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Abstract—Automation of SDLC requires continuous 
verification of compliance of the software product under 
construction to a set of expectations about its quality. We define a 
policy as an expectation about some aspects of software quality 
that is expressed as a collection of non-functional requirements 
(NFRs), compliance to which can be potentially measured. The 
results of such measurements can be used to verify whether the 
product meets the expectation set about it. In this paper, we 
discuss existing NFR taxonomies and propose mapping of 
software metrics to twelve NFRs. We then propose a model for 
reliability prediction using publicly available quality metrics for 
several open source projects. 
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I.  INTRODUCTION 
The key idea behind policy-driven development is that high-
level expectations about software quality can be represented by 
a set of non-functional requirements (NFRs) in the early phases 
of the development process, and then be continuously verified 
during the product development [1]. Verifying in an automated 
fashion that the product adheres to the policy typically implies 
performing a measurement procedure and setting a threshold 
on the resulting measured values (see Figure 1). Several 
problems arise in this context, as follows: all stakeholders must 
agree on the way (language) to express the high-level 
expectations; NFRs that represent the policy need to be 
measurable; and suitable thresholds need to be set for the 
results of such measurements, so that an automated decision 
about the software can be made. 

To facilitate the maturing of policy driven development, we 
propose a framework for mapping NFRs to software metrics 
and demonstrate how this mapping can be used to ensure that 
the software meets expectations about it. For this, we use well-
accepted quality metrics from software engineering, whose 
implementation is publicly available [10]. We proceed as 
follows. We begin by overviewing related work on software 
quality attributes (Sec. II) and related software quality metrics 

(Sec. III). In section IV, we propose mappings for the 
following quality attributes: security, reliability, maturity, 
maintainability, modularity, reusability, analysability, 
modifiability, testability, portability, resilience, documentation. 
In section V, we demonstrate one way to derive measurable 
thresholds to quantify one high-level NFR (reliability) by using 
a machine learning approach. Finally, Sec. VI concludes the 
paper. 

  
Figure 1: relation of quality, policies, NFRs, and software metrics. 

II. SOFTWARE QUALITY ATTRIBUTES 
In general, NFRs are defined as being requirements that 
describe (a) quality aspects of the source code or (b) pertain to 
the run-time characteristics of the program. In the following, 
we consider only NFRs related to software quality attributes 
(b), often referred to as quality NFRs. Extensive listings of 
NFRs and software quality attributes can be found in 
[2][3][4]. NFRs can be organized via taxonomies, which are 
typically either flat or hierarchical. Hierarchical taxonomies 
imply that higher-level NFRs can be expressed via lower-level 
NFRs. While useful in understanding what NFRs mean and 
how they are related to each other, such taxonomies do not 
provide clarification on whether their NFRs are measurable or 
not and, for measurable NFRs, how these can be estimated in 
practice. 



Most software quality concepts are, by nature, rooted in the 
characteristics of source code only, see e.g. modularity, 
complexity, documentation, and all other metrics described in 
e.g. [11]. Other quality concepts combine aspects of the source 
code with those of the development (software evolution) 
process and run-time program behaviour [13][14]. Such quality 
concepts are quantified in practice by software metrics, 
described next. 

III. SOFTWARE METRICS 
In practice, hundreds of different software metrics are used to 
quantify the software quality aspects introduced in Sec. II. We 
next outline several widely used software metrics, from which 
we will select the ones we will use next in our work for 
quantifying NFRs. 

A. Direct metrics 
• Weighted methods per class (WMC)[12]: The sum of 

complexities of a class’ methods.  

• Depth of inheritance tree (DIT)[12]: The length of the 
longest path-to-root in the inheritance tree of a system. 

• Number of children (NOC)[12]: The number of immediate 
children (subclasses) of a class in a class hierarchy. 

•  Coupling between objects (CBO)[12]: The number of 
couplings (dependencies) between two classes. 

• Response for class (RFC)[12]: The number of methods that 
can potentially be executed in response to a message 
received by an object of a given class. 

• Lack of cohesion in methods (LCOM)[12]: Two methods 
of a class are related if they use at least one common field. 
Let Q and P be the number of pairs of methods in class C 
that are, respectively are not, related. Then, LCOM is 
defined as max(P - Q, 0). 

• Static analysis violations (S): The number of violations of 
chosen rules by a chosen static analysis engine. Rules are 
typically defined as patterns searched over the annotated 
syntax tree (AST) of a program [15][16]. 

• Reported defects (D): The number of defects reported 
through a bug tracking system (BTS) or mailing list. 

