traversal dlyos are all available in literature.

Uniform Grid

Before implementing an octree as a spatial subdivisionraehéhe uniform grid is explored first. As
will become clear later on, the uniform grid can be consider®a special case of an octree. According
to literature, the uniform grid performs very bad in geneoally on very dense scenes it outperforms
other algorithms. It is the simplest form of spatial subslivi.

A uniform grid is, as its name implies, a uniform grid of cellBach cell contains a list of objects
that intersect with that cell. Given a point in space, thaesponding cell of the uniform grid can be
computed inD(1) time, due to the uniformity of the grid. If the cells are smaibugh, evaluating only
those cells of the uniform grid that intersect with the raingesvaluated leads to examining only those
objects that are close to the ray. An example of a two dimeasioniform grid is shown in figure 3.1

@).

The main problem with the uniform grid is commonly demonstlawith the “bunny in stadium”
problem. Suppose the scene consists of a huge stadium wéity awmall yet extremely detailed bunny
at the center (the bunny refers to the famous Stanford Buampglygon model commonly used as
a demonstration model in research). Because the bunny isrgodetailed, the size of the cells of
the uniform grid should be small as well to gain a good spatigdivision. But because the grid is
uniform, there are a lot of cells in the huge open space oftditam. This not only wastes memory,
but it is the prime reason for the bad performance, as alkthewpty cells have to be evaluated when a
ray passes through the uniform grid.

Once the uniform grid has been constructed, it needs to erted by a ray. This means that for a
given ray, all the cells of the uniform grid that intersectiwihe ray should be examined, testing the
objects that intersect with the cell for intersection with tay. An efficient way to determine these cells
is by traversing the grid along the ray using a three dimeragidigital differential analyzer algorithm,
or 3D-DDA for short, which is described in [Amanatides anddNd987]. The algorithm contains no
recursion and uses mainly additions for its computatioivéng a good performance.
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Octree

Octrees extend the uniform grid by imposing a tree-likecttme on top of the uniform grid. Figure
3.1 (b) gives an example of a quadtree, which is the two diloeakequivalent of an octree. At the
root of the octree is a single cell which is the bounding vatuoh all the objects. When constructing
the octree, a recursive process is started. Each cell iketetthere is any object inside. If the cell is
not empty, eight (or four for the quadtree) child nodes aeaiad, each covering a different part of the
current cell. The recursion is stopped when an empty cethé®entered or a predefined depth of the
tree is reached.

The advantage of the octree is clear in figure 3.1 (b), largetenegions are left empty, so they can be
easily skipped during traversal. However, the traversgorithm is slightly more complicated. Given
a point in space, finding the corresponding cell tal&%g n) time, wheren is the granularity of the
grid, compared ta?(1) for the uniform grid. There is an extension of the 3D-DDA altjon for
octrees [Sung, 1991], but it performs bad for unbalancesstfRevelles et al., ]. Skipping the empty
regions is exactly the reason to use an octree instead of@mngrid, so this is a bad idea. A much
better algorithm is presented in [Revelles et al., ], whiaswhe traversal algorithm of choice.

3.1.3 Computing Intersections

The spatial subdivision data-structure only gives a rougr@aximation of which objects are near
a ray and which not. Once an object passes the spatial ssiodiviest, the precise test whether it
intersects with the ray and at what depth values still needt® tcomputed. Since the clipping volume
is defined as a triangular mesh, there is the need for a mygle intersection algorithm. Even though
the spatial subdivision seriously decreases the amoumistsf heeded for a rendering, the actual ray-
object intersection algorithm is usually still executedrméimes. Using an efficient algorithm is thus
required to achieve high performance. In this section a @ispn is made between various ray-
triangle intersection algorithms. Finding an efficientaxlthm for this test is only a local optimization
(anO(1)) to the problem. The spatial subdivision data-structuseghauch larger effect on the overall
performance.

A few popular algorithms were studied and implemented andallfenchmark was run to determine
the fastest algorithm. Much work has been done in this atea.om comparing various ray-triangle in-
tersection algorithms, such as [Segura and Feito, 2001éwApbpular and frequently used algorithms
were implemented, being Moller-Trumbore [Moller and mitore, 1997] and a few optimizations
thereof described in [Moller, 2000], Badouel [Badouel9@Pand an algorithm described by Dan Sun-
day [Sunday, 2001]. Other algorithms such as using plic&erdinates were not investigated, as no
high-performance ray casting or ray tracing applicatiomskaown that use these algorithms.

Besides a comparative study, [Segura and Feito, 2001] als@ios a new algorithm that is claimed
to be faster than both Méller-Trumbore and Badouel. Howawve pre-computations were made for
the algorithms when comparing the algorithms. Combinedi e fact that no pre-computations are
possible for the algorithm presented by Segura, the peenoa gain would be insignificant or perhaps
completely lost. A much stronger argument not to use thisralym is that the result of the algorithm
is solely a boolean indicating if the ray intersects with thigngle or not, so no depth information is
returned (opposed to the other algorithms mentioned).eShme depth information is needed in case of
a hit, this would have to be computed, further degrading grfopmance of the algorithm. The number
of references to the algorithm is also very low, indicatihgttit is not very popular among ray tracers.
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\ Algorithm | Relative Performancé
Moller-Trumbore (original) 0.81
Moller-Trumbore (variant 1 0.91
Moller-Trumbore (variant 2 1.00
Moller-Trumbore (variant 3 0.91
Moller-Trumbore (variant 4 0.87

Dan Sunday 0.87
Badouel 0.58

Table 3.1: Relative performance of various ray-triangterisection methods.

Most algorithms were presented complete with a C implentiemta Since performance is a much
higher requirement than memory usage, the algorithms wigietlg modified to make maximal use
of pre-computation. In all cases these pre-computatiggestereased the speed of the algorithm. The
modified algorithms were used in a benchmark. The clear wiisntne Moller-Trumbore algorithm,
which seems to be in line with the conclusions of other peagl®ss the Internet. The optimiza-
tions mentioned in [Mdller, 2000] improved the speed of digorithm even further. Table 3.1 gives
an overview of the performance, measured as the averagatiexetime, of the various algorithms
compared to the best variation of the Moller-Trumbore &thm.

3.1.4 Performance Summary

The previous sections describe a ray casting method with afiéw basic optimizations. By using
more advanced and case-specific algorithms a higher pefurenis probably possible. This set of
optimizations is sufficient for a quick comparison howevene basic implementation was compared
to a number of large fast ray tracers found across the Irtesaeh as [Federation Against Nature,
2004]. All of these were faster, but not by an extreme amothis is an indication that if more time
was spent on optimization, the performance would probatdyeiase, but not much.

As an indication of the performance, on a Intel Xeon 2.8 GHzmree, a low polygon mesh of 1200
triangles could be ray casted at around 20 frames per secitimé wiewing plane of 256x256 pixels.

When moving to higher polygon meshes (more than 50000 teahghe frame rate dropped below 5
frames per second. This seems to be in line with most oth&tinea ray tracers encountered. Most
of those proved to be very scalable in the number of triangdesthe performance was usually non-
interactive.

An advantage of the ray casting method is that there areestiag optimizations possible for the
integration with a ray casting-based volume renderer. Qnrbese is to perform the ray casting in
parallel with the volume rendering to avoid the computatibimtersections that are not used. Thereis a
problem with this optimization though. During the ray cagtof the clipping volume, all computations
are performed in object space, while all computations edlabd volume rendering are performed in
voxel space. So either for each intersection test the sgpoph has to be transformed to object space,
or the object data has to be transformed to voxel space as@prputation step. The former will not
lead to a very good performance while the latter will loseititeractivity offered by the depth-based
approach. These are all indications that the ray castingpadewill not be very fast if more time is
spent on it.
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3.2 Rasterization Method

A completely different method of computing the interseasiavith the clipping volume compared to
ray casting is to use a rasterization method. For this methectlipping volume needs to be defined as
a triangular mesh. First, the intersection depth and noweetbr is computed for every vertex of every
triangle of the clipping volume. Next these vertices argemted onto the viewing plane, after which
the intersection depth and normal vector are interpolal@ugeeach triangle and stored for each pixel
of the viewing plane. Compared to the ray casting methodrakeerization method computes which
pixels belong to an intersection, while the ray casting mettomputes which intersections belong to
a pixel. Due to the nature of rasterization, no spatial stibidin needs to be performed if all triangles
are visible. This is due to the fact that every triangle is peapto exactly those pixels that are covered
by it. Spatial subdivision would only prevent rendering & pd the clipping volume that is not part of
the screen, but such cases are rare in practice.

Another difference with the ray casting method is that thepotation of the intersections must be
performed entirely as a pre-computation step to the volendering. For ray casting, the computation
of the intersections can be performed in-line with the vadunendering, computing the intersections of
a ray just before the volume rendering is started on thaicpdat ray. The rasterization method does
not work on a per-ray level. Apart from the loss of possibleafialism with volume rendering, this
disadvantage does not have a large impact. The additiormralbmyerequirements are insignificant, and
there are no serious implications for performance or imagsity.

3.2.1 Hardware Acceleration

An interesting aspect of the rasterization method is treterization can be accelerated using graphics
hardware, as modern consumer-level graphics cards offgosufor rasterization. Using graphics
hardware to perform the rasterization causes a dramaticrpgance increase. Many of todays graph-
ics hardware boards are equipped with a Graphics ProcedsingGPU). This is similar to a Central
Processing Unit (CPU), but is is located on the graphics aadlis specialized in graphics computa-
tions. The benefit of a GPU is that it allows the graphics fgefo be programmable. This gives room
to a wide variety of algorithms while still taking advantafigem hardware acceleration.

A major disadvantage of using hardware acceleration isgrahics hardware is aimed at creating a
display image, having only a color value for every pixel. fiehare some auxiliary buffers such as the
depth buffer, for storing depth values, and the stencildsuffor storing integers, but these all work
on a per-pixel basis as well. There is no easy way to storeiablefength list of intersections for
each pixel, which should be the output of the algorithm. €hera solution to this problem though.
Current hardware offers support for floating-point rendegets, making it possible to store four float-
ing point values for each pixel with a standard RGBA (Red#arBlue/Alpha) render target. Also,
the depth buffer essentially contains a transformed versfahe intersection depth. Combined with
using multiple rendering passes, this gives enough fre¢darampute a list of intersections using the
common graphics hardware architecture. A more detailedoagp on finding workarounds for these
limitations is discussed in the next few sections.

Performing these kind of tasks on a GPU is commonly refemweabgeneral purpose GPU program-
ming Over time a community has evolved occupying itself withfpening typical stream-based
computations on the GPU. One of these communities is alailht t p: / / www. gpgpu. or g.
The topics range from image processing to audio and sigonakpsing algorithms.



3.2. RASTERIZATION METHOD 23

The Rendering Pipeline

To compute the intersections using a GPU, the clipping velunust be rendered to an off-screen
buffer. The contents of this off-screen buffer, which beesrthe render target, should be transfered
back to host memory and processed to form the intersectitanrdguired. However, the tasks to be
performed during rasterization differ from the common dyiap pipeline. The solution is to use the
programmability of the GPU by meanssifaderdKessenich et al., 2004]. A shader is a small program
that runs on the GPU and is executed for every vertex or evige}. pr here are two kinds of shaders,
the first one being aertex shader A vertex shader, or vertex program, takes as input a vefftéxeo
triangle mesh with related properties such as a normal gettte lighting conditions of the scene,
the current geometry matrices, et cetera and producessidrared vertex as output. That is, a pixel
coordinate and a depth of where rasterization of that pixellsl be performed on the render target.
The second type of shaderfragment progranor pixel shader is executed for every pixel along the
rasterization of each triangle. The inputs to a fragmeng@anm are the interpolated data of the output
of the vertex shader and the output is the color of the pixdl @ptionally data for auxiliary buffers
such as the depth buffer or the stencil buffer. Note thatamstof a color, any type of data may be
written. This is exactly what will be done, as the output oé grass of the intersection computation is
a normal vector and a depth value.

When a single depth layer is processed, the clipping voluamebe rendered again if multiple inter-
section segments are required. The more rendering passeseuuted, the more depth information
becomes available. Rendering more layers of course desrgasformance.

A feature of performing the rasterization on the GPU thatesadkparticularly suitable, is not only that
it is highly optimized, but also that it is very advanced. Mauvanced features are readily available.
These include perspective-correct interpolation durasggarization, clipping operations using auxiliary
buffers and many more.

