An Object-Oriented Approach to C++ Compiler Technology

Cristian Sminchisescu®, Alexandru Telea?
! Department of Computer Science, Rutgers University, USA
2 Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Abstract

This paper focuses on the use of object-oriented ap-
proaches to syntactical and semantical analysis for
complex object-oriented languages like C++. We are
interested in these issues both from a design and im-
plementation point of view. We implement a seman-
tic analyzer in an object-oriented manner, using the
C++ programming language. We base our approach
on design patterns in order to improve the flexibility
of the implementation. The purpose of this research is
twofold. First, we are interested whether the object-
oriented approach to compiler technology (as a possi-
ble alternative to attribute grammars) really produces
more modular, concise and reusable code in terms of
building blocks or control structures for generating an-
alyzers for a possibly larger class of object-oriented lan-
guages. Second, we are interested in the design of the
analyzer internal structure to support further develop-
ment and research in the area of high-level optimiza-
tions related to incremental compilation techniques.

1 Introduction

Traditionally, a compiler or translator front-end com-
prises several steps like lexical and syntactical analysis,
semantic analysis and high-level code optimization (for
the time being, we don’t consider a separate code op-
timizer stage).

Although numerous textbooks exist in the area of
compiler design, formal languages and parsing tech-
niques ([1], [13], [14]), there is hardly any detailed de-
scription regarding the design and implementation of
a complete language processor for a complex language
like C++.

In particular, the C++ language is no longer based
on a context-free grammar. Furthermore, the language
is not only ambiguous, but inherently ambiguous, im-
plying that no direct grammar transformation (i.e. one
not introducing contextual tokens) exist for transform-

ing it into a non-ambiguous one. Consequently, any
traditional lexical and syntactical analysis combination
will not be effective in such a context, at least up to
the point in which it can be designed and implemented
in a modular, independent fashion.

In order to address the above problems, we intro-
duce a new, separate stage between the usual lexi-
cal (Lex) and syntactical (Yacc) analysis stages. This
stage, called LALEX (lookahead LEX) will take over
the context dependency present in a language like C++
by doing special processing and introducing contextual
tokens to disambiguate the input stream. The advan-
tage of such an approach is manifold: it allows us to
use existing tools like Lex and Yacc and keep their
design and semantics simple and decoupled, but also
minimizes the processing pipeline design and mainte-
nance costs, and make it simple to understand. The
processing flow can be depicted in Fig. 1.

The semantic analysis stages, although not empha-
sizing external fragmentation as the language process-
ing part described above, are subject, however, to in-
ternal differentiation. It is inside this stage where the
object-oriented techniques prove to be extremely use-
ful and elegant. Internally, this stage can be further
differentiated into name analysis (binding each use of
a name to its declaration making thus available con-
text and type information) and type analysis dealing
with type synthesis for expressions. One should notice
the particular complexity and pressure on the semantic
analysis stage in the case of a language with such rich
semantic structure like C++.

2 Internal Representation.
Concrete and Abstract Syn-
tax

The syntax of a programming language deals with the
set of its legal programs and with relations between



RER .

basic lexical
token stream

C++ input
source

roRBE -

annotated lexical
token stream

T

concrete syntax tree

Name Analysis § Type Analysis

s,

abstract syntax graph

Figure 1: C++ language analysis pipeline with the LALEX stage

the symbols and the phrases occurring in them ([10]).
A necessary distinction of syntax can be made into
concrete and abstract syntax.

Concrete syntax involves analysis, that is the recog-
nition of legal programs from texts and their unam-
biguous parsing into phrases (traditionally, this means
concrete syntax can be further divided into lexical anal-
ysis and syntactical analysis).

Abstract syntaxr deals only with the compositional
structure of phrases from programs, ignoring how that
structure might have been determined or ignoring those
details of the syntax tree that have no semantic signif-
icance. Therefore, abstract syntax provides a better
interface between the syntax and semantics.

The internal representation of a program in the C++
language in our implementation is based on abstract
syntax graphs. We use an object-oriented approach
to abstract syntax. The abstract syntax graphs con-
sist of leaf nodes representing terminals in the lan-
guage as well as nonterminal nodes representing syn-
tactic constructs. These constructs are modeled by
means of a type hierarchy with a common root node.
This hierarchy directly maps the non-terminal symbols
in the grammar into node classes. Consequently, we
construct node classes representing declarations (dec-
laration specifiers and declarators), expressions, state-
ments, actually all syntactic constructs in the language.

