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A B S T R A C T

Companies, institutions and researchers around the world are collecting
enormous sets of high-dimensional data at breakneck speed. However,
our understanding of the collected data is not nearly keeping up. One
of the main approaches to understanding these datasets has been to
reduce the data to a low-dimensional representation, called a projection,
that can subsequently be visualised.

Seeing visible patterns in these projections indicates there are relation-
ships between the dimensions of the high-dimensional data. However,
it does not tell us anything about what those relationships are. Sev-
eral efforts have previously been made to explain the patterns in the
projection in terms of their original dimensions. However, they tend to
fall short in adequately explaining them, or the techniques don’t scale
well to a higher number of dimensions. Therefore, this thesis aims to
answer the question how to adequately explain these patterns in pro-
jections of high-dimensional data, while simultaneously scaling better
than previous techniques in the number of data dimensions.

We extend the variance-based explanations of previous work with
a value-based explanation, that gives insight into, not only why the
patterns are there, but what they represent. Furthermore, we introduce
a user-driven exploration mechanism that provides significantly more
detailed explanations of regions in the projection. In addition, these
explanations are augmented by a number of tools that support their
function. We integrate all of the above elements into a visualisation
solution for exploring high-dimensional data projections.

We assess the visualisation system using an evaluation study asking
a mix of 23 experts and non-experts to analyze several datasets of
increasing dimensionality (12, 31, 58) using the proposed solution, as
well as their opinion on the usefulness of each of the elements of the
visualisation solution.

Participants rated each of the elements of the visualisation system
highly in terms of their usefulness. In addition, with minimal training
and by overwhelming majority, participants answered correctly to a
series of twelve control questions meant to test whether they understood
how to read the explanations generated by the visualisation system. On
a series of nine more complex analysis questions, where participants had
to use the system themselves, the majority gave answers that strongly
aligned with our analysis. This indicates use of the system results in
consistent insights about the data with only minor training or expertise
required.

Overall, the evaluation study indicates that our visualisation solution
is capable of providing detailed and consistent explanations of patterns
in data projections, even as the dimensionality of the data gets higher.
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1I N T R O D U C T I O N

1.1 introduction

Many domains such as business, medicine, communications and research
are becoming increasingly data-driven [15, 25]. Massive amounts of data
are collected in these fields every day [2, 15]. This data is then analysed
in order to gather insights and make informed decisions about the future
[23]. However, such analyses are not always straightforward.

Generally, gathered data consists of a number of observations, or data
points, that describe events, objects, people, or some other phenomena,
and for every observation several measurable properties are recorded.
These measurable properties, sometimes called features, variables, at-
tributes or dimensions, describe a characteristic of the observation. For
example, an observation might the test score on an exam of a particular
student, and possible variables that influenced it may have been the
number of hours they studied, how long they slept the night before,
and so on. In a more complicated setting, an observation might be
an earthquake, and its measured attributes, the magnitude, location,
duration, time of origin, and so on.

Datasets collected nowadays are often huge, consisting of thousands
to millions of data points. Each data point, in turn, may consist of
multiple dimensions, such datasets are called multidimensional datasets.
Moreover, complex (non-linear) relationships between the dimensions
of the data may exist [1, 27] that are not easily brought forward by
common analysis techniques [16].

If the number of dimensions associated with each data point is higher
than in typical multidimensional datasets, the dataset can be considered
as high-dimensional. Several of these dimensions may be completely
irrelevant to the observation, for example, the population of Mexico on
the observation of an earthquake happening in Japan. Other dimensions
may be profoundly relevant to the observation, such as the current
atmospheric pressure on the observation that it rains today.

When analysing such high-dimensional data, we are looking for pat-
terns in the data. These patterns are interesting because they can tell
us about hidden relations in the data. For example, which dimensions
correlate with other dimensions, in which observations dimension values
are out of the ordinary, even which observations themselves are out of
the ordinary. As an example, we might find that the combination of
certain food ingredients are harmful, learn about which abnormalities
in the human genome cause a genetic disorder, or which factors caused
stock prices to plummet.

However, obtaining such insights from looking at the raw data is
practically impossible for a human. For low-dimensional data, such
insights can be obtained from visualising the data directly. For high-
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2 introduction

dimensional data however, this is not a feasible approach as visualisation
of more than three dimensions is completely unintuitive to humans.

A common approach to deal with this problem of high-dimensionality
is to employ the use of a dimensionality reduction technique [27]. Such
a technique transforms the high-dimensional data points to a low-
dimensional representation, called a projection, while maintaining cer-
tain properties of the high-dimensional space as much as possible.

A lot of dimensionality reduction techniques exist, but what many
of them have in common is that they try to preserve the distance
relationship between the high-dimensional points, in the reduced low-
dimensional space. Data points that have similar values for many of their
dimensions are close together in the high-dimensional space, whereas
points with very different values are far apart. Therefore, in the projec-
tion we similarly hope to see patterns such as, groups of points that are
close together, separation between these groups as well as points that
are far away from other points (outliers). In essence, we are trying to
find the patterns that may exist in the high-dimensional structure of
the data, by looking at a low-dimensional representation.

However, the projection itself does not explain anything about the
structures we may see. We do not know why these structures are there,
and what they contain. That is, we do not know what dimensions are
most important in causing data points to be similar to each other, or
the opposite. Multiple techniques exist for explaining these local point
structures [4, 10, 11, 28], however they do not relate back to the original
dimensions in the data. Whereas, the techniques that do explain the
structures in terms of their original dimensions, tend to fall short in
their explanations as the dimensionality of the dataset increases [6].

1.2 research question & contributions

Given these limitations in the previous work, in this thesis, we investigate
how we can explain the patterns in projections of multidimensional
data in enough detail while simultaneously allowing for better scaling
in terms of dimensions than the current state of the art.

More formally, the research question and focus of this thesis is:

How can local point patterns in projection embeddings of highly
multidimensional data be explained in terms of their original

dimensions?

We present a visualisation solution addressing these limitations and
the research question. In short, we extend the work of da Silva et al. [6]
and present the following new contributions:

1. An additional global explanation metric based on dimension values

2. Interactive user-guided detailed local explanations

3. Differential analysis tool between regions in the projection

4. On-the-fly exclusion of dimensions in all explanations



1.3 thesis structure 3

We combine both the global and local explanation approaches into a
visualisation solution augmented with the latter two contributions that
support analysis of the data. In order to test the effectiveness of this
visualisation solution, we run an evaluation study asking participants
to use the various explanatory mechanisms to solve analysis tasks on
datasets of increasing dimensionality. As far as we are aware, this is the
first evaluation study of its kind, and gives us insight into the ability of
our solution to explain local point patterns in projections, its ease of use
in doing so, and its ability to scale to datasets of higher dimensionality.

Our visualisation solution is implemented in the HDPS [7] software
application for exploring high-dimensional data. The source code and
binaries of our implementation are available on GitHub at https://
github.com/JulianThijssen/ProjectionExplorer [13].

1.3 thesis structure

We next provide an overview of the thesis, and briefly highlight the
content of each chapter.

Chapter 2 explains the background of why our research is relevant,
it discusses multiple other techniques for understanding multidimen-
sional data and makes the argument for why we focus specifically on
projections.

Chapter 3 gives an overview of previous work done in explaining
multidimensional data projections, identifies current limitations and
lays out the research question and aim of this thesis.

Chapter 4 describes our extensions to the previous work in providing
global explanations of a projection, which serve as an entry-point for
the user-guided exploration explained in the following chapter.

Chapter 5 introduces a user-guided exploration that is capable of
providing detailed explanations of multi-scale regions of the projection.

Chapter 6 describes the design and results of the evaluation study
that was performed for testing the ability of our solution to explain
local point patterns in projections, its ease of use in doing so, and its
ability to scale to datasets of higher dimensionality.

Chapter 7 discusses the contributions in light of the research ques-
tion, results of the evaluation, limitations of the proposed solution and
potential future work.

https://github.com/JulianThijssen/ProjectionExplorer
https://github.com/JulianThijssen/ProjectionExplorer




2B A C K G R O U N D

In this chapter the groundwork is laid for the problem that we are trying
to solve in this thesis. Starting from the definition of multidimensional
data, we survey several visualisation techniques that have been used over
the years to attempt to explain these datasets. We explain why this thesis
is primarily focused on one of these techniques, i.e. projections, and why
it is that it needs additional explanation. Related work that focuses
on explaining projections is explored in detail in Chapter 3. While the
visualisation techniques mentioned in this chapter are also related work
to the topic of this thesis, their mention, and the focus of this chapter,
is primarily to motivate why projections are the visualisation technique
of concern in this work.

2.1 what is multidimensional data

Real-world phenomena are often complicated. Events generally happen
for many reasons and many factors play a role. When analysing why a
company has made a loss in the past year, when the next earthquake
will happen in Japan, what the weather will be like in three days, test
scores for a university course, single factor analysis is rarely appropriate.
The institutions doing the analysis on this type of data have gathered
enormous datasets that can typically be laid out in a data matrix or
table. The rows of this data matrix contain observations such as years
in which the company has made a loss, earthquakes in Japan, the
weather on previous days, the test scores of students on previous exams.
The columns, on the other hand, describe certain factors (also called
variables, attributes or dimensions) that constitute or have potentially
influenced the observation.

Taking the example of the test scores for a university course, each
row of the data matrix could convey a particular student who has taken
the test. Each column could then convey an attribute of the test-taking
student, e.g., their test score, how many hours they spent on learning,
how much previous knowledge they had on the subject, how many other
courses the student was taking at the same time, their age, how many
hours they slept the night before, and so on. We would be interested
to find out what if any effect each of these variables has on a student’s
performance on the test. In other words, we are interested in finding
patterns and correlations between the variables. Understanding what
factors contribute to a high test score could help other students to get
higher test scores. For example, through analysis one might find that a
small group of students got significantly lower scores than others and
precisely all of those students had a poor night’s sleep before the exam.
Similarly, if one student got a very high score but also had a poor night’s

5



6 background

sleep, we would then be interested in finding out what other variables
could have contributed to this score.

How we can visualise such multidimensional data such that we are
able to analyse it is a field of study called Visual Analytics. This field
allows us to tackle analysis problems which require human interpretation
and are not easily performed by a machine.

2.2 multidimensional data visualisations

Multiple visualisations have been developed over the years that can be
used for analysis of multidimensional data. We will mention a couple
here to introduce the topic.

2.2.1 Tables / Table Lenses

One of the simplest visualisations is displaying the data in table (see
Figure 2.1) where each row in the table represents an observation and
each column in such a row contains the value of a certain dimension
of that observation. While every detail of the data is available for the
user to see, it is not at all straightforward to see patterns in the data.
Manual comparison of the dimension values of potentially thousands of
observations must be done, for every dimension of the data.

Figure 2.1: Table visualisation of a multidimensional heart disease dataset [8]. The rows
list observations (patients), and the columns are the dimension values of those
observations. The last column is coloured according to the value displayed in the
cell. Low values are coloured lighter and high values are darker. This makes it
easier to spot patterns in the data. (Image produced with Microsoft Excel [20])

A relatively simple addition to make this comparison process easier
is to colour the cells of the table according to some heatmap based on
the values of the dimensions. Low values would be on one end of the
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colourmap, while high values would be on the other end. The comparison
process then becomes a matter of seeing colour patterns. Still, such
comparison may not be easy to do as we generally have limitations on
the real-estate (i.e. screen space, or paper size) to show these tables. If
the data consists of many observations then a lot of scrolling might be
required to see every part of the data, during which other parts are out
of view again.

By colouring the cells it becomes possible to compare based purely
on the heatmap colours assigned to each cell. Therefore, what size we
display each cell in is largely irrelevant. Table lenses make use of this
to mitigate the space limitations to some extent by reducing the height
of each table cell to a single or just a few screen pixels (see Figure
2.2). This allows for comparing vastly more observations at a time than
before, meaning it becomes much easier to spot patterns and trends.

Figure 2.2: Table lens visualisation of the heart disease dataset. Dimension values are encoded
as bars (longer bars mean a higher value) and bars at the same height correspond
to different dimensions of the same observation. The bars are coloured according
to the gender of the patient (purple = female, blue = male). The chol column
specifies the levels of cholesterol of a patient. It appears that in this dataset
women are more often associated with higher levels of cholesterol, as there is
a higher concentration of purple near the top of the cholesterol values. (Image
produced with High-D software [18])
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2.2.2 Scatterplots

A visualisation that allows seeing all observations at once is a two-
dimensional scatter plot. In a 2D scatter plot observations are typically
drawn as dots in a two-dimensional coordinate system. The coordinates
of the points in the plot can be derived from two user-selected dimensions
of the input data, each of which is assigned to an axis of the coordinate
system (see Figure 2.3). Similarly, three-dimensional scatterplots are
constructed in an analogous way and are also used relatively frequently,
but come with a few additional difficulties such as picking an appropriate
viewpoint to view the data from, and difficulties in assessing distances
and depths of the points.

Figure 2.3: Scatterplot visualisation of the heart disease dataset. Observations (patients) are
plotted in the scatterplot as dots, their locations determined by their values over
the dimensions mapped to the axes. In this plot the X-axis is mapped to the age
of the patients and the Y-axis to their level of cholesterol. The women with very
high cholesterol values seen in Figure 2.2 are seen here as outlier values on the
top half of the plot. (Image produced with High-D software [18])

In a two-dimensional scatterplot, patterns in the data can be found
by looking at the distribution of the points in the plot. Points that
lie close to each other are similar in the two user-selected dimensions.
Likewise, points that lie along a horizontal or vertical line are similar in
at least one of the dimensions. When a point is isolated from the rest
of the points in the plot, this means it is different from other points in
both dimensions and is called an outlier.

