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Abstract

We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape’s simplified

surface-skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point

has a maximally inscribed ball that touches the boundary in at least two contact points. A key observation is that

the boundaries of the simplified fore- and background skeletons map one-to-one to increasingly fuzzy, soft convex,

respectively concave, edges of the shape. Using this property, we build a method for segmentation of 3D shapes

which has several desirable properties. Our method segments both noisy shapes and shapes with soft edges which

vanish over low-curvature regions. Multiscale segmentations can be obtained by varying the simplification level

of the skeleton. We present a voxel-based implementation of our approach and illustrate it on several realistic

examples.

1. Introduction

Shape segmentation is an important pre-processing step in
many applications ranging from shape analysis, computer
vision, compression, and collision detection. The type of
segments produced depend on the target application, so a
wealth of methods exist. One can distinguish between patch-
type and part-type segmentation methods [Sha04]. Patch-

type methods are geometry-oriented, typically using local
shape information such as surface curvature, and produce
segments that are quasi-flat and separated by high-curvature
creases. Part-type methods, on the other hand, are more
semantically-oriented, i.e., they try to find segments that a
human user would intuitively perceive a distinct logical parts
of the shape. Such segments are not necessarily separated by
high-curvature creases.

The skeleton of a 3D shape provides a compact, hierarchi-
cal, description of the parts a shape is made of. In 3D, one
can compute both curve and surface skeletons of a shape.
The curve skeleton and the related Reeb graph are higher-
level abstractions that describe the shape using only 1D
curves. Curve skeletons are typically used in part-type seg-
mentation methods that can handle smooth, organic shapes.
However, they are ill-suited for obtaining patch-type seg-
mentations, since they do not capture the shape’s edges.

For example, the curve skeleton of a box cannot be read-
ily used to detect its six faces. The surface skeleton, or me-
dial surface, is a structure consisting mainly of 2D mani-
folds, and 1D curves for degenerate cylindrical parts. The
surface skeleton is more suitable for patch-type segmenta-
tions, and has additional advantages as compared to non-
skeleton-based segmentations. As far as we know, the sur-
face skeleton has not yet been used for 3D shape segmenta-
tion, probably because of its infamous instability to bound-
ary noise.

In this paper, we propose a patch-type segmentation
method based on a shape’s simplified surface-skeleton.
Since the simplified skeleton encodes the shape’s entire vol-
ume, our method is more robust against boundary noise
than typical surface-curvature-based segmentation methods.
Furthermore, our approach can find weak and disappearing
edges, produce multiscale segmentations, and also captures
the shape’s symmetry in its segmentation. Our method pro-
duces segmentations of voxel shapes, in which the shape is
sampled on a regular grid: a representation often used in the
discrete-geometry and medical-imaging communities. Seg-
mentation of voxel data brings its own difficulties. In con-
trast with mesh representations, the notion of an edge is im-
plicit in the voxel representation. Furthermore, the resolution
of the data is typically low, the data contains discretization
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Figure 1: Overview of our approach. Fore- and background skeletons (a,b), rainbow color-map encodes importance measure.

Simplified fore- and background skeletons (c,d). Gaps in feature points (e,f). Convex edges (g). Concave edges (h). Combined

edges (i). Connected components (j). Final segmentation (k).

artifacts and other noise, and boundary normals are not read-
ily available.

We briefly describe our algorithm. Each point on the 3D
skeleton has two points on the shape’s boundary at minimum
distance, which we call feature points. To simplify the skele-
ton, an importance measure is defined on the skeleton as the
shortest geodesic length between each pair of associated fea-
ture points [PH02, DS06]. This measure is lowest near the
periphery of the skeleton, and increases toward its center.
When simplifying the skeleton by thresholding this impor-
tance measure, feature points near convex shape edges dis-
appear. The skeleton of the shape’s outside volume, or back-
ground, can also be computed. Its simplification removes
feature points near concave shape edges. The key idea is that
these gaps in the feature points form the shape’s edges, and
induce a segmentation of the shape surface. Figure 1 illus-
trates our approach.

Section 2 presents related work. In Section 3, we discuss
preliminaries, including the computation of multiscale skele-
tons [RVT08] which is a key component of our segmentation
approach. In Section 4, we discuss the core of our approach.
Section 5 present results and discussion, Section 6 concludes
this paper.