Additionally to the nodes mapping directly to the
syntactic constructs, we also introduce nodes modeling
semantic constructs (the ones corresponding to types
or blocks) as well as nodes making the connection be-
tween the syntax and semantics. The latter we called
”doors” ([7]) since they make the transition between
fully syntactic and fully semantic entities. They are,
in fact, symbol table entities. It is the introduction
of these latter semantic nodes that make our internal

representation a graph rather than a tree, since, for
example, during semantic analysis, each name applica-
tion (use) is bind to its name declaration, making thus
the type and the context of a declared name available
to the point where it is used.

The advantage of a type hierarchy with a common
root is manifold: it allows us to write the semantic
rules for each type of node as a set of methods specific
to that particular node and provide a single control
mechanism, to be applied on the entire hierarchy. This
semantic definition mechanism is actually a procedu-
ral form of an attribute specification. The structure
of the hierarchy root node is rather simple. It pro-
vides a name, links to its children, the location in the
initial source code, and a set of values used for signal-
ing syntax or semantic errors or employed during tree
traversals and evaluation.

The result of the language processing stage is an
unresolved abstract syntax tree, since it doesn’t yet
contain symbol and type synthesis information. After
semantic analysis phase has been triggered, we obtain
a resolved abstract syntax graph where name analysis
and type analysis were performed, and symbol table
information has been generated.

3 C++4 Language Processing

Lexical and syntactical analysis for C++ proved to be
very complicated processes both from a theoretical and
implementation point of view. This is due to the fact
that the declaration part of the grammar for the C++
language is inherently ambiguous and certainly, not
LALR. This means that a C++ token sequence can-
not be parsed by a standard shift/reduce syntactical
analyzer, using a fixed (known) number of lookahead
tokens. The next section outlines the C++ language



ambiguities that make the language processing part dif-
ficult.

3.1 Language Ambiguities

Although a detailed discussion of the ambiguities in the
grammar is beyond the scope and size of this paper, a
short overview of the situations generating ambiguities
can be useful. A detailed analysis can be found in
([12]).

A generally used technique for removing ambiguous
constructs (illustrated by conflicts in the grammar) is
the one of introducing terminals (semantic tokens) to
remove the pressure from the parser. In this situation,
the lexical analyzer should keep its own scoped sym-
bol table and returns tokens based on contextual in-
formation. A technique like this one permits avoiding
the identifier versus typedef-name conflict illustrated
by the possible interpretations of the following line of
code: which could be either a re-declaration of a local

f(*a)[5];

variable or a function call depending on whether f was
or not previously declared as a typedef name (note here
that this construct is ambiguous even in ANSI C).

However, the above technique doesn’t help solving
the conflicts between function like casts and declara-
tions where, for instance, a single line of code could be
parsed in two ways, both syntactically correct. Which
one to choose, then ? The underlying guideline beyond
the Reference Manual ([5]) is that if a token stream can
be interpreted by an ANSI C compiler in favor of a dec-
laration then a C++ compiler should follow the same
interpretation. However, this approach seems to re-
quire a backtracking parser, which should try to parse
a token stream as a declaration, and, if this fails, retry
the parsing as in a statement context.

Another source of conflicts present in the C++ lan-
guage stems from the mixing of types and expressions.
This situation could appear recursively in the left con-
text, so the ambiguity is perpetuated by the token
sequence and the obvious counterpart in the parsing
machinery is that it is forced to defer reductions indef-
initely, making thus impossible to use a parser based
on a fixed number of lookahead tokens.

One could notice, again, that types and expressions
have been kept separated in the C language where
we indeed, encounter a clear separator (=) between
a declarator and its initializing expression. In terms
of separation between types and expressions, the fol-
lowing two distinctions are present. First, abstract

declarators are allowed, but no analogy is provided
in expressions (also, abstract declarators include the
possibility of trailing *’ tokens). Second, the binding
of elements in a declaration is quite different the one
in expressions. Mainly, the declaration-specifiers are
bound separately to each declarator in the comma sep-
arated list of declarators (e.g. int a, *b, ¢;). With most
of expressions, a comma, provides a complete isolation
between expressions.