• Number of classes (NC): The number of (abstract) classes 
comprising an object-oriented system. 

• Number of parameters (NP): The number of parameters that 
a method takes when called. 

• Cyclomatic complexity (CC): The number of linearly 
independent paths through the control flow graph of a 
program. 

• Lines of code (LOC): The size of the program in lines of 
code text. If not mentioned otherwise, LOC is usually 
assumed to exclude comment lines. 

• Number of packages (NOP): The number of packages 
comprising a system.  

• Afferent couplings (Ca): For a package P, Ca is the number 
of classes in other packages that use classes in P [6]. 

Efferent Coupling (Ce): For a package P, Ce is the number 
of classes in other packages that classes in P use [6].  

• Number of developers (DEV): The number of developers 
involved with the process of creating and maintaining the 
software [13][17]. 

• Test coverage (C): The number of lines covered by a test 
suite when executed. 

• Failed test ratio (F): The number of failed tests, in an unit or 
similar test, to the total number of executed tests. 

• Languages (L): The number of different programming 
languages present in the analysed source code.  

B. Indirect or derived metrics 
• Comment density (CD):. The ratio, or percentage, of 

comment lines to the total number of lines in source code.  

• Defect density (DD): The ratio of reported defects through 
a BTS (D) to the number of non-comment lines (LOC). 

• Defect arrival rate (DAR): The number of defects reported 
through a BTS (D) per unit time.  

• Abstractness (A): The ratio of the number of abstract 
classes (and interfaces) in a package to the total number of 
classes in the package [6]. 

• Instability (I): The ratio of efferent couplings to total 
couplings, i.e., I = Ce/(Ce+Ca) [6]. 

• (S/DEV): The ratio of static analysis violations to the 
number of developers. Indicative of developer experience. 

• (D/DEV): The ratio of reported defects to the number of 
developers. 

• (NOM/DEV): The ratio of number of methods to the 
number of developers. High values can indicate low 
maintainability of the source code. 

• (LOC/DEV) indicates the amount of code a developer is 
responsible for, in LOC. 

• (NC/DEV): The amount of classes a developer is 
responsible for. 

• (CC/LOC): The density of decision making in source code. 
For a detailed discussion of this and the following three 
metrics, see [11] 

• (LOC/NOM): Average method size, in LOC [11]. 

• (NOM/NC): Average size of class, in methods [11]. 

• (NC/NOP): Average package size, in classes [11]. 

• (S/KLOC): Density of static analysis violation occurrences. 

C. Metric extraction tools 
The above-mentioned metrics can be computed by many 
metric extraction tools that offer various trade-offs between 



number of covered metrics, scalability, genericity, and ease of 
use [15][16][18][19]. In our work, we use for this task the 
SonarSource toolsuite [10] to demonstrate the feasibility of 
quantifying the proposed mappings. When not provided, we 
compute indirect metrics from their direct counterparts 
following Sec. IIIB.  

IV. PROPOSED MAPPING 
In this section, we propose a mapping of twelve high-level 
software quality attributes to software metrics. Figure 2 shows 
the proposed mapping of quality attributes (rows) to metrics 
(columns), which we discuss in detail next. 

 

 
Figure 2: Mapping of quality attributes (rows) to metrics (columns). 

A. Security 
Security can be defined as the level of data protection [3]. It is 
apparent that there is no way to measure security directly. We 
identify the following factors that can be used in predicting 
security: the complexity of method call hierarchy and the 
length of data flow paths through the program. The longer the 
data path, the more chance there is that either unwanted data 
can be injected by an attacker, or that protected data will leak. 
We map these to the following metrics.  

A large DIT negatively affects the security of a class, because 
the longer the inheritance path, the more convoluted become 
connections between overridden and inherited methods, and the 
easier it is to make a mistake. 

LCOM negatively affects the security of an application, due to 
the greater exposure of fields to methods. 

CBO negatively affects security due to the greater number of 
classes involved in information exchange. 

Higher RFC undermines security by increasing the length of 
the data path. The same holds for Ca and Ce, but with respect 
to the number of dependencies. 

Higher values of NOM and NP increase the attack scope by 
increasing the number of parameter passes and, thus, the 
amount of possibly tainted data. 

Finally, S is indicative of the experience of developer who has 
written the analyzed unit. In turn, low-experience developers 
are more prone to generate low-security code.  

B. Reliability 
We define reliability as the degree of confidence that the 
software will work in an expected manner. We argue that 
reliability depends on the number of reported defects, their 
density, and their arrival rate. The number of found static 
analysis errors (S) is an important predictor for reliability, since 
a high number of discovered static errors increases the 
probability of software failure. 

