
Pattern Recognition 141 (2023) 109649

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Deep feature annotation by iterative meta-pseudo-labeling on 2D

projections

Bárbara C. Benato

a , ∗, Alexandru C. Telea

b , Alexandre X. Falcão

a

a Laboratory of Image Data Science, Institute of Computing, University of Campinas, Campinas, Brazil
b Department of Information and Computing Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands

a r t i c l e i n f o

Article history:

Received 28 July 2022

Revised 9 March 2023

Accepted 27 April 2023

Available online 29 April 2023

Keywords:

Pseudo-labeling

Deep feature annotation

Semi-supervised learning

Feature space projection

Data annotation

a b s t r a c t

The absence of large annotated datasets to train deep neural networks (DNNs) is an issue since manual

annotation is time-consuming, expensive, and error-prone. Semi-supervised learning techniques can ad-

dress the problem propagating pseudo labels from supervised to unsupervised samples. However, they

still require training and validation sets with many supervised samples. This work proposes a methodol-

ogy, namely Deep Feature Annotation (DeepFA), that dismisses the validation set and uses very few super-

vised samples (e.g., 1% of the dataset). DeepFA modifies the feature spaces of a DNN along with meta-

pseudo-labeling iterations in a 2D non-linear projection space using the most confidently labeled samples

of an optimum-path forest semi-supervised classifier. We present a comprehensive study on DeepFA and

a new variant that detects the best DNN model for generalization during the pseudo-labeling iterations.

We evaluate components of DeepFA on eight datasets, finding the best DeepFA approach and showing

that it outperforms self-pseudo-labeling.

© 2023 Elsevier Ltd. All rights reserved.

1

a

l

d

c

t

t

e

g

c

w

s

l

v

t

l

v

n

(

f

i

s

t

l

t

D

s

d

p

P

e

S

m

s

o

p

s

a

p

h

0

. Introduction

The success of deep neural networks (DNNs) is evident in many

pplications. However, among the supervised models, the need for

arge annotated training sets is a well-known problem [1,2] , being

ata augmentation and transfer learning common approaches that

reate synthetic samples and exploit pre-learned weights to amend

he problem, respectively.

To train DNNs, the set with supervised samples is usually split

o generate a validation set for hyperparameter search and model

valuation. When the validation set is representative, it provides a

ood idea of the model’s performance on unseen test sets [3] . A

ritical problem appears when the training set is too small [2] –

ith only dozens of supervised samples per class. Assuming a

et with many unsupervised samples is available, semi-supervised

earning techniques can propagate pseudo labels from the super-

ised samples to the unsupervised ones, considerably increasing

he number of labeled training samples. However, semi-supervised

earning techniques still require hundreds to thousands of super-

ised samples for training and validation [4–7] .

This work proposes a meta-pseudo-labeling methodology,

amely Deep Feature Annotation (DeepFA), to train DNNs from very
∗ Corresponding author.

E-mail addresses: barbara.benato@ic.unicamp.br (B.C. Benato), a.c.telea@uu.nl

A.C. Telea), afalcao@ic.unicamp.br (A.X. Falcão) .

s

p

t

a

ttps://doi.org/10.1016/j.patcog.2023.109649

031-3203/© 2023 Elsevier Ltd. All rights reserved.
ew supervised samples (e.g., 1% of the dataset) without a val-

dation set. In DeepFA , the teacher (a connectivity-based semi-

upervised classifier) exploits modifications of a given latent fea-

ure space of the student (a DNN) along with iterations of non-

inear projection on a 2D space for pseudo-labeling. At each itera-

ion, the most confidently labeled samples are used to retrain the

NN, modifying its latent feature space. The semi-supervised clas-

ifier does not require parameter optimization, dismissing a vali-

ation set. It then increases the number of labeled samples to im-

rove the DNN with pseudo-labeled training and validation sets.

For pseudo-labeling in 2D, we use a semi-supervised Optimum

ath Forest (OPFSemi) classifier [8] , which has outperformed sev-

ral techniques in different works [9–12] . In [9] , for instance, OPF-

emi outperformed LapSVM [13] , achieving the highest perfor-

ance when label propagation was done in the 2D embedded

pace created by t-SNE [14] from the intermediary feature space

f an autoencoder, in contrast to [10] where label propagation was

erformed in the latent feature space.

Isolated aspects of DeepFA using OPFSemi on a 2D embedded

pace have been evaluated in conference papers. In [12] , a few iter-

tions of the training loop with truly-and-artificially-labeled sam-

les was enough to improve the generalization performance of a

upervised DNN. The study used only 1%–5% of supervised sam-

les. We call this version as orig-DeepFA , while we use DeepFA

o refer to the entire methodology. OPFSemi’s confidence was

lso considered when selecting unsupervised samples to train the

https://doi.org/10.1016/j.patcog.2023.109649
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109649&domain=pdf
mailto:barbara.benato@ic.unicamp.br
mailto:a.c.telea@uu.nl
mailto:afalcao@ic.unicamp.br
https://doi.org/10.1016/j.patcog.2023.109649

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 1

Comparison of how earlier vs our work address questions Q1.Q6 for DeepFA .

Question Earlier work (orig- & conf-DeepFA) Our contribution (ext-DeepFA)

Q1 used an autoencoder to generate the initial feature space for interactive data

annotation [9,11] ;

use a supervised, pretrained, deep architecture with few available

supervised samples [12] ;

Q2 compared OPFSemi label propagation only with Laplacian SVM [9,11] .

Similar comparisons exist in [10] but were not applied to DeepFA ;

compare OPFSemi to two additional semi-supervised learning methods

(L.Prop, L.Spread) in DeepFA ;

Q3 OPFSemi’s confidence was used to select samples for label propagation [11] ,

but not in DeepFA ;

use OPFSemi’s confidence to select samples to propagate labels in

DeepFA [15] ;

Q4 only VGG-16 was explored to learn the feature space [12] ; compare VGG-16 with an additional architecture (MobileNet [17]);

Q5 only the output of the last convolutional layer was used to propagate

labels [12]

use different layers of the deep network for the same purpose;

Q6 such methods either used no iterations [9,11] or an upfront fixed number of

iterations [12] ;

propose a clustering metric to find the iteration delivering the optimal

trained model.

s

t

a

t

T

t

t

a

i

s

c

s

n

T

d

p

i

r

l

o

t

e

S

l

2

e

s

i

i

d

h

v

s

t

e

s

s

a

e

d

a

h

l

s

i

t

S

p

s

l

s

W

a

o

m

h

p

i

c

t

r

e

p

p

s

t

s

e

s

(

(

s

d

a

W

a

g

t

n

f

t

c

upervised DNN [15] , reducing label propagation errors. Let us call

his last version conf-DeepFA .

However, conf-DeepFA ’s performance on test sets can oscillate

long with the pseudo-labeling iterations such that the model ob-

ained at the last iteration is not guaranteed to be the best model.

o circumvent this problem, we propose ext-DeepFA , which ex-

ends conf-DeepFA by computing a clustering-based metric from

he pseudo-labeled samples to select the optimal model for gener-

lization among the ones generated along with the pseudo-labeling

terations. While earlier orig-DeepFA and conf-DeepFA variants have

hown promising results, the methods may differ in the deep ar-

hitecture used for feature learning and classification, the semi-

upervised classifier for label propagation, the projection tech-

ique, and the criterion to select the model for generalization.

horoughly exploring this ‘design space’ is needed to gain confi-

ence in the results’ robustness and, where possible, to find hy-

erparameters that lead to higher performance. The present work

s then a comprehensive study on DeepFA.

