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Abstract

We present a part-type segmentation method for articulated voxel-shapes based on curve skeletons. Shapes are

considered to consist of several simpler, intersecting shapes. Our method is based on the junction rule: the obser-

vation that two intersecting shapes generate an additional junction in their joined curve-skeleton near the place

of intersection. For each curve-skeleton point, we construct a piecewise-geodesic loop on the shape surface. Start-

ing from the junctions, we search along the curve skeleton for points whose associated loops make for suitable

part cuts. The segmentations are robust to noise and discretization artifacts, because the curve skeletonization

incorporates a single user-parameter to filter spurious curve-skeleton branches. Furthermore, segment borders

are smooth and minimally twisting by construction. We demonstrate our method on several real-world examples

and compare it to existing part-type segmentation methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems

1. Introduction

Part-type segmentation is the task of decomposing a 3D
shape into its meaningful components, which can be infor-
mally defined as those that one would intuitively perceive
as the distinct, logical parts of the shape. Such segmenta-
tions are most suitable for shapes consisting of clearly ar-
ticulated parts, such as animals, humans, and other natural
shapes. Segmentation applications include shape analysis,
shape matching, medical imaging, collision detection, and
other geometric processing methods employing divide-and-
conquer strategies.

In what identifies the logical parts of a shape, several di-
rections can be taken. One is to consider a shape as the union
of several simpler shapes, or parts. To detect these parts,
some methods use the minima rule [HS97], which says that
when two separate shapes interpenetrate, they do so in a con-
cave contour of discontinuity of their surface tangent-planes.
Methods can put the minima rule to use by placing part cuts

at these curvature minima [LLS∗05] for example, or by clus-
tering surface elements based on curvature [KT03]. Another
category of methods uses the curve skeleton to identify parts.
The curve skeleton of a 3D shape is a 1D connected struc-

ture that is centered within the shape and efficiently captures
the topology and articulation of the shape. It has been ob-
served that the shape part-structure can be inferred from the
curve-skeleton structure, that is, the curve skeleton allows
for component-wise differentiation [CSYB05]. In this work,
we refine this intuition: when two shapes interpenetrate, their
respective curve skeletons join, resulting in a new junction in
the curve skeleton located near the intersection. We call this
the junction rule, in analogy with the minima rule.

In this paper, we present a new method for segmenting
articulated voxel-shapes based on the junction rule. The par-
ticular curve-skeleton definition we use [DS06] associates
with each curve-skeleton point a simple closed curve, i.e.,
a Jordan curve, on the shape surface. Each Jordan curve
divides the surface into two parts and thus is a candidate
part-cut. For each curve-skeleton junction, which signals the
interpenetration of parts, we determine the number of part
cuts that should be generated and their most suitable lo-
cations. We determine the suitability of a part cut using a
new measure, called the the “geodesicness" of the part cut.
This ensures that the part-cuts are smooth, which is a de-
sirable property. The saliency of the parts is guaranteed by
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the curve-skeletonization stage, in which the curve skeleton
is simplified using an intuitive scale-parameter, so that only
significant curve-skeleton parts are retained. This makes our
method robust to boundary noise. Our method is imple-
mented for binary voxel-shapes, in which the shape is sam-
pled on a regular grid, but in principle the same ideas are
applicable to other shape representations (e.g. polyhedral).

The outline of this paper is as follows. In the next sec-
tion we discuss related work. In Section 3 we briefly dis-
cuss previous work that our method uses, namely, the curve-
skeleton definition [DS06] and its computation for voxel-
shapes [RT07]. In Section 4, we introduce the geodesicness

measure and based hereon, we place part-cuts that induce
a segmentation of the shape into its logical parts. Section 5
presents results and a discussion. We evaluate the method ac-
cording to criteria identified in literature and we compare our
method to the relevant state-of-the-art methods. Section 6
concludes the paper.

2. Related Work

Segmentation methods can be classified by the type of out-
put they produce, or by the type of information that they use.
In the first classification, one can distinguish between patch-
and part-type methods [Sha04]. Patch-type methods produce
segments that satisfy certain well-defined geometric proper-
ties, such as flatness, whereas part-type methods try to pro-
duce meaningful components, often using cognition princi-
ples. Our method belongs to the part-type methods, to which
we restrict our discussion.