The major violations the policy of keeping declara-
tion and expressions separate in C++ can be found in
parenthesized initializers that drive constructors, free-
store expressions without parenthesis around the type,
conversion function names using arbitrary type speci-
fiers, and function like casts.

One should notice two possible lines of reasoning in
conflict disambiguation for the efforts of designing a
standard C++.

The first one is to parse tokens in the longest possible
declarator, and identify the syntax errors that result.
This tendency focuses on a solution within the gram-
mar which should be cleaned of those constructs that
make it inherently ambiguous.

The second trend is to preserve all of the existing
constructs and use an enhanced lexer using minimal re-
cursive descent parsers to look ahead so that the parser
doesn’t misparse valid language constructs or induces
syntax errors. This is the solution able to fully support
the standard of the language at present time.

3.2 Language Processor Implementa-
tion

The implementation we present here is following the
second trend presented above. At our present knowl-
edge, a similar approach has been chosen by the origi-
nal cfront and current GNU g++ compiler (although,
for instance, in the g++ compiler, the lookahead stage
is mixed within the lexical analyzer which makes it
more difficult to maintain, scale and understand).

The idea we follow is to introduce a separate stage,
LALEX (lookahead Lex) between the lexical and syn-
tactical analyzer. This stage will generally pass tokens
received from lexical analysis. However, in some spe-
cial situation requiring context differentiation it will
process tokens for those syntactic constructs which are
difficult to parse by either introducing new terminal to-
kens or change existing ones in order to disambiguate
the input stream.

When designing the present implementation, we try
to use standard employed tools whenever possible. So,
the idea wasn’t to hand-code a full syntax analyzer



from scratch, but to use Lex and Yacc. However, the
intention is to keep them as simple and elegant as pos-
sible and we imposed that the grammar specification
be close to the one in the Reference Manual ([11], [5]).

In order to correctly parse the declaration part, we
need a backtracking, top down parser. Yacc is a
non-backtracking bottom up parser. Consequently, we
needed a separate stage between Lex and Yacc which
will perform top down parsing needed for processing
declarations. Moreover, LALEX and Yacc specifica-
tion have complementary behavior. The modifications
made by the LALEX stage concern the processing of
declarations, the processing of identifiers and other
processing for different difficult to parse constructs.

LALEX tries to parse a declaration whenever a
declaration could be present in the input stream.
For doing this, it uses a set of recursive descent
(top-down) parsers. These top-down parsers model
the declaration part of the C++ grammar in a direct
way. For example, the rule synthesizing a declaration
is something like:

declaration: declaration_specifiers declarator_list

In our implementation, we construct a function
procDeclaration which will call in turn procDeclSpec
and procDeclaratorList. This functions will in turn call
other functions corresponding to the children nonter-
minals synthesizing them.

It is very important to notice that it is not the task
of LALEX to perform a Yacc style analysis of the in-
put stream. What LALEX tries to do is to ensure that
a certain syntactic construct is processed by a certain
part of the grammar, which is adequate for process-
ing that construct. Therefore, it is very possible for a
certain token or construct to successfully pass LALEX
and fail to pass Yacc analysis (e.g., LALEX will not
check that an array index represents a valid syntactic
expression). LALEXs task is to identify where declara-
tors (both normal and abstract) begin in the declara-
tion and to categorize left parenthesis (this signaling is
done by inserting terminal tokens). This is sufficient
to ensure correct parsing of declarations.

Processing identifiers means differentiating them.
The reference manual considers separate identifiers for
typedef names, class, struct or enum names, template
names and enum type names. All tokens are returned
by Lex under the generic identifier, but are further
differentiated by LALEX which uses its own symbol
table.

More specifically, LALEX is able to return separate
terminal tokens like typedef-name, enum-name, class-
name, union-name, template-name, by using contex-
tual information in its symbol table. It is worth men-
tioning here that the symbol table in LALEX has only
the above limited application. The real symbol ta-
ble for the program is actually generated as a step
of semantic analysis (name analysis) when declara-
tors are transformed into symbol table entities (doors)
and linked appropriately in the abstract syntax tree,
making thus context and type information available to
them.