We next outline six question whose answers support the explo-

ation of DeepFA ’s design space.

• (Q1) Can a deep neural network with pre-trained weights im-

prove performance by self-pseudo-labeling?
• (Q2) Can performance be improved by using other label propa-

gation methods than OPFSemi?
• (Q3) Can OPFSemi’s confidence improve DeepFA ’s pseudo-

labeling?
• (Q4) Does DeepFA work for other deep architectures than the

currently used VGG-16 [16] ?
• (Q5) Can we improve DeepFA by choosing other layers from the

network to extract a feature space?
• (Q6) How can we identify the optimal model among those com-

puted during the DeepFA iteration sequence?

Table 1 summarizes our contributions, described next, as fol-

ows. Section 3 details ext-DeepFA , our extension of the existing

rig-DeepFA and conf-DeepFA methods, as well as the experiments

hat we propose to address questions Q1..Q6. Section 4 details the

xperimental procedure. Section 5 shows the experimental results.

ection 6 summarizes our answers to Q1..Q6. Section 7 discusses

imitations of our work. Finally, Section 8 concludes the paper.

. Related works

Supervised DNNs require large annotated sets for training mod-

ls with high classification measures in the test set [1,2] . Several

trategies are concerned with tackling this problem. In the follow-

ng, we concern ourselves with cases where we know all classes to

nfer in advance – the problem of discovering new classes in the

ata is out of our scope. Recently, few-shot learning techniques

ave shown the ability to deal with the absence of large super-

ised datasets in classification tasks using DNNs. Using very few

upervised samples, few-shot learning guarantees generalization in
2
est sets when training from one to few (one/few-shot learning) or

ven zero (zero-shot learning) examples per class [18] . Both few-

hot and semi-supervised learning methods use few supervised

amples to train their models. However, in addition to the (few)

vailable supervised samples, semi-supervised learning still consid-

rs many unsupervised samples to capture additional information

uring its learning process [18] . (A) These unsupervised samples

re not part of standard few-shot learning methods. Recent works

ave explored combining few-shot learning and semi-supervised

earning [19–21] by considering a fixed amount of unsupervised

amples along with the few supervised ones. (B) Few-shot learn-

ng can take advantage of pre-trained models only when those are

rained without using labels in an unsupervised pre-training [18] .

ummarizing the above, few-shot learning differs from our ap-

roach since we (i) intend to use large amounts of unsupervised

amples (unlike A); and (ii) benefit from pre-trained models on

arge labeled datasets for medical applications (unlike B).

In this work, we are interested in using very few supervised

amples and many unsupervised ones, in a semi-supervised setup.

hen some supervised samples and many unsupervised samples

re available, semi-supervised learning can increase the number

f labeled training samples and, consequently, improve the perfor-

ance of a DNN [4] – the primary goal of our work.

In semi-supervised learning, deep learning [4–7,22] approaches

ave been exploited to propagate labels from a small set of su-

ervised samples to a large set of unsupervised ones exploit-

ng their feature space distribution. Pseudo-labeling (a particular

ase of self-training) was first proposed for more effectively fine-

uning a pre-trained model [4] . Nevertheless, label propagation er-

ors can negatively affect the classification performance of mod-

ls trained with pseudo labels [9,23] . The confidence of the ap-

rentice model was included in the loss function to mitigate the

roblem [22,24] . Recently, pseudo-labeling approaches [4,6,7] es-

entially adopt the semi-supervised strategy with the appren-

ice model assigning uncertain (pseudo) labels to unsupervised

amples. Those approaches has been also combined with differ-

nt strategies (e.g. , self-supervised methods [25,26]). With the

ame purpose, meta-pseudo-labeling [7] uses an auxiliary model

teacher) to generate pseudo labels to train the primary model

student). Still, to guarantee reasonable label propagation accuracy,

uch deep-learning-based methods require a training set with hun-

reds of supervised samples per class and a validation set with

dditional supervised samples for parameter optimization [4–7] .

hen only a few supervised samples (e.g., dozens per class) are

vailable, this requirement is a clear obstacle.

Recent works have investigated pseudo labels stemming from

raph-based semi-supervised methods, which are typically faster

han deep learning methods. By modeling training samples as

odes of a graph whose arcs connect adjacent samples in a given

eature space, one can propagate labels from supervised samples

o their most strongly connected unsupervised ones. Such methods

ombine the connectivity aspect of graph-based methods with the

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Fig. 1. Proposed ext-DeepFA pipeline. Using a few supervised images, a deep feature learning algorithm is trained (1) and features are extracted from unsupervised images

from a selected layer (2). The features are projected to a 2D space (3) and a semi-supervised technique propagates labels from supervised to unsupervised samples in

that space (4) – the orig-DeepFA pipeline (inner blue box). The most informative samples are selected (5) and their labels are used to retrain the network along with the

supervised samples. Steps (1–5) are iteratively repeated – the conf-DeepFA pipeline (green dashed box). In each iteration, the labeled projected feature space is evaluated (6)

using a quality measure to select the best model (7). The process outputs at end the optimal model and labeled samples – the ext-DeepFA pipeline (outer maroon dashed

box). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

l

e

t

t

s

a

f

l

S

r

t

f

l

i

t

t

c

a

3

D

w

m

o

t

3

r

1

p

A

w

l

m

p

r

u

b

3

n

e

t

l

q

f

earning ability of DNNs in a co-training strategy [10,22,23] . How-

ver, most graph-based label propagation methods need parameter

uning for distinct datasets and also need a validation set with ex-

ra supervised samples. Again, the requirement of extra supervised

amples is an obstacle since only very few supervised samples are

vailable for training a DNN.

Among the studies that focus on labeling unsupervised data

rom a few supervised samples are those based on cluster-then-

abel methods for classification [27] and few-shot learning [28] .

pecifically, such works do not use extra (data) supervision for pa-

ameter optimizing and searching [27,28] . They deal with consis-

ency bias by combining (i) a similarity loss and (ii) an ensemble

rom different Gaussian Mixture Models. However, exploring chal-

enging datasets can be an issue when using unsupervised learn-

ng [11] or similarity-based loss functions [29] . For such situa-

ions, strategies such as co-training, graph-consistency, and uncer-

ainty information combined with limited supervised information

an leverage pseudo-labeling approaches to avoid consistency bi-

ses [23] .

. Proposed pipeline

We next detail our extension ext-DeepFA of the original (orig-

eepFA [12]) and confidence-based (conf-DeepFA [15]) methods

ith the contributions listed in Table 1 . Fig. 1 shows our extended

ethod called ext-DeepFA . We next discuss each method step and
3

utline how the questions Q1..Q6 relate to design decisions about

hese steps.

.1. Deep feature learning

We start our pipeline by training a deep feature learning algo-

ithm by using the few available supervised samples (Fig 1 , step

). Obviously, since supervised samples are few, one cannot ex-

ect good results using a too deep network trained from scratch.

s such, an interesting question is whether a deep neural network

ith pre-trained weights can improve performance by self-pseudo-

abeling (Q1). A negative answer implies the need of a separate

achine learning method for pseudo labeling, such as OPFSemi

roposed by DeepFA and its extensions. A separate question (Q4)

elated to this step is which are pre-trained models that one can

se to obtain high performance in the context of our application,

esides the VGG-16 one proposed in earlier work [12] .