Among the methods using boundary information, Katz
and Tal [KT03] produce a fuzzy clustering of the surface-
elements based on on geodesic and angular distances. After
clustering, the fuzzy part-cuts are refined. In [KLT05], fea-
ture points are first extracted to improve pose-invariance, and
each segment is made to represent at least one feature point.
Lee et. al. [LLS∗05] employ the minima rule to find par-
tial feature-contours, which are then closed to form loops.
The most salient loops are chosen, and a snake-based ap-
proach moves the loops to more suitable locations, forming
part cuts. It is interesting to note that when closing the par-
tial feature-contours, which were found using the minima
rule, the authors use a “centricity" measure to ensure that
the loops are perpendicular to the curve skeleton, something
that users are found to be interested in.

Methods can also consider the shape’s interior. Mortara
et al. [MPS∗04] partition a shape into generic body and
tubular parts, by sweeping spheres inside its volume. At-
tene et al. [AFS06] propose a segmentation based on fit-
ting primitives, such as cylinders and spheres, inside the
volume. Another way to consider the shape’s interior is by
means of a skeletal structure, such as the curve skeleton.
Our approach belongs to this category. To obtain meaning-
ful part-cuts, this category of methods needs to signal events

Figure 1: The curve skeleton C with rainbow color map en-

coding ρC , junctions j,k,m ∈ Jτ, a regular point p ∈ C, fea-

ture sets F( j) and F(p), and shortest-path sets Γ( j) and

Γ(p).

on the curve skeleton and map these events to the bound-
ary in order to produce part cuts. Li et al. [LWTH01] use a
planar space-sweep along the skeleton and signal both geo-
metric and topological events of the cross sections. Cornea
et al. [CSYB05] uses force-following of boundary parti-
cles inside the volume to compute the curve skeleton, and
project skeleton segments back to the boundary. Reniers
and Telea [RT07] detect curve-skeleton junctions, which
naturally divide the boundary into connected components
using Jordan curves that are associated with each curve-
skeleton point. Lien et at. [LKA05] observe that segmen-
tation and skeletonization share similar properties and pro-
pose a method that does both simultaneously. Another skele-
tal structure is the Reeb graph [HSKK01], produced from
the iso-contours of a suitable mapping function on the sur-
face. In [TVD07], the mapping function is defined as the
curvature-constrained geodesic-distance to the closest fea-
ture points, detected as the extrema of another geodesic-
based function. A subset of the contours is selected based on
their topological and geometric evolution, and are used as
part cuts. A comparative study of five recent part-type meth-
ods can be found in [AKM∗06].

3. Preliminaries

We now briefly discuss the curve-skeleton computation,
which is necessary for a good understanding of the rest of
this paper.

The surface skeleton S of a 3D shape Ω with boundary ∂Ω

is a 2D structure consisting of curved sheets, and is defined
as those points in Ω having at least two boundary points at
minimum distance [PSS∗03]:

S(Ω) =
{

p ∈ Ω
∣

∣ |F(p)| ≥ 2
}

, (1)

where F is the feature transform, which assigns to a point p

the set of boundary points F(p) at minimum distance of p:
the feature points of p. Each sheet-point p ∈ S has exactly

c© 2008 The Author(s)
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two feature points. In limit cases, i.e., at sheet boundaries
or sheet intersection-curves, F(p) has a cardinality of three
or more. In the following, we assume the general case of a
surface-skeleton point having exactly two feature points, for
notation simplicity.

Let ρS : S → R+ be the length of the shortest geodesic
on the boundary between the two feature points F(p). Dey
and Sun [DS06] observe that the function ρS is low near the
periphery of the surface skeleton and increases toward the
center and define the curve skeleton C as the local maximum
ridge of ρS . They use an erosion step to erode ρS until a
1D connected structure remains. In [RVT08] a similar defi-
nition of C is presented that is more suitable for voxel shapes,
and has the additional advantage that it does not require an
erosion step. In this work we deal with voxel shapes, so we
compute curve skeletons using the latter approach.