2. Related Work

We now briefly overview some of the patch-type seg-
mentation methods that relate to our approach. Garland
et al. [GWH01] perform a hierarchical clustering of the
mesh faces to produce a patch-type segmentation consist-
ing of planar segments. Clarenz et al. [CGST04] perform a
fuzzy multiscale segmentation of a 3D shape, based on sur-
face curvature. However, this method often generates noisy
edges in low-curvature regions. Borgefors et al. [BdBS09]

compute local thickness in combination with a multireso-
lution structure to produce a hierarchical segmentation of
3D voxel shapes. Hisada et al. [HBK01] use the skeleton
in combination with denoising and filter techniques to de-
tect salient shape features of polygonal shapes. Mangan and
Whitaker [MW99] partition a surface into patches of similar
curvature using a watershed algorithm that uses curvature as
its height function. Zuckerberger et al. [ZTS02] give an im-
proved watershed method and give numerous segmentation
applications. Provot et al. [PDR08] segment voxel shapes by
detecting discrete planes with variable width.

Edges can be seen as local features, for which various def-
initions and detectors have been proposed in the past, some
of which also use the skeleton definition. The local feature

size [AB98] is defined as the distance from a boundary point
to the skeleton. In contrast, our detector (Sec. 4.2) also in-
corporates global information, by using shortest paths on the
boundary, and as such can distinguish between locally simi-
lar, but globally different boundary configurations.

3. Preliminaries

Let Ω be a 3D shape with closed boundary ∂Ω. Let D : Ω →
R+ be the distance transform, assigning to each point in-
side the shape the minimum distance to the boundary. Let
F : Ω → P(∂Ω), where P is the power set, be the feature
transform [RVT08], assigning to each point inside the shape
the set of boundary points at minimum distance, called the
feature points:

F(p ∈ Ω) =
{

q ∈ ∂Ω
∣

∣ ‖p−q‖ = D(p)
}

. (1)

The skeleton S of Ω can be defined as the locus of centers
of maximally inscribed balls. At each point p on the skele-
ton, a maximally inscribed ball can be placed that touches
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Figure 2: Simplified skeletons Sτ of a noisy box. The color map encodes the importance measure ρ (blue=low, red=high).

Whereas Sτ=10 contains some spurious sheets, Sτ=20 is robust. In Sτ=70, only the center sheet is retained, which can be seen

as a coarse-scale representation of the box.

the boundary in at least two points, the feature points F(p):

S(Ω) =
{

p ∈ Ω
∣

∣ |F(p)| ≥ 2
}

. (2)

This definition can be used both in 2D and 3D. In 3D, S is
also called the medial surface, or surface skeleton, to distin-
guish it from the curve skeleton. The surface skeleton con-
sists of sheets, that intersect in so-called Y-curves. Whereas
sheet points have two feature points, Y-curve points have
three or more feature points which are the union of the
feature-point pairs of the intersecting sheets. In addition, a
surface skeleton can also contain isolated curves in some de-
generate cases, such as a cylinder. Such objects are better
handled by part-type segmentation method, e.g. [RT07]. We
assume for now that the skeleton contains no such degenera-
cies.

3.1. Simplified Skeletons

Following from Eq. 2, skeletons are inherently sensitive to
small boundary perturbations. Sampling or acquisition noise
produces spurious skeleton sheets. To handle this, some
skeletonization methods define an importance measure ρ :
S →R+ indicating the importance for each skeleton point to
the shape representation. Together with a subsequent prun-
ing strategy, this delivers a simplified skeleton.

In [PH02], an importance measure ρ was proposed for 3D
skeletons, as the length of the shortest path on the surface ∂Ω

between the two feature points F(p) for each point p ∈ S.
This measure, which we shall use in our method, smoothly
evolves over skeletal sheets, may contain jumps at Y-curves
(cf. Fig. 2), and has a local maximum ridge that forms a 1D
connected structure on S. This last property has been shown
in [DS06] and was used to formally define a curve skeleton.