As a visualisation, scatterplots are easy to construct and interpret.
However, there are some downsides as well. Drawn data points with
very similar values in the dimensions used in the scatterplot can often
overlap and obscure each other. This makes it hard to get an idea of
the density of points at a certain location. One point drawn at a certain
coordinate may hide several or many other points drawn at the same
coordinate. One way to alleviate this problem is by drawing the points
in a partially transparent manner using additive alpha blending. In this
way, regions of high density will become more opaque than regions of
lower density. Still, the degree of transparency with which the point is
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drawn must be chosen carefully based on visual feedback. A different
solution would be to render a density map in the plot space using, e.g.,
kernel density estimation, in order to make clear which regions in the
plot have a higher or lower density of points.

Furthermore, when looking at a dataset with just two or three di-
mensions, the points in the dataset are simply visualised by drawing
them in a two, or three-dimensional plot respectively and assigning one
dimension to each plot axis. However, when the data has more than
three dimensions, the original dimensions can not all be simultaneously
mapped to the plot axes. Analysis of the data may then be performed by
assigning a subset of two or three dimensions to the axes and analysing
the data considering just these dimensions. The dimensions may then
be switched out for a different subset and again assigned to the axes and
analysed. This process can help explain the multidimensional data in
terms of its various original dimensions, but is obviously impractical and
intractable for data with many dimensions as it would require the user
to switch back and forth between an inordinate amount of dimension
subsets.

2.2.3 Scatterplot Matrices

The process of having to switch out and assign different subsets of
dimensions to the scatterplot axes can be solved to some extent by
utilising a small multiples [26] visualisation. Such a visualisation draws
a series of charts in a spatial layout, where each chart shows different
parts of the data. Applying this concept to scatterplots, we get a matrix
of scatterplots also called a SPLOM (Scatterplot Matrix) [3]. Each cell
of the matrix then shows a scatterplot using the data dimensions as
axes that correspond to that cells matrix coordinates (see Figure 2.4).
In this manner, one can see the scatterplots for more than two or three
dimensions simultaneously.

Figure 2.4: Scatterplot Matrix visualisation of the heart disease dataset. (Image produced
with High-D software [18])

While this visualisation allows for analysis over many dimensions, it is
not always easy to do such analyses. Finding similar observations comes
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down to finding which points are close together over multiple scatterplots.
Without some identifying feature of which are the same observations
on each scatterplot this would be impossible. Such a feature could
be implemented by a linked selection, where selecting an observation
or group of observations in one scatterplot selects it in all others.
Nevertheless, finding patterns in the data using this method is very
labour intensive and requires a lot of memorisation. Moreover, when
the data has a large number of dimensions, the number of visualisations
required would grow quadratically and be nearly impossible to deal
with.

2.2.4 Projections

Rather than scaling the number of visualisations to the number of data
dimensions, it is instead possible to scale down the number of dimensions.
Feature projection, a type of dimensionality reduction, attempts to
transform data from a high-dimensional space to a low-dimensional
representation (called a projection or an embedding), while trying to
retain some properties of the data such as distances between points in
a local neighbourhood. In visual analytics, the high-dimensional space
typically gets projected to two or three dimensions such that it can
be easily visualised. The resulting low-dimensional projection can be
plotted in a scatterplot as normal.

If any relationships between observations or dimensions of the input
data exist, then these manifest themselves as structure in the high-
dimensional space. As the dimensionality algorithm tends to attempt
to retain the local structure of the high-dimensional data in the low-
dimensional representation, patterns in the original data are expected
to show up as patterns in the projection. This means that by looking
at the projection, relationships in the data can be visually spotted in
an easy and intuitive manner.

In theory, there is no limit to the number of observations or dimensions
that can be reduced in this manner. Therefore, a big benefit of this
technique is its scalability. However, in general the more dimensions
and observations the data has, the harder it will be for the projection
to faithfully represent the structures present in the high-dimensional
space.

How well the dimensionality reduction managed to maintain the local
high-dimensional structures is not immediately clear from the resulting
projection. A lot of research has focused on ways to measure and/or
visualise the quality of a projection [17, 19, 21, 22]. However, this is
not the focus of this thesis, and we assume that the projection has a
reasonable enough quality such that analysing it makes sense.

Figure 2.5 shows a projection produced by dimensionality reduction
visualised in a scatterplot. All observations are captured in a single vi-
sualisation. Moreover, every observation can potentially be drawn using
the most minimal representation possible on a display, a pixel. There-
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fore, projections are not only algorithmically scalable in the number of
observations and dimensions, but also visually very scalable.

Figure 2.5: Scatterplot of a dimensionality reduction embedding. There are visible clusters
of points meaning that the observations of those clusters are similar among a
common subset of dimensions. (Image produced with HDPS software [7])

2.3 conclusion

Several visualisations for multidimensional data have been discussed in
this chapter, including their benefits and drawbacks. Projections stand
out owing to their excellent scalability both algorithmically and visually,
as well as how easy and intuitive it is to spot patterns in the data. For
these reasons, the focus of this thesis lies in improving projection-based
visualisation techniques.

What projections fail to show is why the patterns that can be seen
have formed and what relationships these patterns indicate. In the next
chapter we will therefore look at previous works that try to explain
what is shown in the projection. We explore the taxonomy of work that
has focused on explaining projections and discuss their strengths and
limitations.
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In the previous chapter we have discussed various visualisation tech-
niques and their limitations. We have seen why projections are a valuable
tool for rapidly discovering relationships between observations in multi-
dimensional datasets. In this chapter we look at projections more closely
and discuss a major challenge in understanding them, which forms the
context of this thesis. We explore the related work that has focused on
solving this challenge and discuss in what ways they succeed and what
their limitations are.

3.1 understanding projections

In the figure showing a projection (see Figure 2.5) in the last chapter,
it is possible to see clearly defined groups of points. What is not clear,
is why these points seem to cluster together. That is, over which dimen-
sions are points within the cluster similar to each other, and over which
dimensions do they differ from points in other clusters. Thus, while
projections allow us to quickly spot groups of similar and dissimilar
observations, it is unclear what dimensions cause them to relate to each
other in this manner. Understanding which dimensions contribute most
strongly towards forming these groups of points is key in the analysis
of projection. After all, we want to understand exactly what factors
contribute to e.g. high stock prices, earthquake formation, developing
a disease. Therefore, in order to be able to understand a projection in
terms of its factors, it needs to be augmented with an explanatory mech-
anism. Such explanatory mechanisms should assist in understanding
the relations between observations in terms of their dimensions.

It is worth mentioning that in a projection, like the one in Figure 2.5,
which exhibits clearly defined groups of points, it would be possible to
segment the projection into different clusters and attempt to assign a
meaning to each of the segmented groups of points. After all, points
within the same cluster must share some common values over their
dimensions. Explaining the cluster by this group of common values can
provide a lot of insight into the semantic meaning of such a cluster.

However, by far not all projections have such clearly delineated
clusters. As an example the projection in Figure 3.1 shows regions
of higher concentrations of points, but most of the projection is not
clearly segmentable in any reasonable way. Therefore, an explanatory
mechanism that is independent of the projection or projection technique
used to generate it, must not rely on being able to perform segmentation.

13
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Figure 3.1: Scatterplot of a dimensionality reduction embedding. There are locations with a
higher concentration of points and locations with a more sparse concentration,
but there is no clear delineation between most clusters of points. (Image produced
with HDPS software [7])

3.2 solution requirements

Before discussing the body of work that focuses on the issue of explaining
projections, we define several requirements we consider to be crucial
in being able to explain a projection adequately. This will give us a
framework with which to evaluate the various explanatory mechanisms
and identify their limitations.

We consider the following requirements key to a satisfactory explana-
tory mechanism, it must:

1. Explain local point patterns in the projection in terms of
their original dimensions
Projections can be explained in many different ways. The expla-
nations may focus on, e.g., showing projection quality or local
dimensionality. However, in order to understand the relationships
between observations, we must understand them in terms of the
original dimensions of the data.

2. Be easy and intuitive in use
Performing analyses with the explanations must be as easy and
intuitive for the user as possible. If it is not it will either be too
hard to gather insights from them or nobody will want to use
them.

3. Scale well in the number of observations and dimensions
Multidimensional datasets oftentimes have a significant number of
observations (sometimes running into the millions), and sometimes
also have a large number of dimensions. Therefore, it is important
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that the explanations are able to handle this in terms of staying
effective at bigger scales.

4. Scale well in terms of computational cost Similar to the
explanations scaling in terms of staying effective, they should
scale computationally or they become impractical to use on larger
datasets.

5. Be applicable to projections in a black-box manner
The explanations should function without knowledge of how the
projection was produced or access to the internal parameters of
the projection technique. If it is specific to a projection technique
then whenever a projection is generated using a different technique
the explanations no longer apply, which is undesirable.

We believe these requirements cover most of what makes a satisfactory
explanatory mechanism. The following sections will dive deeper into
the existing work, their benefits and drawbacks, and how they relate
back to the requirements laid out in this section.

3.3 taxonomy

We now explore some of the previous work in this field and how it
relates to the requirements listed in section 3.2. We order and classify
the collection of relevant previous work into several categories.

space vs point-based explanations First of all, we dif-
ferentiate between whether the explanatory mechanism explains the
individual points in the projection by their original dimensions or prop-
erties, or whether it attempts to assign a meaning to the projection
space. For example, in a dataset considering hobbies of people, one
might find that people with hobbies generally performed by younger
people tend cluster at one side of an axis, while people with hobbies
performed by older people cluster on the other side. The axis along
which these clusters are separated may then be assigned the semantic
meaning of describing the age of the plotted individuals.

Other techniques produce a (low-dimensional) embedding of the data
where the axes merely have a spatial meaning. That is, the axes merely
convey the coordinates of the projected points. Here other mechanisms
must be used to explain the plotted observations.

global vs local In addition, some mechanisms attempt to ex-
plain the whole projection at once which we will refer to as global
explanations. Others aim to explain only a subset of the projection at
a time, often requiring some user-interaction such as hovering over or
selecting individual points or clusters of points and only displaying the
explanation for those points, which we will refer to as local explanations.

explanatory elements The work is further classified according
to what properties of the data are used in the explanation. Apart from
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explanations based on the individual dimensions of the data, there
are certain properties of the data which can give useful information
about the visible structures. Examples of explanatory elements are the
intrinsic dimensionality of the data in a particular structure, correlation
between different dimensions or quality of the projection in a certain
region.

3.4 related work

We discuss the collection of related work in terms of the categories
laid out in the previous section. It is practical to divide the works into
two gross divisions, global approaches and local approaches. In general,
mechanisms which attempt to explain the projection space tend to be
global, and so the global approaches section will be subdivided between
space and point-based explanations. Elements used in the explanation
will be mentioned where applicable.

3.4.1 Local Approaches

Local approaches do not explain the whole projection in one go, but
rather a subset of the projected points. Usually, this is paired with some
user interaction where they select the points they are interested in, and
the explanation for those points is shown.

brushing with a tooltip Explaining a subset of points by
brushing over them and showing a tooltip is a very simple interactive
way of explaining a projection. The user can move their cursor over, or
select a particular point or close group of points (brushing) whereupon a
little window, called a tooltip, will pop up to give additional information
about those points. In the most basic case, it may simply show the
dimension values associated with a single selected point. By then moving
the cursor over points in a local neighbourhood, one can get an idea of
which dimensions have similar values over all those points.

This technique is easy and intuitive to use and works regardless of
the projection technique that was used to generate the embedding.
It explains local point patterns, although the effort that a user must
put into reaching the explanation depends strongly on what will be
displayed in the tooltip. Only being able to select a single point at a time
clearly does not scale well in the number of observations, and showing
all dimension values in the tooltip does not scale well in the number of
dimensions. Therefore, whether the technique scales in terms of both
of these and additionally computational cost depends on the ability
to select multiple points and get some form of aggregate explanation,
where the explanations of multiple points are combined.

colouring points by dimension Another most basic way to
explain a projection by its dimensions is simply to pick a dimension
and assign colours to the projected points based on their value in this
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dimension. Commonly, this is done using a 1D-colourmap where the
range of values the dimension takes on is mapped to the extents of the
colourmap. Visually, one can then spot points or neighbourhoods where
the dimension is highly expressed, and where it is not. While this can
give valuable insights into the data it fails to capture why certain point
patterns form.

Figure 3.2: Projection visualisation where points are coloured according to their values over
a single dimension. Colours are picked from a color gradient heat map, where
high values correspond to red and low values to blue. (Image produced with
HDPS software [7])

Going through all the dimensions present in the original multidimen-
sional data and visualising them as colours can give a more complete
picture of which dimensions cause a certain structure to form. However,
it would require keeping keeping a mental map of which points showed
high expression for a certain dimension and which did not. As the num-
ber of dimensions grows, this process simply becomes undoable. The
problem can be alleviated somewhat by making use of a SPLOM-type
visualisation, where each scatterplot can show the colours of a different
dimension. However, this comes with all the drawbacks, in terms of
visual scalability and difficulty in putting all the information together,
as discussed in Chapter 2.