The final set of modifications performed by LALEX
are related to several constructs which are difficult to
parse. They are related to the mew operator syntax,
template syntax, class and function definitions and ex-
ternal linkage. New terminal tokens are inserted here
in order to disambiguate the parse. Template process-
ing require special attention, since the code defining a
generic type should be kept into a temporary area and
submitted to the parser only when a template instanti-
ation process actually takes place as a class or function
definition.

In the end of our discussion about C++ parsing, we
shall take a brief look at Lex and Yacc specifications.
They are relatively simple. Lex specification returns
the keywords of the language or other special symbolic
characters (i.e. "+=" as ADDEQ). All other names
will be returned under the generic identifier. Also a
simple name node will be created to be subsequently
inserted in the syntax tree, as the value of the terminal.
It is also Lex’s task to return literals, that is integers,
floating point, character or string constants and also
handle comments for both old style C and C++ com-
ments.

The Yacc specification is simple and elegant. Its
main strength is that is as close to the reference man-
ual specification of the grammar as possible, being thus
very simple to implement and maintain (e.g. when
there is a need to introduce new C++ dialect con-
structs). The actions associated with the grammar
productions serve two main purposes: first to maintain
the symbol table for managing identifiers, and second,
the generation of the abstract syntax tree.

In an attributed grammar, the value associated with
any grammar token is the abstract syntax tree con-
structed for that token. For identifiers, this value is
generated as part of lexical analysis as an abstract sim-
ple name node. For other nonterminals, the simple
rule associated will call it’s corresponding constructor
which will build a new node and link it with its chil-
dren. The advantage of this approach is that it realizes



a direct mapping from the concrete syntax specified by
Yacc rules to the abstract syntax specified by the con-
structor calls.

4 Semantic Analysis

4.1 Overview

Several approaches to attribute evaluation are available
when performing semantic analysis.

In data-driven evaluation attributes are represented
by memory cells and their values can be read and
stored. In order to obtain an attribution, the attribute
instances are evaluated in topological order, that is ac-
cording to a topological sort of the dependency graph.
In a pure attribute grammar, a simple evaluation such
a simple tree walk can sometimes suffice. The order
can be precomputed, based on the grammar, at com-
piler construction time.

The demand-driven evaluation is the alternative
evaluation strategy. Here, each attribute is associated
with its semantic function. The attributes are thus
not stored using this technique, since the access to the
value of an attribute is implemented by calling its se-
mantic function. In this way all the attributes are au-
tomatically available and consistent. Here, one could
use dynamic ordering, since attributes are computed
when their arguments become available. In a demand-
driven evaluator, synthesized attributes can be mapped
directly to virtual functions. Inherited attributes can
be implemented by virtual functions in the father node,
but since the parent node may have many sons of the
same class, an extra parameter is needed in this func-
tion to let the parent node decide which equation to
apply (an alternative technique to supporting multi-
ple semantic functions could be the use of behavioral
patterns).

The design we follow here is a compromise. We im-
pose a procedural order of evaluation (depth first) for
computing basic semantic information and the com-
puted values were stored directly as attributes (de-
pending on whether are used only for semantic eval-
uation or are part of the final resolved abstract syntax
graph, they could be either private or public). Fur-
thermore, in some specific situations as in case of dec-
laration or expression processing, additional passes are
needed over the abstract syntax tree for complete res-
olution and detailed analysis.

The semantic processing will be initialized by a call
to the function semanticProcess on the root of the ab-
stract syntax tree. This function will process a current
semantic state, equivalent to the inherited attributes in

an attribute grammar. The result after applying this
function will be a resolved abstract syntax tree con-
taining new semantic nodes representing types, blocks
and doors (symbol table entities). Blocks nodes are
made available to the nodes where they begin and end,
the doors nodes replace the corresponding declarators
and type nodes are linked to both doors and expression
nodes. The syntax trees representing expressions are
changed to reflect the language semantics. The tenta-
tive nodes are processed. For example, when the parser
sees the expression:

func();

it doesn’t really know whether it is an invocation of a
function represented or pointed to by func or the appli-
cation of an overloaded call operator on a class object
func. In the second case, the corresponding tree should
be reconstructed and replace the call subtree. Other
processing involves making casts explicit, adding this
parameter to member functions or adding conversion as
actual function call nodes. Also. the member rewriting
rule is applied, meaning that the inline function body
is parsed only after the entire class declaration is seen.
This will ensure correct name binding. In order to do
this, the inline functions defined inside a class defini-
tions are split into a declaration and an inline function
definition.

