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Abstract
We propose USTNet, a novel deep learning approach designed for learning shape-to-shape translation from unpaired domains
in an unsupervised manner. The core of our approach lies in disentangled representation learning that factors out the discrim-
inative features of 3D shapes into content and style codes. Given input shapes from multiple domains, USTNet disentangles
their representation into style codes that contain distinctive traits across domains and content codes that contain domain-
invariant traits. By fusing the style and content codes of the target and source shapes, our method enables us to synthesize new
shapes that resemble the target style and retain the content features of source shapes. Based on the shared style space, our
method facilitates shape interpolation by manipulating the style attributes from different domains. Furthermore, by extending
the basic building blocks of our network from two-class to multi-class classification, we adapt USTNet to tackle multi-domain
shape-to-shape translation. Experimental results show that our approach can generate realistic and natural translated shapes
and that our method leads to improved quantitative evaluation metric results compared to 3DSNet. Codes are available at
https://Haoran226.github.io/USTNet.

CCS Concepts
• Computing methodologies → Point-based models; Artificial intelligence;

1. Introduction

3D modeling [CRW∗20] is a central problem in the computer
graphics community. The demand for large varieties of 3D mod-
els is growing due to the popularity of gaming, AR/VR, 3D
films, and the metaverse. While traditional methods to address this
task relies on modeling tools and domain experts, recent tech-
niques work purely data-driven by using deep learning technolo-
gies [XKHK17], enabling them to create diverse sets of 3D mod-
els without manual intervention. A well-known example is content
reuse [XKHK17, GLL∗22], which reuses shapes and shape parts
from model collections by mining their semantic structure infor-
mation. While such topics have been extensively explored in the
past years, it is challenging to identify and transfer the style ele-
ment for the modeling task, which plays a key role in conveying
high-level and abstract notions [HLvK∗17]. Following this, and
also related developments in stylized image processing [JYF∗20],
the style has gained increasing interest in the 3D modeling world in
recent years [YGS∗21], including the task of shape-to-shape trans-
lation [YCH∗19, SGST20].

Following the idea of image-to-image translation [ZPIE17],

† Corresponding author: wuzizhao@hdu.edu.cn

shape-to-shape translation aims to translate a shape from a source
domain to a target domain; here, domain refers to a collection of
shapes that share a common trait that is distinctive to other do-
mains, e.g., for the armchair and straight chair domains, the trait is
the presence of arm rests. We define the common trait as style and
the rest of the contained information as content. The challenge in
this task is to distinguish style elements and transfer them across
domains, particularly in an unsupervised and unpaired setting. Fig-
ure 1 illustrates this process: If the source domain consists of arm-
chairs (chairs having arm rests), and the target domain consists of
straight chairs (with no arm rests), one would like to generate new
shapes that have the particular traits of the target, combined with
the domain-invariant information of the source domain (pose and
structure of armchairs, including arm rests).

Several works have aimed to address the above goal. Yin et al.
proposed LOGAN [YCH∗19], a general shape-to-shape translation
framework that trains a translator to map a source latent code into
a target latent code and achieves high-quality cross-domain shape
transforms. Yet, the proposed translator can only generate a sin-
gle translated result with one input shape. To address this issue,
3DSNet [SGST20] proposed a multi-modal shape-to-shape transla-
tion framework that aims to disentangle, i.e., separate, content and
style information. In this approach, the content space is domain-
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Figure 1: Shape interpolation results produced by our method between an armchair and a straight chair model. The results are generated by
uniformly interpolating in the style space between the source and target domains while keeping the content codes constant.

invariant, and the style spaces of different domains are indepen-
dent. While 3DSNet showed impressive results, the assumption
of independent style spaces across domains makes its application
difficult for e.g., style interpolation, and multi-domain translation.
Also, considering that style information is separated by a domain
discriminator, we argue that this strategy cannot guarantee the faith-
ful disentanglement of style from content due to the discriminator,
which tries to find out all different traits between two domains (see
Fig. 3). As an alternative, we investigate a translation approach that
only changes the critical traits, e.g., arm rests for armchairs.

In this paper, we propose a novel 3D shape-to-shape translation
method, called USTNet, that uses a disentangled representation to
generate variations of shapes. In contrast to 3DSNet’s usage of in-
dependent style spaces, our method learns a shared style space and
a shared content space across domains, yielding a full disentangled
representation for the input shapes. While learning disentangled
representations is difficult, especially in an unsupervised scenario,
once these are obtained, they enable one to perform complex and
highly useful operations on the data [BCV13]. In our context, learn-
ing to disentangle the style and content of shapes from unpaired do-
mains enables us to perform flexible manipulations of styles, e.g.,
style transfer, and style interpolation.

Our method uses a deep learning network which contains a re-
construction stage that generates the disentangled representations,
and a translation stage which generates the translated results; see
Fig. 2. Given a pair of shapes from unpaired domains, our network
first encodes input shapes x into content codes zx

c and style codes zx
s

based on a content encoder Ec and a style encoder Es. These codes
are next merged into zx by a fusion block F , whose output is used by
a generator block G to create the translated shapes. We use differ-
ent loss functions to control disentanglement. To constrain content
features to capture domain-invariant information, we use a content
adversarial loss [LTH∗18]. To encourage the representations of the
translated shape to be consistent with the style of the target shape
and also with the content of the source shape, we design a latent
consistency loss.