Still, the technique is easy and intuitive to use, works regardless of
the projection technique, scales well in the number of observations and
has almost no computational cost. These factors could explain why it is
still commonly used in visual analytics.

forcespire The ForceSPIRE tool [10] takes a more exploratory
approach to the interaction. Users can select points in the embedding
and highlight certain dimension values of the point, which in turn will
pull observations that share those values closer towards each other. In
addition, points can be dragged to a different location in the embedding,
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to which the rest of the points respond by adjusting their own locations.
In this manner, the relationship with other points can be explored
simply by how they respond in the embedding. Using these exploratory
interaction mechanisms a user can get some idea of which factors are
contributing to a local structure in the embedding. However, dragging
around points in the embedding in order to understand the relations
between points is quite a disruptive operation which may influence the
analysis of other structures.

3.4.2 Global Approaches

Global approaches attempt to explain all of the observations in the
projection at once. This means in general, that little interaction is
required in order to understand why structures in the embedding are
there. However, it is possible to augment such global explanations with
interaction in order to provide more local information or guide the
exploration. We subdivide this categorisation into explanations that
attach meaning to the projection space, and explanations that attach
meaning to the points or point-groups in the embedding.

3.4.2.1 Explanations of the projection space

biplots Biplots are a generalisation of a scatterplot of observations
over two dimensions. Rather than only displaying the observations in
the plot, they also display the dimensions. Often these dimensions are
drawn as vectors which originate from a common point and spread out
radially. Their direction can correspond to their relative contribution to
the variance of some principal component eigenvectors computed for the
plot axes. Or alternatively, when constructing a biplot by projection,
the dimension vectors will point in the direction of maximal variation
of that dimension. When these direction vectors are labeled with the
corresponding dimension names, it is possible to get a general idea of
why points-groups or outliers are formed by their location in the plot.

Biplots can work regardless of the projection technique used, however
how the biplot dimension vectors are computed determines whether
they are useful for finding patterns in the data. Even if computed in an
optimal manner for explaining these patterns, the explanations them-
selves are quite broad and undetailed. Moreover, some experience with
biplots and how they are computed is also required to understand what
exactly is being conveyed. This knowledge might not be commonplace in
all the fields where multidimensional data needs to be analysed. Biplots
generally scale as well as scatterplots in the number of observations, but
when the number of dimensions grows very large, or many dimensions
contribute equally to the variance in the data, it may become hard to
get any useful insight from the visualisation.

axis legends Broeksema et al. [4] propose adding several visual
explanations to a biplot of projected multidimensional data. Firstly, they
assign each dimension a colour from a categorical colourmap. Next, they
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draw a Voronoi partitioning of the dimension plot, with the projected
values as seeds (see Figure 3.3). The Voronoi cells are then coloured by
their respective dimension colour and labeled with the dimension value.
Inspection of this plot explanation can quickly reveal which dimensions
or values are often seen together in the observations, or the contrary.
Similarly, one might find that groups of values on one side of the plot
indicate a certain property not described by the data when compared
with values on the other side of the plot. This would give an implicit
meaning to the axes found by the projection technique. This implicit
meaning is reinforced by several bar charts or axis legends that show
the contribution of original dimensions in the data to the respective
axis.

Figure 3.3: Axis legends visualisation of a projection. Voronoi cell colours represent their
corresponding categorical dimension. Bar charts show the important dimensions
along each spatial plot axis. Labels are added manually for illustration purposes.
(Source: Paper by Broeksema et al. [4])

Similar to biplots, axis legends broadly explain why points are lo-
cated in certain positions in the embedding, but the exact contributing
dimensions that form groups of points remain unknown until deeper
exploration using multiple visualisations. These visualisations are not
immediately intuitive and need some explanation and experience to get
comfortable with. The Voronoi cells depicting the dimension values of
the data generally don’t scale very well with many dimensions, but this
has been somewhat alleviated by allowing cells to be merged for a more
broad overview.
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3.4.2.2 Explanations of the projected points

dimension-based visual explanations Da Silva et al. [6]
propose a visual explanation based on computing a ranking of dimen-
sions over a given local neighbourhood of projected points, where the
lower the rank of a dimension the more it explains the similarity of
points in the neighbourhood. The ranking is computed based on ei-
ther the contribution of a particular dimension to the distances in the
neighbourhood, or on the ratio of local variance of a given dimension
in the neighbourhood to the global variance of that dimension over
the whole projection. A number of top-ranking dimensions for most
of the projection are selected and mapped to colours via a categorical
colourmap. Points in the projection are then coloured by their top-
ranking dimension and a legend is provided to link the colours to the
dimension IDs (see Figure 3.4).

Figure 3.4: Dimension-based explanations of projections by da Silva et al. Points in the left
projection are assigned a colour from a categorical colourmap for their most
important dimension. Points in the right projection are assigned a colour for their
unique set of important dimensions. Names of the dimensions or dimension sets
are plotted on top of the groups of points with the same explanation. (Source:
Paper by da Silva et al. [6])

For datasets with a moderate amount of specifically named dimensions,
this approach can provide a lot of insight. Potential clusters in the
projection are explained by their most important dimension, and it
is clear and intuitive for the user to understand. The downside of
this approach is that there are only a limited number of colours that
can reasonably be used in a categorical colourmap. This restricts the
number of important dimensions that are possible to visualise at once to
a certain degree. Moreover, if a certain local point pattern is explained
by multiple important dimensions, only one will be displayed to the user.
In a dataset where many dimensions contribute roughly equally to a
local point pattern such a visualisation may be particularly misleading.
Similarly, when the dimensions are more abstract and not linked to
a particular semantic identity, then showing the identity of such a
dimension is usually not very helpful.

Another approach was introduced by van Driel et al. [28] where
instead of computing the most important original dimensions, they
computed several dimensional properties of the projection, such as



3.5 conclusion 21

intrinsic dimensionality and correlation over a local neighbourhood.
Different dimensionalities are then again mapped to different colours
and the points are coloured accordingly. A legend is provided that links
the colours with a certain dimensionality.

In contrast to the method by da Silva et al. [6] these explanations scale
excellently in the number of dimensions of the data. However, merely
seeing the intrinsic dimensionality of the local neighbourhoods doesn’t
convey a lot of information or insight. Especially in high-dimensional
datasets where the intrinsic dimensionality of a local neighbourhood may
be quite high. Furthermore, in the analysis of multidimensional datasets,
one is generally interested in the contribution of original dimensions to
the forming of local patterns, rather than some set of abstract intrinsic
dimensions.

3.5 conclusion

The explanatory mechanisms introduced in this chapter each satisfy a
number of the desirable properties of a solution. Brushing with tooltips
and colouring points by their dimension are easy in use, but do not scale
in the number of observations or dimensions respectively. ForceSPIRE,
biplots and axis legends tend to scale a bit better in this regard, but
lack some ease of use. However, critically, none of the aforementioned
techniques are able to satisfy the primary criterion of adequately ex-
plaining local point patterns. The approaches by da Silva et al. and
van Driel et al. are specifically aimed at explaining these patterns and
succeed in doing so to some extent.

The method proposed by da Silva et al. provides insight into why
groups of points have clustered together and why outliers are different
from other points. However, it does not explain anything about the
semantic content of the clusters, i.e. what type of observations are
contained in these clusters. Their method attempts to explain why points
are similar or dissimilar by visualisation of the least varying dimension or
particular subset of dimensions. In both cases, not all of the dimensions
of the dataset are involved in the explanation and therefore important
information may be missed. Moreover, the number of dimensions or
dimension sets that can be involved in the explanation is inherently
limited due to the fact that they need to be assigned visually distinct
colours from a categorical colourmap. All this results in an inability to
adequately explain the projection as the intrinsic dimensionality of the
dataset grows. That is, as more and more dimensions are involved in
contributing to the variance of the data.

On the other hand, the local dimensionality explanation proposed
by van Driel et al. scales excellently with the number of dimensions,
but the explanations do not relate back to the original dimensions of
the data. The correlation explanation does use the original dimensions
to explain local point patterns, but again does not scale well in the
number of dimensions.
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As there are many fields where the multidimensional data has a
large number of dimensions, and analysis of point patterns is generally
concerned with the contribution of the data dimensions on those pat-
terns, there is clearly a lack of explanatory techniques that can handle
such data. Therefore, we investigate how to provide local point pattern
explanations on projections of data with a number of dimensions higher
than the above techniques can handle.

More formally we define the follow main research question:

How can local point patterns in projection embeddings of highly
multidimensional data be explained in terms of their original

dimensions?

In order to answer the research question formulated, we aim to
produce a solution that ideally satisfies all the requirements laid out in
Section 3.2. The first thing to note is that the technique proposed by
da Silva et al. explains local point patterns very clearly and intuitively
for data with a low intrinsic dimensionality. The main limiting factor
on the number of dimensions able to be explained in their method is
that they attempt to globally explain all point neighbourhoods in the
projection. It is common for the various neighbourhoods to be explained
by different subsets of dimensions. However, as every neighbourhood
explained uniquely by a certain subset of dimensions is assigned its own
colour from a categorical colourmap, it is clear that one quickly runs out
of visually distinct colours. The main research direction of this thesis
will therefore be to investigate how to provide similar explanations for
data with a higher intrinsic dimensionality.

In chapters 4 and 5, we propose several additional explanatory mech-
anisms that allow for both a global and local exploration of high-
dimensional data embeddings. The local explanations scale to a signifi-
cantly higher number of dataset dimensions, allowing for more complex
data to be analysed. Finally, we implement all those mechanisms in a
comprehensive projection exploration system.

We test the functionality and practical applicability of this system
by running an evaluation study. In the study we ask experts and non-
experts in the field of high-dimensional data analysis to analyse several
datasets of increasing dimensionality using the proposed system. For
each dataset, we ask several questions that serve to establish whether
participants reach consistent insights using the various elements of the
system. The set up of the evaluation study and its results are laid out
in Chapter 6.
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In Chapter 3 we presented the work of da Silva et al. [6] which proposes
a global approach to explaining why points in a projection are close
together or far apart. They introduced a colouring of the projected points
according to the dimension with least variance in a local neighbourhood.

We discussed that this method has a problem with scaling to datasets
with a higher local dimensionality. However, we believe that for many
datasets these global explanations can still serve very well as an in-
dication of where transitions in the dimension profiles of groups of
points happen. That is, borders between differently coloured groups of
points often seem to indicate a different set of dimensions is prominent
on either side of the border. Such a visualisation can therefore be an
excellent entry point into a more detailed analysis of the projection.

Taking this into account, we incorporated the work of da Silva et al.
as a base for the more detailed local explanations that we explain in
Chapter 5. In this chapter we describe the partial work of da Silva et al.
that we include in our proposed answer to the research question, as well
as proposing an additional global explanation method.

4.1 wine dataset

One of the datasets used for demonstration in da Silva et al. [6] is a
dataset of Portuguese wine samples. In order to validate our implemen-
tation of the techniques described there and to serve as an example
dataset for our proposed explanations, we briefly introduce it here.

The dataset [5] consists of roughly 6500 samples of wine from Portugal.
For each of these wine samples 11 physicochemical properties of the
wine were measured, and one quality attribute was assigned through
sensory evaluation by human experts that graded the wine on a scale
from 0 (very bad) to 10 (excellent), for a total of 12 attributes.

A projection of the dataset was computed using Local Affine Multidi-
mensional Projection (LAMP) [12] and is shown in Figure (4.1).

4.2 variance ranking

We make use of the global colouring scheme based on variance ranking
introduced by da Silva et al. Therefore, we briefly reiterate their idea
here.

local neighbourhood As the method tries to provide an expla-
nation of why points are close together in the projection, it makes sense
to define a local neighbourhood over which this explanation applies.
That is, how many points are considered in the explanation. To this
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Figure 4.1: Projection of wine dataset computed using LAMP.

end, da Silva et al. define a 2-dimensional local neighbourhood around
each point in the projection, where all projection points closer to qi

than some radius ρ are part of its neighbourhood (see Equation 4.1).

vP
i = {q ∈ DP | ∥q − qi∥ ≤ ρ} (4.1)

As each of the projected points corresponds to a point in the high-
dimensional space, this local neighbourhood in the projection is equiva-
lent to a neighbourhood in nD given by:

vi = {p ∈ D | P (p) ∈ vP
i } (4.2)

where p is some nD point part of the high-dimensional dataset D
which is part of the neighbourhood defined in the projection if the
corresponding projected point P (p) is part of the local neighbourhood
vP

i in 2D.

dimension ranking Every point in the projection defines its
own local neighbourhood and therefore has its own explanation. Which
dimension best explains why points in this neighbourhood are similar
is computed through ranking the dimensions based on their variance
in the neighbourhood. The dimension ranking ξi = (ξ1

i , . . . , ξn
i ) ∈ Rn

for a particular point consists of a list of ranks ξd
i for every dimension

d in pi. Ranks with a lower value mean that this dimension has lower
variance in the local neighbourhood and therefore has a bigger impact
on the similarity of the points contained in this neighbourhood.
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Ranks are computed based on the variance in the local neighbourhood
which is defined as

LV d
i = 1

|vi|
∑
p∈vi

(pd − µd
i )2 with µd

i = 1
|vi|

∑
p∈vi

pd (4.3)

where LV d
i is the variance of the local neighbourhood around pi for

dimension d, calculated by summing the squared differences between
a point pd in the local nD neighbourhood vi and the mean over that
neighbourhood µd

i for dimension d and dividing over the number of
points in the neighbourhood.