Let F(p) be the extended feature transform [RVT08], de-
fined as F =

⋃

x,y,z∈{0,1} F(px + x, py + y, pz + z). Let Γ(p)
be the set of shortest paths on the shape boundary between
each two feature voxels in F(p):

Γ(p) =
⋃

a,b∈F(p)

γ(a,b) , (2)

where γ(a,b) is the shortest path between voxels a,b, as
discrete-space equivalent of the shortest geodesic. Shortest
paths are computed as 26-connected weighted voxel-chains
using Dijkstra’s algorithm on the boundary graph. The defi-
nition of the curve skeleton C is then defined as:

p ∈ C ⇔ Γ(p) contains a Jordan curve , (3)

where a Jordan curve is a simple closed curve on the shape
boundary ∂Ω. To detect whether Γ contains a Jordan curve
we slightly dilate Γ on ∂Ω to obtain Γ′. If and only if Γ′

has at least two boundaries, Γ(p) contains a Jordan curve.
For junctions we count n ≥ 3 boundaries, where n indicates
the number C-branches that meet in the junction. For more
details on this curve-skeletonization algorithm see [RT07].

With each curve-skeleton voxel p inside the volume a set
of components on the boundary is associated, as follows.
The Jordan curve theorem states that a Jordan curve divides a
genus 0 surface into exactly two connected components. Let
C : C → P(∂Ω) be the component set associated with each
point p ∈ C, obtained by taking the connected boundary-
components induced by Γ(p). The component sets C can be
used to define another importance measure ρC : C → R+ on
the curve skeleton. Let the components in C be ordered by
their areas, or voxel counts: ∀1≤i<k |Ci| ≤ |Ci+1|. The mea-
sure ρC for a point p is defined as the total area of the com-
ponents excluding the largest-area component:

ρC(p) =
∣

∣∂Ω\Ck(p)
∣

∣ (4)

In this manner, a simplified curve-skeleton Cτ can be com-
puted by discarding all points whose ρC is smaller than a
user-parameter τ. Note that ρC is different from ρS , but sim-
ilar in spirit. In [RVT08] the two measures ρS and ρC are

Figure 2: Schematic overview of the four junction types (a-

d) and their desirable part-cuts (magenta line-segments). An

n-junction (n = {0,1,2,3}) generates n + 1 parts using n

part cuts. Curve skeletons are blue.

combined into a single monotonic measure ρ by taking their
maximum, whose thresholding produces simplified surface-
skeletons that are always connected.

Curve-skeleton junctions are needed in the following
stages of our pipeline, and are detected robustly as follows.
Each boundary b of Γ′(p) bounds a component c ∈ C(p).
Note that some b’s may bound the same component. We dis-
card boundaries that bound components smaller than τ. If
the number of remaining boundaries is at least three, voxel
p is detected as a robust junction. The robust set of junctions
is denoted Jτ. Figure 1 depicts F , C, ρC , Γ, and Jτ for an
example shape.

4. New Method

Section 3 explained how the simplified curve-skeleton Cτ

and its junctions Jτ can be robustly detected, and that with
each point p∈C a shortest-path set Γ(p) on the shape bound-
ary is associated. Using the junction rule, namely that curve-
skeleton junctions indicate the interpenetration of parts, it
is straightforward to use the junctions directly as critical

points, that is, to use their path sets as part cuts that divide
the shape surface into disjoint segments.

In fact, this approach was taken in [RT07]. Although the
resulting segmentations are satisfying for a large amount of
shapes, it delivers non-intuitive results for some other ones
(see e.g. Fig. 3b later in this section). We next explain why
the junctions are suitable for indicating the interpenetration
of parts, but why they should not be used as cut-generating
points. For the sake of discussion, we assume the generic
case of junctions having exactly three emanating branches.
In non-generic cases, junctions may have more branches.
Our algorithm, presented in Section 4.2, can also handle four
or more branches.