Render Target Formats

The intersection data that needs to be stored consists opants; the normal vector of the surface
defining the clipping volume and the intersection depth. &bng a single intersection segment, a
front layer and a back layer are required. As mentioned iti@e2.4, the normal vector is required for

only one of these layers. Whether it is the front or the bagkdalepends on the clipping operation;

volume probing or volume cutting.

A normal vector consists of three floating point values, @lah intersection depth is one floating
point value. Without simplification, this would lead to a 1B®8-per-pixel, 32-bit floating point per
component RGBA render target format, capable of storing flmating point values using 32 bits for
each of the values for one layer and a similar buffer storinly a single floating point value for the
other layer. Fortunately, this format of a render targetvalable for current graphics hardware. The
four floating point values of one layer can be stored in theleemarget, while the depth values of the
other layer can be stored in the depth buffer.

If the depth buffer is used to store depth values, these tdrenstored directly. The graphics hardware
stores all values in the depth buffer in a specially tramafmt form. To transform the value from the
depth buffer back into a depth of the original scene, morerin&tion on the inner workings of depth
buffers is required. Since all hardware accelerated progriag for this project was done in OpenGL
[Segal and Akeley, 2004], the prime reference for this isd@pL Architecture ReviewBoard, 1992].
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Additional information was found in the section on the ddptiffer of the technical Frequently Asked
Questions (FAQ) available on the website of the OpenGLtipfat t p: / / www. opengl . or g.

There are a number of possible optimizations to reduce treuatrof required storage space. A first
optimization exploits the fact that the normal vector hag lemgth. Knowing two components is
sufficient, as the third can be computed. This saves onerfpagibint value. There is one caveat
with this trick however. Given a three dimensional vector= (z,y,z) with unit length, that is
V2 +y?2 + 22 = 1, storing only two components loses the sign of the third comept. Without
loss of generality, suppose thecomponent is discarded. Computing it from thandy components
can be done withh = 4/1 — 22 — 42, but which sign to use unknown. A possible solution to this
problem is to exploit the fact that bothandy are in the rang40, 1]. By adding two to the value of
x that is stored ifz is negative for example saves the sign informationz tlirns out to be greater
or equal to twoz = —/1 — (z — 2)2 — 2 hold, elsez = /1 — 22 — 42 holds. A different simple
yet efficient solution is to store the sign information in tthepth component. This only works for
perspective projection, since the depth may also be negfatiorthogonal projection.

A second optimization uses a different precision for stptime intersection data. Besides 32-bit float-
ing point values, the GPU also offers support for 16-bit flagatpoint values. This format can also

be used as a format for the render target. If 16-bit floatingtp@lues offer enough precision for the

normal vector and the depth value a factor two save is madeéooage space. This is an interesting
optimization as the data of the render target needs to bsféraa from video memory to host memory,
which is a time-consuming operation. This will be explaimedore detail in section 3.2.5. Graphics
hardware of course also offers support for 8-bit valuesnbtiin floating point. This format does not

offer enough precision for the depth values. The possibds 0$ different types of render targets is
explained in the next sections, which discuss various aghres of computing multiple intersection

segments by using multiple rendering passes.

3.2.2 Multiple Layers of Intersections

GPUs are designed for stream-based data processing, laatigig restriction on the way output data
is written. Although there is support for using multiple den target simultaneously, allowing multiple
values to be written inside a vertex shader, there is no wactess previously written data to the
output buffer inside a fragment program. In fact, the onlggible interaction between fragments is
by means of global variables, the depth buffer and the dtbnffier. The depth buffer is originally
designed to cull fragments that fall behind other fragmeaitewing only the front-most fragments of
a scene to be visible. This is done by writing a depth valuesrh pixel to the depth buffer. Just
before the output of the fragment program is stored in thdeetarget, the depth value is compared
with the associated value in the depth buffer. Based on thigoarison, the pixel data is either written
to the render target or discarded.

Because there is no way to store data from multiple fragm&ntsitaneously into the render target,
multiple render passes are required to compute multiplersagf intersections. Aayer of intersection

is a slice of the clipping volume in the depth dimension. Adigments belonging to intersection layer
1 have exactlyi fragments in front of them, so layéris the front-most layer. When combining these
layers, the intersection segments can be computed. Fad;losn-self-intersecting clipping objects
the layers alternate between defining the start and end oftarséction segment.

The GPU is very fast in performing the rasterization. Thepatis stored in the frame buffer and
based upon the approach also the depth buffer. These baffestored in the memory of the graphics
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hardware. For the output to be interpreted, it needs to sfeeed to host memory. This transfer is
time-consuming and may well form the bottleneck of the entirethod. Optimizations reducing the
amount of data that should be transfered are therefor sitageto explore. A more detailed look on
the impact the data transfer has on the performance is disdus section 3.2.5.

An interesting optimization with respect to the size of thipait buffer is whether the normal vector is
required for every layer. Obviously, the depth informatismequired for each layer, the impact of the
normal vector to the image decreases as the segment is becogieded by other segments. Also, as
discussed in section 2.4, the normal vector at the end pbiatsegment also has less impact on the
image than the one at the start. Using only the depth valuel@fex is an interesting optimization,
since this would only require reading the depth buffer,dadtof a four-component frame buffer. There
may also be ways to combine the data of multiple layers ingoftme buffer, as a four-component
frame buffer may host one normal vector (two components)tarnddepth values (one component
each). These possibilities are discussed in the next fetioesc

3.2.3 Front/Back-face Culling

A simple way to compute only one segment is to use front-faceback-face culling. Current graphics

hardware has a notion of the orientation of a triangle. Antgla has a front-face and a back-face.
Often these are determined by the order of the vertices Beacspace, after projection. If, from a
particular viewing point, the vertices are defined in forrapde clockwise order, the viewer is looking

at the front-face of a triangle. Unfortunately there is rangiard for the mapping between clockwise
and counter-clockwise order of vertices to the front-fand back-face orientation of a triangle; both
conventions are used. Making use of front- or back-facengullso is interesting from a performance
point of view since the culling is done at a very early pointhia graphics pipeline.

This feature can be exploited to compute both the front arui kayer of an intersection segment.
Sequential layers alternate between defining start and eindspof intersection segments. Also, the
front layer and back layer always consists of only froneefaand back-faces of the clipping volume,
respectively. Combining these two facts give that the the gtoint of a segment can be computed
using only the front-faces of the clipping volume. A similalation holds for the end point of a
segment. A use of this is to first enable back-face cullingigtay only front-faces to be rendered)
and set the depth compare function such that the front-nagstsfare rendered to the frame buffer.
Using these settings, the clipping volume is rendered usifiggment program that stores the normal
vector and intersection depth in the frame buffer. Then teents of the frame buffer are transfered
to host memory to give the first layer with normal vector andtdénformation. This is depicted in
figure 3.2 (a). A second rendering pass is then performed fvatit-face culling enabled to give the
back-faces of the clipping volume. If the depth compare fionds set to render the front-most (back-
)faces, the first intersection segment can be computed éfig@r (b)). If the depth compare function
is set to render the back-most (back-)faces, a single gttdosn segment that spans the entire clipping
volume is computed, as shown in figure 3.2 (c). This last céddsyall the intersection segments if
the clipping volume is convex. For a concave clipping volumw@as that should be clipped may be
used in volume rendering. However, this slight error mayb®bf great importance (also mentioned
in [Weiskopf, 2003]) and it increases performance sincg onle segment has to be computed. The
volume rendering itself is also simplified if there is onlyiagle segment render.

If for the back-faces a normal vector is not desired, one nhapse to read the depth buffer instead of
the frame buffer. However, since for the data of the frosefaonly three out of four color components
are used, it is theoretically possible to store the depthetecond rendering pass in the frame buffer
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Figure 3.2: Computing a single segment by front- and back-€ailling, using different depth compare
functions. The gray areas in figure (b) and (c) show the regukegment that is used in volume
rendering.

combined with the data of the first rendering pass. As meatidrefore, reading the contents of the
frame buffer inside a fragment program is not possible. TiEsNns that a single-pass solution using
a fragment program that only writes to a subset of the colanpmments based upon the orientation
of the face the fragment belongs to is also not possible. Apa&s solution that writes to a single

buffer would still be better, as the data transfer of the ladqpiffer is saved in that case. One way to
do that would be by using alpha blending. Alpha blendingvedithe values of two passes to be added
together in a single buffer. If each pass writes zeros to tmeponents it does not use, the results of
the two passes are combined into a single frame buffer. tinfately, the use of floating-point render

targets is required due to accuracy reasons and currertigsapardware does not offer support for

alpha blending in combination with floating-point rendegts.

A bit less ideal, but still better than two transfers to hogtnmory, is to use a two-pass solution that
copies the output in the depth buffer of the first pass to argbart of the memory of the graphics
hardware. This internally copied data can then be used aganto the second pass. This transfer of
the depth buffer is local to the memory of the graphics hardvead is much faster than a transfer to
host memory. For this to work, the back-faces are renderst] fising any of the two depth compare
functions. The data written to the frame buffer is of no intpoce, so the fixed function pipeline may
be used instead of a fragment program to maximize perforeaffter completion of this first pass,
the contents of the depth buffer are copied to a texture imtbmory of the graphics hardware. In the
second pass, the front-faces are rendered using a fragnogmam that stores the first two components
of the normal vector, the depth of the front-face and usestarelookup to determine the depth of the
back-face computed in the previous rendering pass. Thidbitws the intersection data of two layers
into a single frame buffer, preventing a transfer of a depiifeln.

3.2.4 Depth-Peeling

The most general solution for the multiple layers problentédepth-peelinglgorithm, as described
in [Everitt, 2001]. With depth-peeling, any number of irection segments can be computed and the
segments are computed in sequential order of appeararteeldtion to their depth.

Computing the first intersection segment is done in the sameas for the front/back-face culling
method. To determine the next intersection segment, ththdefers of both rendering passes are
copied to two separate textures. This data transfer is dgedhto the memory of the graphics hard-
ware, thus it is relatively fast. Next, the clipping volungeréendered again using a fragment program
with equal functionality as that of the front/back-facelitig method, but with the addition that it dis-
cards a fragment if the depth of the fragment is less thanwaleq the depth value stored in the texture



3.2. RASTERIZATION METHOD 27

that contains the depth buffer of the previous pass. Thisitexhus acts as a second depth buffer. If a
fragment is discarded, no information is written to the fedonffer or depth buffer. The fragments that
pass the additional depth test form the front-most layerltbs behind the layer of the previous pass.
Computing a third segment is done in a similar way, exceptttiedepth buffer of the second pass
is used for the additional depth test. In general, passes the depth buffer of pass- 1 to discard
any fragments of previous passes. Note that the standatid bigffer offered by the graphics hardware
is also still used to determine the front-most faces in eyp&ss. Thus this algorithm is in fact a dual
depth buffer approach as described in [Diefenbach, 1996].
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Figure 3.3: The concept of depth peeling; the four depthriagéa simple scene.

Each of the rendering passes can be used in combination hetbtimization of storing both layers
of a segment in a single frame buffer. Figure 3.3 gives an elawf the individual layers that are
‘peeled’ off the clipping geometry. Figure 3.4 given an exdarof the depth-peeling algorithm applied
to an actual model, in this case the Stanford Bunny. The fisces are colored orange, while the
back-faces are colored blue. Note that rendering the frothback layers of each segment are separate
processes; each have their own depth buffer texture assdci@he depth buffers of the front layers
are only used for consecutive front layers and the same gyopelds for the back layers.

(b) (©)

Figure 3.4: Depth peeling applied to the Stanford Bunnyufgda) shows the first layer, (b) the second
and (c) the third.

A useful feature of current graphics hardware is that thegpecial support for textures that contain
depth information. This construction is often used in skadomputations, thus the depth test that
uses a texture as input is known as a shadow test. To useghithefragment program does a texture-
lookup in the special depth texture. The result of the loolsugither zero or one, indicating the result
of the depth test. The actual comparison does not have toreelgpthe fragment program. This not
only increases performance, but also allows the depth cosgmafunctions to be as easily controlled
as when using the fixed function pipeline.
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Front/Back-face Culling and Depth-Peeling

The use of front- and back-face culling in combination wigipth-peeling is not mentioned in [Everitt,
2001], since the algorithm originally was designed to woikhvopen meshes as well, being more
general. An application in computer graphics was orderpeddent transparency for example. For
this particular purpose, the use of depth-peeling in coatlon with the front and back-face culling
approach changes behavior a bit for non-well-defined aligppiblumes. Suppose the clipping volume
contains a self-intersection, such as the one depicted unefig.5. The left figure shows the second
layer if no face culling were to be used, while the right figehews the second layer with face culling
enabled. The difference is in the gray area in the middle havit face culling, the gray area would
not be included in any of the segments, while with face cglitrwould be rendered twice. Neither
of these solutions is desirable, but then again the clippoigme is not well-defined since it contains
a self-intersection. To ensure correct behavior, se#frggctions in the clipping volume should be
removed by for example a union operator as is common in CS@&tipes to combine multiple parts
of a surface into one object.

depth depth
layer 1 back-face layer 0

Figure 3.5: Depth peeling with front/back-face culling aergess.