.2. Layer selection

The feature spaces learned in the different deep layers of the

etwork capture the structure of the data space the network is

xposed to. Hence, we can use such a feature space as input for

he label propagation (see Section 3.4 next). In earlier works, the

ast convolutional layer was used for this purpose [12,15] . An open

uestion (Q5) is whether using deeper layers would improve per-

ormance.

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

3

c

w

y

d

o

t

s

m

c

c

i

p

d

c

S

A

a

l

w

H

t

o

f

h

t

r

d

b

s

2

j

t

3

c

n

s

g

p

O

t

c

f

t

3

S

p

t

H

q

i

3

a

Fig. 2. Examples of H.Eggs species (left) and similar images of impurities (right).

a

t

a

i

h

a

w

f

w

R

a

t

p

a

4

Q

m

4

a

t

9

5

T

t

l

c

c

s

T

a

m

b

a

t

o

t

o

a

T

c

s

X

t

i

p

s

4

fi

.3. Dimensionality reduction

The feature space from the selected network layer (Section 3.2)

an be reduced before being used for label propagation. Earlier

ork has shown that using a 2D t-SNE projection for this often

ields labels of higher accuracy than when propagation is done

irectly in the feature space [9] . A potential question is whether

ne could use for this step other existing projection methods than

-SNE. We believe there is evidence to the contrary: An exten-

ive study [30] showed that t-SNE has one of the highest quality,

easured in terms of combined trustworthiness, neighborhood hit,

ontinuity, Shepard correlation, and normalized stress metrics (all

ommon quality metrics in projection literature), among 45 stud-

ed projection algorithms. As such, from an application-agnostic

erspective, one can say that t-SNE preserves the high-dimensional

ata structure better than its competitors, so it is the candidate of

hoice to be used.

Separately, the chosen label estimation algorithm (see

ection 3.4) uses Euclidean distances in the 2D projection space .

s such, having a compact projection where similar data points

re close to each other (i.e. , with high neighborhood preservation),

ike t-SNE, favors our label propagation as opposed to projections

hich spread the data points more in 2D, e.g. , MDS variants.

owever, to fully prove our above point, i.e. , the suitability of 2D

-SNE projections, more studies are needed, e.g. , replacing t-SNE in

ur pipeline by other top-ranking projections in terms of quality

rom [30] such as UMAP, IDMAP, or PBC.

We also argue that using t-SNE to project features in spaces

igher than 2D, e.g. , using a 3D projection, is overall not an attrac-

ive option since (a) 3D projections score only slightly quality met-

ics than their 2D counterparts [31] ; (b) OPFSemi’s use of Euclidean

istances can be affected by the higher space dimensionality (and

y higher Euclidean distance values as well); (c) users experience

ignificantly higher difficulty when visualizing 3D as opposed to

D projections, which only gets worse if one wants to use the pro-

ection to also interact with the data, e.g. , for manually fine-tuning

he labeling.

.4. Label estimation

The few available labels are propagated in the 2D projection to

reate a rich set of labeled points which is next used to refine the

etwork training. As stated earlier, DeepFA uses OPFSemi for this

tep. OPFSemi first was proposed in [8] and we use the same al-

orithm for propagating pseudo labels from the supervised sam-

les to the unsupervised ones in a semi-supervised way. However,

PFSemi can make mistakes and its effectiveness depends on fil-

ering out the most likely mislabeled samples by thresholding its

onfidence value [11] . An open question here (Q2) is whether per-

ormance can be improved by using counterparts pseudo-labeling

echniques rather than OPFSemi.

.5. Sample selection

Earlier work [9] used all pseudo labels constructed by OPF-

emi which, as noted earlier, can lead to training based on wrongly

ropagated labels. Separately, the confidence of OPFSemi was used

o select a subset of most confident pseudolabels to use next [11] .

owever, this strategy has not been used in DeepFA . This raises the

uestion (Q3) on how can confidence-based pseudo-label selection

mprove the DeepFA end-to-end pipeline.

.6. Evaluation of the projected labeled space

Earlier methods either applied the DeepFA idea for a single iter-

tion [9,11] or used a predefined number of iterations [12,15] . Both
4
pproaches are suboptimal if one is after finding the best way to

rain a deep model. Rather, we need to (a) execute the DeepFA iter-

tions and (b) select, from the trained models computed after each

teration, the one with the highest performance.

For our scenario of few labeled samples, an inherent problem is

ow to gauge performance of such models. One approach is to use

s a proxy the quality of the pseudo-labeled samples. Importantly,

e cannot use true label information of the unsupervised samples

or this purpose as this would defeat the very purpose of training

ith a very small supervised set (tens of samples in some cases).

ather, we need a quality metric that considers not only labels but

lso the separation (distance) between samples in the 2D projec-

ion space. A joint question (Q6) is which metric to use for this

urpose and how to use it to determine the optimal model over

ll executed iterations.

. Experimental setup

We next outline how we organized our study of the questions

1.Q6 in Section 1 in terms of used datasets (Section 4.1 , experi-

ental setup (Section 4.2), and implementation (Section 4.3).

.1. Datasets

We choose eight diverse datasets to perform our investigations,

s follows. MNIST: We first chose the public MNIST [32] dataset,

o explore a known and easy classification task. MNIST has 0 to

 handwritten digits grayscale images (28 × 28 pixels). We use

0 0 0 random samples from the original training dataset. Parasites:

he next five datasets come from a Parasite medical image collec-

ion [33] . This collection has three main dataset types: (i) Helminth

arvae , (ii) Helminth eggs , and (iii) Protozoan cysts . The datasets

ontain color microscopy images (200 × 200 pixels) of the most

ommon species of human intestinal parasites in Brazil, respon-

ible for public health problems in most tropical countries [33] .

he datasets are challenging since they are unbalanced and contain

 majority impurity class, with samples very similar to parasites,

aking classification hard (see Fig. 2). Table 2 shows the num-

er, type, and sample count per class for the datasets (i-iii) listed

bove. To these datasets, we add the (iv) Helminth eggs and (v) Pro-

ozoan cysts without the impurity class datasets, yielding a total

f 5 datasets. Coconut: We use a random subset of the Coconut

rees dataset [34] with 7,827 regions (90 × 90 pixels) of aerial col-

red images from the Kingdom of Tonga, acquired by satellite im-

gery in October 2017, labeled by Humanitarian OpenStreetMap.

he dataset has two classes: images with (6,139) or without co-

onut trees (1,688). COVID: A team of researchers from the Univer-

ities of Qatar and Dhaka have created a database [35,36] of chest

-ray images (299 × 299 pixels). We obtained the second update of

he dataset with 21165 images split in four classes: COVID-19 pos-

tive (3616), lung opacity (non-COVID lung infections, 6012), viral

neumonia (1345), and normal (10192) cases. We use a randomly

ubset of this dataset with 10583 images.

.2. Experimental setup

To reproduce the scenario of few supervised samples, we de-

ne a supervised training set S with only 1% of supervised samples

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 2

MNIST, Coconut, COVID19 (left) and three Parasites datasets (right). For each dataset, we list its number of classes, class names, and sample count per class.