It may be the case that a particular dimension has a very low variance
over the dataset as a whole. These dimensions would not be a good
explanation of why a cluster of points has been grouped together, as it
has very similar values in the rest of the dataset. Therefore, da Silva
et al. give more weight to dimensions that have local variances different
from their global variance, defined as

GV d = 1
|D|

∑
p∈D

(pd − µd)2 with µd = 1
|D|

∑
p∈D

pd (4.4)

where GV d is the variance of the whole dataset for dimension d,
calculated by summing the squared differences between the value of
dimension d for all points pd in the dataset D, and the mean µd of that
dimension over the dataset, and dividing over the number of points in
the dataset.

The ranking ξd
i of a particular dimension d for a particular point i is

then calculated as the ratio of local variance for point i and dimension d
to the global variance of dimension d and normalised to indicate relative
importance (see Equation 4.5).

ξd
i = LV d

i /GV d∑n
j=1(LV j

i /GV j)
(4.5)

Dimensions that have a lower rank value for some point pi, are seen
as more important to the points in the neighbourhood around pi being
positioned close to each other in the projection.

colouring Dimension rankings are computed for every point in the
projection. The dimension that has the lowest rank value will be used
to colour that particular point in the projection. Colours are assigned
to dimensions from a categorical colourmap. Which and how many
dimensions are assigned colours is discussed later on in this chapter.

A projection of the wine dataset with the points coloured according
to their variance ranking results in Figure 4.2.

The projection is roughly divided into four differently coloured clusters
of points. For the points coloured in light-blue, the residual sugar
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Figure 4.2: A projection of the wine dataset with points coloured according to the least
varying dimension in a region around the point.

dimension has an unusually low variance. For the red, purple and salmon-
coloured points, respectively the chlorides, quality and alcohol
dimensions have unusually low variances.

4.3 value ranking

The variance ranking is useful for explaining why points in the projection
are close together, but it does not explain what those points represent.
In order to be able to get insights into this, we extend the global
explanations with a colouring of the projection based on the values of
the dimensions.

The value ranking uses the same definitions of a local neighbourhood
and dimension ranking as the variance ranking. However, the way the
ranks are computed is different.

dimension ranking As in the variance ranking, the value dimen-
sion ranking ξi = (ξ1

i , . . . , ξn
i ) ∈ Rn for a particular point consists of a

list of ranks ξd
i for every dimension d in pi. However, different to the

variance ranking, here ranks with a higher value indicate that this di-
mension has higher values in the local neighbourhood, while lower values
indicate the dimension has lower values in the local neighbourhood.

A rank ξd
i is computed based on the average value dimension d takes

on in a local neighbourhood around point pi, which is defined as

LAd
i = µd

i = 1
|vi|

∑
p∈vi

pd (4.6)

where LAd
i is the mean average value of dimension d over the local

neighbourhood around point pi. This definition is exactly the same as
the one given for µd

i in Equation 4.3.
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As before it may be the case that a particular dimension has the same
or very similar values for all the points in the dataset. In this case the
dimension would not provide useful information about what makes the
local neighbourhood of points special. Therefore, we instead compare
the average value of the dimension over the local neighbourhood with
the average value over the whole dataset defined as

GAd = µd = 1
|D|

∑
p∈D

pd (4.7)

where GAd is the mean average value of dimension d over the whole
dataset. This definition is exactly the same as the one given for µd in
Equation 4.4.

The value ranking ξd
i of dimension d for a particular point i is then

calculated as the difference of the mean average value of dimension d
over the local neighbourhood vi and its mean average value over the
whole dataset D. As different attributes of a dataset often have very
different ranges, we normalise the difference between the averages by
dividing over the data range of the dimension over the whole dataset.
As in the variance ranking, the value ranks are then also normalised to
indicate relative differences (see Equation 4.8).

ξd
i = 1

range(d)
LAd

i − GAd∑n
j=1

1
range(j) |LAj

i − GAj |
with

range(d) = max(pd
1, . . . , pd

|D|) − min(pd
1, . . . , pd

|D|)
(4.8)

Dimensions that have a positive rank value can be considered to
be unusually high in the local neighbourhood around some point pi,
whereas dimensions with a negative rank value can be considered to be
unusually low. The higher or lower the rank value the more unusual the
dimension values in that neighbourhood are. These rankings give an
insight into what makes the points in that local neighbourhood special.

colouring Value rankings are computed for every point in the
projection. In many datasets especially high values are more interesting
than especially low values, therefore we colour points in the projection
according to the dimension with the highest value rank. Although,
whether the highest ranks or the lowest ranks are used for colouring
could be easily adjusted. In some cases it may be even be useful to
use the rank with the highest absolute value, resulting in a colouring
that mixes both unusually high and unusually low values. Colours are
assigned to dimensions from a categorical colourmap and the assignment
will be discussed later in the chapter.

The projection of the wine dataset with the points coloured according
to the highest value ranking results in Figure 4.3.

The projection is roughly divided into seven differently coloured
clusters of points. Each of these coloured clusters corresponds to a
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Figure 4.3: A projection of the wine dataset with points coloured according to the dimension
with the most unusually high values in a region around the point.

dimension that has a particularly high value in the local neighbourhoods
around points in that cluster. For example, wines in the salmon-coloured
cluster appear to have an unusually high alcohol percentage (the salmon
colour corresponds to the alcohol dimension, see legend).

4.4 confidence

The projection may contain regions where several of the top-ranked
dimensions have very similar rank values and therefore the top-ranked
dimension for one point might not be the same as for the point next to
it, resulting in a noisy colour allocation to these points. This frequently
occurs on the borders between two differently coloured clusters as these
mark the transition from one top-ranked dimension to another. In these
regions we can not say with confidence that the top-ranked dimension
is more important than the next.

4.4.1 Rank-based Confidence

Therefore, da Silva et al. proposed computing a measure of our confidence
in the chosen top-ranked dimension. This measure is calculated for each
point by looking at a local neighbourhood vP

c centered at the projected
point qi, and defined in the same way as vP but with a smaller radius
ρc < ρ. For every point in this neighbourhood that has the same
top-ranked dimension as point qi, the rank value is summed up. This
is then divided by the rank of that dimension for all the points in
the same neighbourhood. The result is a fraction that indicates the
extent to which this top-ranked dimension is ubiquitous in the local
neighbourhood vP

c (see Equation 4.9).

Cd
i = 1∑

q∈vP
c

ξd(q)
∑

q∈vP
c

{
ξd(q) if d is top ranked for q

0 otherwise
(4.9)
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A high confidence Cd
i indicates the top-ranked dimension belonging

to qi is also commonly the top-ranked dimension for the other points
in vP

c . A low confidence means the top-ranked dimension for qi is not
commonly the top-ranked dimension in the other points.

4.4.2 Simplified Confidence

A problem with this measure of confidence is that when the ranks of
a top-dimension in a particular neighbourhood are zero (which could
easily happen with variance ranking), then there may be a division by
zero. In fact, this equation for confidence in essence measures the ratio
of occurences of a given top-ranked dimensions among the points in the
local neighbourhood. However, due to the nature of summing the rank
values, confidences are skewed in different directions based on the exact
distribution of rank values in the neighbourhood.

We adopt a very similar measure of confidence that is less complex
to understand by doing away with the summing of rank values. It
implements confidence purely as the ratio of occurences of a given
top-ranked dimension among the points in the local neighbourhood (see
Equation 4.10). It has the added benefit of avoiding the division by zero
issue.

Cd
i = 1

|vP
c |

∑
q∈vP

c

{
1 if d is top ranked for q

0 otherwise
(4.10)

4.4.3 Colour Encoding

This confidence value is encoded in the brightness of the colours assigned
to every point in the projection. Projected points that have a high
confidence in their top-ranked dimension are drawn with a bright colour,
whereas points with a low confidence value are drawn less bright. This
effect is achieved by multiplying each RGB-component of the colour by
the confidence value (which has a range of 0 through 1).

4.4.4 Relative Confidence

The two confidence measures introduced in the previous sections com-
pute an absolute measure of confidence. This is a practical measure if
there are both points with low confidence and high confidence. However,
if all points are either low or high confidence, then the differences in
brightness of projected points will be barely noticable.

Understanding which points have a lower or higher confidence in
relation to the rest of the projection can still give practical insights. To
address this, a relative measure of confidence can be computed from
the absolute confidences. This is achieved by normalising the absolute
confidence values to fall between 0 and 1.
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In both Figure 4.2 and Figure 4.3 a projection of the wine dataset is
shown. Along the borders between points that have different top-ranked
dimensions the colours fade to black indicating low relative confidence.

4.5 colour allocation

How colours are assigned to particular dimensions is particularly im-
portant when dealing with datasets that have more than roughly 15
dimensions as it becomes difficult to find enough visually distinct colours
to assign a colour to every dimension.

4.5.1 Colour Assignment

The approach taken by da Silva et al. is to assign the colours from their
categorical colourmap to dimensions based on their frequency of being
picked as top-ranked dimension. That is, the dimension that is top-
ranked for most of the points is assigned the first colour. The dimension
that is top-ranked for the most points after that is given the second
colour, and so on until all colours have been assigned to a dimension.
If at any point during the process there is a tie in the frequencies of a
dimension being top-ranked, the colour is assigned randomly to one of
the tied dimensions. Dimensions that did not get assigned a colour in
this process are assigned a neutral grey colour at the end. This manner
of colour allocation works very well and we employ the same mechanism.
As a colourmap we make use of Kenneth Kelly’s 22 colours of maximum
contrast [14], however we exclude white and black from this map as
they would not contrast with our white projection view background
and dark explanation widget background, leaving us with a total of 20
colours.

4.5.2 Consistency

During the exploration process, there are several factors that affect
the colouring of the projection. Primarily, switching between different
ranking metrics results in rank recomputation and therefore points need
to be assigned updated colours. Moreover, the size of the neighbour-
hood used in the computation of the ranks may also be changed to
match better to the projection, in which case ranks must be similarly
recomputed and colours updated.

It does not suffice to let the dimensions keep their assigned colours,
because the top-ranked dimensions in variance ranking may be a sub-
stantially different set to the ones in value ranking. In addition, changing
the neighbourhood size can cause dimensions that weren’t top-ranked
before to suddenly become so, or vice versa. Because of this, triggering a
recomputation of the ranks through the above mechanisms, could result
in a significantly different colour allocation. Dimensions being associated
with colours that change every once in a while is very confusing to deal
with and disturbs the exploration process.
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Therefore, we attempt to keep the colour allocation as consistent as
possible throughout these changes. At the start of the exploration an
initial colour allocation is computed based on the ranking mode that is
in effect (variance or value). Whenever the exploration process triggers
an update of the dimension ranks, a new colour allocation is computed.
Dimensions that are part of both the new and the previous allocation,
get assigned the same color. The other colours are distributed to the
rest of the dimensions in the new allocation based on their frequency of
being top-ranked as before.

In Figure 4.4, we show how the colour allocation changes when
switching between variance and value mode. If not kept consistent,
each mode has a completely different mapping of dimensions to colours
because colours are assigned by ranking of the dimensions. With keeping
color consistency, dimensions which appear in both the previous mapping
and the new one are assigned the same colours. For the wine dataset
this results in completely consistent dimension colours in variance and
value mode.

(a)

(b)

Figure 4.4: Colours assigned to the wine projection in variance and value mode without
keeping colours consistent between modes (a) and with keeping them consistent
(b)





5A D D I N G L O C A L E X P L A N AT I O N S

In the previous chapter we looked at extending the global explanations
proposed by da Silva et al. with additional ranking metrics, an altered
confidence metric and consistent colour allocation.

However, global explanations are limited in the insights they can pro-
vide about local patterns in the projection. When attempting to explain
all of the points in the projection at the same time in terms of their
dimensions, space quickly runs out for visualising these explanations.

Consider two clusters of points that are distinct from each other
in the projection. Barring any projection errors, this generally means
that the dimension profiles, i.e. the values that dimensions take on in
those clusters, are sufficiently different from each other, otherwise their
points would form a single cluster. As there are more distinct clusters
or outliers in the projection, the number of distinct dimension profiles
increases. In order to fully explain the projection, all these distinct
dimension profiles would need to be visualised at the same time. In
fact, single clusters might have inter-cluster variability for several of
their dimensions, for example, a dimension might have low values at
one end of the cluster and high values at the other. Even more, a point
with quite different values in one dimension might be located next to a
point with small differences over all dimensions, simply because their
distance to a third point is the same. All this shows, that there is a
granularity to the level at which a projection can be explained. Global
explanations at all these levels of detail are simply not feasible as there
is not enough visual space to show the explanations. For that reason,
we let go of trying to explain the full projection at once in this chapter,
and focus on providing more detailed explanations for regions of the
projection.

5.1 interactive exploration

In addition to the global methods outlined in the last chapter, we take a
more local approach in order to analyse parts of the projection in detail.
This detail is possible owing to the fact that instead of attempting to
explain all of the projected points at once, we explain only a subset.
Through interactive exploration different parts of the projection can be
highlighted and explained on demand.

5.1.1 Lens Brushing

There are many different ways in which points can be selected in a
scatter plot. Some of the most common selection mechanisms include:
box selection, polygon selection, lasso selection, brush selection. However,

33
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when being presented with a projection of a complex dataset, exploration
with these tools can quickly become cumbersome as there are usually
many areas of the projection that are interesting for the analysis. Having
to select areas over and over at different positions and scales is an
unwieldy way to explore. Moreover, these selection tools demarcate
artificial boundaries in the projection. A projection is a representation of
the continuous high-dimensional space and therefore it is not appropriate
to explain it as if consisting of a number of clearly separated clusters.