As a summary, the resulting algorithm uses the front and e culling technique to render both
layers of the first segment. If multiple segments are requitke contents of the depth buffer are
transfered to a depth texture, using separate texturebddrant and back layers. For the remaining
segments, depth peeling is used to cull depth ranges aagunrprevious passes. The back layer of the
last segment is rendered with the depth compare functiotosender the back-most triangles. This
may lead to rendering too much during the volume renderingtiose artifacts are in general much
less noticeable than rendering too little. The normal wsctwe only stored for the front layers, using
only two components out of three. The depth values of botHrthe and back layers are combined
with the normal vector and the resulting four componentsstweed in the frame buffer, giving all
required data for each segment.

3.2.5 Performance Summary

The overall performance of the rasterization method is gegd. Graphics hardware does an amazing
job at rasterization in terms of both performance and imagsity. The algorithm was tested on both
a PCI-Express nVidia Quaddro FX 4400 and an AGP-8x nVidiadgse-6800 Ultra. The performance
between the two varied quite a lot, although the speeds aib&PUs are almost equal. The reason is
that the performance bottleneck is the transfer of the franfier from video memory to host memory.
The former card was connected using a PCI-Express x16 bushwmuch faster than the AGP-8x
bus of the latter card. The Quaddro reaches transfer ratap &6 580 MB per second, while the
GeForce does not break the 180 MB per second boundary. Emgleifill-rate of the two cards is
almost equal and does not contribute significantly to theegng time with clipping volumes below
100,000 triangles. Without the memory transfer, both cardscapable of fill-rates approximating 30
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million triangles per second.

Rendering more segments reduces performance, becausenmaprery transfers are required. For-
tunately the number of segments that is drawn is freely fipbtg with the depth peeling algorithm,

allowing for a trade-off in performance and image quality.sdlution to reducing the time spent in

the memory transfer is to render the clipping volume at a fawsolution than at which the volume

rendering is to be performed. This naturally decreases éngaglity and may be the cause for alias-
ing artifacts. Many compromises are possible, such as rengthe first layer at full resolution and

subsequent layers at a lower resolution. These optimizaticere not investigated.

Even though the memory transfer is very slow, the rastéozanethod is massively faster than the
ray casting method. The downsides are that it requiresivelatnew graphics hardware and certain
versions of the video driver. There also are some problertts miidias DualView; it has a massive
impact on the performance of the graphics card. The memangfer is not affected much, but the
triangle fill-rate drops as much as a factor ten with DualVevabled.
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Chapter 4
Volume Rendering with Volume Clipping

This chapter covers the integration of the depth-base@naation method for volume clipping dis-
cussed in the previous chapter with two different ray cagstiased volume renderers. The first volume
renderer is a software component called the DirectCastelalged by Philips Research Aachen in
a project that was funded by Philips Medical Systems. Thersgeolume renderer is a GPU based
volume renderer developed during this project with soméchastimizations. A detailed look at both
volume renderers is taken and the various stages of theatiteg are discussed.

4.1 Software DVR: The DirectCaster

The DirectCaster is a software volume rendering componewvetldped by Philips Research Aachen.
It claims to be a high performance software-based directraelrendering engine giving a high image
quality. These claims are met due to a number of optimizatiéirst these optimizations are discussed,
combined with the global architecture of the DirectCastEnen the integration of the rasterization
method for volume clipping is discussed, together with thleitions for various artifacts that were
caused by the integration. A number of possible speedupsodine volume clipping is also covered,
ending with a summary of performance in both image quality speed.

4.1.1 Architecture of the DirectCaster

The DirectCaster is a ray casting based volume renderesntains many optimizations, of which the
most important are mentioned below. A few basic ones inctbdeise of fixed point mathematics and
the fact that all computations are performed in voxel spdd® latter prevents transforming volume
space coordinates to voxel space when a voxel lookup isrestjui

An important feature of the architecture of the DirectCast¢hat it uses two levels of blocks. A block
is a cube-shaped primitive covering a number of voxels. Thekistructure imposes hierarchy on the
volume data, similar to an octree. The use of these blockis lEavarious performance optimizations,
without losing image quality. The first level of blocks catsf the level-1 blocks. These are solely
meant for skipping large “empty” regions of the volume daEempty means that all voxels in that
particular block are mapped to a completely transparentitypy the transfer function. Each level-1
block consists of a number of level-0 blocks, typically in&@x4 arrangement, giving 64 level-0 blocks
per level-1 block in total. Level-0 blocks are smaller angi¢glly contain 2x2x2 voxels.

The much smaller level-0 blocks have a more intricate useh level-0 block has eastpiecdunction
attached to it, which is in principle a pointer to a render@tgprithm specifically designed for the type
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of data in that block. If a block is empty, a null-function iseehed and no rendering is performed.
This is a means of quickly discarding empty blocks. Othecipiged rendering functions exploit a
constant color throughout the entire block for example, iviclv case color interpolation is not neces-
sary. During initialization, the block hierarchy of the uaie volume is constructed and each level-0
block is classified. A suitable castpiece function is attacto each level-0 block. This mechanism
saves certain computations in those areas where they anecetsary.

Another optimization that is used throughout the Direct@ass that the traversal of the volume is

performed by a cache-aware algorithm. The blocks of themmeldata are arranged in a cache-optimal
way, maximizing the use of the cache during the renderinge fikels of the screen are traversed
in a cache-optimal way during rendering. Instead of tramgrscan-lines, pixels are traversed in a
way such that the data accessed for each pixels is cachmadptiith respect to what volume data is

accessed while processing each pixel.

The DirectCaster uses an object-aligned sampling strat€bis means that it tries to sample at the
voxel boundaries as much as possible. This leads to a pexfmnincrease, since sampling at voxel
boundaries requires only bilinear interpolation, oppdsddlinear interpolation at locations elsewhere
in the voxels.

Since software rendering is relatively slow, renderingygoéurt of the screen and interpolating the
missing parts is a common optimization technique. The D@aster also applies this technique, but it
tries to maximize the performance gain and minimize theilogmage quality. It contains an adaptive
image interpolation algorithm, that skips large areas »élgithat have the same color and depth, but
renders at a higher resolution near areas with large chasgels as surface boundaries.

4.1.2 Reduction of Ring Artifacts

The artifacts often referred to as “ring artifacts” are a aoon problem among ray casting-based
volume renderers. These artifacts are caused by a to langelisg distance near regions that have a
present an abrupt change in color or opacity. Figure 4.1n@)s this phenomena in a diagram. What
happens is that near a smooth boundary of the volume whareithe relatively large change of color
or opacity, neighboring pixels may have a different numldesamples in the interpolated region due
to a different starting point. This causes neighboring Igixe have very different colors. Figure 4.1 (a)
shows the case for object-aligned sampling, but the prolalsmarises for viewing-aligned sampling.

The DirectCaster contains a mechanism to reduce thesacsstif During ray traversal samples are
taken only at the voxel boundaries. Since this is an objeghedl sampling strategy, the sampling
distance is not constant and may vary depending on the weamgle. Note that the voxels need
not be cube-shaped, so the actual sampling distance mayheb@ger. When a sample is taken, its
opacity is compared to the opacity of the previous samplihelflifference in opacity is above a certain
threshold, the sampling rate is increased. Due to the higtemision, the discontinuities as visible in
figure 4.1 (a) become smaller and thus less visible.

Limitations of the available implementation of this algbm is that the sampling rate is only increased
for large changes in opacity; differences in color are leftouched. Also is the threshold for the

opacity difference compiled in as a constant. For very garent transfer functions this is a problem,
since this may cause the threshold to be never exceeded gne riag artifacts to appear nonetheless.
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Figure 4.1: Ring artifacts in volume rendering; (a) giveslaesnatic overview and (b) shows an exam-
ple of their occurrence.

4.1.3 Moadifications for Volume Clipping

To make volume clipping possible with the DirectCaster, mber of modifications was made. This
was done in line with the idea behind the DirectCaster; taiolinprecedented image quality with the
highest possible performance.

The first part of the integration offers basic support foruvoé clipping. Some data structures were
added to allow the intersection data to be passed to thetDiaster scene. Before a ray is casted, the
intersection data specific for that ray is copied to anotla¢a dtructure containing numerous elements
of ray-specific information. The actual clipping is done e ACCUMULATE | NTERVAL template,
which computes a color for a given sample. The modified vardiscards the sample if it happens to
be outside the clipping volume.

Discarding samples outside the clipping volume is crumalblume clipping, but this feature on its
own gives a bad performance. Regions of the volume that dhmiksampled during normal volume
rendering and are outside the clipping volume are still dathpt a high rate while they do not con-
tribute to the final image. These areas are discarded onheatery lowest level. For volume probing
there exists an optimization to prevent traversing thegmomns. During the computation of the start
and end points of a ray, the ray is checked for an intersegtitmnthe clipping volume. If the ray does
not intersect with the clipping volume, the entire ray iscdisled. If the ray does intersect, the start
and end points of the ray are adjusted to the points of thedirdtlast hits with the clipping volume
respectively. With this optimization, unnecessary sangpls done only in the regions between the
intersection layers, which correspond to the cavities obmacave clipping volume. These areas are
for most practical applications relatively small. Morepube traversal of such regions is rare, as they
are easily culled by preceding regions of the volume by eayytermination. For convex clipping
volumes this optimization removes all unnecessary samplin

If a sample that is inside the clipping volume is to be accatra, the modified template computes
the distance to the clipping volume in the viewing directidrnis is not the precise distance, but it is
an acceptable approximation, as mentioned in section Zihguhis distance and a certain threshold,
gradient impregnation is applied using a linear weightingction. This is a vital step to get a high

image quality. Figure 4.2 shows various alternatives ferdghadient problem. Figure 4.2 (a) shows
the result of not performing gradient impregnation. Thedgrat used along the edge does not give
a good representation. The edge appears to have differenbegght, while it is in fact flat. Using
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Figure 4.2: The edge of a clipping volume without (a) and Withgradient impregnation.

the gradient impregnation method as described in sectibnedults in figure 4.2 (b), where the edge
appears flat.

The ring-artifact reduction algorithm is applied when ah@gsampling rate is indispensable for the
image quality produced by the DirectCaster. To maintais tiigh image quality with volume clipping,
this algorithm should also be invoked near the edges of tippin volume. Often there are steep
changes in the optical model along the edge of the clippifignve. Usually these changes are caused
by the fact that subsequent samples are outside and ingid#fghing volume respectively. When only
the volume is considered, the difference in opacity may eotdry large, so the sampling rate would
not be increased.

In order to have a higher sampling rate near the edge of tpgicj volume, the ring-artifact reduction
algorithm was modified such that the sampling rate is not ordgeased when there are steep changes
in opacity, but also when the ray segment crosses the boumdahne clipping volume. For perfor-
mance reasons, this is only applied when the boundary isgéabe viewer, for similar reason that the
gradient is the clipping volume is used only for only thesarimtaries, as discussed in section 2.4. The
intersections at the back of the clipping volume are pdytia often even entirely occluded by the part
of the volume in front of them. Figure 4.3 shows the resulthef inodification. Figures 4.3 (a) and
(c) show a blowup of an area near edge of the clipping voluntleout an adaptive sampling strategy
applied. There are many slicing artifacts visible. Figute® (b) and (d) show sample areas rendered
with the modified algorithm; there are no more slicing actifaalong the edge.

i T <
"
N
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Figure 4.3: An area of a volume near the edge of the clippiigmie without (a), (c) and with (b), (d)
an adaptive sampling strategy applied.
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Figure 4.4: The DirectCaster in action with volume probinighva sphere (a), volume cutting with a
cube (b) and volume probing with the Stanford Bunny (c).