First, by using junctions as critical points, three part cuts
per junction are generated, because three branches come to-
gether in a junction. However, on actual shapes we may per-
ceive junctions either indicate the intersection of 4, 3, or
2 parts, or not indicate a part cut at all. Let an n-junction
be a junction for which n part cuts should be generated,
that is, it represents the intersection of n + 1 parts. Figure 2

c© 2008 The Author(s)
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Figure 4: The geodesicness measure computed for a curve-

skeleton point p with feature points a,b and Γ(p) =
{γ1(a,b),γ2(a,b)}. High geodesicness (σ ≈ 1) (a). Medium

geodesicness (σ ≈ 0.5) (b).

schematically shows how one would intuitively place part
cuts for four different shapes. Each of the four shapes gives
rise to a different number of part cuts. We have observed
that 1-junctions (Fig. 2c) occur most frequently in real-world
shapes, whereas 3-junctions (Fig. 2a) are rare. Fig. 2d shows
a 0-junction: it does not represent any part-cut at all. The
junction results from the fact that the curve skeleton extends
into the two corners of the rectangle. Although the shape
could be interpreted as consisting of three interpenetrating
parts, namely as the two corners and the rectangle’s rump,
this is non-intuitive and no part cuts should be generated.
Considering that a continuous deformation exists between
each two of these shapes, it is clear that junction type is in-
herently subjective. For example, if the disc of Fig. 2a be-
comes smaller and smaller, the situation transforms into that
of Fig. 2b. Indeed, part-type shape segmentation can be con-
sidered a subjective task [AKM∗06]. To summarize, to seg-
ment using the junction rule, we should be able to differen-
tiate between the different junction types.

The second issue with using junctions as critical points is
that the path sets of the junctions are ill-suited as part cuts as
they do not tightly split off the parts. Figure 3b illustrates this
using a chamfered box with three attached tubes. The path
set of junction j (Fig. 3a) does not split off the two tubes
accurately: each tube contains a large part of the box. The
desirable segmentation is shown in Fig. 3e.

We address the two issues raised above, as follows. For
each junction j, we search along each branch emanating
from j for the first suitable critical point, where suitability is
determined by our new geodesicness measure, introduced in
Section 4.1. We find at most three candidate critical-points:
the number of branches at j. Next, we select among the
candidate critical-points the final critical-points that split off
valid parts. This is detailed in Section 4.2.

4.1. Geodesicness measure

Recall from Section 3 that the Jordan curve Γ(p) that
is associated with each regular (non-junction) curve-
skeleton point p consists of two shortest geodesics Γ(p) =
{γ1(a,b),γ2(a,b)} between p’s feature points a,b. Because

the piecewise geodesic Jordan curves are used as part cuts,
the borders are smooth for the larger part, a desirable prop-
erty for any segmentation method [AKM∗06]. However, this
property does not need to hold at the two feature points F(p)
where the two geodesics come together under an angle. We
next introduce the geodesicness measure σ : C → [0..1] on
the curve skeleton which measures the degree to which the
total Jordan curve Γ(p) is geodesic.

A geodesic is defined as a curve on a surface whose
geodesic curvature is everywhere vanishing. Thus, our mea-
sure σ should be 1.0 iff the two geodesics meet at an an-
gle of 180 degrees in both feature points. In that the case
the whole Jordan curve is a geodesic. Using differential ge-
ometry, we can project Γ(p) in a small neighborhood of a

onto the tangent plane at a, to determine the angle that the
two geodesics make. However, as we are working in voxel-
space and shapes can be noisy, a relatively large neighbor-
hood must be taken, but then the projection is not accurate.

We take a more robust approach instead. Let c be the mid-
point of one geodesic γ1(a,b), and d of the other γ2(a,b)
(see Figure. 4a). We compute the shortest geodesic γ(c,d). If
γ(c,d) is a subset of Γ, it means that Γ is a shortest geodesic
between c,d, because a shortest geodesic between any two
points is unique. Furthermore, it can be seen that the more
γ(c,d) deviates from Γ, the more Γ deviates from a geodesic
at the feature points. This deviation can be measured by the
surface area spanned by the geodesic triangle acd, or, in
terms of difference in length ‖ · ‖, which we choose because
it is more easily computed:

σ(p ∈ C) =
‖γ(c,d)‖

‖γ(c,a)‖+‖γ(a,d)‖
. (5)

This is a dimensionless measure attaining values between 0
and 1, the latter indicating a geodesic Jordan curve. The case
of junctions, in which Γ consists of multiple Jordan curves, is
handled by computing the minimum σ among Jordan curves.