We compute both the distance and feature transform us-
ing [Mul92]. Let F(p) be the extended feature transform,
defined as F =

⋃

x,y,z∈{0,1} F(px + x, py + y, pz + z), which
ensures that, unlike the normal feature transform, skeleton
voxels contain at least one feature voxel on each side of
the skeleton. Now, the importance measure ρ : Ω → R+ is
defined on the object voxels as the maximum shortest-path

length between the points in F(p):

ρ(p) = max
a,b∈F(p)

g(a,b) , (3)

where g is the shortest-path length between a,b. Shortest
paths are computed using Dijkstra’s method on the bound-
ary graph, in which voxels are nodes and two nodes are
connected when their voxels share at least one corner. We
use the length estimator of [KS93] instead of using sim-
ply the Euclidean distance between voxel centers. Using ρ,
the definition of the discrete simplified-skeleton Sτ becomes
(cf. Eq. 2):

Sτ(Ω) =
{

p ∈ Ω
∣

∣ ρ(p) ≥ τ
}

. (4)

Empirical study suggests that the threshold τ should be at
least 5 voxel lengths to detect the skeleton Sτ so that it is ro-
bust to discretization artifacts [PH02]. The threshold τ func-
tions as a continuous scale-parameter controlling the simpli-
fication level. Small τ values eliminate less important skele-
ton parts that are due to small-scale surface features or noise.
Larger τ values can be used to retain the most salient parts of
the skeleton. Figure 2 illustrates the use of τ for a noisy box.
Please refer to [RVT08] for more implementation details.

The simplified skeletons are connected because the mea-
sure ρ is monotonic on Sτ except on the local maximum
ridge [DS06]. For completeness, we note that the definition
of ρ (Eq. 3) can be extended to the curve skeleton points in
order to obtain a fully monotonic measure for all skeleton
points [RVT08], but this is outside this paper’s scope.

4. Segmentation Method

We use the simplified skeleton of the shape’s interior Ω

(foreground), denoted Sτ(Ω), to detect convex shape edges,
and the skeleton of the exterior Ω̄ (background), denoted
Sτ(Ω̄), to detect concave edges.

4.1. Background Skeleton

Computation of the background skeleton Sτ(Ω̄) is slightly
different from the computation of Sτ(Ω), as follows. The
background volume Ω̄ is enclosed in a bounding box around
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Figure 4: Non-simplified skeleton (a). Simplified skeleton at scale τn (b). Simplified skeleton at scale τn + τe (c). Large gap due

to round part (d). Thick lines are feature collections V Ω.

Figure 3: Background skeleton Sτ(Ω̄) of exterior volume

bounded by ∂Ω̄, points p,q ∈ Sτ(Ω̄), and feature points

F(p),F(q).

the entire shape. The background volume needs to be
bounded, otherwise, the maximally inscribed balls would be
of infinite size. The voxels on the surface of this bounding
box form an additional boundary ∂Ω̄ which is disjoint from
the object boundary ∂Ω. Background voxels that have fea-
ture voxels only on ∂Ω̄ are discarded, voxels that have fea-
ture voxels only on ∂Ω are assigned the same importance as
foreground voxels would. To voxels that have feature voxels
on both ∂Ω and ∂Ω̄ we assign an infinite importance (ρ=∞),
so that they will never be simplified regardless the setting
of τ. This is the desired behavior: the background skeleton
should only be simplified for concave edges, not for any
other parts. Note that in Figure 1d, the background skele-
ton is not shown for the sake of clarity. A cross-section of
the background skeleton of that object is shown in Figure 3.
Point p is a point having both feature points on ∂Ω, whereas
point q has one feature point on ∂Ω and one on ∂Ω̄. Point q

will never be simplified (ρ(q) = ∞), regardless the setting
of τ.

4.2. Edge Detection

Let V Ω be the set of feature points associated with the sim-
plified skeleton, called the foreground feature collection:

V
Ω(Sτ) =

⋃

p∈Sτ(Ω)

F(p). (5)

The feature collection of the background skeleton is denoted

V Ω̄. The key idea of our approach is that, by increasing the
threshold τ on the importance measure ρ, gaps will appear
in V on and near shape edges (Fig. 1e,f), which we can de-
tect. However, the parameter τ is also used to prune spurious
skeleton parts that are due to boundary noise. Setting τ to the
noise level τn opens V on the edges, but also on noisy parts.
Therefore, we further increase τ to τn + τe: V is opened fur-
ther on edges, but not on boundary noise. This is illustrated
in Fig. 4 in the 2D case (for the sake of clarity). In Fig. 4a,
the non-simplified skeleton S0 of a box with a noise bump is
shown. The feature collection (thick lines) covers the whole
boundary. When τ is set to the noise level τn (Fig. 4b), the
openings in V Ω on the bump and near the non-noisy convex
corners have the same size, so that we cannot differentiate
between the two situations. By further increasing τ to τn +τe

(Fig. 4c), V Ω is further opened on the corners, but not on the
bump.