4.1.4 Other Possible Modifications

The optimizations mentioned in section 4.1.3 give good enggality and for volume probing also

a relatively high rendering speed. For volume cutting havea higher rendering speed requires
different optimizations. With the current modificationsné may be wasted in the traversal of non-
transparent blocks that are inside the clipping volume ¢l the area to be clipped with volume
cutting). One way to solve this would be to modify the ray &naal algorithm to skip these blocks

altogether, instead of sampling at each voxel. Note thapBagirate is not adaptively increased in
these blocks. This optimization was not implemented duelaglaof time.

Following the architecture of the DirectCaster, a logicaprovement of rendering speed would be
do assign the dummy castpiece function to blocks outsidelthping volume during the classifica-
tion. However, since classification is performed withowy geometry information, this optimization
belongs to the category of volume-based approaches, ltsegbility to interactively modify the
clipping volume. Therefor this optimization was not implkemted.

4.1.5 Results

Figures 4.4 (a) and (b) show the modified DirectCaster remgler volume with volume probing and
volume cutting respectively. The image quality with regpgecvolume rendering is equally high as
the DirectCaster produces without volume clipping; theeera artifacts due to aliasing or a too low
sampling rate. Considering volume clipping, there are tifaats due to not well-behaving gradients,
or a too low sampling rate near the edges of the clipping velufhe addition of volume clipping
has virtually no impact on the rendering speed; some motlditaincrease performance while others
decrease it. For most practical applications, the rendesjpeed is equal with or without volume
clipping. On a currently modern PC however, this does stitlgive interactive frame rates. On a dual
Intel Xeon 3.0 Ghz &12° data set can be rendered at approximately 2 to 8 frames pemden a
2562 viewing window, with the frame rate depending on the tranfaction. Transfer functions that
include a step-function for the opacity component give mhigiher performance than those with a
high degree of transparency, as more sampling is requirteeitatter case.



36 CHAPTER 4. VOLUME RENDERING WITH VOLUME CLIPPING

Figure 4.5: Artifacts produces by the DirectCaster; (ayhthe problems with adaptive image inter-
polation and (b) shows the slicing artifacts caused by arntsparent transfer function.

All requirements listed in section 1.6 have been met. Modghefrequirements were met by using
the rasterization variant of the depth-based volume dligpechniques. With this technique integrated
in the DirectCaster, the clipping volume can be specified higjla-resolution polygon mesh and it
can be interactively modified or reoriented without dedreaperformance. This allows for a high
variety of clipping volumes and offers a high degree of iat¢ivity. Figure 4.4 (c) shows an example
of clipping a volume against the Stanford Bunny, a complelygmn model consisting 069, 451
triangles. Using such a complex model has no effect on thaerary speed, since the memory transfer
still forms the bottleneck. With current graphics hardwanech as a nVidia GeForce 6800 Ultra, the
rendering of triangles becomes dominant with a clippinguré consisting of approximately half a
million triangles.

Some artifacts are still visible in the renderings produogdhe DirectCaster, although they do not
originate from the modification due to the volume clippingnelof these artifacts is caused by the
adaptive image interpolation. Although the adaptivenedsices the visibility to a minimum, interact-

ing with the scene gives artifacts similar to the ones seelPlBG or MPEG streams. Figure 4.5 (a)
shows these artifacts in more detail, although they are wisitgle in a moving image.

Despite all the techniques present in the DirectCaster &imize image quality, some artifacts may
still appear. An example is given in figure 4.5, where an eXarapslicing artifacts is given. The exact
reason why these artifacts are caused is hard to deternimige, the entire rendering algorithm is of a
high complexity.

4.2 Hardware DVR: A GPU-Based Volume Renderer

As indicated by the results of chapter 3, the performanctdmetck of the rasterization method is
transferring the data from video memory back to host membrthe volume rendering were to be
done on the video card, this expensive transfer could bedsaVis was a reason to look at the
possibility of doing volume rendering on the GPU.

Since the existence of programmable graphics hardwane, kize been many attempts at performing
volume rendering on the GPU. Until recently, the programbdaaun on the GPU were bound to a
number of limitations. One of these limitations had to dohwvifte dynamic instruction count of frag-
ment programs, which is the number of instructions that magxecuted for every instantiation of
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the program. Another limitation was the absence of insibastthat allowed common programming
paradigms such as if-statements and for-loops. A ray agbtised volume renderer typically contains
aloop that iterates the many samples along a ray for each piltis loop is the cause for many instruc-
tions for each pixel, easily exceeding the instruction ¢dunit. This is one of the reasons that most
of the current GPU-based volume rendering implementatiges an object-aligned rendering method
for doing volume rendering [Kniss et al., 2001] [Weiskopf03], which does not suffer from this
restriction. Another reason is that object aligned remdeis more compatible with the functionality
of the fixed function pipeline of the GPU.

4.2.1 Ray Casting-Based GPU Volume Rendering

Recent developments in graphics hardware resulted in simadéel 3.0, which relaxes most of the
restrictions imposed on the shaders by earlier shader motleé new shader models allows fragment
programs to have a virtually unlimited dynamic instructamunt and offers new looping and branching
constructs [Kessenich et al., 2004]. These new possisldilow ray casting-based volume rendering
to be performed on the GPU. Since very little research has beee in this area, it is interesting to
explore the possibilities of such a renderer. It is also ber@sting to compare the results of such a
method to a software implementation of ray casting-basé&thve rendering, such as the DirectCaster.
Therefor the GPU volume renderer that was implemented usag easting-based approach, taking
full advantage of the latest graphics hardware. This ragim@gdased volume renderer will be hereafter
referred to as the GPUCaster.

At the time of writing only very few references to this apprhdor volume rendering were available.
The most significant were the presentation “Volume Rendeian Games” given by Simon Green of
the nVidia corporation at the Game Developers Conferenteeagnd of March 2005 and the “Inter-
active Visualization of Volumetric Data on Consumer PC haae” course by Klaus Engel, Daniel
Weiskopf and others in 2003. The latter only mentions thesipidiy and does not treat the subject in
detail. The main focus of the presentation of Simon Greemiggplication of volume rendering in
games. The volume data is procedurally generated, insfdagirgg contained in a three-dimensional
array. This is very different from medical data, as therenarenemory constraints and the requirement
to have a realistic representation of the data is less .strict

The basic architecture of the GPUCaster is similar to mosege purpose GPU applications. The
process of ray casting is very different from that of rageion, all the work is done inside a fragment
program. To instantiate the fragment program for each paeéctangle covering the entire screen is
drawn first. The four corner points of the rectangle are gh#s®ugh a vertex shader, which provides
the input for the fragment program. In this case the inpubésgixel coordinate and the origin and

direction of the ray. Note that the vertex shader only spesifiiis information on each of the corners
of the rectangle and that the GPU linearly interpolatesdata for each pixel covered by the rectangle.

The fragment program requires input to perform the volunmeleeing. Variables that are equal for all
rays, such as the step size or early ray termination thréshé provided as uniform variables. Arrays
that require random-access reading by the fragment progranall provided in the form of textures.
The voxel data is provided as a single three-dimensiondltexand the transfer functions as one-
dimensional texture. The start and end points on the ragspand to the intersection points of the ray
with the bounding cube of the volume data set. The implentientaf Simon Green mentioned earlier
uses the most obvious way; a ray-box intersection algorihumed to compute these points. The GPU-
Caster uses a different method. Prior to the instantiatfcdhefragment program the bounding cube
of the volume is rendered twice; the front faces in the firsispgand the back faces in the second pass.
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After each pass, the content of the depth buffer is trandfeye texture. These two textures are also
provided as input to the fragment program. Inside the fragmeogram, the depth values of the front
and back intersections with the bounding cube can be oltiom these two textures. Combined with
the origin and direction of the ray, the two points can be coteg. This approach was chosen because
it allows easy extension to volume clipping. Instead of dnawthe bounding cube of the volume, a
different shape can be drawn to change the entry and exitgfiin each pixel. The rasterization of
the cube is of negligible cost and copying the depth buffer lma avoided in the future by using the
EXT_framebuf f er _obj ect extension to OpenGL [OpenGL Architecture Review Board,500
More information on this extension is given in section 4.2.7

When all input is set and the fragment program is instarttjdtee ray traversal can start. Due to the use
of a high level shading language [Kessenich et al., 2004}la@dew looping and branching constructs,
the actual algorithm is very small and contains few tricksie Tragment program loops over all the
samples on the ray in a front-to-back order. At each samgesdfiume is sampled, using the linear
interpolation offered by the GPU. The gradient is computeddmpling at the six neighboring voxels.
Using the sample of the current voxel, a lookup is done inruesfer function to obtain the color and
opacity for the current sample. Lighting is performed udimg color, gradient and viewing geometry
to compute the final color. Finally the current pixel coloaijust using a standard volume rendering
equation.

The whole fragment program consists of very few lines of caida basic implementation was created
in a single day. This is possible due to the simplicity of thetmod.

4.2.2 Lighting Model

Volume shading was added to the GPUCaster by using the confthong lighting model [Phong,
1975]. According to the Phong lighting model, the final catonsists of an ambient, a diffuse and a
specular component. The ambient and specular componentseaomputed normally, but since vol-
ume samples are commonly transparent, there is an issueawthuting the diffuse lighting intensity.
The intensity of the diffuse lighting component is given b tdot product between the light vector
and the gradient at the sample. This gives the intensityecahaped like a cosine. The problem is
that when the gradient points backward, this intensity beonegative. Using a negative value as an
intensity would make the sample absorb light, which is ¢yeercorrect. When rendering surfaces,
a common solution is to take the maximum of zero and the coedpintensity, giving the red dotted
curve in figure 4.6. This is correct since surfaces with gnatdi pointing away from the viewer should
not be visible.

For volume rendering this also works, but other possib8italso exist. Instead of ignoring samples
with gradients pointing away from the viewer, one could tiieeabsolute value of the diffuse lighting
intensity. This is corresponds to mirroring the gradiend simple against the viewing plane in case it
points away from the viewer. The intensity curve is shown parple dashed curve in figure 4.6. As
long as the the lighting vector is parallel to the viewingediion, this solution works fine. The colors
in the final image appear more vibrant than when clipping thegaesult to zero. However, different
lighting vectors give bad results. The scene appears td bg o light sources; one being a mirrored
direction of the other.

Yet another solution is to scale and translate the cosineecsuich that is does not become negative.
The corresponding intensity curve is shown as a solid redlilinfigure 4.6. The problem with this
solution is that samples that have a gradient perpenditaltie lighting vector appear with half the
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Figure 4.6: Different diffuse lighting contribution curse

possible intensity, which is not intuitive. Squaring theuking intensity improves this, but the problem
remains. This is unwanted behavior, since it partially idgst the ability to use lighting to perceive the
shape of the volume. Remaining behavior is correct however.

It is difficult to say which solution is best. The maximum ceigives good results, but gives the darkest
image of the three solutions. The absolute value curve oolksvfor a lighting vector perpendicular
to the viewing direction, while the scaling curve makes imagpear lighter, but decreases the effec-
tiveness of lighting. As a compromise, the scaling curverset be the best solution. To enhance the
effectiveness of the lighting, the power which the scaledeis raised can be increased. The Direct-
Caster uses the absolute value curve to compute the diftuspanent, since it only offers support for
a lighting vector parallel to the viewing direction.

There is yet another problem with lighting. In an area of thlime where there is no variation of the

data, the gradient is equal to the zero-vector. Using tladignt in lighting computations would result

in only an ambient contribution of the sample, which is imeot. A better approach is to the average
diffuse and specular contributions, assuming that alliptesgradients are uniformly distributed. This

makes areas without a gradient appear more vibrant, alththair color is not affected by changes of
the lighting or viewing vectors.

4.2.3 Precision

Currently the latest GPUs have support for 16 and 32-biutest This is a beneficial property for
volume rendering, since the source data often is of a 12 dsitl@ature. Using a too low precision
can lead to noise in the final image, especially in regionk Wigh transparency. In these transparent
regions the final color is composed of many samples and thag gradients as well. This causes noise
artifacts to become more visible. Figure 4.7 shows a trassparea of a volume rendered using both
8-bit and 16-bit textures. Both a normal rendering is showth a posterized version that shows the
distribution of colors more clearly. The images show thatablor distributions are much more smooth
when using 16-bit textures. The presence of noise is bad,desiroys the ability to use lighting to
perceive the spatial structure and orientation of the velum
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Figure 4.7: The differences between rendering using 8abiai(id 16-bit (c) textures. Figures (b) and
(d) show the color distributions more clearly.

4.2.4 Optimizations Implemented

To enhance the performance of the GPUCaster, a number ahiaptions was implemented. Be-
cause the available time was severely limited, many opétitns are left unexplored. Nonetheless a
considerable speedup was achieved using the primitivaitgobs described below.