4.2. Placing Part Cuts

We use the junctions Jτ as computed in Sec. 3 to search
for critical points whose Jordan curves make for accurate
part cuts, based on the geodesicness measure σ as defined in
Sec. 4.1. Higher values of σ indicate a smooth Jordan curve
and thus a good candidate for critical point placement. Fig-
ure 3c depicts σ. Looking at the branches emanating from
the junctions into the tubes, we see that σ is low at the
junction itself and reaches a maximum inside the tubes. We
thus proceed as follows. Starting from a junction j ∈ Jτ, we
search along the C-branches emanating from j for the first
point q which has a sufficiently high value of σ. The search
for q on a branch stops when another junction or the end of
the branch is reached. In practice, σ does not reach the max-
imum of 1.0 inside each protrusion that can be considered
a part, so we tolerate lower values. Extensive experimental
study suggests that placing critical points at σ ≥ 0.8 gives

c© 2008 The Author(s)
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Figure 3: The curve skeleton of an artificial shape consisting of a box and three attached tubes. The curve skeleton has a 2-

junction j, a 1-junction k, and a 0-junction m (a). Undesirable segmentation using junctions (b). Candidate critical-points based

on σ (encoded by color map) (c). Final critical-points after filtering (d). Desirable segmentation using the final critical-points

(e).

Figure 5: Four junction types (a-d). The Jordan curves Γ(qi)
for the candidate critical-points qi are shown as magenta

line-segments. Retained part-cuts shown as thick magenta

lines, non-retained ones are stippled. Shortest-path sets of

the junctions are shown using stippled line-segments Γ( j).

good results. For some branches, the very first (regular) point
of the branch might have high enough σ to be marked a crit-
ical point. For other branches, we might find no such point:
no critical point makes for a suitable part cut.

To summarize, we obtain for each junction j a set of can-
didate critical-points Q j , whose cardinality is at most the
number of branches at j. For branches whose measure σ

stays low until the end we find no critical points, so that |Q j|
is lower than the number of branches. Figure 5 schemati-
cally shows the detected candidate critical-points qi that we
would detect in this manner for the four different junction
types (cf. Fig. 2). We observe that according to intuition, not
all critical points that were found make for valid part-cuts,
and some points should be removed from Q j . In Fig. 5a, all
critical points are valid: no points should be removed from
Q j . In Fig. 5b, point q2 should be removed, in Fig. 5c, points
q2 and q3 should be removed. In Fig. 5d the only candidate
critical-point q1 that was found should be removed.

In characterizing which candidate critical-points do not

make for valid part-cuts, we make the assumption that each
intersection involves one body part, which is the “largest" in-
tersecting part, and several limb parts, which are the smaller
parts. In Fig. 5a for example, there is one disc-shaped body
and three limbs. In Fig. 5c, there is one body and one limb,
for which q1 is the part cut. We thus want to distinguish
the body part from the limb parts by their sizes. We can
express the size of a part in at least two ways: by means
of the part’s surface-area, or by means of it’s circumference
at the point of intersection. The problem with the former is
that it is a non-local property. For example, the limb due to
q2 in Fig. 5a can have smaller or larger surface-area than
the disc-like part depending on what the hidden part of the
shape looks like. A more local property is the circumference
of the limb at the intersection, which can be measured by
ρS , which has already been computed in the curve-skeleton
computation (see Sec. 3). We further note that the junction
is always located inside the body, and never in one of the
limbs. Hence, the idea is to compare the local circumfer-
ence of the limb, given by ρS(qi) of candidate critical-point
qi, with the circumference of the body, given by ρS( j) of
the junction j. If the circumferences are similar enough, that

is, 1.0− |ρS ( j)−ρS (qi)|
ρS ( j)

≥ 0.6, where 0.6 is an empirically
defined threshold, the candidate critical-point should be re-
moved from Q j as it is considered to lie on the body. How-
ever, we should never remove more than two critical points,
as the body should not contain a bifurcation. Indeed, using
this criterion we would remove all three critical points in
Fig. 5b, because all three intersecting parts have a similar cir-
cumference. In case we cannot distinguish between body and
limbs using the local circumference, we apply the global cri-
terion and remove the critical point representing the largest
surface area ρC , which is q2 in case of Fig. 5b.