We provide a brushing tool that is more ideally suited to exploring
such projections in a continuous and user-friendly manner. In much the
same way as a looking glass, the user selects a circular region of points
in the projection by dragging a circular brushing tool over it. Local
explanations that give more detailed insight into the selected points are
generated on the fly, akin to getting a more detailed look at something
through the lens of a looking glass. The radius of the lens brush can
be scaled up or down interactively, allowing for exploration at multiple
levels of detail.

While the lens brushing mechanism still creates an artificial boundary
of selected points, the key point is that it can be moved fluidly over
the projection on multiple scales to get an integrated understanding
of particular regions. A visual example of points selected with the lens
brushing tool is shown in Figure 5.1.

Figure 5.1: A projection of the wine dataset. The lens brushing tool is displayed as a red
circle at the top and points within this circle are selected.
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5.2 local ranking

Exploring the projection using the lens brushing tool selects a subset
of points in the projection that can then be explained in more detail
than would be possible in a global approach. Such local explanations
are generated in much the same way as in the global ranking schemes
outlined in Chapter 4. The integration of both the global and local expla-
nations result in a comprehensive visualisation system for understanding
high-dimensional projections at any level of detail.

The system supports two modes for exploration of the projection.
In variance mode the global and local explanations can be used to
understand why points are close together in the projection. While, in
value mode the global and local explanations can be used to understand
what those points represent.

5.2.1 Variance Mode

In variance mode, colours are assigned to the projected points based on
the global variance ranking explained in Chapter 4.2. Similarly to those
global variance rankings, we compute a ranking of dimensions based
on variance for the local selection of points. The variance rank ξd of a
dimension is computed in the same way as in 4.5, except that it is not
computed per point, but as an aggregate over the selected points S as
follows

LV d = 1
|S|

∑
p∈S

(pd − µd)2 with µd = 1
|S|

∑
p∈S

pd (5.1)

ξd = LV d/GV d∑n
j=1(LV j/GV j) (5.2)

Ranks computed in this way are displayed for all dimensions in a
separate widget beside the projection.

5.2.2 Value Mode

In value mode, colours are assigned to the projected points based on
the global value ranking explained in Section 4.3. The value rank ξd of
a dimension is computed in the same way as in 4.8, except that it is
computed over the selected points S as a whole as follows

LAd = 1
|S|

∑
p∈S

pd (5.3)
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ξd = 1
range(d)

LAd − GAd∑n
j=1

1
range(j) |LAj − GAj |

with

range(d) = max(pd
1, . . . , pd

|D|) − min(pd
1, . . . , pd

|D|)
(5.4)

5.3 local analysis widget

When points are selected in the projection, local explanations of the
selected points are generated and shown in a local analysis widget. This
widget is situated beside the projection and all dimensions of the data
are listed there with their associated colour, as computed according to
Section 4.5. The order in which dimensions are listed is discussed in
5.3.1. Statistics about the dimension values associated with the selected
points are shown next to each of the listed dimensions. The details of
this are discussed in 5.3.2. A legend explaining the details of the local
analysis is shown in a collapsible box underneath the local analysis
widget. Figure 5.2 shows an annotated example of the visualisation
system layout featuring the projection of three faces of an axis-aligned
three-dimensional cube.

Figure 5.2: Layout of the visualisation system showing a projection, the lens brushing tool,
and the generated explanations in the local analysis widget for the selected
points.

5.3.1 Dimension Sorting

Points selected in the projection, cause ranks to be computed according
to the current mode of the visualisation system, that is, variance mode
or value mode. The order in which dimensions are listed in the local
analysis widget is the result of sorting the dimensions according to their
rank.

In variance mode, dimensions are sorted from lowest rank (lowest
ratio of variance in the selected points versus the whole projection) at
the top, to highest rank (highest ratio of variance) at the bottom. This
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means that instead of only knowing the least varying dimension in a
particular region of the projection, we get a ranking of all dimensions
based on their variance in that region.

In value mode, dimensions are sorted from highest rank (highest mean
average value in the selected points compared to the mean value over
the whole projection) at the top, to lowest rank (lowest mean average
value) at the bottom.

The sorting of dimensions in the different modes is shown in Figure
5.3.

Figure 5.3: Sorting of the dimensions according to variance (on the left) and according to
value (on the right).

5.3.2 Local Statistics

Seeing the full ranking of the dimensions based on variance or value gives
more insight into the relations between dimensions in the selected region
in the projection, but does not say very much about the dimension
variance or values themselves. As an example, a dimension listed at the
top of the value ranking may have a relatively high value, or it may
have a low value, as long as all the other dimensions have even lower
values. Therefore it is useful to get a quantitative idea of the values of
the dimensions for the selected points.

To this end, next to every dimension listed in the local analysis widget,
a visualisation shows aggregate statistics of the selected points (see
Figure 5.4).

As, during analysis, we are commonly interested in atypical dimension
values, we chose to display the average value of the dimension over
the selected points and the average value of the dimension over the
whole dataset. Together they convey whether the selected points have
unusually high or low values compared to their average value over the
whole dataset.

In addition, we display the standard deviation of the dimension over
the selected points. This conveys whether the values are unusually
spread out or close together.

All in all, the displayed statistics are constructed from the following
elements into an integrated view of the dimension values.
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range line A horizontal line is drawn that represents the full range
of values that dimension takes on in the data. The left endpoint of the
line represents the minimum value the dimension takes on, and the right
endpoint represents the maximum value.

global mean Along this range line, a vertical grey line is drawn
to represent the average value of the dimension over the whole dataset.
We call this the global mean. Since the range line represents the full
range of values of the dimension over the dataset, the global mean line
intersects the range line at the point where it would be situated along
the dimension range. A low global mean would result in the line being
drawn closer to the left endpoint (being the minimum) and a high global
mean would result in being drawn closer to the right endpoint (the
maximum).

local mean In addition to the global mean, a vertical red line
is drawn along the range line to represent the average value of the
dimension over the selected points in the projection. We call this the
local mean. Whenever the local mean is greater than than the global
mean (further to the right along the range line), a green bar is drawn
between the two means. This allows for quick visual recognition for
which dimensions the selected points have higher than usual values.
Whenever the local mean is less than the global mean (further left along
the right line), a red bar is drawn between the two means, indicating
an unusually low value for this dimension.

Figure 5.4: Local statistics of points selected in the projection. For each dimension a hori-
zontal line is drawn representing the full range of values that dimension takes
on in the data. Along this line a grey vertical stripe is drawn that indicates the
average value of the dimension over all points in the dataset, and a red vertical
stripe that indicates the average value over the selected points in the projection.

standard deviation The previous elements deal with the av-
erage value of the dimension, but say nothing about how the values
are spread. However, the spread of dimension values are an important
feature, and indicate whether the dimension had a big influence on the
points being close together in the projection. Dimensions with a low
variance for a number of points result in those points having shorter
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distances in the high-dimensional space and therefore hopefully also
having short distances in the low-dimensional embedding.

We therefore render white whiskers around the local mean of the
selected points. Where the ends of the whiskers indicate one standard
deviation to either side of the mean. Longer whiskers therefore represent
dimensions with more spread in their values, whereas shorter whiskers
indicate values that lie closer together.

As a sidenote, we want to stress that even though the visual elements
of the resulting visualisation are similar to a boxplot, they express very
different concepts. Firstly, the whiskers indicate a standard deviation
here, and not the minimum or maximum values or quartiles. And sec-
ondly, the box drawn between the vertical lines represents the difference
between the global and local means of the dimension.

5.3.3 Parallel Coordinates Plot

All of the statistics discussed in the previous sections are aggregate
statistics over the selected points. However, sometimes such aggregate
statistics can be deceiving. Dimensions that have the same local mean
average over the selected points, might have wildly different distributions
of values on a per-observation level. Therefore, purely understanding
the selected region in the projection on an aggregate level is not enough,
and can lead to wrong interpretations.

In order to avoid drawing erroneous conclusions based on just the
average values, we draw all the selected points in a parallel coordinates
plot (PCP). The range lines of each dimension form the parallel axes
of this plot, and for every selected point, a polyline is drawn vertically
through the dimension axes with its vertices intersecting each dimension
at its respective value along the range line. This visualisation allows for
understanding the true distribution of values over the selected points.

As an example of the problem that the parallel coordinates plot solves,
see Figure 5.5a. Here we show two dimensions with exactly the same
local mean, but it is totally unclear whether the actual distribution of
the per-observation values for the two dimensions are the same. Figure
5.5b adds the PCP visualisation and it becomes clear that while the
local means of the two dimensions were the same, their distributions of
values were wildly different.

The standard deviation whiskers similarly show such differences in
distributions, however they operate at an aggregated level and therefore
cannot convey skewed distributions or distributions with discrete clusters
of values.

5.4 differential analysis

With the tools discussed so far, it is possible to interactively explore
a projection and explain points patterns at multiple levels of detail.
However, there are several issues to address.
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(a)

(b)

Figure 5.5: Several points are selected in the projection. The two dimensions shown in
the analysis widget show that, for the selected points, the local mean for both
dimensions is exactly the same. In figure (a) we can see that it is completely
unclear whether the per-observation values are the same or different between
the dimensions. In figure (b) the yellow parallel coordinates plot lines show that
their per-observation values are wildly different. The selected points have values
close to the local mean for dimension 1 (the lines intersect close to the mean),
while for dimension 2 the values are far away from the mean.

First of all, the main advantage of having a global explanation is that
the whole projection is explained at once, and all the information is
on screen at the same time. As we are taking a more local interactive
approach, we lose this benefit, meaning that the information is presented
in a details-on-demand manner. Inherent to this approach is the fact
that at any moment only a fraction of the total explanation is shown
to the user. In order to obtain a total explanation of the projection,
the user needs to fully explore it and combine the partial explanations
in their mind. Therefore, memory plays a big role in gaining a full
understanding of the data.

One common task where the user would have to intensely use their
memory is in doing a differential analysis on the data. That is, finding
out what the differences are between different subsets of the data. In
order to find this out, the user would have to select several points
in the projection, look at the local analysis widget, remember the
visualisation shown there for many potential dimensions, then select
several other points, mentally integrate both explanations and work out
the differences.

To alleviate the burden on the memory of the user in this task, we
provide a tool that automatically computes the difference between two
sets of selected points. With the tool, the user selects their first set of
points in the projection, holds a key on the keyboard, and selects a
different set of points in the projection. The statistics that are normally
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shown in the local analysis widget are now replaced by statistics showing
the difference between the two sets of observations.

Figure 5.6 shows an example of a differential analysis on the wine
dataset, where the original selection was done on the green points and
then compared to the points selected in the salmon region. In the local
analysis widget we see that wines in the second selection have a much
higher alcohol content and perceptual quality score, as well as a low
density and total amount of sulfur dioxide, among other smaller changes.

Figure 5.6: Example of a differential analysis on the wine dataset. The green points were
initially selected and are then compared with the points selected in the salmon
region. The local analysis widget shows wines in the salmon region have signifi-
cantly higher alcohol percentages and perceived quality than the green points.

5.5 dimension exclusion

A second issue is that sometimes a dataset contains a number of di-
mensions that do not convey very much information and are simply
unimportant or obstructive to the analysis. These dimensions can take
up valuable colours in dimension colour assignment, as well as conceal
other dimensions in the global colouring, and push more important
dimensions away in the local explanation widget.

These dimensions can be excluded from the dataset as a whole with
data preprocessing. However, doing this may be undesirable, as it
requires regenerating the projection. Moreover, the dimensions might be
desirable for generating the projection, but undesirable in the analysis
of the data.

Therefore, in the local analysis widget, users can click on dimensions
in order to temporarily exclude them from the generated explanations.
Doing so reassigns colours to the remaining dimensions and instantly
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regenerates the global and local explanations. When a dimension is
desired again it may be reenabled by clicking it once more, and the ex-
planations are again regenerated. Multiple dimensions can be selectively
excluded from or included in the analysis like this in an interactive
manner.

As an example, the left of Figure 5.7 shows a projection where nearly
half of the points are dominated by the colour of one dimension. If we
for any reason do not want to see this dimension anymore, it can be
disabled by clicking on it. The dimension will turn white to indicate it
is disabled, move to the bottom of the sorting and the explanations are
regenerated without considering this dimension. As a result on the right
of Figure 5.7, instead of seeing a big yellow blob, we can now see several
groups of differently coloured points that can guide further exploration.
If the, now disabled, dimension is clicked again it will be reenabled and
included again in the generated explanations.

Figure 5.7: In the left figure a big chunk of the projection is dominated by the colour of just
one dimension. If we are uninterested in this dimension, or done with its analysis,
or want to know where to explore based on other dimensions, it can be disabled
by clicking on it. This will exclude it from all explanations, turn it white and
move it to the bottom. The right figure shows the same view after disabling the
dimension. Several groups of points characterised by different dimensions are
revealed and can be used to guide further exploration.

5.6 scalability

Now that we have introduced all of the elements of the proposed visual-
isation system, we will demonstrate how these tools work in practice
on two, more complex, state-of-the-art biological datasets. The purpose
of showing this is merely to show the results of the previous and cur-
rent chapter, and to demonstrate both the visual, and computation
scalability in the number of observations and dimensions.

scaling in observations The first dataset contains a tissue
sample from the cortex of a brain for which the expression of various
genes has been measured. The dataset consists of 22 images of the same
tissue patch, where each image is associated with a particular gene, and
where in the tissue the gene is expressed is encoded in each pixel as the
brightness. Each pixel in the image is treated as an observation and the
values of that pixel over the different images treated as the dimensions
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of the pixel. In total, the dataset has roughly 115,000 observations and
22 dimensions. We compute a projection of the data using t-SNE [24]
and examine it in the proposed visualisation system (see Figure 5.8).