Early Ray Termination

As an optimization, the ray traversal is terminated as sedhe&pixel opacity exceeds a certain thresh-
old. This is a common optimization in volume rendering andaied early ray termination. The
threshold at which a ray is terminated is close to opaqueu&liag this threshold reduces image qual-
ity, while the performance gain is only minimal. The majpf the speedup comes from not traversing
the volume while the pixel opacity is already completely quoa

Skipping Empty Regions

The GPUCaster uses a static sampling rate. To achieve arhagei quality, this sampling rate should
be less than one voxel. However, by setting the samplingvaitg high, a lot of time is wasted
in traversal of the so called “empty regions”, parts of théurwte that are mapped to a completely
transparent opacity by the transfer function. To avoid thisome extent, the start and end positions of
the ray are adjusted to skip any leading and trailing partb@fay that span only empty parts of the
volume.

To this purpose, a binary volume is computed at a resolutiver than that of the original volume; the
cells of the binary volume typically consist of 64 (4x4x4)5%k2 (8x8x8) voxels. Each cell contains
only a single bit, indicating whether there are one or moneeisthat are not fully transparent. This
data is dependent on the transfer function. Before theritiation of the fragment program, instead of
drawing the bounding cube of the volume, all non-empty adiithe binary sub-volume are drawn as
small cubes. By using the depth buffer in combination witfedént depth comparison functions, two
textures can be constructed that contain the depth of thé-fnost and back-most faces of all the cells
respectively. This changes the start and end point for emglpreventing the traversal of some of the
empty space in the volume.
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Figure 4.8: Using a binary volume to mask empty regions ofvitiame; (a) shows the normal grid,
(b) a tightly fit version, (c) shows only the cells around tlatour, (d) shows only the contour of the
union of all non-transparent cells and (e) shows a tightlgdittour.

Tightly Fit Cells

To optimize this even further, the cells of the binary subsite can be made of non-uniform shape.
Instead of only a bit, each cell may also contain the cootdmaf the bounding cube of the non-empty
region within that cell [Bescos, 2004]. Using this optiatibn, even empty regions inside a cell can
be skipped, causing the grid of cells to be more tightly fituaethe non-empty part of the volume.
This is demonstrated in figure 4.8. Figure 4.8 (a) shows a abgnid of cells around a volume, while
figure 4.8 (b) shows a tightly fit grid.

Not Drawing Occluded Cells

To skip as many empty parts of the volume as possible, théutemoof the binary sub-volume should
be as high as possible. A high resolution also means that sraalf cubes need to be drawn. However,
many of those small cubes are completely occluded by sudingncubes in most practical cases.
These occluded cubes need not be drawn.

Preventing drawing occluded cells can be done by using tidtat cells that have a minimum voxel
value that is above the minimum threshold of the transfection, are completely transparent. Such
cells are not part of a transparency boundary of the volurnechieve correct behavior, some special
handling of cells near the edge of the volume data set is meduiThis idea is visualized in figure 4.8

(©).

However, this method still draws some unnecessary triandBy looking at the problem at triangle
level, an even bigger optimization is possible. Again cdesing non-tightly fit cells, an edge of a
cell need not be drawn if the cubes on either side of the edgbath flagged to be drawn, because
this means the edge is not on the boundary and thus occludethby edges. The set of edges that
is eventually drawn makes up the boundary of all regionstieatl to be rendered. This is shown in
figure 4.8 (d).

An optimal solution would be to combine the optimizationswh in figures 4.8 (b) and (d), resulting
in figure 4.8 (e). However, special care should be taken wheroving edges. If two separate parts
of the volume happen to be in neighboring cells, a tightlydittour may produce two separate cubes.
Thus a side of a cube should only be removed if it touches tie i the neighboring cell and has



42 CHAPTER 4. VOLUME RENDERING WITH VOLUME CLIPPING

equal dimensions. If this is not done, gaps may appear thatmsse certain parts of the volume to be
falsely discarded. This is shown in figure 4.9, where the fglaily fit squares are not attached to each
other, leaving a gap in the middle.

o0 ol o

(@) (b) (©)

Figure 4.9: A problem with combining the removal of occludstes with tightly fit cells. Figure (a)
shows the contour with occluded edges removed, (b) theytifihvversion of the contour and (c) the
combination with a gap in the middle.

4.2.5 Reduction of Ring Artifacts

By using a high sampling rate, the visibility of ring artiftads minimized. This has an impact on
performance however. Using an adaptive sampling rateegiyat not preferable on a GPU, since
fragment programs involving a lot of branching give bad perfance. To reduce the visibility of
ring artifacts at low sampling rates, noise is used to masketartifacts. Figure 4.10 shows why
ring artifacts occur using a viewing aligned sampling syt The positions of the first samples that
are not mapped to a translucent opacity form a non-contiuioe, causing discontinuities in the
optical model. Figure 4.10 shows that by using noise to bffse starting position of each ray, the
discontinuities in the initial sampling positions are meglout. The noisy behavior of the first sample
point results in noise in the final image, but this is prefegadver the ring artifacts. Figure 4.11 shows
an example of this technique applied in practice. When némgleat high resolutions, the noise is
hardly visible since it is dependent on the size of the pixalslower resolutions a light blur filter or
interpolation filter can reduce the visibility of the noise.

4.2.6 Modifications for Volume Clipping

The GPUCaster allows an easy and efficient integration ofhdiegsed volume clipping techniques,
especially those that take a rasterization approach. THddaBter uses the depth structure of the
bounding cube of the volume to determine the start and enmdgof the ray. The output of a single
segment of the rasterization method for volume clippingeis/similar; two depth buffers that contain
the start and end depths and one additional buffer with gradinformation. By combining the depth
textures obtained from the bounding cube and the clippirigmve, volume clipping is achieved.

First volume probing is assumed, the techniques will laleektended to support volume cutting as
well. As a start point for the ray, the greatest depth shoalgdbected between the front of the bounding
cube and the clipping volume. This corresponds to the pbaitis furthest away from the viewer. For

the end point, the reverse holds; the point that is closabeteiewer should be selected. The resulting
ray segment is the intersection of the two ray segments defip¢he depth structures of the bounding
cube of the volume and the clipping volume. This is depictefigure 4.12.
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Figure 4.10: Viewing aligned ring artifacts are caused bydden change in offset of the first sampling

point in the volume (a). By applying noise to the startingnpaif the ray, this difference is masked by

the noise (b).

(d)

Figure 4.11: Figures (a) and (c) show ring artifacts on aa afe¢he volume rendered with a high and
a low sampling rate respectively. Figures (b) and (d) shawstime area using noise to mask the ring

artifacts.

Solving Problems with Multiple Segments
The volume clipping technique described above only suppmme segment of the depth structure of
the clipping volume. Rendering multiple segments is an eaggnsion. Obtaining a second segment
of the clipping volume can be obtained by the same technidassribed earlier. The first segment is
rendered as described above. For any consecutive segtienésis only one additional input required,
being the output of the volume rendering of the previous.pBlks output should be copied to a texture
and passed as an input to the next phase. The next phase sabitlid initial color to the output of the

previous pass. This makes the multiple volume renderinggsaact incrementally.

Solving Problems Volume Cutting
Adding support for volume cutting can be achieved by chamndire meaning of the layers of the

clipping volume. The front layer of the depth structure of tipping volume contributes only the
back part of a segment that should be rendered. Likewisdatbielayer of the clipping volume is used
for determining the starting point of a segment. There aregpecial cases however; the first segment
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Figure 4.12: The intersection of the segments defined by dheding cube and the clipping volume
gives the segment that should be used for volume probing.
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Figure 4.13: Swapping the meaning of front and back layerhefdepth structure of the clipping
volume yields volume cutting instead of volume probing.

that should be rendered has no layer of the clipping volumedmputing the starting point of the ray
and the last segment has no layer for computing the endpbiheaay. For these two cases the front
and back depth buffers of the bounding cube of the volumeldHmiused instead. Note that there is
no need to combine depth buffers when using volume cuttingal remaining segments, both layers
are present. The process of swapping the meaning of theslaydepicted in figure 4.13.

Visualizing the Clipping Volume

To increase the ability to perceive the shape of the clippiolgme, the possibility to visualize the
clipping volume was added to the GPUCaster. By treating msaction with the clipping volume as
a special kind of sample and adjusting the pixel color adoghg, the clipping volume becomes visible
as thin layer. By applying shading, using the normal veatbithe clipping volume, the shape of the
clipping volume becomes very clear. To prevent the volumieeitome invisible, the transparency of
the clipping volume can be adjusted. Figure 4.14 shows ampbearendering of a volume data set
clipped using the Stanford Bunny.
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Figure 4.14: Volume probing with the clipping volume vidaal as well.

4.2.7 Results and Possible Improvements

The resulting volume renderer has equal functionality aslodified DirectCaster. The functionality
demonstrated in figure 4.4 is also available in the GPUCas$teerefore it is not printed here. Both
the image quality and performance are very good, much hititzer one would expect of a volume
renderer developed in such a short time. A more elaborateigsi®on on the performance and image
quality of the GPUCaster combined with a comparison to tfi#he DirectCaster is given in section
4.3.

One clear performance benefit is that the expensive menamgfar from video memory to host mem-
ory is no longer required. Therefore the volume clippingfignsignificant importance to the perfor-
mance of the volume renderer. Clipping volumes consistin06,000 polygons can be used without
any noticeable performance decrease. However, still someis wasted with copying data around,
although these copies are internal to video memory. Theoressthat if the output of a rendering
pass is to be used as input for another, the contents of theflbaffer should be copied to a texture.
Not being able to render directly to texture memory is a knostriction of OpenGL. In early 2005
the OpenGL Architectural Review Board has acceptedXE f r anebuf f er _obj ect extension,
which does allow rendering directly to textures. At the tiofievriting however, the latest official video
driver from nVidia do not yet support this extension.

Combining the technique for the reduction of ring artifasfth volume clipping is less successful.
Figure 4.15 shows an edge of a clipping volume rendered bdth and without the ring artifacts
reduction algorithm, using a high sampling rate. Near ttgeedhich behaves like an isosurface, the
slight differences in ray starting position are clearlyilis.

(@)

Figure 4.15: The noise becomes clearly visible near an efifee @lipping volume, even when using
a high sampling rate.
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Although the results of ray casting-based volume rendesimthe GPU look very promising, there are
still some issues to be resolved before it can be used ififealpplications. The most serious one is the
current limitation on the maximum volume size. Currentlye@GL imposes a limit of 128 megabytes
to the size of a texture. This restricts the maximum allowellime data to be of 512x512x256 (or
any other distribution of equal size) in dimensions. A doluis to use multiple textures to store the
volume data, but this rises the problem of transferring tha do video memory when needed. A
cache-aware mechanism is required to minimize the swagpirigep the performance high.

The work of Engel and Weiskopf often mentions a techniquiedaglre-integrated volume rendering
[Engel et al., 2001b] and they claim it gives better imageliuat a higher performance. The pre-
sentation given by these same people mentioned earlieegdains the technigue in more detail and
gives similar claims on the results. Such optimizationsvaseh looking at.

4.3 Hardware Versus Software DVR

In the previous sections, two different implementationsagf casting-based volume rendering were
discussed, one that uses the CPU and another one that useRltheDue to the difference in target
hardware, both methods have different properties.

4.3.1 Advantages and Disadvantages

Most of the advantages and disadvantages of both methodgdae with the properties of the hard-

ware platform they use. Software-based volume rendereraisaally deal with larger data sets than
those that use a GPU, since the amount of host memory is commmarch larger than the amount of

video memory. Of course a dataset could be spanned acrobsshenemory and video memory, but
swapping the data has an impact on the performance. A ladjeasily accessible memory is thus an
advantage of software-based volume rendering methods.

A GPU is a typical stream-based processor. This means tigmained at doing many simple tasks
in parallel. While rasterizing, there are many pipelines;heprocessing a pixel, running in parallel.
Current graphics hardware has between 16 and 32 pipelinethdse numbers rapidly increase. The
advantage of the GPU-based volume rendering method deddritchapter 4 is that this parallelism
is used automatically. Software-based volume renderessusa parallelism as well, but currently
most common workstations have only one or two CPUs. Alsopsrdor parallelism has to be built
inside the software, while it is used automatically by GPAa$dd volume renderers. This high degree
of parallelism is an advantage of GPU-based volume renglerin

The high degree of parallelism of GPU-based volume rendésialso a downside. When all pipelines

are filled, computation is started and lasts until all thesfpiges have finished computing. Pipelines that
are done earlier are stalled until the end of the computafitiis means that for a good performance,
the work load should be evenly distributed, which incredsescomplexity of the algorithm.