We also extend the above model to address multi-domain shape-
to-shape translation. For this, we propose a refined network called

USTNet-M, which adapts the building blocks of USTNet from
dual-class to multi-class classification.

We show the effectiveness of our proposed method by comparing
its results with 3DSNet on various shapes from the ShapeNet and
SMAL databases.

Summarizing, the contributions of our method are as follows:

• we present USTNet, a novel unpaired shape-to-shape translation
network with disentangled representations;

• we introduce a content adversarial loss and a latent regression
loss into the shape translation realm for latent space disentangle-
ment;

• we propose USTNet-M, the first shape-to-shape translation net-
work for multi-domain translation, which extends USTNet with-
out any additional blocks;

• we show how our network achieves promising performance and
generalizes to style manipulation.

The rest of the paper is structured as follows. Section 2 reviews
related work. Section 3 details our model. Section 4 presents and
evaluates our results. Finally, Section 5 concludes the paper and
outlines directions for future work.

2. Related Work

We now describe relevant work related to shape-to-shape transla-
tion (Sec. 2.1), disentangled representation (Sec. 2.2), and image-
to-image translation (Sec. 2.3).

2.1. 3D Shape Translation

Recently, deep learning based 3D shape generation has gained con-
siderable attention, given its ability to generate diverse and realistic
3D shapes in a purely data-driven way. To date, flow-based and
GAN-based methods are critical approaches for this task. We dis-
cuss both of these approaches next, followed by additional related
work on 3D shape translation.

Flow-based models. These methods typically model 3D shapes
by considering the distribution of point samplings. Point-
Flow [YHH∗19] introduced continuous normalizing flows to model
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Figure 2: Overview of our method. (a) Our network contains a content encoder Ec, a style encoder Es, a fusion network F , and a generator
G. Blue arrows show the reconstruction stage. Green dashed arrows show the translation stage. During reconstruction, the network encodes
the same shape using content and style encoders. During translation, the source shape (straight chair) is encoded by Ec; the target shape
(armchair) is embedded by Es, and G generates a translated armchair which has the straight chair structure. (b) The fusion network is an
affine transformation process for a content code. A style code is equally divided into two subcodes and mapped to a bias vector and a scale
vector, respectively.

a transformation of a prior distribution, leading to expressive mod-
eling of shapes. PointGrow [SWL∗20] uses an auto-regressive
model to estimate the conditional distribution of the point samples.
More recently, Luo et al. [LH21] leveraged reverse diffusion prob-
abilistic models to estimate the distribution of points, enabling the
transformation of a noise distribution to the distribution of the de-
sired shape. Zhou et al. [ZDW21] proposed Point-Voxel Diffusion
(PVD) for unconditional shape generation and conditional shape
completion, combining the merits of denoising diffusion models
with the point-voxel representation of 3D shapes.

GAN-based models. These approaches explore adversarial learn-
ing for shape generation with the help of a discriminator. Li et
al. [LZZ∗19] proposed PC-GAN, a GAN variant that learns to gen-
erate point clouds by using ideas from hierarchical Bayesian mod-
eling and implicit generative models. Achlioptas et al. [ADMG18]
introduced two generators for 3D shape creation: an r-GAN that
operates in the raw space and an l-GAN that operates in the
latent space of a pretrained autoencoder. Related methods that
have been used for shape generation include spectral-domain
GANs [RKBG20], tree-GAN [SPK19], progressive deconvolu-
tion networks [HXX∗20], conditional generative adversarial net-
works [AB20], and SP-GAN [LLHF21].

Shape-to-Shape Translation. Inspired by the progress of image-
to-image translation methods, researchers have exploited 3D shape-
to-shape translation for shape generation. Yin et al. [YHCZ18]
pioneered the idea by developing a bidirectional point displace-
ment network that learns geometric transformations between point
sets from two domains. Yin et al. proposed LOGAN [YCH∗19],
a general-purpose deep neural network that learns shape-to-shape
translation from unpaired inputs. LOGAN features an overcom-
pleted autoencoder to explicitly assign features at different shape
scales to different portions of the latent codes and a translator net-
work to distinguish and translate the latent vector of the source
shape to the target domain. UNIST [CMS∗21] introduced a new au-
toencoder structure based on neural implicit representations, which
can generate higher-quality and more natural shapes than LOGAN
while reusing the latter method’s translator. Such methods, how-

ever, learn a deterministic mapping between domains, which means
they can only generate a single translated result from a given input.
DecorGAN [CKF∗21] proposes a voxel-based method to disentan-
gle shapes into overall structure and detail code. Limited by the
explicit definition of content information, DecorGAN is not only
difficult to edit content information but also unable to generate un-
seen patterns.

3DSNet [SGST20] proposes a multi-modal shape-to-shape
translation model which can generate diverse translated results by
disentangling content and style representations. The disentangled
representations are embedded by a shared content encoder and two
domain-specific style encoders. However, several problems exist
here. 1) Sharing the same content encoder does not guarantee that
the same content representations capture the same information for
both domains [LTH∗18]. 2) The results of 3DSNet show that the
network cannot correctly distinguish content and style information
(see the examples in Fig. 3). 3) The architectures of such methods
limit the possibility of exploring the relationships between differ-
ent style domains. For instance, extending these methods to multi-
domain translation requires designing additional blocks because the
translator in LOGAN and UNIST is specific for a given ordered
pair, e.g., armchair → straight chair, and the style encoders and
decoder in 3DSNet are domain-specific.