We restricted our discussion to junctions having three
branches, our approach also works for higher-order junc-
tions: the assumption of multiple limbs intersecting with a
single body is still valid. Fig. 6 shows for two shapes the
curve skeletons C, junctions Jτ, the geodesicness measure σ

encoded as color map on C, the candidate critical-points Q j,
and the part cuts.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



D. Reniers & A. Telea / Part-type Segmentation of Articulated Voxel-Shapes using the Junction Rule

Figure 7: Segmentations of several shapes obtained using our method.

Figure 6: Part cuts (red loops) for the Hand (a) and Noisy

Dino shape (b). Curve skeletons C with rainbow color-map

encoding σ (red=1, blue=0), junctions Jτ (black balls), can-

didate critical-points (colored balls).

5. Results and Discussion

Figure 7 shows several shapes segmented using our ap-
proach, with a minimum coloring scheme applied (smooth
iso-surfaces have been computed from the voxel output
for clearer display). Most segmentations can be colored
using only two colors, which reflects that most junctions
are 1-junctions. As can be seen, our method handles or-
ganic, geometric, and noisy shapes, and shapes with tunnels.
We next evaluate our method using the criteria proposed
in [AKM∗06].

Correctness of part-type segmentation is subjective and
application specific. We thus have to assess the correctness
of our method (and thereby the junction rule) visually. As
can be seen in Figs. 7,8, the segmentations agree with intu-
ition and do not suffer from over-segmentation. Fine struc-
tures such as fingers and toes are captured well, provided the
grid resolution is high enough and the curve skeleton has not
been simplified too much by the user.

The method is multiscale through the use of the user-

parameter τ [RVT08], which controls the simplification of
the curve skeleton. The user-parameter is intuitive as it
thresholds the importance measure ρC which has a geomet-
ric meaning: it assigns to a point the minimum surface-area
induced by the Jordan curve at the point. By further in-
creasing τ high-level abstractions of the shape are obtained.
Figs. 6b,7 show that the noisy Dino is correctly segmented.
If desired, a hierarchical segmentation could be produced by
implementing the scheme proposed in [RT07].

The boundaries between segments are found directly as
the Jordan curves associated with the critical points. The part
cuts are closed by default (unlike e.g. [LLS∗05]), and no re-
finement of part cuts is necessary (unlike e.g. [KT03]), keep-
ing the algorithm straightforward to implement and intuitive
to use. Furthermore, the boundaries are smooth by construc-
tion, as the Jordan curves are piecewise geodesic and critical
points are only placed at points with a high total geodesic-
ness. The saliency of the part cuts is guaranteed because the
curve skeleton contains only significant branches, guaran-
teed by the scale parameter τ.

The segmentations are pose-invariant (see Fig. 8). That
is, the number and location of segments do not change un-
der different poses of the same shape. The reason is that the
structure of the underlying curve skeleton does not change
significantly under deformations of the shape. Even if a junc-
tion is introduced by a deformation, it will not immediately
result in extra part cuts because the geodesicness measure
σ on this new C-branch has a low value. Only if the new
part really protrudes, σ reaches a high enough value. Meth-
ods using surface curvature might have problems here, as the
curvatures change considerably under deformations.

The asymptotic complexity of our method is dominated
by the curve-skeleton computation, which involves comput-
ing the shortest-path (using Dijkstra’s algorithm) between
each two feature voxels in F(p) (Sec. 3) for each object

c© 2008 The Author(s)
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Figure 8: Pose-invariance of the segmentations.

voxel p, which amounts to O(m(n logn)) where m = |Ω| and
n = |∂Ω|. Fortunately, on articulated shapes for which our
method is intended, to compute the shortest path between
two feature voxels only a relatively small part of the bound-
ary needs to be visited. Our method, implemented in C++
takes up to 5 minutes on a Pentium IV 3 GHz for curve-
skeletonization and segmentation, for the shapes shown in
this paper, with resolutions up to 4003 voxels.