An advantage of software-based methods over that of haedbased methods in general is that soft-
ware offers more flexibility. Although current graphics thamre is more flexible, there are still con-
straints. Due to the stream-based nature of graphics heggdtteere is no interaction possible between
pixels, that is output for one pixel cannot be used as inputifother. Adaptive interpolations schemes
as used by the DirectCaster are for example not possiblecwitient graphics hardware.
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(b)
Figure 4.16: Image quality comparison between the Diresti€?ga) and the GPUCaster (b).

4.3.2 Image Quality

A list of properties may give an indication which method isferable over the other, but in the end it
is all about the results. One type of result is the qualityhefitnages that are produced. The visibility
of various kinds of artifacts caused by optimizations, [@ea of computations, sampling strategies,
et cetera all determine the quality of the final image. A listh@ most noticeable differences between
the DirectCaster and the GPUCaster is given here.

Figure 4.16 shows two renderings of a volume dataset witblipping, one generated by the Direct-
Caster and the other by the GPUCaster. A few highlights ofirtreges are blown up to show the
differences more clearly. The left highlight shows theetince in slicing artifacts. The DirectCaster
uses a variable sampling rate, while the GPUCaster appliesstant sampling rate. The differences
of these two approaches are shown in the left highlight. iBxd¢hse the image produced by the Direct-
Caster shows slicing artifacts whereas the one of the GPidCdges not. The reverse case may also
occur.

The upper right highlight shows a difference in gradient patations. The surface in the image

generated by the DirectCaster looks smoother than thaeahtihn GPUCaster. The same holds for the
lower right highlight, where a very translucent area is showhe exact reason for this is unknown,

neither is clear which image is preferable.

The lower right highlight also shows that the image genératethe GPUCaster contains more noise
than that of the DirectCaster. Both renderes have 16-hitaatnput, but the interpolation mechanisms
are different. The DirectCaster uses fixed point math foritkerpolation, while the GPUCaster uses
the interpolation mechanisms of the GPU. The latter meshanises 32-bit floating point math to

perform the interpolation, but the data is interpolatedsmormalized form. To increase the precision
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of the GPUCaster, the data is scaled to maximally exploitptbesible range of the data, but some
interpolation artifacts remain.

Overall the image quality produced by both renderers is gBath show minor artifacts, but these are
of insignificant importance in most practical images. Thaliy of both renderers is high enough to
give accurate visualization of the data.

(@) (b) (©

Figure 4.17: Ring artifacts produced by the DirectCastpafa the GPUCaster (b). Figure (c) shows
the same area rendered without artifacts.

Due to the facts that both volume renderers use differeninggtions, similar artifacts may appear

differently. Figure 4.17 gives an example of this behav@®ction 4.1.5 mentions that the DirectCaster
produces visible ring artifacts in regions of the volumet i@ mapped to a relatively low opacity.

This is shown in figure 4.17 (a). A rendering of the same regiith a similar sampling rate produced

by the GPUCaster is shown in figure 4.17 (b). The ring arfact also clearly visible, but they are

heavily distorted. The cause is the optimization that drévesgrid of cubes instead of the bounding
cube of the volume. Due to this optimizations, the startioqs of the rays are at different offsets

for each pixel. Since a viewing-aligned sampling strategggplied, this distorts the ring artifacts. A

correct, artifact-free rendering of the same region is showfigure 4.17 (c). It was produced by the

GPUCaster with a sampling rate of 0.4 voxels.

4.3.3 Performance

Although the image quality is comparable, the performarfdbetwo volume renderers is not. Figure
4.18 shows the difference in performance between the [Miester and the GPUCaster. The results
were obtained on a dual Intel Xeon 2.8 Ghz machine equipptddaniVidia GeForce 6800 GT Ultra.
Figure 4.18 (a) shows the individual performance of botideeers at varying resolutions. Along
the horizontal axis the square root of the number of pixelglasted against the number of frames
per second the renderer can produce at that resolution ovettieal axis. The overall frame rates
produced by both renderers are low, but the GPUCaster & fdostn the DirectCaster at all resolutions.
The benchmark was performed using® sized data set and a transfer function with a medium to
high degree of transparency. Increasing the size of them®ldata does not affect the performance
much for both volume renderers. Using a less transparamferafunction increases the performance
of both volume renders approximately equally.

Figure 4.18 (b) shows the performance of the GPUCasteivelatthat of the DirectCaster. This graph
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Figure 4.18: The performance of the DirectCaster versusGia&/Caster; (a) shows absolute values
while (b) displays the relative performance.

shows interesting behavior, since this relative perforreaseems to increase linearly at increasing
resolution. Itis difficult to find out what is causing this lagfor, as the performance of both renderers is
influenced by many factors. Possible explanations are teepiolation performed by the DirectCaster
and the parallelism of the GPUCaster.

With the DirectCaster, the percentage of pixels that maynberpolated decreases as the resolution
increases. This is due to the fact that the distance alonghwdninon-interpolated pixel may be used
is constant. Thus if the number of pixels increases line#ky performance of the DirectCaster may
decrease more than linearly, since relatively less pixatsie interpolated.

The second possible explanation could be that the averagdoad of the pipelines of the GPU de-
creases as the number of pixels increases. Since the nuififipelines remains constant, the number
of computations where a pipeline is stalled by another dse® as the number of computations as a
whole increases. This can also be an explanation for thetlatthe performance of the GPUCaster
does not scale linearly with the number of pixels.

These reasons are mere guesses of what may be causing tngobebut there is a good explanation
for the overall better performance of the GPUCaster; GPEshaghly optimized for floating point
optimizations and allow for much better parallelism thampatations on a CPU.

The GPUCaster was used without the ring-artifacts redaetigorithm enabled and using a step size of
0.4 voxels to minimize the visibility of these artifacts. By ngia larger step size in combination with
the ring-artifacts reduction algorithm, a trade-off camiede between image quality and performance.
At an acceptable image quality, the performance is aboubldarompared to figure 4.18, using a step
size of approximately a single voxel. Decreasing the imag#gity even further gives interactive frame
rates.

4.4 \Volume Rendering with Volume Clipping

In chapter 1 six requirements are listed that should be mehdymplemented prototype. Require-
mentsRO throughR3 are met by using a depth-based approach. RequireReig met by using a
rasterization method and requirem&a was met by the way the prototype was implemented. Finally,
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requiremenR4 was met by using the gradient impregnation technique asideddn section 2.4. This
technique was successfully integrated in both the Direstiaand the GPUCaster. Section 2.4 also
mentions that a using a step-function as a weighting functiay reveal sudden changes in the optical
in the final image. It also mentions that this problem can beraame by using a linear weighting
function.

Figure 4.20 shows a region of a clipped volume near the edgeedlipping volume, rendered using
different strategies for the gradient impregnation. As barseen from figures (a) and (d), not using
gradient impregnation leads to an incorrect represemtatidhe edge of volume. The edge does not
appear to be flat due to an incorrect gradient. Figures (bY@ndse a step-function over a length of
four voxels. This solves the problem with the edge, but ldadseveral other artifacts. An artifact
appearing in general is that the sudden change in opticaehwaitl become visible, as is shown in
figure (h) and in the right highlight in figure (b). The gradiémpregnation layer is clearly visible,
because a different gradient is used for the lighting coat.

Other artifacts that appear are specific for each volumeerendnd are produced because of the side
effects. In figure (b) slicing artifacts appear near a boafethe volume at the edge of the clipping
volume. In that area, there are few differences in opacitthedirectCaster applies a low sampling
rate. However, due to the sudden change in optical modehuh#er of samples that use a gradient
of the clipping volume differs for each pixel. These artifaare caused due to similar reasons as the
ring artifacts mentioned in section 4.1.2.

The GPUCaster shows similar artifacts, but the slices aygrealler since the GPUCaster uses a higher
sampling rate in these areas. The slicing artifacts arednfled by the optimization that draws the grid
of cubes instead of the bounding cube of the volume. Sincénthesection with the cubes and the
clipping volume may vary, there are differences in the stgnpoint of the ray near those areas, giving
rise to ring artifacts.

The right column shows that using a linear weighting furrctiesults in a correct rendering of the edge
without artifacts. There is no sudden change in optical hade the gradient impregnation layer itself
is not visible. This difference is clearly visible in figurés) and (i). Thus using a linear weighting
function for gradient impregnation meets requiremiedtas well.

Figures (k) and (m) demonstrate what happens when the gtadipregnation layer is too thick. The
gradient of the clipping volume becomes the dominant gradieroughout the volume. Although
the lighting still aids to perceive the shape of the clipputdume, the ability to perceive the spatial
structure and orientation of the volume data itself is @gstd. Therefore the gradient impregnation
layer should be of appropriate thickness. For most prddimalication, two to four voxels is enough.

render render render render render render

1 [] 1 ]
video : first second third : video : first second third v f— relnder :
memory | jayer layer layer y memory I jayer layer layer volume 1

1 1
-...\ ....... \ ...\............l .......................... X....l
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Figure 4.19: An overview of in data transfer requirementdtie rasterization method when used with
software (a) and hardware (b) based volume rendering.
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Figure 4.20: Differences between various gradient impaégn functions. The images in the top row
are produced by the DirectCaster, the remaining images dysPUCaster. The images in the first
column of the first three rows were rendered without gradiemtregnation, the ones in the second
column with a step function over a distance of four voxelsjlevthe ones in the third column had

a linear impregnation weighting function applied over aatise of also four voxels. The images in
the bottom row show the effect of a too thick gradient impeggm layer; the ability to perceive the

structure of the volume is destroyed.
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For volume clipping, there is a relatively big differenceperformance. The rasterization method itself
runs at equal speed for both volume renderers, but the seftwdume renderer requires more data
to be transfered from video memory to host memory, which ia grocess. Figure 4.19 (a) shows
that a memory transfer is required after each rendering glagee rasterization method. Increasing
the number of segments to be rendered thus rapidly decrpasiesmance. For the hardware based
volume renderer, the rasterization method itself requirdg memory transfers that are local to the
video memory. At the end of the rendering, the final image ef\blume rendering needs to be
transfered to host memory though, to comply to the VVC aethitre. Therefore, a increasing the
number of segments has a smaller effect on the performance.

In the resulting volume renderers these differences amiyhaoticeable. The reason for this is that
the volume rendering itself takes much more time than thieriaation of the clipping volume. The
difference in rendering speed of the volume renderersf itdsb mask out the difference in speed of
volume clipping.
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Chapter 5
Implementation

The techniques covered in the previous chapters were inguitrd according to the VVC architecture
to meet requiremerR6; a new VVC driver was created. To allow volume clipping, a feadifications
to the VVC were required. This chapter lists these relatigphall modifications. A short description
of how to use the driver is also given. No source code is dimliin detail.

5.1 Modifications of the VVC

At the start of the project, the VVC did not yet offer suppant $pecifying clipping volumes other than
clipping planes. A number of maodifications to the VVC wereuiegd to make the use of a polygon
mesh as clipping volume possible.

5.1.1 Extensions to VVCModel

Although the original version of the VVC, referring to thers®n of the VVC in the common source
tree during the project, already contained the notion oflggam mesh, a modification was required
to enhance the suitability for accelerated rendering asd eiuse. The existing data structure, called
VVC _Model, allowed a model to be specified as sets of trianglpsstind fans, but not as a list of
separate triangles. To prevent forcing the developer ifgifsta model prior to using it with the VVC,
an extension to VVQViodel was made that allows the use of triangle lists. A triatigt is a list of3n
vertices where each three successive vertices specifgle ¢sirangle. Hence a triangle lists containing
3n vertices defines triangles.

5.1.2 Extensions to VVCCutSet

The original version of the VVC also included a data-streetoalled VVCCut that represented a
clipping plane. Multiple clipping planes could be combirietb a set by using the VVQCutSet data-
structure. In order to allow a VV@®lodel to be used as a clipping volume, the VMZIitSet data-
structure was extended to allow the inclusion of a VWIBdel. The modified VVCCutSet can contain
either a single VVCModel or a set of VVCCut objects.

Since all data-structures in the VVC use VMt only through VVCCutSet and never directly, no
further modifications were required. The name VXADtSet is not optimal considering the use of the
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modified data-structure, not is this solution architedtyisound. This method did however require the
least amount of changes to the VVC, saving more time for rebezn volume clipping.