Our USTNet offers several improvements to address the above
limitations. First, we introduce content adversarial loss [LTH∗18]
to help our disentanglement structure learn useful representations.
The shapes generated by our model show better disentanglement
than in previous methods. Secondly, the common style encoder in
our USTNet is used for each domain, so our network can explore re-
lationships among multiple domains. Finally, our architecture with
a common encoder and generator can be easily extended to a multi-
domain translation network without requiring additional blocks.

2.2. Disentangled Representation

Disentangled representation learning aims to model the factors of
data variations, thereby solving subsequent challenging real-world
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Figure 3: Comparison of translation results by USTNet (ours) and 3DSNet on an armchair ↔ straight chair shape translation example. Left:
straight chair → armchair. Right: armchair → straight chair.

tasks, such as classification and style editing [BCV13, LBL∗19].
Many approaches have been proposed to force the emergence of
disentanglement into learned representations with labeled data.
Gatys et al. [GEB16] pioneered learning an image representation to
separate content and style. Liu et al. [LWS∗18] trained an autoen-
coder model supervised by ground truth labels to learn a content-
invariant representation.

Learning various disentangled representations based on
GANs [CDH∗16, LTFO20] and Variational Autoencoders
(VAEs) [HMP∗17, KM18, KSB18] from unlabeled data has gained
increasing popularity. To create disentanglement representa-
tions, the InfoGAN [CDH∗16] method maximizes the mutual
information between latent variables and data variation. The
β-VAE [HMP∗17] model enforces greater disentanglement by
reducing the influence of the reconstruction loss.

However, newer studies [LBL∗19] showed that most such un-
supervised disentangled methods only work for simple datasets
and can have trouble disentangling more complex information.
[LBL∗19] also suggests that either supervision or inductive biases
should be added to a disentanglement method to achieve mean-
ingful representations. Inspired by this, we propose an inductive
bias that represents the distributions of content representation in
domains that share semantic information (i.e., are similar) to en-
sure that codes are useful for style and content representations.

2.3. Unpaired Image-to-Image Translation

In recent years, many notable supervised/paired and unsu-
pervised/unpaired cross-domain image translation works have
emerged, which inspired developments in shape-to-shape transla-
tion. One of the most representative works of supervised image-

to-image translation is Pix2Pix [IZZE17], which uses a condi-
tional GAN with a reconstruction loss. Additionally, many unsu-
pervised methods for image-to-image translation have been pro-
posed [ZPIE17, YZTG17, LBK17].

A significant limitation of such image translation methods is that
the learned mapping between two domains is deterministic, thereby
lacking diversity in the translated outputs. To tackle this, some dis-
entanglement methods [LTH∗18, HLBK18] proposed to divide the
latent space into content and style spaces so that the framework can
generate diverse outputs by sampling the style distribution.

However, the above methods can learn relations between only
two different domains at a time. To handle multiple domains, these
methods have to append additional domain-specific blocks and sep-
arately train for each pair of domains. To alleviate this, several
frameworks have been proposed to learn relations among multi-
ple domains using a single model. StarGAN [CCK∗18] uses a sin-
gle generator and a discriminator to train from images of multiple
domains, but it learns a deterministic mapping between each pair
of domains. DRIT++ [LTM∗20] introduces one-hot domain codes
to each block of its network to perform a multi-domain transla-
tion with diverse translated image outputs. Although all blocks in
DRIT++ are shared among all domains, the method can capture
the relation among domains up to inherent limitations given by its
over-reliance on the domain code. In comparison, our multi-domain
translation structure embeds the style feature into a shared space
which can be next explored across all domains and only uses the
domain labels in the training phase.

3. USTNet Method Description

We now detail our USTNet method (depicted in Fig. 2) in terms
of its architecture (Sec. 3.1), the two core loss functions it uses
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Figure 4: Comparison of reconstructed and translated chairs by
3DSNet, USTNet, and USTNet without LKL

z , conditioned on the
same input armchair shape. 3DSNet generates the worst recon-
structed output since the translation process it uses lacks content
features such as the height and shape of the chair surface. In con-
trast, USTNet and USTNet without LKL

z generate similar recon-
structed shapes, but USTNet without LKL

z cannot capture structure
information, e.g., the inclination angle of the chair’s back.

(Secs. 3.2 and 3.3), its fusion network component (Sec. 3.4), and
also discuss the reconstruction loss and our full objective functions
(Sec. 3.5). Finally, we present USTNet-M that extends USTNet to
multi-domain translation (Sec. 3.6).

3.1. Method Overview

The core goal of our method is to learn a mapping between two
shape domains X1 and X2 containing the same semantic informa-
tion without using paired training data. Our network contains sev-
eral components (see Fig. 2): a style encoder Es, a content encoder
Ec, an adaptive fusion network F , a generator G, and a content dis-
criminator D. Given two input shapes xi ∈ Xi, the style and content
encoders Es and Ec map the shape into the style and content spaces
as zxi

s and zxi
c , respectively. The fusion network F synthesizes a la-

tent code zxi capturing both the style and content representations.
The generator G maps this vector into point cloud space, i.e., cre-
ates a 3D point cloud model of the generated shape. Finally, the
content discriminator D aims to distinguish the domain member-
ship of content representations.