Figure 5.8: Projection of the first cortex dataset with over 100,000 observations, showing
the explanations visually scale well in the number of observations.

We first of all see global value explanation, which divides the pro-
jection into very clear and distinct separated groups of points with
similar explanations. In fact, the high number of observations makes it
extremely clear where interesting transitions take place, because there
is barely any white space between the points. This division can then be
used to guide further local exploration of why those points have clus-
tered together and what is contained in them. Using the lens brushing
tool, we highlighted several points in the orange region of the projection,
which corresponds to the Cux2 gene. In the generated local explanations
we see that indeed the Cux2 gene is unusually highly expressed in these
points, as well as a number of other genes to a lesser extent.

scaling in dimensions The second dataset [29] again contains
a tissue sample from the cortex of a brain for which the expressions of
various genes has been imputed. The dataset consists of roughly 2400
observations (cells from this region), and 314 dimensions (genes). We
examine the spatial layout of these cells in our visualisation solution
(see Figure 5.9).

Looking at the scatter plot we see that even though the dataset
contains hundreds of dimensions, the global value explanation is still
able to assign colours to each of the displayed data points, again guiding
us where to explore further. Using the lens brushing tool, we highlighted
several points in the purple region of the projection, we see from the
legend that this corresponds to the Foxp2 gene. In the generated local
explanations, we can explore which other genes have high expressions,
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Figure 5.9: Projection of the second cortex dataset with over 300 dimensions, showing the
explanations scale well in the number of dimensions.

how highly expressed they are, and how much the expression varies for
the highlighted cells.

5.7 conclusion

We presented an interactive user-guided local explanation mechanism
that allows for detailed explanations of user selected regions in the
projection. The points are selected using a circular brushing tool that
can be resized in order to explain the projection at various levels of
detail. This mechanism of local exploration and explanation is supported
by an explicit way to compare multiple regions in the projection and do
a differential analysis on their explanations. If any of the dimensions is
obstructing the global or local analyses then it may be freely disabled
and reenabled.

We combine the global explanations, local explanations, differential
analysis and dimension exclusion into an integrated visualisation system
and implement it as a software application. In addition, we tentatively
showed that this visualisation system scales very well both visually and
computationally in terms of the number of observations and dimensions
of the dataset.

In the next chapter we describe our method of testing whether the
designed system is capable meeting the requirements laid out in Section
3.2 and present the results.
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The various elements of the visualisation system described in the pre-
vious chapters are intended to allow for analysing projections of high-
dimensional datasets on a deeper level. The combination of all these
elements should be able to provide useful insights into the data even as
the dimensionality of a dataset gets higher.

There are, however, three potential issues with using such a visuali-
sation system. Firstly, the explanations generated by the system may
just not be capable enough to help users in solving analysis problems
and understanding the data. Secondly, if users are able to gather useful
insights from the system, this capability may break down as the dimen-
sionality of the analysed dataset increases. And lastly, if the provided
explanations are not clear and intuitive, there is a risk that users of the
system do not understand, or misinterpret the explanations and come
to wrong insights.

In order to investigate all three of these potential issues, we performed
a preliminary evaluation study. In this study we asked participants to
solve analysis problems on several real-world datasets of increasing
dimensionality. This study allows us to look into whether people using
the same tool, on the same dataset, trying to solve the same analysis
questions, arrive at similar conclusions. If they do, this means that
either they all arrive at the right conclusion, or the wrong one. How-
ever, considering that we designed the questions, know the visualisation
system, and have done a thorough analysis of the data ourselves, we
have a good sense of which answers are likely to be right and which
not. Therefore, if participants are able to consistently come to the right
conclusions for analysis problems on datasets of increasing dimensional-
ity, this means that users interpret the generated explanations of the
visualisation system correctly, and that it is capable of helping users
to solve these analysis problems, even as the datasets become more
high-dimensional.

In addition, as we are introducing many new explanatory mechanisms
and visual encodings, a more qualitative aspect of the study is to find out
how people perceived the various elements of the visualisation system
in terms of practicality and usefulness.

6.1 evaluation setup

Participants of the study were asked to analyse several datasets of
increasing dimensionality, both by looking at screen captures of the
corresponding software application and by using the application on
their own machine. In addition, participants of the study were asked
to appraise the various elements of the system in order to understand
the benefits and drawbacks each of them have. Apart from when users
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were asked to use the application on their machines, the evaluation was
conducted fully within Google Forms and structured to take roughly
50-60 minutes to complete, however participation in the study was not
timed. The full evaluation form is included in Appendix A.

6.1.1 Invited Participants

Participants to the study were gathered on an invitation basis and were
in large part invited based on their familiarity with analysis of multidi-
mensional datasets. Experience of the invited participants in this field
ranged from no experience to decades of experience. Which participants
responded to the invitation was not monitored and participation in the
study was anonymous.

6.1.2 Installation

The application was compiled for both Microsoft Windows 10 and
Debian-based Linux systems. Distributables were offered in .zip and
.tar.gz form respectively, allowing for easy installation. Participants
were asked to download the software and unpack it on their system in
order to run it.

6.1.3 Tutorial

Before starting the evaluation proper, participants were made familiar
with the functionality of the system by means of a tutorial (see Appendix
A pages 4-11). The tutorial consists of six major parts and preceded
asking any questions of the participants. In it, the following basic
concepts of the system were introduced one-by-one:

1. How to load an example projection into the application (page 5)

2. How to display the example projection in a scatter plot (page 6)

3. Background on what the example projection is generated from
(page 7)

4. Exploration using the lens brushing (page 8)

5. The local analysis widget statistics (excluding the PCP) (page 9)

6. How to change between variance and value ranking and their
meanings (page 10)

After going through the parts of the tutorial, the participants were
asked to proceed with the question part of the evaluation if they felt
comfortable with the various elements described in the tutorial. In
addition, they were made aware a copy of the tutorial was available to
them during the evaluation, both packaged with the application and
online via a separate link.
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6.2 evaluation

The part of the evaluation where participants are asked questions con-
sists of analysis of three different datasets plus a questionnaire at the
end. For each dataset we ask participants to answer four control ques-
tions and three live exploration questions. The control questions serve
to understand whether the participants understand how to read the
explanations generated by the system, and to reinforce the concepts
taught in the tutorial. The live exploration questions test whether the
participants come to similar insights using the system, when tasked
with solving a multidimensional analysis problem. At the end of the
evaluation, participants are asked to provide feedback on each of the
elements of the system, the evaluation study, and to state their experi-
ence with multidimensional data analysis. The full evaluation structure
is portrayed in Figure 6.1.

Figure 6.1: Structure of the evaluation study. Participants were first asked to read a roughly
15 minute tutorial on the basic elements of the system. Then they were asked a
series of 4 control questions, followed by 3 live exploration questions for each
of the three datasets used in the study. Finally, they were asked to provide
qualitative feedback in a questionnaire.

We briefly introduce the three datasets before discussing the different
question types and questionnaire in more detail.
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6.2.1 Datasets

Participants were asked to look at three projections of datasets during
the study. All datasets used in the study were taken from the UCI
machine learning repository [9]. Datasets were picked based on their
suitability for analysis using projections and their number of dimensions.
The dimensionality of the datasets are roughly 10, 30 and 60 respectively,
giving us an idea of how the system operates on multiple ranges of
dimensionality.

portuguese wines The first dataset consists of roughly 6500
samples of white and red wines from Portugal (see Appendix A page
13). For each of these wine samples, 12 attributes are recorded (e.g.,
pH, alcohol %, total sulphur dioxide). One of the attributes (quality) is
a dependent variable and represents the perceived quality of the wine
(evaluated by a panel of testers) on a scale from 0 to 10 (0 = worst
quality, 10 = best quality). A projection (see Figure 6.2a) of the dataset
was computed using Local Affine Multidimensional Projection (LAMP)
[12] as in [6].

breast cancer The Wisconsin breast cancer dataset from the
UCI repository (see Appendix A page 25) examines roughly 570 slices
taken from tissue samples. Each slice (each data point) contains a
number of cells and 10 attributes are computed that describe the size,
shape and texture of their cell nuclei. For each of these attributes the
mean value (mean), the largest value (worst) and the standard error
(se) are found. In addition, one dimension encodes whether the cells
are considered malignant (1) or benign (0), resulting in a total of 31
attributes per slice.

The data was standardised and a projection (see Figure 6.2b) of the
standardised data was computed using t-SNE [24].

spam e-mails The Spambase dataset (see Appendix A page 36)
examines roughly 4600 e-mails, of which a number have been classified as
spam (an unsolicited commercial e-mail). For each e-mail, the frequencies
of 48 words and 6 characters have been counted (higher numbers mean
the word or character occurred more often in the mail), as well as the
run length of capital letters in the mail (how many sequences of capital
letters there are on average, the longest run, and the total length of
all sequences). Lastly, one dimension encodes whether the mails are
considered spam (1) or not spam (0). Therefore, in total for each e-mail
58 attributes are recorded.

The data was standardised and a projection (see Figure 6.2c) of the
standardised data was computed using t-SNE [24].

Participants were asked a series of control and live exploration ques-
tions about each of the datasets in the above order.
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(a) Wine Projection (b) Breast Cancer Projection (c) Spam Projection

Figure 6.2: A scatter plot of the projections computed for (a) the wine dataset (b) the breast
cancer dataset and (c) the spam dataset.

6.2.2 Control Questions

For each dataset a series of four multiple-choice single-answer control
questions were asked. The purpose of these control questions was to
establish whether the participant understood how to read the various
elements of the system in order to come to the correct conclusion. In
addition, as questions generally briefly reiterated the concepts neces-
sary for answering it, if participants were not yet comfortable with a
particular element these questions served to reinforce the concepts for
them.

As participants were presented with a snapshot of the application
where no interaction is possible, the generated explanations were the
same for every participant, and therefore the analysis was more con-
trolled. The questions were constructed in a way that there was an
unambiguously correct answer and the other answers were clearly in-
correct. Furthermore, we knew what the correct answers were, and so
we could evaluate the understanding of the participants based on their
given answers.

Each of the questions presented the participants with a snapshot of
the dataset projection in the application. However, in each question
different points in the projection were selected using the lens selection
accompanied by both the global and local explanations generated by the
system. The participants were then asked to make use of the explanations
provided by the system in the snapshot to answer a question about the
selected region in the projection.

An example question is shown in Figure 6.3 and can be found in Ap-
pendix A on page 15. Here we presented participants with the projection
of the wine dataset in variance mode. This means that the dimensions
of the selected points are sorted from least variance at the top to most
variance at the bottom in the local analysis widget. Several points were
preselected and participants were asked to answer which of the given
options were true for the pH dimension. The first option is incorrect
because the variance is not zero for the pH dimension (see size of the
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whiskers). The second option is also incorrect because the local mean
is slightly lower than the global mean. The third option is the correct
answer as the pH dimension is all the way on the bottom of the sorting,
meaning it has the most variance out of all dimensions for the selected
points. Because the third option is correct, the fourth option cannot be
correct.

Figure 6.3: One of the control questions used in the evaluation study. The participants were
presented with a snapshot of a projection of the wine dataset, and were asked to
read the generated explanations in order to answer an analysis problem.

6.2.3 Live Exploration Questions

As the developed system uses interaction to explore projections, it is
crucial for participants to be able to explore the datasets by using the
system themselves. Therefore, for every dataset, the set of four control
questions were followed up by a series of three multiple-choice multiple-
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answer live exploration questions. For these questions participants were
not provided with a snapshot of the application, but rather needed
to explore the projection with the application themselves (on their
machine) in order to answer the question.

In order to form their answer, participants were free to explore the
projection however they desired. That means we had no knowledge
of what view they were looking at, what points they brushed over, at
what radius they set their lens tool and which visual elements they
considered in coming to their conclusion. This made the evaluation
especially challenging, but it is exactly what we wanted to test. We
wanted to see if users of our system, when presented with an analysis
problem in an uncontrolled environment, would come to the same or
similar insights. Meaning, that similar to the control questions, we were
looking for consistency in the answers.

In contrast to the control questions however, the live exploration
questions were of a nature where there were no strictly right or wrong
answers. Rather, because we performed our own extensive analysis of the
data, we considered some answers to be more in line with our findings
of what the explanations show than others.

An example question is shown in Figure 6.4 and can be found in
Appendix A on page 21.

6.2.4 Feedback

The last part of the evaluation consisted of a series of qualitative feedback
questions on each of the elements of the system. Here participants could
rate how useful they found each element, provide additional commentary
and leave comments on the evaluation and system in general.

Participants were asked to rate the variance ranking mode, value
ranking mode, differential analysis and exclusion of dimensions on a
usefulness scale from 1 to 7, where 1 represents the notion that the
element was not very useful and 7 means they found it very useful.

In addition, three multiple choice questions were asked that allowed
participants to tick several predefined assessments of the variance and
value ranking mode and the parallel coordinates plot. Apart from the
predefined assessment, they could write down their own feedback in a
free form text field.