5.1.3 Support for Spline Patches

The original project proposal contained a requirementitisdtould be possible to specify the clipping
volume as a set of Bézier contours. As the project progdgssbecame clear that the use of Bézier
contours required a tessellation to a polygon mesh, whiatdifferent subject than volume rendering.
Due to the project planning, some time was spent on the suddjéte beginning of the project. A basic
description of Bézier curves and patches is given in apgehd

To demonstrate the possibility to use a set of Bézier caoatas a clipping model, a function was
added to the VVC that takes a two-dimensional set of poinfisidg a set of Bézier contours as input
and gives a VVCModel as output. The resulting model is a uniform tesseltatf the set of Bézier
contours, complete with normal vectors. This model can becty supplied as a clipping volume.

5.2 The VCR Driver

An implementation of the rendering techniques describeithi;ithesis was made as a driver for the
VVC. A VVC-driver is software component that performs thadering of a scene specified by the
data-structures of the VVC. The driver developed shoulddmsiclered a prototype acting as a proof-
of-concept; the code is not suitable for use in end-prodoitivare.

5.2.1 Driver Options

The various methods for volume clipping and volume rendgwiere all implemented, which gives the
need for a set of parameters to control the rendering. Aaogrie the VVC architecture, this can be
done by using the options string which will be passed to theedrTable 5.1 gives an overview of the
accepted options and their meaning.

5.2.2 Limitations of the Driver

There are a number of limitations to the driver. These lititites are caused by the strict requirements
imposed on the scene by the VCR driver. Relaxing these remeints is not a very challenging task,
but it is time-consuming and was therefore not done. A liseglirements that a scene to be rendered
by the VCR driver is given below.

1. The output should be a color display;
2. the geometry should be of type V\&ameProjection or VVGConePyramid;
3. there should be exactly one visual in the scene;

4. the visual should be of the type VVClassSurfaceVolume;
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Option string

Domain

Description

VCRclipMode

Probing, Cut- Selects the method of volume clipping to use.

ting

VCRrenderMode

Ray-Casting, Selects the method to use for computing the
Rasterization depth-structure of the clipping volume. Ap-

plies only to the use of the DirectCaster.

VCRvolumeRenderer

DirectCaster,Selects the volume rendering component to

GPUCaster

use.

VCRbufferDepth

16, 32

Selects the precision of the floapoit ren-
der target used for computing intersection
depth and gradient. Applies only to the ras-
terization method in combination with the Di-
rectCaster.

VCRsegments

7+

Selects the number of intersection segments
to render. Applies to the rasterization method
only.

VCRbackmost

true, false

Specifies whether the back-laydreoback-
most segment should be the back-most layer
of the entire clipping volume. Applies to the
rasterization method only.

VCRstepSize

R+

Controls the step size used for volume render-
ing inside the GPUCaster.

VCRERTThreshold

RT

Controls the early-ray-termination trans-
parency threshold. Applies to the GPUCaster
only.

VCRcliplntensity

Rpo,1]

Controls the intensity of the overlay of the
clipping volume on the volume rendering im-
age. Applies to the GPUCaster only.

VCRinterpolation

Rp1,00)

Controls the size of the image that is actually
rendered. The rendered image is interpolated
to the full image using bilinear interpolation.
Applies to the GPUCaster only.

VCRDblurFactor

R+

Controls the amount of blurring that is applied
to the final rendered image. The use of blur-
ring may reduce the presence of noise. Ap-
plies to the GPUCaster only.

VCRringReduction

true, false

Controls the use of the rintjeant reduction
algorithm. Applies to the GPUCaster only.

Table 5.1: Options that can be passed to the VCR driver.
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Figure 5.1: Overview of the different spaces and the transftions between then that are defined.

5. the volume contained in the visual should have a grid;
6. the visual should have a cutset of type VMIassCutModelProbe or VVClassCutModelCut;

7. the model of the cutset should have exactly one sectidnanlist of smooth vertices and a grid.

If a scene fails to meet any one of these restrictions, thvedwill return with an error message. Note
that these restrictions imply the presence of a clippingiva; there currently is no way to turn off
clipping. A workaround for this limitation is to specify agping volume that embodies the bounding
cube of the volume.

5.2.3 Transformation Spaces

To allow the elements in a scene to be independently tramsir most elements have a separate
transformation assigned to them. These transformatiofisedeow one coordinate system, or space,
is positioned within another; they describe a transforamafrom one space to another. To achieve
the correct result, these transformations should be cenatd in the correct order. In the VCR
driver, a name is assigned to each of the spaces to strubiteansformations. An overview of the
transformation schema is given here. Note that the tramsfoon schema is actually specified by the
VVC.

Figure 5.1 shows the different spaces that are used in the dft¥Br. An arrow between two spaces
indicates that a transformation between the two spacessistlyi defined by one of the elements in the
VVC scene. Transformation A is defined by the grid of the Vis&ach grid defines a scaling, rotation
and translation, in that order. In volume space, the voxelsabe-shaped and axis aligned. In fact,
volume space is very similar to voxel space. Transformafbiamly defines a translation, because in
volume space the origin is in the center of the volume, whilgdxel space all voxels have positive,
integer coordinates. The use of voxel space is that the owies are equal to the array indices in each
direction.

Transformation B is defined by the grid of the clipping voluaral consists of a scaling, rotation and
translation, just like transformation A. The frame or cormetry defines transformation C. Note
that frame space is also commonly known as viewing spaces ridme was avoided due to the name
clashing of the abbreviated form with volume space. The érgeometry defines a translation, rotation
and scaling, in that order. Coordinates in frame space camdjected to the screen using the projection
transformation E. There is no inverse transformation,esanprojection is not invertible.
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Chapter 6
Conclusion

Various different techniques have been examined, bothdlimve clipping and volume rendering. In
this chapter a summary of the advantages and disadvanthgashoof those techniques is given. Both
the image quality and the performance are discussed forteelshique, as well as their conformance to
the requirements listed in chapter 1. At the end of the chegotime leads for possible further research
are offered.

6.1 Ray Casting Versus Rasterization

Two depth-based volume clipping techniques were explonedeitail; a ray casting method and a
rasterization method. In chapter 2 it was already statedthiearay casting method was not preferable
over the rasterization method. This is partially due to #et that the spatial subdivision data-structures
require pre-computation, causing some degree of intgigctiith the clipping volume to be lost.

A strong advantage of the rasterization method is thatainalthe use of graphics hardware, specif-
ically consumer-level graphics cards, to accelerate ttheme clipping. This means that a complex
clipping volume can be used while still achieving a very gpedformance. In fact, for most practi-

cal clipping volumes the performance of the rasterizatiathod is much higher than that of the ray
casting method. Using the GPU for volume clipping also iraégs very well with GPU-based volume

rendering techniques.

Advantages of the ray casting method are that there arehjiligss for integration software volume
rendering techniques that could increase performancedditian, there is no need for multiple render-
ing passes or complex layering based solutions. These tad@emndo not outweigh the advantages of
the rasterization method however. The limitation of thee@gation that it requires multiple rendering
passes to support concave clipping volumes easy to overceananost practical clipping volumes a
low number of segments, typically two or three, are enougjite a good image quality.

In conclusion, both methods have their advantages andwdietajes, but the high performance of the
rasterization method makes it preferable over the rayrmastiethod. This is based on the assumption
that suitable graphics hardware is available.
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6.2 Volume Clipping in Software and Hardware

The rasterization method was integrated with both a soévead a hardware based volume renderer.
The results of volume clipping itself were equal for bothurak renderers. The same techniques were
applied to remove any artifacts caused by volume clippingprfa performance point of view, the
hardware approach takes advantage from the fact that ttegirasion method uses graphics hardware
too by saving a costly data transfer. However, this is hamdljceable in practice, since the time spent
on the rasterization method is insignificant compared tdithe spent on volume rendering.

The hardware volume renderer was developed as a part ofrthjecp It is an implementation of ray
casting-based volume renderer on consumer-level graphichvare. It takes advantages of the new
features of current graphics hardware to make this possibldelivers a higher image quality at a
higher performance than the software-based volume rendEnere are some limitations, but further
development of the renderer should rid most of them.

6.3 Possible Improvements

The rasterization technique for volume clipping has prot@de an efficient one. A downside is
that the end-user should supply the number of segmentshbatdsbe used for performing volume
clipping. Although it has been stated that two or three sedsis usually enough, setting the number
of segments to a fixed value may give artifacts in situatioitis ashigh degree of overlap in the clipping
volume. Determining the number of layers to be renderednaatically would be a solution, although
doing so is not entirely trivial. It is possible render exathe number of segments needed for an
entirely accurate rendering, but this would have a serimymtt on the performance. Often only few
pixels are affected by the last few segments. Finding a nmésmato control the accuracy versus image
quality would rid the user from specifying this parameter.

The use of graphics hardware allows clipping volumes of yigi resolution without a significant im-
pact on performance. There is a strict requirement on thémg lspecified as a polygon mesh. Relaxing
this requirement could be done by only affecting the stefisrbehe clipping volume is rendered as
a polygon mesh. Of course more surface discretization tgabsa could be implemented. Interesting
options include ones that allow adaptive subdivision ohshigher-order surfaces. For example, when
looking at the future of GPUs, the upcoming shader model #ddosupport for creating new vertices
during rendering. This means that the clipping volume cteldpecified as a set of Bézier patches and
that the entire subdivision work is done inside the shaddi@ying adaptive control of detail based on
for example depth information. Although these ideas aredas preliminary information, there are
many interesting possibilities in this area.

Besides the volume clipping, using a ray casting method tfopa volume rendering on the GPU is
a very promising technique as well. There currently are fereaces to this technique being applied
to medical volume data before. Both the image quality ang#réormance are high, suggesting that
further research in this area is interesting. There are npasgibilities left, both applying existing
optimization techniques and finding new ones. The adaptaweping rate technique as applied in
the DirectCaster could lead to an improved image quality@erformance for example. To make the
technique more usable in real-life applications, the ktidins on the size of the volume should be
solved. Much work in this area has been done before [Kanuk,&0(3] [Cox et al., 1998] and it
is likely that existing techniques can be modified to be a@aphiere. In conclusion, ray casting-based
volume rendering on the GPU is still in its infancy and therenuch left to explore.
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Appendix A
Tessellation of NURBS-Surfaces

A.1 Introduction to Splines

When given a set of points in space that should be connectiddsyor surfaces, performing linear in-
terpolation between these points (that is, in the two-dsi@ral case, connecting the points by straight
lines), often does not give a satisfactory result. Oftemeliea desire for a smooth transition between
the points. For This purpose splines can be usedplkeis a general term for a curve modeling a
smooth transition between a set of points, often called timtrol points. There is a large amount of
types of splines, most of them not being bound to two or thieedsions.

For this particular project, there is an interest in splifeshe tessellation of Non-Uniform Rational
B-Spline (NURBS) patches that can be used to define the nljpgolume. Since this means the sole
interest is in the evaluation of the location, gradient and/ature of NURBS surfaces, only a short
introduction into splines with a strict focus on NURBS sugda is given. Besides a general derivation
of certain equations, the pre-computation possibilitie=néually used in the implementation are also
discussed.

A.1.1 B-Splines

A very general type of spline is the B-Spline. A general BiSplis defined by a knot vectdr =
{t; 10 < i< m+ 1} whereT is a non-decreasing sequence &nd [0, 1] for all 7, and a set of control
pointsP = {P; | 0 < i < n+ 1}. The degree of the B-Spline is definedas= m — n — 1. The
general B-Spline curve is now defined as

C(t) = _ PiB;p(t), (A.1)

whereB; ,,(t) is the basis function for the B-Spline. This function is deéfiras

B 1ifti§t<ti+1

Bio(t) = { 0 otherwise (A-2)
. t—1t; ti+p+1 —1

Bip(t) = ——Bip1(t) + ————Bit1p1(t). (A.3)

Litp — ti Litp+1 — Lit1
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o o

@) (b)
Figure A.1: An example of an interpolating (a) and an apprating (b) spline.

The B-Spline curve’(t) is only defined fot € [t,,t,41]. Note that the control points of the sBtcan
be of any dimension.