Our network contains two training stages (see again Fig. 2): The
reconstruction stage (blue arrows in the figure) yields disentangled
representations; the translation stage (green arrows) achieves shape
translation. In the reconstruction stage, each input shape is encoded
into a style code and a content code. The fusion network F and
generator G create a reconstructed shape from these codes. In the
translation stage, the generated shape is conditioned on a style code
from the target domain and a content code from the source domain.
These two stages are used alternatively during the training phase.
In the inference phase, only the encoders Es and Ec, the fusion net-
work F , and the generator G are used to produce translated shapes
x1→2 and x2→1 for the input shapes x1 and x2. Our network enables
bi-directional shape-to-shape translation of two input shapes with a
single forward translation.

3.2. Content Adversarial Loss

To obtain the disentangled style and content representations by the
two encoders Ec and Es (which have the same structure up to the
output layers), we use a content adversarial loss to provide an addi-
tional constrain for the content representation, similar to [LTH∗18],
but now applied to the 3D shape domain rather than the 2D image
domain. Specifically, we impose a content discriminator D, which
aims to distinguish the domain membership of content represen-
tations encoded by Ec. The content encoder Ec learns to produce
indistinguishable content representations on the domain member-
ship for the content discriminator D. The content encoder Ec en-
codes the common information between different domains, while
the style encoder Es captures the domain-specific traits of shapes.
If we train the given architecture without the content adversarial
loss, the content encoder has no guidance for distinguishing con-
tent and style information, so the two encoders will produce similar
latent codes which cannot be used in the shape translation process.
Specifically, we formulate the content adversarial loss for D as:

LD
c = Ex1∈X1

(
log
(
1−D(Ec(x1))

))
+Ex2∈X2

(
log
(
D(Ec(x2))

))
,

and the content adversarial loss for the auto-encoder module as:

LAE
c =

Ex1∈X1

(1
2

log(1−D(Ec(x1)))+
1
2

log(D(Ec(x1)))
)

+Ex2∈X2

(1
2

log(1−D(Ec(x2)))+
1
2

log(D(Ec(x2)))
)

3.3. Latent Consistency Loss

In shape-to-shape translation, ensuring that the translated shape ex-
hibits content features of the source shape and style features of
the target shape is crucial. Prior cross-domain translation meth-
ods [LTH∗18, HLBK18, ZPIE17, SGST20] impose a cross-cycle
consistency loss for images or shapes to constrain the translated
results. Specifically, such models use translated results as inputs
to perform the second translation to generate cross-cycle recon-
struction results of the original inputs, and use the cross-cycle
consistency loss to enforce this constraint. These methods include
domain-specific encoders and/or decoders, making the embedding
of shapes ambiguous for different domains, thus requiring indirect
constraints to control the translation results.

In contrast to the above, our network shares each block among
domains. Hence, we can constrain the style and content codes di-
rectly between input and translated shapes to help our network to
generate shapes containing the target style. Note that, in contrast
to this, indirect constraints at image or point cloud levels are am-
biguous since they try to constrain the codes of inputs and cor-
responding cycle-reconstructed outputs. Rather, we state that it is
desirable that an input shape xi and the translated shape xi→ j have
the same content code, while the target shape x j and the translated
shape xi→ j share the same style representation. Using these explicit
constraints, our method helps to achieve the desired disentangled
representations. Moreover, the constraints also reduce the compu-
tation cost by removing a second translation phase. We model these
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constraints by the latent consistency loss

Ll =
n

∑
i=1

n

∑
j=1, j ̸=i

Lxi→ j
l ,

which aggregates the individual latent consistency losses between
xi and xi→ j given by

Lxi→ j
l =∥Ec

(
G(F(Ec(xi),Es(x j))

)
−Ec(xi)∥2

+∥Es
(
G(F(Ec(xi),Es(x j))

)
−Es(x j)∥2,

where n is the number of shape domains and ∥ · ∥2 denotes the L2
norm. The latent consistency loss Ll encourages our network to
learn an invertible mapping between disentangled latent spaces and
the 3D point cloud space. This constraint is also helpful for learn-
ing disentangled representations since successful disentanglement
means the content codes of shapes should be constant when the
style codes are changed, and vice versa.

3.4. Fusion Network

The fusion network F (Fig. 2) is designed to synthesize a uniform
latent space from the style space and the content space, which pro-
vides conditions for the generator to learn the mapping from the la-
tent space to the 3D point cloud space. Inspired by AdaIN [HB17],
we propose an affine transformation method to fuse content and
style codes. Specifically, our fusion network F uses two multi-layer
perceptrons (MLPs) M1 and M2 with the identical structure to pro-
duce the bias (M1) and scale (M2) parameters of the affine transfor-
mation from the first and second halves of the style code, respec-
tively, and then computes the fused latent code based on the content
code. When the content code and the style code are encoded from
the same shape xi, the fusion network F will synthesize them to the
code zxi for reconstruction by our generator G as

zxi = M1(z
xi
s1)+M2(z

xi
s2)∗ zxi

c ,

where zxi
c = Ec(xi) and the codes zxi

s1 and zxi
s2 are obtained by simply

splitting the code zxi
s = Es(xi) in two halves. If the two codes are

from shapes from different domains, such as the content code of xi
and the style code of x j, our fusion network F produces the code
zxi→ j for generating the translated shape xi→ j as

zxi→ j = M1(z
x j
s1)+M2(z

x j
s2)∗ zxi

c .