Cyclomatic complexity (CC) is a second predictor for 
reliability, since it is easier to introduce an error into complex 
code. The same reasoning applies to the number of methods 
(NOM). 

C. Maturity 
We define maturity as the degree to which a software product 
has grown to meet its expected behaviour. As software 
matures, defects present in its early versions are removed, 
while new defects can be injected. Thus, maturity is related to 
the defect density (DD) and defect arrival rate (DAR). 

D. Maintainability 
Maintainability can be defined as the ease with which the 
program can be extended, updated, modified, and its errors 
removed [3][2]. Hence, LCOM, CBO, RFC are important 
metrics for quantifying maintainability since they correlate 
with the complexity of a system, and it is well known that more 
complex systems are more difficult to maintain. The same 
reasoning applies to Ca, Ce and I metrics, but at the package 
level. Conversely, NC negatively correlates with 
maintainability. Finally, CD determines understandability and, 
thus, maintainability of the system. 

E. Modularity 
We understand by modularity a measure of the level of 
independence of the constituents (components) of a system. A 
component in a highly modular system has little to no impact 
on, and from, other components of the system. Modularity is 
decreasing with higher CBO and RFC, due to a larger number 
of objects involved in message exchange. Ca and Ce negatively 
affect modularity on the package level, for the same reason. 
Packages with higher instability I are less modular because 
they depend on more classes in other packages. 

F. Reusability 
We define reusability as the degree to which a program (or 
parts thereof) can be reused in other applications [2]. 
Reusability of a class depends on its CBO and RFC, since they 
represent the number of dependencies on other classes. 
Reusability of a package is reflected in Ce. Separately, 
reusability of a system is lower if it contains a lot of defects. 
Therefore, DD is important for quantifying reusability. Finally, 
more complex code (higher CC values) is less reusable due to 
lower understandability. Methods with high NP are harder to 
reuse, for the same understandability reason. 



G. Analysability 
The notion of analysability lies close to understandability. 
Classes with higher CBO and RFC are harder to analyse due to 
greater number of couplings with other methods and objects. 
Abstract packages (higher A) and classes with high DIT are 
harder to analyse because of a larger number of (abstract) 
classes that need to be kept in mind while reading the source 
code. Systems with higher NC and NOM are less analysable 
for the same reason. Packages with higher Ce are less 
analysable due to a greater number of dependencies. Higher 
CD improves analysability.  

H. Documentation 
The high-level quality concept of documentation can be 
directly mapped to the source code metrics of documentation.  

I. Modifiability 
Following [3], we define modifiability as the degree to which a 
program can be changed without introducing errors. Intuitively, 
modifiability depends on modularity and coupling. Thus, 
LCOM, CBO, RFC are important predictors for modifiability. 
Classes that serve as a superclass for a larger number of other 
classes (higher NOC) are more difficult to modify without 
breaking their children classes. Packages with lower instability 
I and higher Ca are less modifiable, due to a greater number of 
dependencies. 

J. Testability 
According to [2], testability is the effort required to test a 
program. A method with fewer parameters NP is easier to test 
than a method with a greater number of parameters. Packages 
with a lot of abstract classes (higher A) are harder to test 
thoroughly. Methods with higher CC are less testable because 
of the large number of execution paths through them. Classes 
with high NOM are harder to test due to a large number of 
required unit tests. Finally, classes with high CBO need more 
testing effort to eliminate dependencies and write test stubs. 

K. Portability 
Portability is the degree to with which a program can be 
transferred from one environment to another [3][2]. Larger 
projects are more likely to contain dependencies that might 
prevent portability, so LOC and NC can be used to predict 
portability. Some languages provide a unified run-time for all 
platforms (e.g. Java), while others target specific platforms 
(e.g. .NET). Separately, some languages have run-times 
available on many platforms while others do not. Therefore, L 
is an important predictor for portability. 

L. Resilience 
We define resilience to be the degree to which the software can 
be expected to operate in unexpected environments. Modular 
software that is written in a language that handles exceptions 
and is based on resilient run-time environment can be expected 
to be more resilient. Modularity indicators such as CBO, RFC, 
Ca, and Ce can be used to indicate resilient software. Software 
with a high defect density (DD) and/or defects arriving at a 
high rate (DAR) is assumed to be less resilient. Greater NOM 
and NP values may indicate non-resilient software due to a 
larger data boundary surface. A high number of static analysis 
violations (S) shows that the software is not resilient to 

improper input. Finally, some languages allow better error 
handling than others. Thus, L can be a predictor for resilience. 