There are many classes of B-Splines, most of these are thidzad by a special property of the knot
vector. For example, theon-periodicB-Spline, where the firgt + 1 entries of the knot vector equal
the lastp + 1 entries, causes the curve toih&erpolating that is pass through the first and last control
point. Figure A.1 shows an example of an interpolating andggproximating (non-interpolating)
spline curve. The B-Spline is approximating if for examgie knot vector isiniform in which case
t;11 — t; = cfor all i and some constant

The termcubic splinerefers to a third degree spline with four control points adsteight knots.
The reason that splines are often subjected to these ciotstig that cubic splines are the lowest-
degree splines that allow continuity up to their secondvadéitie. The continuity of splines is further
discussed in section A.1.5. Having splines of a low degreseé$ul for performance reasons. Creating
more complex splines can be achieved by stitching multipiacsplines together. Since performance
is an issue in this project, the types of splines used willdstricted to cubic splines.

The most general form of the B-Spline is the NURBS-curve oivlig short for Non-Rational Uniform
B-Spline. Besides beingon-uniform(so any knot vector is valid), it supports weights assigreithé
control points, such that the curve is defined as

_ o PwiBip(t)

wherew; are the individual weights, defined as the last element ofittreogeneous coordinate”.

C(t) (A.4)

A.1.2 Bezier Curves

Bézier curves are a special case of B-Splines, where thie/ator is non-periodic and has no internal
knots. Internal knots are the knats,; to t,,,_,—1. In order to obtain a cubic Bézier curve (defined
by third degree polynomials), the knot vector should be @efiasT = 0,0,0,0,1,1,1,1. This
simplification makes the basis function of A.2 rely only oe ttontrol points and ott Removing the
recursion, the basis function for a cubic Bézier curvevegiin A.5.
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By (1) 1—3t+3t2 -3
By 3(t) 3t — 6t + 313

: _ A.
B 3(t) 3t? — 3t3 (A-5)
B3 3(t) t3

Combining equations A.1 and A.5 gives rise to a matrix notatif the curve definition. This notation
is given in equation A.6.

-1 3 =31 3

3 -6 30 12
Ct)=(Po, P, Po, P3)- | o o (¢ ; (A.6)

1 0 00 1

Since the control points are usually fixed during the evanaof the spline (during for example tes-
sellation), thet is the only variable in such context. This means that thetWaftmatrices of equation
A.6 are constant and can be multiplied in a pre-computatiep prior to evaluating the spline. This
data only needs to be updated when any of the control poirstageh Note that the middle matrix
of equation A.6 is completely constant. In fact, equatiof &.an instantiation of the general cubic
spline equation with the “basis matrix” for Bézier curvdefined below in equation A.7. Section A.1.6
gives an overview of other types of cubic splines that candmepuited in the same way, only using a
different basis matrix.

-1 3 =31
3 -6 3 0
1 0 00

A.1.3 Bezier Surfaces

Bézier surfaces are the same as Bézier curves, but aredéfinwo di-

mensions instead of one. A Bézier surface is defined by afsgézier

curves. For simplicity, a restriction is made to cubic B&zurfaces, al-
though the generalization to NURBS-surfaces is easy to ntikee there 2
are two dimensions, two knot vectors need to be defined. As eubic z’:;;,':,.'.',',-,...",
Bézier curves, these are definedas- V = {0,0,0,0,1,1,1,1}. Given  ~ &

16 control points, the curve is defined as in equation A.8. fichae on
the right is an example of a Bézier surface.

3

Su,v) =3 > PijBis(v)Bis(w) (A.8)

3
i=0 j=0

Like one dimensional curves, surfaces can also be expressag matrix multiplications. Since a
surface is constructed by combining four curves in two disams, the coefficients of the resulting
surface polynomial is the result of three matrix multiptioas. To compute the surface, two vectors,
one with the powers ofi and one with the powers af need to be multiplied with this matrix. The
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result is shown in equation A.10.

Mep=| Do D P2 By (A.9)

N W

S(u, U) = (u37 u27 u, 1) : MBézier . MCP . (MBézier)T (AlO)

A.1.4 Gradient and Curvature of Bézier Surfaces

The gradient of a Bézier surface is useful for determinimgriormal vec-
tors of the surface, used in for example lighting operatidiisewise, the
curvature is useful in for example adaptive tessellatioenalit may act as
an indicator for the required level of detail. Given equati® 8, the gra-
dient and curvature can easily be defined as the first and deleoivative
of the surface, respectively. However, since there are twiables, there
exist two first and second derivatives. As is intuitive, ie thvo dimen-
sional case, the normal vector of a curve is the vector pelipelar to the
gradient vector. This also holds for the genesadimensional case; the
normal vector of am-dimensional hyper-surface is defined as the cross produlea — 1 gradient
vectors. A similar reasoning holds for the curvature. Thids to equations A.11. The gradient is
defined ag7(u, v) and the curvature as(u, v).

G(u,v) = (%S(u,v)) X (%S(u,v)) (A.11)
0? 0?
C(u,v) = (wS(u,v)) X (wS(u,v)) (A.12)

Using the matrix notation of the surface equation, equatidrl can be rewritten such that the same
pre-computation data as of the surface can be used to conifutgradient and curvature vectors of
the surface by differentiating the vectors of the powers ahdv.

A.1.5 Properties of Splines

As mentioned in section A.1.2, many other types of cubicnggliwith different properties can be
defined by only changing the basis matrix. This section garesverview of some commonly used
other types of cubic splines and gives an overview of thaiperties.

When categorizing (cubic) splines, there are a number efaésting properties. One property is that
of continuity, the very reason to use splines in the first@la& spline can be continuous in various
degrees and a special notation exists to denote this. IfreesplC® continuous the curve functiofi(¢)
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(@)

Figure A.2: Splines with varying degrees of continuity; ffajs no continuity, (b) haS® continuity, (c)
hasC' continuity and (d) is continuous ifi?.

is continuous. Even linear splines have this property.r@glthat are continuous @' are continuous

in the first derivative of the curve function. This is true fopst cubic splines, but not for the linear
spline. This property is the very reason splines were irenit results in a smooth transition between
the control points. The next level of continuityG&, which refers to continuity in the second derivative
of the curve function. This results in smooth transitionsMeen changes in curvature. Examples of
various degrees of continuity are given in figure A.2. An egnwhereC? continuity is important is
when a point of moves along a spline. If the spline is@dtontinuous, there might be abrupt changes
in the speed with which the point moves along the spline. fieigM2 gives examples of splines of
varying continuity. Note that the continuity in figure A.2)(das more to do with the spacing of the
input domain along the curve than with the visual appearamtés is indicated with a more gradual
increase in space between the markers along the curve cedhmafigure A.2 (c). It is possible to
construct curves that are visually equivalent but diffe€thcontinuity.

A property useful for the construction of splines is thatasfal control If a spline has local control
it means that moving a control point of that spline does nfitcafthe entire curve. Examples of the
effects of splines with local control or not are given in tlescriptions of Bézier splines and B-Splines
in section A.1.6.

The convex hull property expresses if a spline falls witthie tonvex hull of the control points. This
is a useful property, as this gives some guarantees abolnetievior of the curve. An ideal curve
would be one that is interpolating (a property mentionediezdris C? continuous, has local control
and falls within the convex hull of the control points. THigwever, is not possible, not even by higher
order curves. Fortunately there are good alternativessgrhents of cubic Bézier curves or B-Splines
stitched together are most commonly used. Some more detagtitching segments together as well
as some properties of different types of splines is disaclisseection A.1.6.

A.1.6 Other Types of Splines

Below is a short list of various types of splines along withisa of properties as mentioned earlier
for each type of spline. The construction of longer splingsstitching multiple segments together
is discussed for the Bézier and B-Spline curves. A germatidin for the other curves is considered
trivial.
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Bézier Spline

The matrix for Bézier curves is given in A.7. A cubic Béz@mve is defined by four control points.
When multiple Bézier segments are stitched together tm farbigger spline, there are a number of
restrictions to maintain various levels of continuity. TaimtainC? continuity, the last point of a seg-
ment should be equal to the first point of the next segmens, theicase with all types of cubic splines.
This follows immediately from the curve definition. In geakrlet there be two Bézier segments
Co(t) andC(t) with t € [0, 1], defined on the sets of control poirs, P, P>, Ps andPs, Py, Ps, Ps,
respectively. The condition for maintainirdg' continuity is given in equation A.13.

Co(1) =C1(0)=3(Ps — P) =3(Pr—p3) =P — P, =P, — P (A.13)

This means that the control points neighboring an intetpdl@ontrol point should be co-linear and
equidistant to the interpolated control point to maintélh continuity. If these control points are
only co-linear, the gradient has the same direction in therfimlated control point, but not the same
magnitude. This means th@t' continuity is a stronger requirement than having a smootiecu

Likewise a derivation for maintaining? continuity can be computed. This is given in equation A.14.

C(/]I(l) = C{I(O) = 6(P1 —2P, —I—Pg) = 6(P3 —2P4—|—P5) =P —2P,+P3=P3—2P;+ Ps (A14)

This means that for a chain of Bézier segments, all norrpotated control points, except those of the
first and last segments, are fixed(if continuity is desired. For a closed setiosegments, where
the last control point of the last segments equals the finstrabpoint of the first segment, thé?
continuity requirement yields a set 8h equations witt2n unknowns. This set of equations has a
unique solution, being the set of non-interpolated corgodhts. This means that given a set of points,
there is exactly one set of Bézier spline segments thatpiokates the set of point while having?
continuity. The general form for the control points in suateae is

Py = P, +(Pi—3— Piy3)
Piy1 = Pi+6(Pys— Pi_3),

whereP;_3, P; and P, 3 are successive interpolated control points #hd, and P;,, are the neigh-
boring non-interpolated control points of interpolatedittol point ;. For a set ofn (interpolated)
control points, the value aiequals%. Other values o give C'' continuity, but noC? continuity.

Approximating B-Spline

(A.15)

o O O =
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(@) (b)

Figure A.3: Local control in Bézier splines; in (b) the thirontrol point is shifted to the right a opposed
to (a) and the fifth control point is shifted to maintaifi continuity.

(@) (b) ()

Figure A.4: Local control in B-splines; in (b) the third camitpoint is shifted to the right a opposed to
(a) and the fifth control point is shifted as with Bézier spk, while in (c) the fifth control point still is
in the same position as in (a), while still maintaini@g continuity.

The approximating B-Spline is a spline with? continuity and has local control. It also has the
convex hull property, but it is an approximating spline. Shieans that none of the control points are
interpolation, not even the start and end point. The bastsxrfar approximating B-Splines is given
in equation A.15.

B-Splines have local control, meaning that each point offlgcts part of the entire curve. This is
demonstrated in figure A.4. This property is less useful wineittiple segments of cubic splines are
used, but it is still a useful property in the constructiorcofves.

Since both B-Splines and Bézier splines can be formulasétywnly different basis matrices, every
B-Spline curve can be converted into a Bézier curve andwéesa. This can be done by solving the
equationM _gspiine - K = Mpe.ie,r fOr the matrix K. This matrix can be used to convert the control
points of a B-Spline to those of the equivalent Bézier curve

Catmull-Rom Spline

MCatmull—Rom = 5 1 0 1 0 (A16)

The CatMull-Rom spline is an interpolating spline with continuity. It has local control, but does not
have the convex hull property. Note that the latter is incatilnbe with interpolating all control points
and beingC! continuous. The basis matrix for CatMull-Rom splines isegivn equation A.16.
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Hermite Spline

2 =2 1 1
1 -3 3 -2 -1
MHermite = = 0 0 1 0 (Al?)

6
1 0 0 O

The Hermite spline is equal to the Bézier spline, except thea control points it accepts are in a
different form. The middle control points, which are approated by Bézier splines, are not specified
as absolute coordinates but as direction vectors. Thesersandicate the derivative of the curve and
can be considered the difference vector between two sueeesmtrol points. The basis matrix for
Hermite splines is given in equation A.17.

A.2 Tessellation of Spline Patches

To convert a spline patch into a polygon mesh, the patch dimitessellated. The most primitive form
of tessellation is that of uniform tessellation. The dorsafbothu andv are uniformly divided into a
number of intervals. This defines a uniform grid on the twoelisional parameter space of the patch.
The spline patch is evaluated at each edge of each inteivadga rectilinear grid of coordinates. A
tessellation of the uniform grid into triangles is trivigd. downside of this uniform tessellation is that
it only works well for C? continuous spline patches. Also, the level of detail is etiuaugh out the
patch. This is not always desirable. A high degree of detaibually only desired in areas with a high
degree of curvature. This can be achieved by using adapiiface tessellation techniques [Velho
et al., ] on a patch uniformly tessellated with a low level etall or applying surface simplification
techniques on a patch uniformly tessellated with a highl le/detail.
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