In contrast to AdaIN, our fusion network F does not use Instance
Normalization (IN) on the content representation. Rather, we use a
Kullback-Leibler (KL) loss LKL

c to align the content space with a
prior standard Gaussian distribution N (0, I), defined by

LKL
c = KL

(
p(zx

c|x)
∥∥N (0, I)

)
.

This achieves an affine transformation of content codes without the
need for IN. The irreversibility of IN makes it inappropriate for our
architecture, which, in contrast, tries to learn an invertible mapping
between the latent and point cloud spaces. Since it is hard to mea-
sure the similarity of style information directly, we use the distance
between the style codes of shapes as a proxy to quantify it. Specif-
ically, the mapping between style information in point cloud space

and the style code in style latent space needs to be invertible to
ensure that style similarity is well captured by Euclidean distance.

In addition, to assist our two MLPs, M1 and M2, to learn an adap-
tive distance between two style spaces (coming from different do-
mains), we introduce a new loss LKL

z which aims to align the sum of
fused representations from different domains with a prior Gaussian
distribution on each dimension. We define this new loss as

LKL
z = KL

(
n

∑
i=1

n

∑
j=1, j ̸=i

p(zxi→ j |xi,x j)
∥∥N (0, I)

)
. (1)

Under this loss, M1 and M2 can automatically select dimensions of
zxi and zxi→ j which represent the discrepancy information between
different domains.

3.5. Reconstruction Loss

Besides the above LKL
c and LKL

z losses, we need a reconstruction
loss to train our autoencoder. The reconstruction loss compels the
style and content encoders Es and Ec to produce meaningful repre-
sentations and the generator G to synthesize output shapes as sim-
ilar as possible to the inputs. To produce high-quality codes with
low computational cost, we use PointNet [QSMG17] as the back-
bone for the style and content encoders. Our generator is a custom
version of AtlasNet [GFK∗18], which can generate point clouds
based on patches, or SP-GAN [LLHF21], a state-of-the-art point
cloud GAN for learning a bias for each point.

To define a reconstruction loss, we need a method to measure
the similarity of the input and reconstructed shape. For this, we use
the bidirectional Chamfer Distance (CD) between two shapes. The
Chamfer distance computes the distance between two point clouds
x1 and x2 by summing up the squared distances between each point
in x1 to its closest point in x2. This encourages our autoencoder
to capture features as completely as possible. In contrast to CD,
the Hausdorff distance, another typical instrument to compare 3D
shapes, is sensitive to outlier points in the clouds, which hinders
it from being an efficient loss for point cloud learning. The Earth
Mover’s Distance (EMD) [RTG00], yet another common metric for
comparing images or shapes, was also used for 3D shape recon-
struction [FSG17], and showed to deliver results more focused on
local features of the input point cloud than when using CD, which
is not desired in our context. Given all the above, we set our recon-
struction loss as

Lr =
1
n

n

∑
i=1

CD
(

G
(
F(Ec(xi),Es(xi))

)
,xi

)
.

Putting it all together, our complete loss function is given by

LE,F,G =−λcLAE
c +λrLr +λlLl +λ

KL
c LKL

c +λ
KL
z LKL

z ,

LD = LD
c ,

(2)

where LE,F,G is used to update parameters of the encoder network,
the fusion network, and the generator network, and LD is used to
update parameters of the discriminator network. The λ values in

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



H. Wang, J. Li, A. Telea, J. Kosinka & Z. Wu / USTNet: Unsupervised Shape-to-Shape Translation via Disentangled Representations

LE,F,G are hyperparameters giving the weights of the various terms
(set as discussed next in Sec. 4.3).

3.6. Multi-Domain Shape-to-Shape Translation

Many styles exist in real application scenarios. This makes dual-
domain translation methods inefficient for multi-domain translation
tasks [CCK∗18]. Using existing methods, learning all mappings
among domain pairs means that we must train k(k− 1) translators
(for LOGAN and UNIST) or k autoencoders (for 3DSNet). Mean-
while, each autoencoder cannot use the entire training dataset but
only the input shapes belonging to the related two domains or even
just one domain.

For multi-domain translation, given k domains {Xn}n=1...k, the
inputs of the network are two shapes (xi,x j) and their one-hot do-
main codes (zd

i , zd
j ), which are randomly sampled (xi ∈ Xi, x j ∈ X j,

zd ∈ Rk). Compared to prior shape translation networks, our en-
coders and generator are general for all domains, so our USTNet-
M for multi-domain translation only needs to be adapted for F
and D to leverage the domain codes of the input shapes. For this,
we extend D to a multi-classification discriminator. The content
encoder Ec still tries to confuse the discriminator to encode the
domain-invariant information. LKL

z in F aligns the sum of distribu-
tions among all domains with a prior Gaussian distribution on each
dimension. Note that the domain labels are only used in the train-
ing phase. For the inference phase, the network can recognize the
style features of the target shape, so it can translate shapes from
multi-domains without using the domain label.