Dataset Classes # samples Dataset Classes # samples

MNIST (10 classes)

zero 479

(i) H. larvae (2 classes)

S.stercoralis 446

one 563 impurities 3068

two 488 total 3514

tree 493

(ii) H. eggs (9 classes)

H.nana 348

four 535 H.diminuta 80

five 434 Ancilostomideo 148

six 501 E.vermicularis 122

seven 550 A.lumbricoides 337

eight 462 T.trichiura 375

nine 495 S.mansoni 122

total 5000 Taenia 236

Coconut (2 classes)

coconut tree 6139 impurities 3444

none 1688 total 5112

total 7827

(iii) P. cysts (7 classes)

E.coli 719

COVID19 (4 classes)

COVID19 1808 E.histolytica 78

lung opacity 3002 E.nana 724

pneumonia 672 Giardia 641

normal 5096 I.butschlii 1501

total 10,583 B.hominis 189

impurities 5716

total 9,568

Table 3

Number of supervised (S) and unsupervised (U) samples for each dataset.

MNIST H.eggs (w/o imp) P. cysts (w/o imp) H. larvae H. eggs P. cysts Coconut COVID19

S 50 17 38 35 51 95 78 105

U 3450 1220 2658 2424 3527 6602 5400 7302

f

6

s

u

v

a

c

f

a

c

a

m

n

r

r

4

w

t

a

i

K

f

v

n

e

e

d

s

e

c

m

5

i

5

p

o

u

i

e

5

t

s

t

l

rom a given dataset D . The unsupervised U and test T sets have

9% and 30% of samples, respectively (D = S ∪ U ∪ T). The small S

imulates the real-world scenario when one has a large D but man-

al effort is needed to label samples to create S. We randomly di-

ide each dataset D into S, U , and T in a stratified manner and

lso generate three distinct splits for each experiment for statisti-

al analysis. Table 3 shows the number of supervised samples in S

or each of the eight datasets in Section 4.1 .

We evaluate our method by the probability of the chosen deep

rchitecture’s last fully-connected layer, i.e. , just before the classifi-

ation layer. From this, we compute accuracy. Since we have unbal-

nced datasets, we also use Cohen’s κ . κ ∈ [−1 , 1] gives the agree-

ent level between two distinct predictions, where κ ≤ 0 means

o possibility and κ = 1 means full possibility of agreement occur-

ing by chance, respectively. We evaluate label propagation accu-

acy by computing the number of correctly assigned labels in U .

.3. Implementation details

As stated, we want to use DeepFA without a validation set

hose creation would require extra user supervision (data anno-

ation effort). For this, we fix all pipeline’s parameters without

ny optimization step. For t-SNE, we use the default parameters

n scikit-learn . Note that OPFSemi has no parameters.

All our neural networks were implemented in Python using

eras [37] , replacing the original fully-connected layers by two

ully-connected layers with 4096 neurons and rectified linear acti-

ation followed by a decision layer with c neurons, where c is the

umber of classes of each dataset, and softmax activation. Mod-

ls are trained by error backpropagation for a categorical cross-

ntropy function, using stochastic gradient descent with a linearly

ecaying learning rate initialized at 0.1 and momentum of 0.9, re-

pectively. We loaded ImageNet pretrained weights and used a lin-

ar decay of 1 × 10 −6 over 15 epochs. The pretrained weights for
5
onvolutional layers were fixed for the feature extraction experi-

ents and unfrozen for fine-tuning, respectively.

. Experimental results

We next address questions Q1.Q6 listed in Section 1 by present-

ng experiments, results, and discussion for each of them.

.1. Q1: Can a pretrained VGG-16 improve performance by self

seudo labeling?

We evaluate VGG-16 pre-trained on ImageNet, with and with-

ut fine-tuning its convolutional layers (Section 4.3). We also eval-

ate VGG-16 performing self pseudo-labeling. We did four exper-

ments (below, ft stands for fine-tuning and fe stands for feature

xtraction, respectively):

• VGG-16 f t : VGG-16 with fine-tuning, trained on S and tested on

T ;
• self-VGG-16 f t : VGG-16 f t trained on S ∪ U , being the samples in

U pseudo-labeled by VGG-16 f t , and tested on T . The self train-

ing loop uses five iterations;
• VGG-16 f e : VGG-16 with only the last four convolutional layers

used as unfrozen for feature extraction, trained on S and tested

on T ;
• self-VGG-16 f e : VGG-16 f e trained on S ∪ U , being the samples in

U pseudo-labeled by VGG-16 f e , and tested on T . The self train-

ing loop uses five iterations.

.1.1. Q1: Results and discussion

Table 4 shows the mean values of accuracy in label propaga-

ion and classification, κ , and their standard deviations over three

plits, using each VGG-16-based model. We can see that feature ex-

raction and fine-tuning do not show relevant gains in self pseudo-

abeling along with the iterations. The results of the models based

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 4

(Q1) Results for four VGG-16 models considering feature extraction and fine-tuning. Best values per metric and dataset in bold.

VGG-16 variants

dataset metric VGG-16 f t self-VGG-16 f t VGG-16 f e self-VGG-16 f e

MNIST prop. acc - 0.447238 ± 0.146 - 0.586000 ±0.007

acc 0.629555 ±0.037 0.441334 ± 0.149 0.614444 ± 0.015 0.592222 ± 0.020

kappa 0.588195 ±0.041 0.378648 ± 0.166 0.571176 ± 0.017 0.546162 ± 0.023

H.eggs (w/o imp) prop. acc - 0.758825 ±0.088 - 0.744004 ± 0.114

acc 0.790961 ±0.050 0.779033 ± 0.095 0.738858 ± 0.054 0.774011 ± 0.131

kappa 0.752807 ±0.060 0.735591 ± 0.113 0.693278 ± 0.060 0.734030 ± 0.153

P.cysts (w/o imp) prop. acc - 0.399481 ± 0.010 - 0.648739 ±0.111

acc 0.561130 ± 0.093 0.400519 ± 0.011 0.736159 ±0.027 0.650230 ± 0.101

kappa 0.324051 ± 0.175 0.020734 ± 0.021 0.626632 ±0.039 0.483706 ± 0.170

H.larvae prop. acc - 0.897384 ± 0.031 - 0.912837 ±0.038

acc 0.874566 ± 0.001 0.886572 ± 0.017 0.893523 ± 0.017 0.908689 ±0.040

kappa 0.021406 ± 0.019 0.174158 ± 0.208 0.256836 ± 0.203 0.385892 ±0.402

H.eggs prop. acc - 0.773803 ± 0.034 - 0.847308 ±0.018

acc 0.858323 ±0.013 0.775750 ± 0.034 0.848327 ± 0.017 0.850934 ±0.014

kappa 0.734333 ±0.019 0.519971 ± 0.114 0.713649 ± 0.030 0.714227 ± 0.038

P.cysts prop. acc - 0.730327 ± 0.022 - 0.817978 ±0.004

acc 0.758853 ± 0.077 0.734239 ± 0.028 0.818182 ± 0.004 0.824800 ±0.011

kappa 0.542967 ± 0.218 0.492070 ± 0.107 0.697633 ± 0.009 0.705397 ±0.022

Coconut prop. acc - 0.826153 ±0.026 - 0.817147 ± 0.016

acc 0.821200 ± 0.027 0.828721 ± 0.026 0.835249 ±0.027 0.813822 ± 0.031

kappa 0.304424 ± 0.182 0.324694 ± 0.153 0.385120 ±0.147 0.228646 ± 0.224

COVID19 prop. acc - 0.659174 ± 0.022 - 0.660816 ±0.016

acc 0.627612 ± 0.034 0.677008 ±0.039 0.589186 ± 0.094 0.675066 ± 0.028

kappa 0.389689 ± 0.074 0.480240 ±0.068 0.274597 ± 0.239 0.476834 ± 0.049

o

fi

κ
i

t

w

5

O

l

s

g

s

t

w

p

l

5

t

L

s

c

F

m

w

(

d

s

c

L

a

d

2

L

5

l

s

r

o

u

0

s

b

t

fi

w

t

j

e

t

g

f

o

b

m

1

w

n feature extraction only are usually better than those of the

ne-tuned models. We notice considerable gains in accuracy and

when using VGG-16 f e and self-VGG-16 f e , indicating that the work

n [12] could have presented better results with feature extraction

han using fine-tuning. As self-VGG-16 f e achieved the best results,

e use this pipeline in all subsequent experiments.