Lastly, participants were asked to indicate their experience with
multidimensional data analysis in a multiple-choice question and note
down any comments on the evaluation or system in two free-form text
fields.

For details on the structure of the questionnaire see Appendix A page
45.

6.3 results

We now present the results of the evaluation study. We split up the
results into three sections, firstly the answers to the control questions,
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Figure 6.4: One of the live exploration questions used in the evaluation study. The partici-
pants were asked to answer an analysis problem by using the software application
on their local machine.

then the answers to the live exploration questions and finally the answers
to the questionnaire.

6.3.1 Participants

In total, 23 participants submitted responses to the evaluation. Their ex-
perience with multidimensional data analysis ranged anywhere from no
experience to more than five years and was fairly uniformly distributed
(see Figure 6.5). Therefore, further results from the evaluation can be
considered to come from a broad range of expertise.

6.3.2 Control Questions

Responses to the total of 12 control questions were nearly unanimous
in all cases apart from one question (wine dataset question 3⁄4), with
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Figure 6.5: Participants reported a broad spectrum of experience levels with multi-
dimensional data analysis and projections.

correct answers being chosen by, on average, 92% of the participants. The
percentage of correct answers to all control questions are summarised
in Figure 6.6. All of the recorded answers to control questions can be
found in Appendix B.

Figure 6.6: Percentage of correct answers to the control questions of every dataset.

6.3.3 Live Exploration Questions

Live exploration questions were, with one exception, all questions where
participants could tick multiple options. These question didn’t have a
factually correct answer, as it depends very much on at what location
and scale a region in the projection is analysed. As such, we evaluated
the answers given by participants based on two factors. Firstly, their
similarity to the answers found through our analysis. As we spent
significant time with the system and the datasets, this is a measure of
how easy the system is to learn and come to the same insights. Secondly,
the spread of the distribution of the answers given, which indicates
whether the explanations provided by the system are consistent and
result in similar insights through the interpretation of different users.

answer evaluation We roughly categorise the possible answers
to each question according to how likely we would pick those options as
our answer, based on our analysis. In order to visually indicate which
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options we would likely pick and which not, participants responses are
coloured according to the colourmap in Figure 6.7. The lighter the
colour the more likely it is we would tick that option based on what we
found using the system, vice versa, the darker the colour the less likely
we would tick that option. We would therefore like to see answers chosen
in the majority by participants to line up with the lighter colours, and
answers rarely chosen by participants to line up with the darker colours.

Figure 6.7: Colourmap indicating our likelihood of picking a particular answer to live ex-
ploration questions based on our extensive analysis, used for evaluation of the
participants’ answers.

We next analyse the different questions and answers given based on
their themes and the skills and system elements required to solve them.

single cluster analysis The simplest type of analysis possible
with the system is selecting a certain region in the projection with
the lens selection and interpreting the statistics and sorting of the
dimensions in that region.

Question 1⁄3 of the wine dataset asked participants to find the region
in the projection containing wines with the lowest average density value
(see Appendix A) and to answer with an attribute that is similarly out
of proportion, likely causing the low density. A possible selection of the
lowest density region in the projection results in the statistics displayed
in Figure 6.8a. Through our analysis we found that the alcohol dimension,
like density, has a local mean that is out of proportion (unusually high)
and likely the cause of the low density.

Responses recorded by participants are summarised in Figure 6.8b.
The colours of the bars indicate our likeliness in picking the same an-
swer according to our own research (see Figure 6.7). The majority of
respondents (52.2%) indeed answered alcohol, however a substantial
number of participants (30.4%) answered fixed acidity. This is po-
tentially due to ambiguous phrasing of the question, which could be
interpreted as having to find a dimension which deviates from the global
mean in the same proportion as the density dimension. Looking at the
generated explanation, the most likely answer would indeed then be
fixed acidity.

multiple cluster analysis In both questions 1⁄3 and 2⁄3 of the
spam dataset, users were asked to perform an analysis over more than
one cluster. Specifically, they were asked to find out, for first non-spam
and then spam e-mails respectively, which words occurred more often
than unusual in the e-mails. This involved interactive exploration of the
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(a) (b)

Figure 6.8: (a) Possible generated explanation for low density region in projection. Alcohol
has an unusually high value, while fixed acidity has a deviation from the global
average similar to density. (b) Answers given by participants.

different regions in the projection while looking at the explanations to
find regions where any of the six words listed as options to the question
had unusually high values.

Responses recorded by participants are summarised in Figure 6.9a
for question 1 and Figure 6.9b for question 2. The colours of the bars
indicate our likeliness in picking the same answer according to our own
research (see Figure 6.7). Participants were extremely close to unanimous
in their answers, and answers with majority votes correspond exactly
with our answers. On question 1, one answer (addresses) also has several
votes, this is potentially due to confusion caused by both the words
addresses and address being dimensions in the dataset, the latter
of which indeed has unusually high values in the non-spam e-mails,
whereas the first does not.

(a) (b)

Figure 6.9: Response summary of question 1 (a) and question 2 (b) from the spam dataset,
participants’ answers line up almost unanimously with our analysis.

multiple attribute analysis In addition to a multiple cluster
analysis, question 3⁄3 of the breast cancer dataset required analysing
multiple attributes per cluster. The question asked participants to
explore all observations with a malignant diagnosis and evaluate which
of the listed statements were likely true. This involved interactive
exploration and comparison between regions in the projection with high
or low values for a given attribute, and then analysing several other
attributes for these regions. This was likely the most involved question
in the evaluation.

Responses recorded by participants are summarised in Figure 6.10.
The colours of the bars indicate our likeliness of picking the same answer
according to our own research (see Figure 6.7). A large majority of the
participants ticked the middle two boxes which is exactly in agreement
with our analysis.
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Figure 6.10: Response summary of question 3 of the breast cancer dataset, participants’
answers line up very closely with our analysis.

importance A common scenario in the analysis of real-world
datasets is trying to find out which variables influence a dependent
variable, that is, which dimensions have an important contribution to
the value of the dependent variable. Question 2⁄3 of the wine dataset asks
the participant to perform such an analysis by finding the region in the
projection with the highest quality wines and ticking which dimensions
they believe to be important, based on all the generated explanations
available to them.

Responses recorded by participants are summarised in Figure 6.11b.
Colours of the bars indicate how likely it is we would also pick that
answer (lighter colour means more likely, see Figure 6.7). A possible
generated explanation is displayed in Figure 6.11a. From the ranking
of the dimensions, we see that the chlorides dimension has the least
variance for the selected high-quality wines (it is displayed as the top
dimension) indicating that having this particular value of chlorides
may be important for the high quality of the wines. It is followed by
the alcohol dimension and then either total sulphur dioxide or
density depending on where exactly the selection is made. These four
dimensions are also given the most votes by participants. However,
alcohol was found much more often than chlorides.

(a) (b)

Figure 6.11: (a) Possible generated explanation for high-quality wines region in projection.
The chlorides dimension has the least variance, followed by alcohol, total sulphur
dioxide, and density (b) Answers given by participants to question 2 of the
wine dataset.

As this question is complicated and very much up to interpretation and
personal judgement, we asked a follow-up question in order to find out
how participants used elements of the system to reach their conclusion.
Participants could indicate they used any of six predefined manners in
which they came to their answer, or additionally indicate a different
manner in a free text option. However, no different manners were
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submitted outside of the predefined ones. Responses are summarised in
Figure 6.12.

Figure 6.12: Methods, indicated by participants, they used to arrive at their answer for
question 2 of the wine dataset.

We see the majority of users found the highest quality wines by
moving the lens over the projection and keeping track of the local mean
displayed for the quality dimension. Once they found some high-quality
wines, the majority then subsequently indicated that they ticked the
dimensions that had extraordinarily low variances. In our analysis we
followed the same procedure.

differential analysis Questions 3⁄3 of the wine dataset and
3⁄3 of the spam dataset asked the participants to perform a differential
analysis. Participants were briefed on how to perform a differential
analysis on an example dataset before the first question.

On question 3 of the wine dataset, participants were instructed to
tick a maximum of four attributes that are most different between red
and white wines. This involved doing a differential analysis between
the region in the projection representing red wines and the region
representing white wines.

Responses recorded by participants are summarised in Figure 6.13b
The colours of the bars indicate our likeliness of picking the same
answer according to our own research (see Figure 6.7). Participants
most commonly answered volatile acidity (82.6%), total sulfur
dioxide (78.3%) and to a lesser degree fixed acidity (47.8%) and pH
(26.1%).

Figure 6.13a displays a possible generated explanation for a differ-
ential analysis done between the red and white wines. We see that,
both volatile acidity and total sulfur dioxide have the biggest
differences followed by fixed acidity and pH. These results completely
align with the responses of the participants.

A similar task was given to the participants in question 3 of the
spam dataset. Their responses are summarised in Figure 6.13c. In our
analysis we found the word frequencies of the words your, receive
and business to be significantly different between the non-spam and
spam emails. This analysis corresponds strongly to the answers given
by participants.
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(a) (b)

(c)

Figure 6.13: (a) Possible generated explanation for the difference between red and white
wines. The biggest differences occur in the total sulphur dioxide, volatile acidity
and fixed acidity dimensions (b) Answers given by participants to question 3 of
the wine dataset. (c) Answers given by participants to question 3 of the spam
dataset.

dimension disabling Questions 1⁄3 and 2⁄3 of the breast cancer
dataset asked the participants to find clusters of points in the projection
where particular attributes had higher values than all other attributes,
and to note down which attributes these were. However, these clusters
had to be found in points that were completely dominated by a malignant
diagnosis (high value) in the diagnosis dimension, meaning all points
were assigned the same colour (of the diagnosis dimension, see Figure
6.14a).

In our analysis we found there were three major distinct subclus-
ters within the cluster of points with a malignant diagnosis. They
were characterised by high values of the radius, concave points and
compactness dimensions.

Responses to question 1 recorded by participants are summarised in
Figure 6.15a. The colours of the bars indicate our likeliness in picking the
same answer according to our own research (see Figure 6.7). Participants
most commonly answered concave points (87.0%), radius (78.3%)
followed by compactness (43.5%) which corresponds with our analysis.

Before proceeding to question 2, participants were briefed on how they
can disable and re-enable dimensions and were instructed to disable the
diagnosis dimension, thereby uncovering the colours of the subclusters
(see Figure 6.14b). Here we can see that the compactness cluster is quite
small and was therefore harder to find in the first question.

Question 2 then subsequently asked the participant to repeat the
task of question 1 with the newly revealed colour groups. In this second
task, we expected participants to have an easier time finding the specific
clusters as the assigned point colours are indicating them. Given the
relative small size of the compactness cluster, making it hard to find in
the first task without being able to see the colours, we expected it to be
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found much more often in the second task, as well as a lesser increase
in the other cluster attributes.

Responses recorded by participants are summarised in Figure 6.15b.
We see that the compactness dimension increased from being ticked by
43.5% of participants to 60.9%. However, the concave points dimension
decreased from 87.0% to 69.6%.

(a) (b)

Figure 6.14: The value mode view of the breast cancer projection before disabling the
diagnosis dimension (a) and after (b). Three major subclusters are revealed.

(a) (b)

Figure 6.15: Answers given by participants to question 1 (a) and question 2 (b) of the breast
cancer dataset.

6.3.4 Questionnaire

In the questionnaire, we asked participants to provide feedback on each
of the system elements.

variance and value mode For the variance and value mode
we asked participants to both provide a usefulness rating (1 = Not very
useful through to 7 = Very useful) and their opinion on what it is useful
for.
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Participants rated the usefulness of the variance ranking mode with
a mean score of 4.83 (SD = 1.63) and the value ranking mode with a
6.52 (SD = 0.77).

For the variance ranking mode, opinion was roughly equally divided
between it helping to find important dimensions (52.2%) or identifying
clusters to explore (39.1%), with 13% indicating they found it to provide
no additional value. Comments mentioned it providing structure to the
projection and making it interesting to explore (13%), not feeling they
had to use it in the live exploration part (4.3%), being difficult to
interpret (4.3%), and more useful combined with the value view (4.3%).

For the value ranking mode, participants found it helps for identifying
clusters to explore (95.7%), helps identify which values are extraor-
dinarily high (87%), and extraordinarily low (52.2%) and helps find
important dimensions (65.2%), no participants indicated they felt it
provided no additional value.

parallel coordinates plot For the parallel coordinates plot
in the local analysis widget, participants found it provides additional
explanatory value (60.9%) and helps them understand the distribution
of values (47.8%). Whereas some participants found it makes the local
analysis widget more confusing (17.4%) or provides no additional value
(8.7%). Additional comments mentioned using it mainly for outlier
detection but it adding more clutter than benefit (8.7%).

differential analysis and dimension exclusion Partic-
ipants rated the usefulness of the differential analysis tool with a mean
score of 5.74 (SD = 1.03) and the dimension exclusion with a score of
5.74 (SD = 1.42).

comments Comments on the system elements mentioned several
labels being hard to read due to their assigned colours or font size,
suggested a fixed sorting mode, confusion between variance ranking and
the standard deviation whiskers and being unsure how large to make
the selection circle.

6.4 summary

Overall, participants from a wide range of experience levels participated
in the study. After a short tutorial introducing the various system
elements, participants collectively responded with what we consider
the correct answers to all control questions. In the live exploration
questions, their insights and conclusions generally coincided with our
conclusions reached through thorough analysis of the projections.