4. Results

We validate our proposed framework through several experiments,
and qualitative and quantitative analyses. Section 4.1 outlines the
datasets used in our experiments. Section 4.2 introduces the evalu-
ation metrics we use. Section 4.3 provides implementation details
including hyperparameter settings and network architecture details.
Sections 4.4 and 4.5 show our results for dual-domain and multi-
domain shape translation, respectively. Section 4.6 illustrates the
results and analyses of an ablation study.

4.1. Datasets

As we lack datasets for specific shape-to-shape translation val-
idation, we use pairs of subcategories of established bench-
marks for 3D reconstruction, such as ShapeNet [CFG∗15] and
SMAL [ZKJB17] referring to LOGAN and 3DSNet.

ShapeNet is a widely used dataset in shape analysis and point
cloud learning, containing 51300 unique 3D models covering 55
common object categories. To generate translated results and show
the preservation of content information, we choose specific cate-
gory pairs which have common semantic information but different
characteristics, e.g., straight chairs and armchairs. In our exper-
iments, we use the point cloud version of ShapeNet by random
sampling from models provided by [GFK∗18].

SMAL is a 3D non-rigid animal shape dataset similar to the

SMPL [LMR∗15] body models. SMAL is suitable for shape trans-
lation as it contains different animal categories which have a com-
mon content distribution expressed by diverse poses of animals. To
obtain the point clouds from SMAL, we use the Point Cloud Li-
brary [RC11] to sample surface points randomly with a leaf size of
0.001.

4.2. Evaluation Metrics

No universally accepted quantitative evaluation metrics exist for
unsupervised 3D shape-to-shape translation. To evaluate style
transfer results, 3DSNet [SGST20] proposed using the Style Trans-
fer Score for shape translation to measure the distance of input and
generated shapes in latent space. However, we have found that this
generates high scores even when the translation process discards
the content information entirely.

UNIST [CMS∗21] claims that it is difficult to design a gen-
eral evaluation metric because correct translation for shapes can
be highly varied and dependant on the selected domains. For ex-
ample, for the translation between armchairs and straight chairs,
UNIST used the one-sided Chamfer Distance to evaluate the re-
served content information. Specifically, the one-sided Chamfer
Distance from the straight chair to the corresponding armchair is
computed regardless of the direction of the translation. We argue
that this metric cannot evaluate the change of style information. For
example, if the translated and reconstructed results are the same
(which means that the translation failed), the one-sided Chamfer
Distances will still be low. Hence, to evaluate the style information,
we design an extra classifier to predict the domains of reconstructed
and translated results and measure whether the translation worked
correctly. For this, we use a PointNet-based network pre-trained on
the armchair/straight chair dataset for 50 epochs, with a training
accuracy of 99.69% and a testing accuracy of 96.27%. We next use
the one-sided Chamfer Distance and the classification accuracy of
the generated shapes to evaluate our shape-to-shape translation net-
work quantitatively. A method that can generate translated chairs
with high classification accuracy and low one-sided Chamfer Dis-
tance is, thus, a method that can effectively disentangle style and
content information.

4.3. Experimental Setting

We implemented USTNet with PyTorch [PGC∗17]. For the content
and style encoders, we use a PointNet architecture consisting of
three 1D convolution layers followed by two fully-connected lay-
ers. We set the size of the content vector zc to 1024 and the length
of the style vector zs to 512. For the fusion block F , we use archi-
tecture with two MLPs, each with two fully-connected layers and a
ReLU layer. We use two alternative architectures for the generator
G: AtlasNet [GFK∗18] with 25-patches and SP-GAN [LLHF21].
We modify the global prior of SP-GAN from uniform constant
points to points randomly sampled on a sphere, which enables our
method to change the point count for the outputs in the inference
phase. This characteristic also exists in vanilla AtlasNet, since pri-
mary points are sampled on each patch. We set the sampling point
count from each input shape to 2500. For the content discriminator
used to distinguish latents, we use an MLP architecture containing
three full-connected layers and two ReLU layers.
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Armchair (A) Straight Chair (S)

Reconstruction

A → A S → S

Translation

A → S S → A

Figure 5: Results obtained by USTNet on 6 pairs from the armchair ↔ straight chair dataset. The first two columns show the inputs of our
network; the second two columns show the reconstruction results for each of the two inputs; the last two columns depict translation results,
including from armchair to straight chair (A → S) and straight chair to armchair (S → A). The decoder is an AtlasNet-based structure with
25-patches.

We train our framework for 180 epochs using the Adam opti-
mizer [KB15] with a batch size of 8, initial learning rate of 0.001
for AtlasNet and 0.0001 for SP-GAN, a decay factor of 0.1 at
epochs 120, 140 and 145, and exponential decay rates (β1,β2) =
(0.5,0.999). The loss function weights (Eqn. 2) are set to λc = 1,
λr = 5, λ

KL
c = 1, λl = 0.1, and λ

KL
z = 0.01.