.2. Q2: OPFSemi’s pseudo-labeling vs other comparable methods

As related work [12,15] only tested orig-DeepFA looping with

PFSemi, we evaluate other semi-supervised learning methods for

abel propagation over the learned (and next reduced) feature

pace over a few iterations. Specifically, we use the LabelPropa-

ation (L.Prop) and LabelSpreading (L.Spread) methods, available in

cikit-learn , with k-nearest neighbors (knn) and radial basis func-

ions (rbf) kernels. As L.Prop and L.Spread have parameters and we

ant to avoid parameter searching (due the few supervised sam-

les available), we set parameters to their default values in scikit-

earn . The experiments done are listed below:

• OPFSemi : VGG-16 is trained on S. Deep features for S ∪ U from

the last convolutional layer are projected in 2D with t-SNE and

used for OPFSemi to propagate labels from S to all samples in

U . VGG-16 is then retrained with S ∪ U and tested on T (at the

last iteration of orig-DeepFA looping);
• L.Prop knn : As above but replaces OPFSemi by L.prop (knn ker-

nel);
• L.Prop rb f : As above but replaces OPFSemi by L.prop (rbf kernel);
• L.Spread knn : As above but replaces OPFSemi by L.spread (knn

kernel);
• L.Spread rb f : As above but replaces OPFSemi by L.spread (rbf ker-

nel).

.2.1. Q2: Results

Table 5 and Fig. 7 show the results of the experiments

hat compare OPFSemi against L.Prop rb f , L.Prop knn , L.Spread rb f , and

.Spread knn for label propagation in the orig-DeepFA looping. We

how mean values of label propagation accuracy, classification ac-

uracy, κ , and their standard deviation over three different splits.
6
rom the compared methods, OPFSemi yielded the best perfor-

ance for all tested datasets. This is an important result since we

ant to reproduce a real scenario with a few supervised samples

 Sec. 4.2) and OPFSemi shows that it is possible to handle diverse

atasets with no parameter optimization. Interestingly, L.Spread rb f

howed the highest mean label propagation accuracy in the Co-

onut dataset, but having the highest standard deviation. While

.Prop shows very low results for its default parameters, L.Spread rb f

nd L.Spread knn show better results depending of the dataset. For

atasets with significant confusion between distinct classes in the

D projection (P.cysts, Coconut, COVID19), L.Spread rb f surpasses

.Spread knn .

.2.2. Q2: Discussion

Using different pseudo-labeling methods within the orig-DeepFA

ooping means that the label propagation and the learned feature

pace can be mutually affected. To evaluate how, Fig. 3 shows the

esulting feature space and label estimation of the two best meth-

ds found in Sec. 5.2 , i.e., OPFSemi and L.Spread rb f . In this figure, we

se datasets with similar classification values (Coconut tree, κ =

 . 53) and distinct classification values (H.larvae, κ ∈ { 0 . 80 , 0 . 06 }).
For the Coconut dataset, we see that L.Spread rb f was more con-

ervative in propagating labels (green points concentrated in the

ottom part of the projection), while OPFSemi was more sensitive

o outliers (green points in other projection regions). This is con-

rmed by the f1-score metric for classes 1 (red) and 2 (green),

here OPFSemi got higher f1 values for class 2 (0.64) compared

o L.Spread rb f (0.60). Also, the two methods influenced the 2D pro-

ection space, which is more circular for L.Spread rb f and more more

longated for OPFSemi . Still, neither method could separate the fea-

ure space into distinct per-class clusters.

For H.larvae, OPFSemi was able to propagate labels only for re-

ions with supervised samples of class 1 (red) and also provide a

eature space (2D projection) in which class 1 is separated from

ther samples in the projection. The f1-score confirmed that as

oth classes have f1 values up to 0.8. In contrast, L.Spread rb f was

ore conservative in propagating labels for class 2 (green) vs class

 (red) so that only the closest samples of class 2 were labeled

ith that class. The f1-scores for both classes were lower than

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 5

(Q2) Results from the last iteration for experiments using five label propagation methods over five iterations. Best values per dataset in bold.

semi-supervised learning methods

dataset metric L.Prop rb f L.Prop knn L.Spread rb f L.Spread knn OPFSemi

MNIST prop. acc 0.095714 ± 0.000 0.095714 ± 0.000 0.416857 ± 0.005 0.460953 ± 0.016 0.790000 ±0.047

acc 0.096000 ± 0.000 0.096000 ± 0.000 0.402889 ± 0.013 0.451555 ± 0.015 0.797778 ±0.049

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.337752 ± 0.015 0.391369 ± 0.017 0.775103 ±0.054

H.eggs (w/o imp) prop. acc 0.146591 ± 0.088 0.197251 ± 0.000 0.872811 ± 0.036 0.602263 ± 0.108 0.983293 ±0.004

acc 0.145637 ± 0.087 0.195857 ± 0.000 0.898933 ± 0.028 0.622097 ± 0.111 0.970496 ±0.003

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.879848 ± 0.033 0.547943 ± 0.132 0.965085 ±0.003

P.cysts (w/o imp) prop. acc 0.186573 ± 0.000 0.186573 ± 0.000 0.264960 ± 0.008 0.472676 ± 0.051 0.800569 ±0.035

acc 0.186851 ± 0.000 0.186851 ± 0.000 0.256055 ± 0.023 0.472030 ± 0.039 0.819493 ±0.041

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.078200 ± 0.015 0.319221 ± 0.041 0.756949 ±0.054

H.larvae prop. acc 0.127288 ± 0.001 0.126881 ± 0.000 0.306222 ± 0.044 0.609597 ± 0.047 0.954182 ±0.008

acc 0.127014 ± 0.000 0.127014 ± 0.000 0.272986 ± 0.041 0.634123 ± 0.062 0.955450 ±0.002

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.032267 ± 0.027 0.187448 ± 0.043 0.789743 ±0.010

H.eggs prop. acc 0.069499 ± 0.002 0.052357 ± 0.030 0.482299 ± 0.049 0.621297 ± 0.062 0.936743 ±0.011

acc 0.067797 ± 0.000 0.050413 ± 0.030 0.454803 ± 0.051 0.636679 ± 0.084 0.942634 ±0.016

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.303932 ± 0.073 0.468250 ± 0.094 0.899307 ±0.027

P.cysts prop. acc 0.079389 ± 0.007 0.075307 ± 0.000 0.464935 ± 0.059 0.421283 ± 0.034 0.732716 ±0.056

acc 0.075235 ± 0.000 0.075235 ± 0.000 0.471381 ± 0.052 0.425404 ± 0.052 0.740973 ±0.056

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.302018 ± 0.061 0.264922 ± 0.050 0.580626 ±0.092