Only a single control parameter is needed: the curve-
skeleton simplification threshold τ. The critical-point place-
ment has two internal parameters: one for the minimum
geodesicness of a critical point and the other for distinguish-
ing between body and limbs. We have experimentally de-
termined appropriate settings for these parameters and kept
these fixed for the shapes shown in this paper.

Finally, we discuss the limitations of our approach. By
using the curve skeleton and associated Jordan curves, each
presenting a potential part-cut, we have essentially reduced
the problem of segmentation from 2D to 1D. However, this
also causes some limitations. In case a part is strongly ta-
pered, we may obtain a low σ all along the respective C-
branch, and we might not find a critical point. In practice, if a
part is indeed so strongly tapered that σ does not come above
our fixed threshold for the whole C-branch, then it must be
a small part, and failing to segment it is not a serious prob-
lem. A second limitation is that we have to choose part cuts
from a limited set such that they are smooth, but beyond that
we cannot enforce complete smoothness. In Fig. 8 for exam-
ple, the Horse’s neck is tapered, and so its part-cut is not so
smooth as it could be when placed more freely (using e.g.
a snake-based approach such as in [LLS∗05]). Another lim-
itation occurs when the curve skeletons of two intersecting
shapes do not generate a junction, which is the case when
the two curve skeletons are perfectly aligned. However, the
minima rule suffers from similar problems when two shape
intersect non-transversally. Although our method works on
voxel-shapes, we argue that it can be adapted to polyhedral
shapes as well. Computation of the curve skeleton and asso-

ciated Jordan curves is available for meshes [DS06]. How-
ever, because the implementation is non-trivial and not avail-
able to us, we have chosen for a voxel-based implementa-
tion. The other two steps, computing the geodesicness mea-
sure and placing the part cuts, are also not inherently voxel-
based.

5.1. Comparison

We now briefly compare the results of our method to seven
other state-of-the-art methods by visual inspection of the re-
sults. Figure 9 shows the Homer shape segmented using four
existing methods [KT03, KLT05, MPS∗04, AFS06] (images
from [AKM∗06]) and our own method in the rightmost col-
umn. We notice that our method captures fine features as the
fingers and the nose, whereas the other methods do not. Our
method segments only the largest toe, as the others are not
separated from each other by the outside volume. We fur-
ther observe that our method, like [MPS∗04], does not label
the head as a separate segment. The reason for this is that
the neck does not have a (significantly) smaller radius than
the body. Hence, our method considers the body and head
belonging to the same part. Finally, our segment borders for
the legs are tight and smooth, whereas the other methods can
be seen to have some problems for these areas. We compare
segmentations for the Hand shape with another three state-
of-the-art methods [LLS∗05, LWTH01, RT07] (images from
the respective papers), of which the last two are similar to
our method in that they also use the curve skeleton. We ob-
serve that our method tightly splits off the fingers and thumb,
whereas [LWTH01] and [RT07] do not. In [RT07] each fin-
ger contains a large part of the palm of the hand, caused by
the fact that this method uses the junctions directly as crit-
ical points (Sec. 4). Finally, all other three methods have a
segment border on the palm, whereas our method leaves the
palm intact.

6. Conclusion

We have presented a new method for creating part-type seg-
mentations of articulated shapes using the junction rule.
A user-parameter is incorporated to filter the curve skele-
ton of spurious branches and ensure the saliency of parts.
Each curve-skeleton point has an associated Jordan curve
that presents a candidate part-cut. Suitable part-cuts are se-
lected by measuring their smoothness, computed based on a
geodesic criterion, and considering the body/limb relation-
ships of the intersecting parts. Our method is straightfor-
ward to implement, yields smooth segment boundaries by
construction, and is robust to boundary noise.
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Figure 9: Visual comparison of segmentations for the Homer and Hand shapes.
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