During inference, we generate reconstruction and translation re-
sults with 2500 points for each shape and render them using Mit-
suba [NVZJ19] for a fair comparison with 3DSNet (see Fig. 3).
We ran our model on a PC with an NVIDIA GeForce GTX 3090
GPU for all experiments. For the chairs dataset, training time is 34
minutes for AtlasNet and 166 minutes for SP-GAN, and inference
time is 0.12s per shape. For the SMAL dataset, training times are

8 hours and 10 minutes for AtlasNet; inference times are 0.12s per
shape.

4.4. Evaluation of Shape-to-Shape Translation

We first validate our approach on three different pairs of subcat-
egories of a family from ShapeNet, i.e., armchairs and straight
chairs, fighter and jet, and table and chair. Armchairs and straight
chairs having 1995 and 1974 shapes, respectively, are widely used
in shape research testing due to their similar structures but also
marked discrepancies. From each of the paired sets, we randomly
choose 30% shapes as the test set, with the rest used for training
our network. The following results (all generated on the test set)
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Figure 6: Visualizing disentangled representations of armchair and
straight chair latent codes generated by USTNet in the (a) content
space, (b) style space, and (c) fusion space. Top row: Dual-domain
translation, purple = armchairs, yellow = straight chairs. Bottom
row: Multi-domain translation, purple = horses, yellow = hippos,
blue = dogs, green = cows.

show that USTNet can recognize such discrepancies and generate
reasonable translation outputs.

Due to the performance of the encoder and decoder, the trans-
lated results may not be similar in detail to the source inputs. To ver-
ify the effectiveness of translation and disentanglement, the struc-
tural similarity between the reconstructed and translated shapes is
more critical than the similarity of such shapes to the input ones.
For example, if the armchairs and straight chairs generated by a net-
work in its translation and reconstruction processes have the same
structures (disregarding arm rests), the network can be considered
as a successful disentanglement framework for the armchairs ↔
straight chairs dataset. Figure 5 shows several results of the recon-
struction and translation for six pairs of straight chairs and arm-
chairs randomly selected from the two subcategories. We see that
our method generates realistic and natural translated outputs. In
the translation process, USTNet successfully removes arm rests of
armchairs and, conversely, adds arm rests to straight chairs while
other parts of the shapes stay fixed.

To provide more insight into the translation process, Fig. 1 shows

Table 1: One-sided Chamfer Distance for 3DSNet, USTNet, and
USTNet without LKL

z on the armchair ↔ straight chair dataset pair.
Results are multiplied by 102 for ease of reading. The best values
are highlighted in bold.

Method Decoder
armchair →
straight chair

straight chair
→ armchair

3DSNet
MeshFlow 3.49 3.02
AtlasNet 3.17 3.00

USTNet
AtlasNet 1.66 1.47
SP-GAN 2.53 2.14

USTNet w/o LKL
z

AtlasNet 4.55 4.21
SP-GAN 5.18 4.58

the generated shapes by uniformly interpolating between the arm-
chair and straight chair styles while keeping the content feature
constant. We see that domain-invariant traits such as the legs and
backrests of chairs are stable, while the interpolated shapes still
look natural as the arm rests change. These results show that our
method can adaptively embed shapes from different domains into
a common style space and clearly disentangle style and content in-
formation. In contrast, 3DSNet, which is also a disentanglement-
based translation method, cannot interpolate in style space since it
assumes that style spaces are independent.

To evaluate the quality of our shape translation on the armchairs
and straight chairs datasets, we compute the one-sided Chamfer
Distance and domain classification accuracy metric, and compare
these values with those of 3DSNet. Table 1 and Table 2 show the
one-sided Chamfer Distance comparison. In Table 1, we see that
USTNet significantly outperforms 3DSNet in both translation di-
rections, which means that USTNet can recognize and preserve
more shared structure information in the translation process. Ta-
ble 2 shows that compared with LOGAN and UNIST, our method
also preserves more content information. Note that the numerical
differences between the two tables are due to different normaliza-
tion methods for the input point clouds. Table 3 shows the com-
parison of the classification accuracy. Higher accuracy means more
generated shapes are classified into the target domain. The results
show that both methods can faithfully generate translated shapes.
Figures 3 and 4 qualitatively compare the translated results for
3DSNet and our USTNet. Compared to 3DSNet, our method pre-
serves more domain-invariant detail features such as the height of
the seat and the outline of the backrest. Figure 7 shows more results
of our method for the fighter ↔ jet, and table ↔ chair datasets,
with similar outcomes as those discussed for Figures 3 and 4.

Figure 6 (top row) visualizes the three latent spaces of UST-
Net: the style space, content space, and the fusion space, by pro-
jecting the armchair and straight chair latent codes to 2D using
t-SNE. The representations in the fusion space (c) are neither com-
pletely confused nor distinguishable because the domain-invariant
and domain-specific features are entangled. The disentangled la-
tent distributions of the two domains in the content (a) and style (b)
spaces are extremely confused, respectively very well separated.
The few mixed-up yellow points on the left of the top purple clus-
ter in the image (b) are due to some wrongly labeled shapes in the
ShapeNet database. Overall, the above support our claims of the
effectiveness of disentanglement achieved by USTNet.

Table 2: One-sided Chamfer Distance for UNIST, LOGAN, and
USTNet on the armchair ↔ straight chair dataset pair. The nor-
malization method is the same as that of UNIST. Results are multi-
plied by 102 for ease of reading. The best values are highlighted in
bold.