V. IMPLEMENTATION FOR RELIABILITY 
In the following, we demonstrate the mapping of quality 
attributes to metrics proposed in Sec. IV. Given space 
limitations, we do this for a single quality attribute: reliability. 
Mappings of other quality attributes (to their corresponding 
metrics) can be designed and implemented analogously. We 
demonstrate how a high-level expectation about the product 
under construction’s reliability can be transformed into a set of 
requirements for the source code, compliance to which, in 
principle, can be checked in an automated fashion.  

A. Estimation and relevant metrics 
Reliability is likely one of the most often mentioned software 
quality attributes [20]. Several efforts to quantify software 
reliability have been made early on within NASA and AT&T 
[8][9]. The field of software reliability borrows some models 
from the field of system reliability and hardware reliability [9]. 
When some characteristics cannot be directly measured, but an 
estimation (value) thereof is required, an operational or ‘proxy’ 
measure is often used. Known operational measures for 
reliability are the number of reported defects, the mean time 
between failure, and the defect density. Measuring reliability of 
a working system is traditionally called reliability estimation. 
Establishing future reliability of a running software system by 
using sources other than the running program itself is referred 
to as reliability prediction.  

We use defect density as an operational measure of reliability, 
and use LVQ1 learning algorithm to create prototype vectors 
for reliable and unreliable software, in the metrics space 
(metrics extracted from the source code, the information about 
the development process, the information extracted from the 
repository.) This model can further be used to classify the 
system under construction as reliable or unreliable, We identify 
the following high-level factors, and their related metrics, that 
affect reliability: 

1. Developer experience, represented indirectly by CC/LOC, 
LOC/NOM, NOM/NC, NC/NOP; 

2. Program complexity, measured indirectly by S/DEV, 
D/DEV, NOM/DEV, LOC/DEV, NC/DEV; 

3. Testing effort, measured indirectly by test coverage C and 
the proportion of the failed tests F; 

4. The density of errors S/LOC found in the source code by a 
static analysis tool. Any tool or number of tools can be used, 
provided that the set of tools is not changed during the model 
creation. At the simplest level, compiler warnings can be used 
to estimate S. More complex static analysis tools, such as 
discussed in Sec. IIIC, provide more comprehensive 
measurements for S. 

To assess our proposal, we use the toolset in [10] to compute 
the above-mentioned quality factors from their respective 
metrics for the following open-source software projects: nginx, 
Checkstyle, rocksdb, MySQL Server, AngularJS, jQuery, 
cMake, Notepad++, jUnit. Defect density information is 



extracted separately using bug tracking services for the above-
mentioned software projects.  

Due to limitations related to data availability (more 
specifically, limitations of the used static analysis tooling for 
providing the required data), we exclude from our reliability 
model the metrics that are related to classes and packages. We 
also leave out metrics related to testing, since there is no test 
coverage data available for some of the projects in our 
considered set.  

 
Figure 3: Reliability as a function of the defect density (DD) 

B.  Learning a reliability model  
With the metrics extracted as indicated in Sec. VA, we next 
aim to construct, or learn, a predictive model – that is, a model 
that, given such measured values on a software system, can 
infer whether the system’s reliability meets the expressed 
expectations. For this we use a machine learning approach, as 
follows. 

Learning vector quantization 1 (LVQ1) is a supervised learning 
algorithm that is aimed at creating a set of prototype vectors for 
each class present in its input data [7]. Putting it simply, LVQ1 
maps multi-dimensional input data (vectors) to a nominal, or 
categorical, scale (class labels). As input vectors, we use the 
measured quantitative (real-valued) metrics outlined in Sec. 
VA. Based on these vectors, and a labelling of the training set, 
LVQ1 computes a set of so-called prototypes, i.e., points in the 
multi-dimensional metric space that best approximate 
surrounding clusters of labelled observations (software 
systems) having the same class label. Using these prototypes, 
LVQ1 finally assigns a label to untrained samples (software 
systems for which we do not know the reliability) using a k-
nearest-neighbours (kNN) approach. Compared to other 
classification approaches, LVQ1 has advantages when 
manually finding correlations between specific subsets of 
features (metrics) and feature values in the input data, and class 
labels (from the training data), is hard to do due to high 
dimensionality of the input data. 