4.2 Evaluation Algorithm

The theoretical roots of the evaluation algorithm we
devised can be found in the depth-first order evalua-
tion algorithm given by ([1]) for L-attributed defini-
tions. The algorithm is outlined in Fig 4.2 However,
the above algorithm is modified reflecting the object-
oriented view of the whole approach as well as the com-
bination of the data-driven and demand-driven eval-
uation schemes (Fig. 2). In particular, the function
semanticProcess will be called for any node (with the
default parameter ”this”), it will call inheritedProcess
for evaluating and/or propagating the inherited at-
tributes (mainly updating a semantic state), calls it-
self for the children of the specific node, and then calls

procedure dfvisit(n:node)

begin
for each child mof n, fromleft to right
do
begi n
evaluate inherited attributes of m
df visit(m
end;
g eval uate synthesized attributes of n
end;



void AstNode:: semanti cProcess(SemanticState& cs)
{

Listlterator ite r
AstNode anode;
Boolean errorFla [

static nodes
le()) return;

// don’t process
if (isNotEvaluab

cs—>currentNode = this;
i nherit edProcess(cs);
errorFlag = FALS E;

if (num_sons >0

)£
for (sons(ite r); iter; ++iter)

anode = (*iter);

if ('anode->isNotE valuable())

anode—>semant i cPr ocess(cs);

errorFl ag |= anode->semant icError;

h
h .
cs—>currenNode = this;
synt hesi zePr ocess(cs);

if (errorFlag) ma keErrorNode();

Figure 2: Semantic processing algorithm

synthesizeProcess when returning. This function can
be equivalated with the one computing the synthesized
attributes in [1] evaluation algorithm, although it does
it on a dynamic basis. The code implementing the
control structure of the evaluation is given in Fig. 2,
with the three major points highlighted (other irrele-
vant parts from the real code has been removed since
it could have only obviated the comprehension without
introducing any semantic significance).

The functions inheritedProcess and synthesizePro-
cess are node dependent processing functions. As a
consequence, in our object-oriented approach, they will
be virtual, so dispatched based on node type. The
function semanticProcess implements only the control
structure of the evaluation, and is defined at the root
of the node hierarchy. Another fact to be noticed here
is that not all nodes are semantically processed, since
some of them could be either nodes without semantic
significance or nodes representing already processed se-
mantic entities (e.g. types).

In the next two sections we shall give a brief overview
on name and type analysis. One should note that
although presented separately, they are indeed inter-
leaved processes, mainly realized under the control pro-
vided by the function inheritedProcess. This is the
place where the amount of node dependent code is
gathered during declaration processing. Mainly, this
function deals with type creation, doors (symbol table
entities) creation and their insertion into the symbol
table.

4.3 Name Analysis

As mentioned earlier, name analysis is one of the most
important steps in semantic analysis. During this stage
the binding process will be performed, that is each
name application is associated with the corresponding
name declaration making thus all the related informa-
tion available. The process is also known as declara-
tion processing since it applies only on the declaration
nodes.

More precisely, the semantic analysis phase actually
creating symbol table entities is synthesizeProcess. In-
side this function, we iterate on each of the declaration
specifications and we invoke node dependent (virtually
defined) processDeclarator function to build a decla-
ration state object. This state will be consequently
used with each declarator to build new corresponding
doors and enter them into the symbol table. Moreover,
each declarator will be replaced with the correspond-
ing door. Additionally, types are also generated within
this stage, as will be emphasized in the next section.

4.4 Type Analysis And Matching

The second category of nodes requiring additional pro-
cessing are the expression nodes. In our context, this
implies additional passes over the corresponding sub-
trees. These passes are needed due to the circular
dependencies between attributes. A circular attribute
grammar does not necessarily have a solution for each
possible syntax tree. A tree with a cycle in its depen-
dency graph can have zero, one or more solutions. The
attribute on a cycle can be evaluated iteratively, and if
the consecutive computed values converge, a solution
is found. In some special situations, it is possible to de-
cide whether a grammar has always such a converging
behavior.