Coconut prop. acc 0.785262 ± 0.001 0.788061 ± 0.006 0.821468 ±0.011 0.783741 ± 0.022 0.815930 ± 0.036

acc 0.784163 ± 0.000 0.790691 ± 0.011 0.835107 ± 0.016 0.804030 ± 0.026 0.839364 ±0.017

kappa 0.000000 ± 0.000 0.068275 ± 0.118 0.402744 ± 0.096 0.275569 ± 0.228 0.489274 ±0.092

COVID19 prop. acc 0.170919 ± 0.000 0.171729 ± 0.001 0.540390 ± 0.041 0.512263 ± 0.066 0.589487 ±0.039

acc 0.170709 ± 0.000 0.170709 ± 0.000 0.569869 ± 0.051 0.532283 ± 0.051 0.614173 ±0.040

kappa 0.000000 ± 0.000 0.000000 ± 0.000 0.363335 ± 0.057 0.328030 ± 0.054 0.407068 ±0.066

0

s

w

p

5

D

O

fi

5

t

o

c

p

r

C

i

n

a

f

t

i

c

p

T

f

5

s

i

p

d

o

s

h

t

t

F

g

w

S

r

o

c

m

f

w

t

s

t

c

s

i

i

i

b

a

a

p

t

S

.35, and the learned feature space presented more (and more

pread) groups. At a higher level, Fig. 3 illustrates how distinct

ays of propagating labels intervene in the learned feature space

roduced by the proposed orig-DeepFA looping.

.3. Q3: Effects of adding OPFSemi’s confidence

To analyze the impact of OPFSemi’s confidence in the orig-

eepFA looping, we compared VGG-16 using different settings of

PFSemi’s label propagation, with and without confidence, after

ve iterations, by the following experiments:

• orig-DeepFA : VGG-16 is trained on S. Deep features for S ∪ U

from the last convolutional layer are projected in 2D with t-SNE

and used by OPFSemi to propagate labels from S to all samples

in U . VGG-16 is retrained from S ∪ U and tested on T ;
• conf-DeepFA τ= x : As above but selecting pseudo-labeled samples

U x ⊂ U with confidence τ ≥ x to retrain VGG-16 from S ∪ U x ,

with x ∈ { 0 . 7 , 0 . 8 , 0 . 9 } .
• conf-DeepFA τ= α: As above but starting with α = 0 . 8 and in-

creasing it by 0.04 at each iteration until a final value α = 0 . 96 .

.3.1. Q3: Results

Table 6 shows the mean label propagation accuracy, classifica-

ion accuracy, κ , and their standard deviation over three splits of

ur experiments. For all datasets, we see that selecting the most

onfident samples by OPFSemi during the orig-DeepFA looping im-

roves the results. For H.eggs with and without impurities, the best

esults were obtained for τ = 0 . 7 . For MNIST, H.larvae, P.cysts and

OVID19 , the best results occurred for τ = 0 . 8 . For P.cysts without

mpurities, τ = 0 . 9 and τ = α led to the best (similar) results. Fi-

ally, τ = 0 . 9 was the best choice for Coconut.

We conclude that confidence-based sampling shows clear

dded value in nearly all situations, as it increased κ up to 0.6

or all datasets (except COVID19). Setting τ is a dataset-dependent

ask. The adaptive (τ = α) confidence strategy does not seem to

mprove results on the test set compared to orig-DeepFA with no

onfidence sampling. One explanation can be our use of more sam-

les in early iterations (τ = 0 . 8) than in the later ones (τ = 0 . 96).
7

esting whether the opposite strategy improves results is left for

uture study.

.3.2. Q3: Discussion

Confidence-based sampling in the orig-DeepFA looping: Fig. 4

hows the average κ and propagation accuracy for DeepFA loop-

ng with full pseudolabeling of all samples (orig-DeepFA), our pro-

osed conf-DeepFA using OPFSemi’s confidence sampling for pseu-

olabeling with different ways to select the confidence thresh-

ld τ , and the best result for the VGG-16 experiments (self-VGG f e ,

ee Section 5.1), for all six studied datasets. For datasets yielding

igher κ values, we see that orig-DeepFA obtained similar results

o our proposed conf-DeepFA method. Yet, we see κ and propaga-

ion accuracy gains of almost 5% for the most challenging datasets.

or P.cysts with impurities, κ gains actually over 10% and propa-

ation accuracy gains over 17% – for which orig-DeepFA obtained

orse results than VGG-16. In short, combining DeepFA with OPF-

emi’s confidence sampling (conf-DeepFA in Fig. 4) got the best

esults for most tested datasets. Confidence-based sampling in

rig-DeepFA along iterations: Fig. 5 shows κ and propagation ac-

uracy for one split of MNIST along five iterations of our experi-

ents. We see that all compared approaches yielded an increase

rom the first to the second iteration, except self-VGG-16 f e . Also,

e see that both κ and propagation accuracy slightly decrease af-

er the third iteration. This may suggest that the proposed method

aturates, mainly by the higher decrease in κ despite of propaga-

ion accuracy. The learned pseudolabels and the original images

an be used as input for a better (known) deep architecture. Fig. 6

hows the plot for train and validation loss and accuracy consider-

ng 20% (from S) as validation set during one split of MNIST train-

ng. The initial learning curve and the learning curves for each

teration are also shown. The learning curves show that the la-

eled samples can improve the network convergence along iter-

tions. As future work, a different deep network can be tested

t the final stage. Also, an unsupervised quality measure can be

roposed to define the best feature space found at certain itera-

ions and, hence, the best iteration of the method. Choosing OPF-

emi’s confidence threshold: Adaptively selecting the confidence

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Fig. 3. (Q2) Comparison of DeepFA using LSpread rb f and OPFSemi pseudo labeling for Coconut and H.Larvae datasets, with 1 % supervised samples and last iteration out of five.

2D feature-space projections of training samples (S ∪ U) in columns per dataset (from left to right): supervised samples colored by true labels (red = 1, green = 2), unsupervised

ones are black; samples colored by assigned pseudo labels; and samples colored by their true labels. Classification results (per class and total) are shown on the right. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

t

t

w

τ
c

b

s

c

i

h

b

d

o

c

5

r

v

s

w

d

p

hreshold (conf-DeepFA τ= α) looks promising only for one of the

ested datasets. It shows a higher decreasing in κ when compared

ith the experiments without changing the confidence threshold

along the iterations. As Section 5.2 outlined, choosing OPFSemi’s

onfidence value may depend on the dataset, its difficulty, num-

er of samples, number of classes, and class imbalance. Fig. 4 also

hows this: It is not possible to define a single threshold τ for all

hosen datasets. While this fact has been already noted in [11] ,

t was not studied within a looping of data annotation as we did

ere. Rather, in [11] , user interaction was employed to define the

est confidence value based on the 2D projection guided by the

ata distribution and OPFSemi’s confidence values (mapped to col-
8
rs). We next intend to follow the same strategy to find the best

onfidence value for conf-DeepFA looping.

.4. Q4: Choice of the deep architecture

As COVID19 dataset’s results showed the lower κ values in the

ealized experiments (Sec. 5.1 , 5.2 , and 5.3), we also aim to in-

estigate the impact of VGG-16 architecture as feature learning

trategy using labeled samples in the DeepFA looping. For this,

e replace VGG-16 [16] by MobileNetV2 [17] (which has a re-

uced training time and good performance) and use ImageNet’s

re-trained weights. We compared the two architectures by the

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 6

(Q3) Results from the last iteration for proposed experiments with full label propagation (orig-DeepFA), and confidence-based label propagation

(conf-DeepFA) with confidence τ ∈ { 0 . 7 , 0 . 8 , 0 . 9 } and adaptive confidence (alpha ∈ [0 . 80 , 0 . 96] over 5 iterations). Best values per dataset in bold.