Hence, we can detect convex edges by computing for each
boundary point q ∈ ∂Ω the geodesic distance to V Ω(Sτn+τe):
points at a distance of at least 1

2 τn are detected as edge
points. The term τe controls the minimum detected edge
width. In a voxel-based implementation, we verified that set-
ting τe ≥ 4 gives good results. The convex edges EΩ are
given by:

E
Ω = {q ∈ ∂Ω | min

v∈V Ω
g(q,v) >

1
2

τn}, (6)

where g is again the geodesic distance on ∂Ω. Concave edges

EΩ̄ are detected by replacing V Ω by V Ω̄ in Eq. 6. All in

all, the combined edges E = EΩ ∪EΩ̄ (Fig. 1i) divide the
boundary into a set of connected components C (Fig. 1j).

The edge width parameter τe controls the minimum width
of the detected edges, but not the maximum. In case of round
parts of the shape, e.g. as shown in Fig. 4d, the openings in
V and thus the edges might become thicker than τe. Both
thick and thin edges are handled by the edge erosion step,
as detailed in the next section. Note that in the continuous
case, there would not be a gap in the feature collection at all
on the curved part, because the right-most skeleton point has
the whole curve as feature points. However, since we keep
for each skeleton point only the two feature points that are
farthest apart, we do not have this problem.

c© 2008 The Author(s)
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Figure 5: Normal computation

4.3. Normal-sensitive edge erosion

The set of connected components C are separated from each
other by the borders in E of at least width τe. In order to pro-
duce thin segment borders, we erode the edge voxels in E,
thereby dilating the components in C. Instead of a geodesic-
distance-ordered erosion, we do a normal-sensitive erosion

of the edges. For this, we need to compute a normal on every
boundary point first.

It is well known that the feature vectors, which point from
a skeleton point p ∈ S to its feature points q ∈ F(p) are nor-
mal to the boundary ∂Ω [PSS∗03]. Hence, we use q−p

‖q−p‖

as our normals. This is shown in Figure 5 in 2D for illus-
trative purposes. By using our robust simplified skeleton Sτ,
which does not contain any spurious parts due to noise, the
resulting normals are also robust to noise. Normals may be
ambiguous at a few boundary points in the case of skeleton
ligatures, e.g. point s in Fig. 5. Multiple skeleton points have
point s as feature points. In such cases, we use the normal of
that skeleton point which has the largest angle between its
two feature vectors.

However, as explained already, the feature collection of
the simplified surface-skeleton does not completely cover
the shape’s surface, and hence the normals are not available
everywhere. For the other boundary point r, we get the near-
est known point q and get its associated skeleton point p. The
normal of r is then the feature vector at p whose dot product
with r− p is maximal, which is q1−p

‖q1−p‖
in case of Fig. 5. The

erosion of the edges is then performed in the order of most
similar normals, that is, each voxel e on the edge is assigned
to the component of voxel p for which the the cumulative
normal-difference along the boundary path between p and e

is minimal.

4.4. Handling corners

Although Eq. 6 is well-suited to detect the shape’s edges,
problems occur at corners, where edges of different strength
come together. The reason is that for the same setting of τ,
weak edges have larger inscribed balls than strong edges (see
Fig. 6). At corners where a strong and weak edge come to-
gether, only the smallest ball fits inside the shape. Hence,
the feature collection will contain feature points on opposite
sides of the strong edge, making the weak edge undetected
near the corner.

Figure 7 illustrates this for the two stacked boxes from

Figure 6: Cross-section of a sharp (left) and weak edge

(right). Inscribed ball centered at a point p has feature

points pa and pb and radius rp. Feature points pa, pb are

at geodesic distance τ.

Figure 7: Handling corners. The detected edges E (a). Con-

nected components have thin connections (b). Splitting com-

ponents (c). Final segmentation after edge erosion (d).