In our implementation, additional passes will be trig-
gered within the function synthesizeProcess. It is the
purpose of this function to take over both type syn-
thesis and type matching against a desired expres-
sion type. The information about the context (the
semantic state or the inherited attributes in a stan-
dard attribute grammar evaluation), the desired son
node, and the desired expression type will be passed to
node dependent (virtually implemented functions) re-
solveType, that provide type synthesis and matching.
In case a match between a generated type and a desired
type is not exact, than a cast expression is created and
a sequence of possible conversions is tried in an attempt
to obtain the desired type. This process is particularly
complex in a language like C+4, mainly because of



the language support for user-defined conversion and
overloaded operations.

Once successful type resolution process has been
achieved, the function synthesizeProcess also performs
some constant folding on the resulting expression and
replaces the processed son node with the correspond-
ing resolved one. It is worth noticing that as a sec-
ondary result of the execution of the function resol-
veType, some checkings are performed and some error
messages are issued (i.e. checking access permissions
on private or protected class members).

5 Conclusions

The above presented research into object-oriented com-
piler technology proved to be both interesting and chal-
lenging. A variety of techniques related to both class
inheritance and object composition have been used in
the implementation process. Several design patterns
([6]) like Builder, Bridge (abstract nodes interface for
the syntax tree), Command (during semantic analysis
to allow multiple semantic functions to be customized
by behavior), Visitor (abstract interface to code gener-
ation simulating multi-method dispatching), have been
employed. They have certainly made the design elegant
and extensible and provided a clear separation between
the stages of processing and between the specific be-
havior node functions (although belonging to a similar
processing category) involved during each stage.
Further interest is driven towards high-level opti-
mizations, mainly incremental compilation techniques.
These techniques advocate for reusing previous results
(abstract syntax tree) instead of reconstructing it from
scratch. Additional interest is also related to the cus-
tomization of the internal structure for supporting a
certain class of languages (for example object-oriented
or functional). In this way, compilers for a class of lan-
guages can be easier obtained by reusing an existing in-
ternal structure and overriding it appropriately. Thus,
the presented work can provide the basis for building
and object-oriented framework for designing code anal-
ysis and compiling tools for a large class of languages.

References

[1] A. AHO, R. SETHI, J. ULLMAN, Compilers Prin-
ciples Techniques and Tools, Addison Wesley, 1986

[2] G. BAUMGARTNER, V. RuUsso, Signatures: A
Language Extension For Improving Type Abstrac-

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

tion and Subtype Polimorphism in C++, Techni-
cal Report, Purdue University, 1995

W. R. Cook, W. L. HiLL, P. S. CANNING,
Inheritance is not Subtyping, Proceedings of the
17th Anual ACM Symposium on Principles of Pro-
gramming Languages, pages 125-135, San Fran-
cisco, California, 1990.

J. O. CoPLIEN, Advanced C++ Programming
Styles and Idioms, Addison-Wesley, 1992.

M. ELuis, B. STROUSTRUP, The Annotated
C++ Reference Manual, Addison Wesley, 1994.

E. Gamma, R. HELM, R. JOHNSON, J. VLIs-
SIDES, Design Patterns: FElements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

G. HEDIN, Incremental Semantic Analysis, Ph.D.
Thesis, Lund University, 1992.

S. B. LiPMAN, Inside the C++ Object Model, Ad-
dison Wesley Publishing Company, 1996

B. MEYER, Object-oriented software construction,
Prentice Hall, 1997.

P. D. MosEs, Action Semantics, Cambridge Uni-
versity Press, 1992.

B. STROUSTRUP, The C++ Programming Lan-
guage, Addison-Wesley, 1998.

C. SMINCHISESCU, An Object-Oriented Approach
to Semantic Analysis for C++, Proceedings of the
XVII-th International Conference on Computer
Science and Control, Bucharest, May 1997, vol.2,
1997.

R.WILHELM, D.MAURER,
Addison-Wesley, 1995.

Compiler Design,

N.WIRTH,
Wesley, 1996.

Compiler Construction, Addison-