DeepFA variants

dataset metric orig-DeepFA conf-DeepFA τ=0 . 7 conf-DeepFA τ=0 . 8 conf-DeepFA τ=0 . 9 conf-DeepFA τ= α

MNIST prop. acc 0.790000 ± 0.047 0.782286 ± 0.029 0.821714 ±0.018 0.750000 ± 0.028 0.795429 ± 0.007

acc 0.797778 ± 0.049 0.788000 ± 0.030 0.822666 ±0.022 0.740222 ± 0.032 0.651778 ± 0.062

kappa 0.775103 ± 0.054 0.764348 ± 0.034 0.802863 ±0.024 0.710961 ± 0.036 0.612766 ± 0.069

H.eggs (w/o imp) prop. acc 0.983293 ±0.004 0.983832 ± 0.002 0.974401 ± 0.020 0.981945 ± 0.003 0.983832 ± 0.004

acc 0.790961 ± 0.050 0.973007 ±0.006 0.971123 ± 0.013 0.938481 ± 0.056 0.806654 ± 0.126

kappa 0.752807 ± 0.060 0.968042 ±0.007 0.965848 ± 0.015 0.927708 ± 0.066 0.771216 ± 0.148

P.cysts (w/o imp) prop. acc 0.800569 ± 0.035 0.805143 ± 0.049 0.793274 ± 0.069 0.824060 ± 0.019 0.828141 ±0.012

acc 0.819493 ± 0.041 0.826413 ± 0.039 0.814590 ± 0.060 0.842561 ±0.004 0.824394 ± 0.033

kappa 0.756949 ± 0.054 0.764035 ± 0.052 0.747127 ± 0.086 0.785441 ±0.006 0.762919 ± 0.041

H.larvae prop. acc 0.954182 ± 0.008 0.964213 ± 0.017 0.964349 ±0.012 0.941846 ± 0.039 0.951471 ± 0.014

acc 0.955450 ± 0.002 0.959558 ± 0.015 0.965561 ±0.004 0.958926 ± 0.014 0.943128 ± 0.010

kappa 0.789743 ± 0.010 0.800052 ± 0.099 0.837948 ±0.029 0.804689 ± 0.082 0.705475 ± 0.069

H.eggs prop. acc 0.936743 ± 0.011 0.936091 ± 0.005 0.937209 ±0.008 0.931806 ± 0.007 0.930967 ± 0.006

acc 0.942634 ± 0.016 0.943938 ±0.003 0.942634 ± 0.009 0.908518 ± 0.022 0.853107 ± 0.025

kappa 0.899307 ± 0.027 0.901604 ±0.006 0.898922 ± 0.015 0.831488 ± 0.043 0.719695 ± 0.054

P.cysts prop. acc 0.732716 ± 0.056 0.769748 ± 0.026 0.780300 ±0.018 0.748843 ± 0.048 0.744811 ± 0.068

acc 0.740973 ± 0.056 0.792755 ± 0.027 0.816905 ±0.027 0.818066 ± 0.022 0.731104 ± 0.082

kappa 0.580626 ± 0.092 0.652254 ± 0.051 0.699603 ±0.054 0.689325 ± 0.039 0.450283 ± 0.243

Coconut prop. acc 0.815930 ± 0.036 0.834003 ± 0.038 0.837349 ± 0.022 0.856760 ±0.035 0.791165 ± 0.034

acc 0.839364 ± 0.017 0.853696 ± 0.019 0.876827 ± 0.012 0.880232 ±0.006 0.820633 ± 0.012

kappa 0.489274 ± 0.092 0.481834 ± 0.075 0.603094 ± 0.076 0.621104 ±0.026 0.346671 ± 0.058

COVID19 prop. acc 0.589487 ± 0.039 0.579767 ± 0.048 0.613249 ± 0.018 0.586112 ± 0.049 0.624770 ±0.114

acc 0.614173 ± 0.040 0.609869 ± 0.059 0.662257 ±0.002 0.647454 ± 0.020 0.647874 ± 0.090

kappa 0.407068 ± 0.066 0.416806 ± 0.076 0.478667 ±0.013 0.420928 ± 0.026 0.433786 ± 0.087

Fig. 4. (Q3) Results of κ (top) and propagation accuracy (bottom) for the studied datasets, considering self-VGG-16 f e (best result), orig-DeepFA , and conf-DeepFA τ experiments.

The datasets are ordered by higher κ values in x axis (from left to right).

f

t

5

fi

a

i

l

r

c

u

ollowing experiments, each of them executed on both architec-

ures A ∈ { V GG − 16 , MobileNetV 2 } :
• orig-DeepFA : The architecture A is trained on S. Deep features

for S ∪ U from the last convolutional layer are projected in 2D

with t-SNE and used by OPFSemi to pseudo label from S to all U

samples. VGG-16 is retrained on these pseudo labels and tested

on T (this is one iteration of DeepFA looping out of five);
• conf-DeepFA τ=0 . 8 : As above, but OPFSemi pseudo labels from S
to U τ , for samples with confidence above τ = 0 . 8 . d

9
.4.1. Q4: Results

Table 7 shows the means of label propagation accuracy, classi-

cation accuracy, κ , and their standard deviation over three splits

fter five iterations. For COVID19, the pattern so far observed us-

ng VGG-16 was not reproduced by MobileNetV2 – i.e., a higher

abel propagation accuracy does not lead to the highest accu-

acy and κ values on the test set. Also, conf-DeepFA with τ = 0 . 8

ould not outperform orig-DeepFA using MobileNetV2 . Different val-

es of τ can be tested to validate that pattern. As such, for this

ataset, we may conclude that MobileNetV2 was not able to learn

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Fig. 5. (Q3) Results of κ (top) and propagation accuracies (bottom) for the MNIST dataset in one split over 5 iterations, considering self-VGG-16 f e (best result), orig-DeepFA ,

and conf-DeepFA experiments.

Fig. 6. Q3) Plots of loss and accuracy for one split of MNIST. The (a) initial learning curves and per-iteration curves (b-f) are shown.

Table 7

(Q4) Results from the last iteration for proposed experiments using VGG-16 and MobileNetV2 architectures with five

learning iterations. Best values per dataset in bold.

distinct architectures

dataset metric

VGG-16 MobileNetV2

orig-DeepFA conf-DeepFA τ=0 . 8 orig-DeepFA conf-DeepFA τ=0 . 8

COVID19 prop. acc 0.589487 ± 0.039 0.613249 ± 0.048 0.643580 ± 0.0385 0.669839 ±0.0100

acc 0.614173 ± 0.040 0.662257 ±0.002 0.541732 ± 0.0528 0.539685 ± 0.0096

kappa 0.407068 ± 0.066 0.478667 ±0.013 0.212528 ± 0.0628 0.147655 ± 0.0369

10

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Fig. 7. (Q2) Results of κ (top) and propagation accuracies (bottom) for the studied datasets with orig-DeepFA using L.Prop rb f , L.Prop knn , L.Spread rb f , L.Spread knn , and OPFSemi.

Datasets are ordered by higher κ values on the x axis.