Fig. 1, but now skewed. Fig. 7a shows the set of detected
edge voxels E, which has disconnections near some of
the corners. The resulting segmentation in Fig. 7b shows
thin connections between components. A straightforward
solution is to dilate the edges E so that these connec-
tions between components disappear. The edge erosion step
(Sec. 4.3) will then remove the dilated edges. Let Hε be the
set of points at a geodesic distance of at least ε of the de-
tected edge voxels E, so that H0 = ∂Ω\E. For high enough
ε there will be no thin connections left in the connected com-
ponent of Hε. However, for high values of ε some of the
smaller connected components in Hε may be completely re-
moved, or some of the components in H0 may inadvertently
be split into multiple components. We proceed as follows.
Starting with ε = 0, we iteratively increase ε with small
increments, and consider the connected components in Hε.
We check whether a component c in a level Hi is split into
multiple components d,e in level H j (i < j). In that case,
we let component c split only if the resulting components

c© 2008 The Author(s)
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Figure 9: The detected edges (a,c) and segmentation (b,d)

of a smooth H-shape and smooth X-shape respectively.

d,e are not too small and have a different orientation (using
the normal as computed in Sec. 4.3). The first constraint is
to prevent small components from completely disappearing
in the final segmentation. The second is to prevent compo-
nents with thin parts from being split up into multiple seg-
ments. Fig. 7c shows the result after splitting of components,
whereas Fig. 7d shows the final segmentation after edge ero-
sion. Note that the presented solution for handling corners is
not necessarily the only one, but gives satisfactory results in
practice.

5. Results and Discussion

We have implemented our algorithm in C++ and ran it on
an Intel Core 2 Extreme 3 GHz (using 1 CPU), with 2 GB
of RAM. The input shapes have resolutions ranging up to
3003 voxels. Figure 8 shows the resulting segmentations for
several shapes. Most segments are placed as expected and
no over-segmentations are produced. In the Plane shape each
wing is split into an upper and lower part. On the tips of the
wing no segments are placed because the resolution in the
tips is too limited for the skeleton to reach into. We further
observe that sharp and straight borders are produced for soft
edges, such as in the Gear and Bird shapes.

Our segmentation approach has several desirable proper-
ties, as follows. First, we can detect very soft and vanishing
edges, because we detect edges as gaps in the feature col-
lection. These gaps arise when we threshold the skeleton’s
importance measure ρ, which represents geodesic distance
between feature points. For both weak and strong edges, set-
ting a threshold of τ ensures gaps of at least width τ, regard-
less of the edge strength. Figure 9 shows the detected edges
E and the resulting segmentations of a smooth H-shape con-
sisting of ellipsoids and a smooth X-shape consisting of two

Figure 10: Segmentation of two noisy shapes. S0(Ω) (a),

Sτ=15(Ω) (b). Resulting segmentation (c). Segmentation of

noisy Sea-mine (d).

bent boxes with vanishing edges. We observe no spurious
segments for both cases. For the H-shape, each ellipsoid is
split in two. The vanishing edges of the X-shape are detected
well, and sharp, straight, segment borders are generated for
them by the edge erosion step.

Second, our method is capable of handling shapes with
boundary noise, because it uses the simplified surface-
skeleton. We assume the noise to be uniform, so that the
scale parameter τ can be set to such a value that the skele-
ton does not contain any spurious parts due to noise. This
parameter is intuitive as it is based on geodesic distance
on the boundary: all feature points that are within a dis-
tance of at most τ to their associated feature points are re-
moved. Figure 10c,d shows the segmentation of the noisy
Tap Threads and Sea-mine shapes respectively. For the Tap
Threads shape, both the non-simplified (Fig. 10a) skeleton,
and the simplified skeleton (Fig. 10b) that is used in the
segmentation are shown. This also shows that we can han-
dle shapes with holes. These noisy shapes would be difficult
to handle using traditional curvature-based segmentation ap-
proaches. Nevertheless, we should state that for very noisy
objects the feature collections become too sparse, potentially
resulting in over-segmentation.

Third, multiscale segmentations can be created by in-
creasing the scale parameter τ beyond the noise level. In
Figure 11 the “Sea-mine" object, consisting of a polyhedron
with attached boxes, is simplified at three different simplifi-
cation levels (τ=12,25,50). Fore- and background skeletons
are shown in the left column (a rainbow color-map encodes
the importance measure). The resulting segmentations are
shown in the right column. At level τ=12, all patches of the
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Figure 8: Segmentations of several shapes. The detected edges are shown for the Turbine and Fandisk shapes.