We simplify the modelling of reliability by considering a two-
class problem – that is, we aim to classify our software systems 
into either reliable or unreliable. While this is, clearly, an 

oversimplification of the real world where reliability is better 
modelled as a quantitative (or ordinal) variable, this 
simplification allows us to easily create labelled data as well as 
train and test the LVQ1 classifier based on a small number of 
sample points (software systems). If thousands of sample 
points, including their metric values and label values, are 
available, precisely the same training-and-testing approach 
described here can be used to learn more complex reliability 
models. 

C. Dataset 
Table I shows the input dataset for our classifier construction, 
containing nine sample points and their respective six 
measured software metrics. In the context of policy driven 
development, the team can use reliability data from the 
previous releases of the product under development, or from 
similar products either within the company or open-source. The 
class label (rightmost column) has the binary values reliable 
(R) or unreliable (U). We label the systems with DD < 5 
(D/KLOC) as reliable, and those with DD > 5 as unreliable. 
When implemented in practice, this labelling must be 
performed by the members of the team in collaboration with 
the stakeholders and reflect their common understanding of the 
reliability of the product(s) that is(are) used as a benchmark. 
During this process, we also use scatterplots to examine how 
class labels correlate with the measured metrics. Figure 3 
shows such an example. Here, the vertical axis maps defect 
density (DD) and the horizontal axis maps the assigned class 
label (R or U). In this example, we clearly see how the 
examined systems are grouped into two clusters based on the 
DD values. 

TABLE I.  SOFTWARE METRICS FOR TRAINING AND TESTING 

Name KLOC NOM CC Devs D S Class 

AngularJS 119.0 4917 17126 1504 696 2022 U 

Checkstyle 31.5 2571 6770 107 10 6 R 

cMake 182 4529 26341 520 1700 440 U 

jQuery 6 578 2201 291 51 14 U 

jUnit 9.5 1321 2433 155 136 46 U 
MySQL 
server 2787 27874 204670 1368 3534 4700 R 

Nginx 122 1304 17575 46 9 70 R 

Notepad++ 78 1722 15468 81 1070 162 U 

rocksdb 197 7141 19638 284 228 78 R 

 

To train the model, we exclude two random rows from Table I 
and perform LVQ1 training for the remaining rows, using 2000 
training iterations. We use two prototypes, one modelling the R 
label and one for the U label, respectively. Table II shows the 
coordinates (i.e., the metric values) of these two trained 
prototypes. Finally, we use the excluded two prototypes to 
validate the trained model. 

 



TABLE II.  PROTOTYPE VECTORS FOR THE TWO LEARNED CLASSES 
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VI. DISCUSSION AND CONCLUSIONS 
We next discuss our most important findings, as follows. 
 
One interesting finding is that the amount of code per 
developer (KLOC/DEV, NOM/DEV) is positively correlated 
with defect density in all indirect metrics, in both small and 
large projects. Both large and small projects are less defect-
prone if there are only a few developers that work each on a 
large chunk of code. Our belief is that this might only hold 
true for open source software (OSS) and stem from the way in 
which OSS is maintained and how the OSS community 
functions. Separately, we see that the number of raised static 
analysis warnings is strongly correlated with defect density. 
This can be looked at from two possible standpoints: First, it 
may indicate a sloppy developer attitude that manifests itself 
by ignoring the compiler and static analysis tools’ warnings. 
Separately, this can indicate that higher error density in a 
codebase leads to a higher defect density in the resulting 
software – a correlation which seems very likely. Another 
interesting finding is that the average size of a method 
(LOC/NOM) is negatively correlated with defect density in 
our model. This is in line with many earlier studies where 
understandability and thus maintainability was inversely 
correlated with the average method size. 

 
Apart from these interesting findings, we however have to 
mention a number of threats to validity for our study. First and 
foremost, we used a quite small sample set (9 software 
projects). While most papers in software quality literature that 
we are aware of use datasets of similar size, this is more 
problematic in our case, where we use a machine learning 
approach to learn a model for reliability. Such approaches 
typically need hundreds of labelled samples to arrive at a good 
balance between generalization and overfitting. Secondly, we 

considered only a subset of all existing software quality 
metrics that analysis tools can deliver. Adding new metrics 
may offer different insights. Doing this is, conceptually, easy, 
but it requires the availability of easy-to-use and generic 
metric tools that cover a rich palette of metrics, programming 
languages, and platforms – a desiderate not yet met by the 
state-of-the-art in software metric tooling. Finally, while 
generalizing our approach to the other NFRs listed in Sec. IV 
is, conceptually, straightforward, doing this in practice and 
assessing the quality of obtained predictions is necessary to 
further strengthen the practical added-value of our proposal. 
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