Method Decoder
armchair →
straight chair

straight chair
→ armchair

UNIST - 2.34 2.35
LOGAN - 2.49 2.73
USTNet AtlasNet 2.33 2.11
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Table 3: Classification accuracy for 3DSNet, USTNet, and USTNet without LKL
z , armchair ↔ straight chair dataset pair. Higher values

mean more generated shapes are classified to the target domain. The best values are highlighted in bold.

Method Decoder
armchair →
straight chair

straight chair
→ armchair

armchair →
armchair

straight chair →
straight chair

3DSNet
MeshFlow 87.82% 92.44% 99.79% 98.74%
AtlasNet 56.63% 68.37% 98.47% 98.98%

USTNet
AtlasNet 93.13% 94.79% 95.21% 96.67%
SP-GAN 93.57% 97.72% 97.72% 95.02%

USTNet w/o LKL
z

AtlasNet 82.92% 96.14% 97.31% 95.63%
SP-GAN 84.44% 93.36% 95.23% 94.19%

Chair → Table
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Fighter → Jet Jet → Fighter Tall Table → Short Table

Figure 7: Translation results generated by USTNet on the fighter ↔ jet, chair → table and tall table → short table datasets. Note how
USTNet considers the type of the aircraft tail as a domain trait, the details of chair legs as shared content information, and the height of tables
as the style feature, respectively. More results are shown in the supplementary material.

4.5. Multi-domain Shape-to-Shape Translation

To evaluate the effectiveness of our multi-modal shape transla-
tion approach, we apply our model to the SMAL database on
shapes from different domains which contain common semantics
(the poses of animals). For a pair of domains in SMAL, the com-
mon information is the pose of the animal, including the orienta-
tion of its limbs, head, and tail. Successful translation from a hippo
shape to the domain of horses, for example, means generating a
horse shape with the same pose as the input hippo shape. We gen-
erate 1000 shapes for the training set and 500 shapes as the valida-
tion set for each category by sampling the model parameters from
a Gaussian distribution with a variance of 0.2.

Figure 8 shows the results of USTNet-M for shape-to-shape
translation on multi-domain inputs. We perform translation among
four domains of SMAL (hippos, horses, cows, and dogs). In Fig. 8,
the first column shows the source shapes, and the first row shows
the target shapes. The other shapes in the figure are generated by
our method’s reconstruction and translation results. Each row has
the same content (pose) feature, and each column has the same style
feature. For example, in the second row of Fig. 8, using the source

shape (far left) from the horse domain, our network can generate
multiple translated results according to the target shapes shown in
the first row. The results show the effectiveness of our multi-domain
translation.

Figure 6 (bottom row) illustrates the latent distributions of do-
mains in the disentangled content, style, and fusion spaces, pro-
jected with t-SNE (as discussed earlier). Significantly, we see that
features in the style space are perfectly well separated because of
USTNet’s successful disentanglement.

4.6. Ablation Study

We next qualitatively and quantitatively evaluate the influence of
the loss LKL

z (Eqn. 1) in the fusion network F for content preserva-
tion and disentangled representation learning. The bottom two rows
of Tables 1 and 3 show the results of USTNet with and without LKL

z
for the one-sided Chamfer Distance and classification accuracy.
These results indicate that USTNet can still change the style of in-
put shapes without LKL

z . However, the one-sided Chamfer Distance
value is significantly higher than when using LKL

z , which means
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Figure 8: Results obtained by USTNet-M on four categories of
SMAL. Each row has the same content (pose) feature, and each
column has the same style feature. Shapes on the diagonal are re-
construction results. Off-diagonal shapes are translated shapes.

that the translation results preserve less content information. This
confirms the added value of the LKL

z term.

Figure 4 (b, c) compares the results of USTNet with, respec-
tively, without the LKL

z term. When not using this term, USTNet can
still generate good reconstruction results (top row). However, the
translated results have obvious structural changes, e.g., the wrong-
looking inclination of the chair back and the sharp aspect of the
chair seat in Fig. 4c (bottom row), because the network cannot cor-
rectly disentangle style and content information of shapes. Hence,
we claim that the loss term LKL

z is critical for realizing a good dis-
entanglement and content-stable shape translation.

5. Conclusion

We have presented USTNet, a novel disentangled representation
framework for shape-to-shape translation with unpaired inputs.
USTNet disentangles the input shape into a content space that en-
codes common information between domains and a style space that
models domain-specific information. For this, we use a fusion net-
work with two losses to adaptively synthesize content and style
codes, and to embed style codes from different domains into a com-
mon space. We use a content adversarial loss to encourage the con-
tent encoder to learn domain-invariant features, and a latent consis-
tency loss to ensure translated shapes consist of content information
of the source shape and style information of the target shape.

We extend our network to USTNet-M to tackle the multi-domain
translation problem without introducing additional blocks. Qualita-
tive and quantitative results show that our method produces realistic

and natural reconstructed and translated shapes and generates equal
or better results than 3DSNet.

Still, our method has several limitations. The generated shapes
by USTNet cannot completely preserve all details of the input
shapes, such as the fine structure of chair legs and backs, mainly
due to the max-pooling operation in encoders (see some of the re-
sults in Figs. 3 and 5). In future work, we aim to further research
shape-to-shape translation to preserve the detail of source shapes
over the whole translation process.
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