Participants rated the various system elements highly in terms of
usefulness, with a preference of the value ranking over the variance
ranking, and provided minor feedback on the display and practical
details of several elements.
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In this thesis we looked at explaining multidimensional data projections.
We identified two limitations in past research that led us to form the
following research question:

How can local point patterns in projection embeddings of highly
multidimensional data be explained in terms of their original

dimensions?

In answering this research question, we proposed a linked view visu-
alisation system consisting of a projection view augmented with global
explanations and a local analysis view that provides local explanations
based on user-guided exploration of regions in the projection. The ex-
planations are supported by a differential analysis tool for explicitly
finding differences between two regions of the projection, and the ability
to exclude dimensions from the explanations.

In this chapter we return to the requirements stated in 3.2 that we
believe are the pillars of a visualisation solution that answers the research
question. We now evaluate to what degree our proposed solution satisfies
these requirements. To recap, a satisfactory explanatory mechanism
must:

1. Explain local point patterns in the projection in terms of their
original dimensions

2. Be easy and intuitive in use

3. Scale well in the number of observations and dimensions

4. Scale well in terms of computational cost

5. Be applicable to projections in a black-box manner

We will first consider requirement four and five which can already be
evaluated. The other requirements will be evaluated after discussing
the results of the evaluation study.

computational scaling In evaluation of requirement four, we
can already say the following: The local explanations scale very well
due to their linear computation complexity in both the number of obser-
vations and the number of dimensions. They compute in real-time on a
projection with 300,000 observations without parallelisation. The global
explanations have a worse complexity in the number of observations
however only need to be computed once. The precomputation takes
roughly one second for a dataset with 10,000 points and roughly 25
seconds for a dataset with 100,000 points using parallelisation. That
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being said, the algorithm is embarrassingly parallelisable and therefore
could be computed much more efficiently on the graphics card. Consid-
ering that most of the analysis happens in local exploration mode, and
the global explanations are just an initial guide of where to explore, we
consider the system to scale well in terms of computational cost. All
timings were measured on a machine running Windows 10 equipped
with an Intel i7-4790K CPU running at 4.00GHz clock speed.

black-box applicability In terms of requirement five, the
explanations have no intrinsic reliance on any specific projection tech-
nique, and will function for any given projection, no matter how it was
generated. Of course, if the projection quality is very low, the explana-
tions will be meaningless, however a projection with such low quality
should not be analysed for insights in any case. Overall, we therefore
consider the fifth requirement to be met by the system.

Next, we will evaluate the results of the evaluation study and examine
them in light of the first three requirements.

7.1 evaluation study

We created a set of new explanatory tools that allow for interactive
exploration and explanation of projections of high-dimensional data on
both a global and local level. As stated in the requirements we put on
a solution, we would like the tools to explain local point patterns in
terms of their original dimensions, be easy and intuitive to use and scale
well in the number of observations and dimensions. In order to get an
idea of to what degree these requirements are satisfied we performed
an initial evaluation study. This study had participants performing a
series of analyses on datasets of increasing dimensionality, from both
static snapshots and by live exploration using our system.

As far as we are aware this is the first study of its kind, evaluating
how these kinds of explanations are understood by users. We believe
this study is incredibly important to substantiate our contributions. As
we introduce a lot of new explanatory elements, without knowledge of,
whether these tools make sense, whether they produce consistent and
accurate insights into the data, and whether they are understood and
valued by people, the contributions have no justification.

From the results of the study we saw an overwhelming number of
participants picked the right answer on the control questions, as well as
answers that were congruent with our analysis of the data on the live
exploration questions. Not only did the participants in their majority
give correct and plausible answers, but they consistently did so over all
control questions in the study. Surprisingly, never in the study did an
answer we considered unlikely to be correct receive a majority of votes.

In terms of difficulty, the control questions were designed to be fairly
easy. This likely plays a role in the high accuracy of the answers. However,
as the questions were designed to test whether participants could read



7.1 evaluation study 63

the various visual elements of the system correctly, this consistency
and accuracy suggest strongly that they indeed did understand how
to read the explanations. This was important to establish, considering
the live exploration questions rely heavily upon being able to correctly
read the explanations the system provides. Moreover, considering the
participants had only followed a short (∼ 15 minute) tutorial on the
features of the system, this is a crucial first piece of evidence these
elements are easy and intuitive to learn and understand.

The live exploration questions presented participants with more com-
plex and abstracted analysis questions that required them to use the
system as they saw fit to come to an answer. We saw that answers
given by participants were less consistent than the control questions,
which is not strange considering the free nature as well as the increased
complexity of the questions. After all, participants were free to select
any region in the projection, at any scale, and even integrate results
from multiple regions to come to a conclusion. Therefore, answers can
differ based on what exactly the participant was looking at, the amount
of effort put into the analysis, different understandings of the question,
and a host of other factors.

Nevertheless, despite this, we were surprised to see that the vast ma-
jority of answers given by participants lined up exactly with the answers
we considered likely based on our own extensive analysis. Moreover, we
saw that only a few answers got a majority of votes from participants,
while the others barely got any. This conveys participants came to very
similar and consistent insights, suggesting that the system is indeed
capable of helping users solve analysis problems.

Not only did participants give consistent and plausible answers to
questions on datasets having just a few dimensions (like the wine
dataset), neither of these qualities noticeably degraded as the datasets
became higher dimensional (breast cancer and spam datasets). This is
evidence that explanations generated by the system scale beyond just a
few dimensions, to datasets of much higher dimensionality.

Finally, we asked participants to rate the various tools in terms
of their usefulness on a scale from 1 (not useful) to 7 (very useful).
Participants responded very positively to the contributions, giving high
ratings to all elements of the system. The lowest rating (4.83 SD=1.63)
was given to the variance ranking mode, which can indicate a number
of things. Firstly, it is possible that the variance ranking requires more
time to fully understand, as the concept itself is not complicated, but the
implications of a dimension having low or high variance can be hard to
grasp. Secondly, it is possible that the variance ranking is just not that
useful in answering the type of questions formulated in the study. Apart
from the control questions, only one live exploration question really
dealt with using the variance mode, while the rest could be solved in
value mode. This bias in the questions is accidental and could contribute
to participants not perceiving it as useful. The rest of the elements were
perceived as very useful to participants. This corroborates the idea that
the new tools are actually helpful to users in their analysis of the data,
otherwise, if participants found the answers to the questions in different
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ways without help of the tools, then they likely wouldn’t rate them as
very useful.

In conclusion, we ran an evaluation study to find out if our visualisa-
tion system is capable of explaining local point patterns in projections
in terms of their original dimensions, is easy and intuitive to use and
scales well in the number of observations and dimensions. Participants
in the study gave consistent and accurate answers that strongly suggest
the system is easy to learn and use with minimal training and results
in consistent insights, even when the analysis process is not controlled
and analysed datasets become more and more high-dimensional. This
satisfies the remaining requirements we believe necessary for an explana-
tory mechanism capable of adequately explaining local point patterns
in high-dimensional projections. Therefore, we consider our visualisa-
tion solution to be an answer to the research question we set out to
investigate.

In the following section, we will look at several limitations of our
visualisation solution and evaluation study and discuss potential future
work.

7.2 limitations and future work

We now discuss several of the limitations of our work, and suggest
future improvements and directions for further research. We divide the
discussion of these items up by topic.

global explanations We start our discussion by looking at the
limitations that apply to the global explanations. Firstly, the global
explanations inherit their mechanism from the original paper by da
Silva et al. We discussed before that as the intrinsic dimensionality
of the dataset becomes higher, assigning visually distinct colours to
observations based on top-ranked dimensions becomes a limitation. This
limitation remains for both the original global variance explanation
proposed by da Silva et al. as well as for the global value explanation
proposed in this thesis. Nonetheless, section 5.6 shows that there are
datasets with a significant number of dimensions and high intrinsic
dimensionality, for which the explanations do still work very well.

Secondly, the global explanations are designed to work on a projection
without knowledge of the specific projection technique that generated it,
nor its parameters. It could however be interesting to provide additional
explanation metrics that can be used when such information is known.
For example, if we know the projection technique used a particular
distance function in order to generate the projection, then it may make
more sense to analyse it with explanations based on that same distance
function, rather than a more generic metric like variance. As users could
be given the choice which metric to evaluate their projection with this
would not detract from the generality of the system. However, it may
make the system less accessible to users who don’t have the experience
or knowledge to pick the right metric.
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Lastly, the precomputation required for the global explanations be-
comes increasingly computationally costly as the number of observations
in the data increases. However, as it only needs to be computed once this
cost is not prohibitive. That being said, if a projection does contain mil-
lions of points then the computation will likely take a significant amount
of time. This problem may be mitigated by the fact that the compu-
tation is embarrassingly parallelisable and could easily be modified to
run on a graphics card. In practice however, a projection containing
that many points at once is likely suffering from more issues such as
a high number of projection errors and misrepresentation of relative
distances between clusters due to a lack of visual space. In this case,
a hierarchical projection or a projection showing just a subset of the
data points is a better approach. Therefore, it would be interesting to
extend the application of these global explanations to such projections.

local explanations The local explanations also have a number
of limitations that we will discuss here. Firstly, while using the local
explanations allows for the analysis of many dimensions at once, exactly
how many dimensions is limited by the size of the local analysis widget
and therefore by the size of the screen. While it is possible that there
exists a visual layout that could display more dimensions at once at the
same screen size, it soon becomes a trade-off with the readability. For
many datasets however, the current number of dimensions shown on
an average screen size is more than sufficient for proper analysis of the
data.

Secondly, in some datasets we are equally interested in dimensions
that have unusually high values as well as unusually low values. If these
dimensions are shown on either sides of the sorted dimension list, this
makes the analysis cumbersome. Therefore, users might be given the
option to choose between either sorting from unusually high values to
unusually low, vice versa, or a combination of the two. This could easily
be implemented by slightly modifying the value ranking computation.
Furthermore, keeping track of a particular dimension while moving the
lens can sometimes be tricky as it can appear higher or lower in the
sorting based on the brushed points. Therefore, an additional option to
have a fixed sorting of dimensions would be valuable.

Thirdly, some datasets have abstract dimensions rather than ones
with a semantic meaning. This is commonly the case in image datasets
where the pixels are taken as the dimensions. In these cases, the dimen-
sions are often simply labelled by a numerical value indicating which
pixel they refer to. Analysis of such datasets is still possible using the
described explanatory mechanisms, but much less intuitive. An interest-
ing direction for future research would be to visualise the ranking or
statistics of the dimensions as pixel colours in a representative image
widget.

Lastly, in variance mode it can occur that there is an incongruence
between the ranking of the dimensions in the local explanation widget
and the displayed standard deviation whiskers. That is, as dimensions
are sorted from least variance to most variance, one would expect the
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width of the standard deviation whiskers to uniformly increase in size
for dimensions going down the list. However, this is not always the
case. The reason for this is that we choose to base the sorting of the
dimensions in the local analysis widget on the rankings computed for
the global explanations, which are based on neighbourhoods around
individual points, while the standard deviation whiskers are computed
based on the variance of solely the brushed points. There is therefore
a trade-off between congruence of the top-ranked dimension in the
global explanation and in the local explanation versus congruence of the
ranking in the local analysis sorting and the displayed standard deviation
whiskers. We think the former is more important as we believe that
exploring a group of points coloured in purple in the global explanation
and finding that the top-ranked dimension in the local explanations is
the orange dimension is very jarring and confusing. However, it may be
possible to find some middle ground where both are mostly congruent,
barring exceptional cases.

evaluation The main limitation to the evaluation study is that it
doesn’t conclusively prove anything, however this was not the intention.
The study was purely intended to get an initial sense of how quickly
people can learn to understand our tools, how much experience is
necessary to use them and whether our tools results in consistent and
plausible insights when users are given complete freedom in their use.
Given that, as far as we are aware, this is the first study of its kind
in the field of explaining projections, it serves as a first foray into
substantiating the contributions of new explanatory mechanisms.

visual design Through comments from participants of the study
as well as colleagues we became aware of several minor issues in the
visual design of the tools. Firstly, the bars indicating the difference
between the local and global mean in the local analysis widget are
coloured in green and red, however these colours are hard to distinguish
from another to people with red-green colour deficiency. Secondly, our
chosen colourmap [14] still contains colours that are hard to distinguish
from the background of the local analysis widget. Leaving these colours
out would leave around 16 colours left in the palette, which we expect to
only have a minor impact on the quality of the explanations on datasets
with higher intrinsic dimensionality.

7.3 conclusion

In this thesis we discussed how local point patterns in projections of
highly multidimensional data can be adequately explained in terms of
their original dimensions. This has applications in an incredible amount
of fields, such as healthcare, artificial intelligence, business and research.

We looked at the previous research that has been done in this area
and concluded that there is a gap in the ability to explain projections
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in enough detail, especially when the intrinsic dimensionality of the
dataset increases.

Therefore, we presented a visualisation solution that allows for in
depth explanation of projections at multiple levels of detail, whilst
simultaneously scaling better in the number of dimensions of the data.
The solution is implemented in the HDPS [7] software application for
exploring high-dimensional data. The source code and binaries of our
implementation are available on GitHub [13].

Importantly, we demonstrated the functionality and usefulness of
our system by running an evaluation study. Results of the study show
that, with minimal training, users arrive at consistent insights using the
explanations generated by the system, and that those insights coincide
with the insights gathered over a much more extensive analysis.

Therefore, we believe the visualisation solution we present can provide
a lot of benefits for all fields dealing with high-dimensional data in trying
to obtain novel insights into their data.
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