Figure 11: Multiscale segmentations of the Sea-mine shape.

Fore-and background skeletons (a). Corresponding increas-

ingly coarse segmentations (b).

Sea-mine are identified. At τ=25, only the foreground skele-
ton center sheets remain inside each box, producing two seg-
ments for each attached box. As we can see here, a property
of our approach is that the borders between coarse segments
not necessarily lie on curvature creases of the surface.

Table 1 show some indicative running times. Skeletoniza-

Table 1: Timing measurements in seconds for foreground

skeleton (fg S), background skeleton (bg S), and segmen-

tation time. Peak memory usage in megabytes.

shape dimension fg S bg S segm mem
Fandisk 295x177x276 187 233 30 1080
Sea-mine 203x204x176 21 115 29 640
X-shape 119x174x296 35 101 16 450

tion takes the most time due to the large amount of shortest-
path computations involved. Computing the background
skeleton takes the longest, as the amount of background vox-
els is typically much larger than the amount of foreground
voxels. The time needed for detecting the edges and per-
forming the segmentation is comparatively small. Currently,
the memory consumption is higher than necessary, because
we store all intermediate results for debugging purposes.
Because the skeleton can be computed in parallel for each
voxel, only the voxel shape, its feature transform, and the
feature collection need to be kept in memory, reducing the
memory consumption up to an estimated 10 times.

Currently, a limitation of our method is it works on voxel
shapes. However, we believe an adaptation to polyhedral
shapes is feasible. In [DS06], the importance measure that
we use is computed for polyhedrons. The feature collec-
tion and their geodesics distances can also be computed on
meshes. Another limitation is that patches should be com-
pletely bordered by convex and/or concave creases in order
to be identified as segments, so our method is more suitable
for geometric than for organic shapes, for which a part-type
segmentation would be better choice. Finally, for parts of the
object that are thin, we might not detect weak edges. As in-
dicated in Sec. 4.4, inscribed balls for weak edges require
larger radii than for strong edges. Unfortunately, thin parts
of the object do not allow inscribed balls with a high radius,
and thus we might not detect edges in such cases.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



D. Reniers & A. Telea / Patch-type Segmentation of Voxel Shapes using Simplified Surface Skeletons

Figure 12: Results of HFP (cf. Fig. 9b and Fig. 10c).

5.1. Comparison

We compare results of our method with those of
“HFP", a state-of-the-art segmentation method of Attene et
al. [AFS06] for which the software is available on the inter-
net. HFP clusters faces hierarchically based on fitting plane,
sphere, and cylinder primitives. A binary tree of clusters is
built in 10 seconds, after which the desired number of seg-
ments can be selected by the user. For each shape, we se-
lected the amount of clusters in HFP such that it is equal
to the amount of segments our method has produced. In
our method the amount of segments cannot be controlled
directly, but automatically follows from the chosen skele-
ton simplification level. For shapes which only have strong
creases, HFP delivers equivalent results. Figure 12 shows
HFP’s clustering for the H-shape, which has soft edges, and
the Tap Threads, which has boundary noise. For the H-shape,
our method splits each of the ellipsoids into two symmetrical
halves corresponding to the skeleton sheet’s top and bottom
sides (Fig. 9b). HFP’s clusters on the other hand do not re-
flect the symmetry of the shape at all. For the Tap Threads,
HFP produces some spurious segments due to the boundary
noise. Our method does not suffer from the noise (Fig. 10c)
as the simplified skeleton is unaffected by it. These examples
indicates that using skeletal information can be beneficial in
shape segmentation.

6. Conclusion

We presented a new edge-detection and patch-type segmen-
tation method for voxel shapes. We use the simplified skele-
ton for detecting the edges, instead of using curvature infor-
mation explicitly, which makes our method in principle more
robust for voxelized and noisy shapes. The user sets a single
user-parameter to specify the amount of noise. This parame-
ter is intuitive, as it specifies geodesic length, and can also be
used to create multiscale segmentations. Finally, sharp seg-
ment borders are generated for soft and vanishing edges.
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