Fig. 8. Q4) Comparison of the feature spaces generated by DeepFA using VGG-16 and MobileNetV2 in pseudolabeling estimation for COVID19, 1 % supervised samples and

last iteration. 2D feature-space projections of training samples from left to right column per dataset: supervised samples colored by true labels, unsupervised ones are black;

and samples colored by assigned pseudolabels.

a

V

5

d

W

d

c

t

m

t

o

g

 feature space in which OPFSemi propagates better labels than

GG-16.

.4.2. Q4: Discussion

We investigate the MobileNetV2’s feature space for the COVID19

ataset by showing its 2D projection and labeled samples (Fig. 8).

e first notice that the projection presents a mixture between
11
ifferent classes. The supervised samples (colored points) are not

learly separated from the unsupervised ones (black), showing

hat this is a challenging dataset. For VGG-16, conf-DeepFA shows

ore groups having the same color, e.g. , the small groups around

he larger one and red points grouped at the center. In contrast,

rig-DeepFA shows a projection with more colors mixed in small

roups and also red points are spread all over the larger group. For

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

M

t

t

f

t

b

b

p

t

5

d

o

p

c

c

w

s

l

w

a

d

t

d

5

t

fi

v

w

t

o

s

D

t

5

fi

F

t

p

c

(

a

t

c

C

w

c

o

Table 8

Q5) Results from the last iteration for experiments comparing the label propa-

gation in the t-SNE projected space of distinct layers L con v (the last convolutional

layer’s output) and L ml p (the last MLP layer’s output) during five iterations of conf-

DeepFA looping with τ = 0 . 8 . Best values per dataset in bold.

distinct output layers

dataset metrics L con v L ml p

prop. kappa 0.560920 ±0.317 0.523341 ± 0.058

acc 0.605778 ±0.282 0.584000 ± 0.057

MNIST kappa 0.561751 ±0.314 0.537411 ± 0.063

prop. kappa 0.980513 ±0.001 0.977636 ± 0.003

acc 0.976146 ± 0.008 0.977401 ±0.000

H.eggs (w/o imp) kappa 0.971776 ± 0.009 0.973232 ±0.000

prop. kappa 0.773862 ± 0.015 0.807765 ±0.043

acc 0.851211 ± 0.011 0.861592 ±0.033

P.cysts (w/o imp) kappa 0.797588 ± 0.018 0.810277 ±0.048

prop. kappa 0.819094 ± 0.043 0.824582 ±0.029

acc 0.958610 ± 0.002 0.961137 ±0.005

H.larvae kappa 0.807432 ± 0.017 0.823241 ±0.040

prop. kappa 0.904969 ±0.003 0.861352 ± 0.033

acc 0.945024 ±0.006 0.930465 ± 0.015

H.eggs kappa 0.902488 ±0.010 0.875675 ± 0.025

prop. kappa 0.631756 ± 0.057 0.652409 ±0.060

acc 0.808545 ± 0.036 0.812609 ±0.026

P.cysts kappa 0.682719 ±0.070 0.681252 ± 0.051

prop. kappa 0.623280 ±0.057 0.514769 ± 0.114

acc 0.887186 ±0.018 0.872996 ± 0.024

Coconut kappa 0.652869 ±0.060 0.577084 ± 0.116

prop. kappa 0.430679 ± 0.036 0.516374 ±0.034

acc 0.672126 ± 0.041 0.699108 ±0.033

COVID19 kappa 0.490593 ± 0.059 0.546634 ±0.043

h

e

p

b

t

p

v

(

c

a

5

t

fi

a

C

o

L

w

b

s

H

b

obileNetV2, there are no clear differences in the produced fea-

ure space; for the orig-DeepFA experiment, the red points seem

o be more grouped at the projection center. MobileNetV2 shows

ewer small groups having the same color around the larger group

han VGG-16. This correlates with the accuracy and κ results for

oth architectures. It is possible that MobileNetV2 could achieve

etter results if considering more supervised samples. Too few su-

ervised samples (from 10 to 100) for training this deep architec-

ure is still a problem for its convergence in comparison to VGG-16.

.5. Q5: Choice of the deep layer for feature extraction

In the earlier experiments, we only investigate our proposed

eep feature learning looping using the last convolutional layer’s

utput. However, Rauber et al. [38] showed that the multilayer

erceptron (mlp) layers, located after the convolutional layers, can

reate a 2D projected space with better separation among different

lasses for shallow architectures and without loading pre-trained

eights. To test this for our DeepFA looping, we compare the re-

ult of deep features provided by the output of (i) the last convo-

utional layer and (ii) the last mlp layer. To facilitate our analysis,

e use a fixed value of τ for conf-DeepFA and five iterations for

ll datasets. Instead of showing the propagation accuracy (which

oes not consider the class unbalance) we compute the propaga-

ion κ for the labeled samples in training set. Our experiments are

escribed below:

• L con v : VGG-16 is trained on S. Features from the last convolu-

tional layer for samples in S ∪ U are projected in 2D with t-

SNE and used by OPFSemi to pseudo labels from S to U τ , for

τ = 0 . 8 . VGG-16 is retrained on these pseudo labels and tested

on T (this is one iteration of conf-DeepFA looping out of five);
• L mlp : As above, but using features from the last hidden fully-

connected layer in the DNN.

.5.1. Q5: Results and discussion

Table 8 shows the mean label propagation accuracy, classifica-

ion accuracy, κ , and their standard deviation over three splits after

ve iterations. For MNIST, H.eggs, and Coconut, using the last con-

olutional layer obtained the best results. In contrast, for H.eggs

ithout impurities, P.cysts without impurities, H.larvae, and COVID,

he last mlp layer obtained the best results. For P.cysts, the results

f using either L con v or L mlp were similar when considering the

tandard deviation. The choice of the layer to be used in our conf-

eepFA looping also affect the κ results on the test set. All in all,

he choice of which layer to use seems to depend on the dataset.

.6. Q6: Choice of the best DeepFA iteration

As in earlier work, all our experiments so far used only a

xed number of (five) iterations. However, as Section 5.3 and

ig. 5 show, there is no guarantee that the last iteration delivers

he best model. Following Section 3.6 , we propose to evaluate the

roduced feature space in each iteration by using an unsupervised

lustering metric. For this, we select the Calinski-Harabasz Index

CHI) [39] which calculates the ratio of the sum of between-cluster

nd sum of within-cluster dispersion for all clusters, where clus-

er dispersion is defined as the sum of squared distances over the

luster points. Formally put

HI =

∑ K
k =1 n k || c k −c|| 2

K−1
∑ K

k =1

∑ n k
i =1

|| x i −c k || 2
N−K

, (1)

here x i a sample in a dataset with N samples; K the number of

lusters; n k is the number of samples in cluster k ; c k is the centroid

f cluster k ; and c is the global centroid of all samples. As CHI is
12
igh when the obtained clusters are dense and well separated from

ach other, we propose to choose the best label estimation in the

roduced feature space by selecting that one which achieves the

est CHI value after several iterations of our method.

To ease our analysis, we use a fixed τ = 0 . 8 and ten total itera-

ions for all datasets. Also, we compare the result of deep features

rovided by distinct layers (L) from the output of (i) the last con-

olutional layer (L con v) and (ii) the last multilayer-perceptron layer

 L ml p). We compute the propagation κ instead of propagation ac-

uracy for the labeled samples in the training set. The experiments

re described below:

• conf-DeepFA iter=5 : VGG-16 is trained on S. Deep features for

S ∪ U from L are projected in 2D with t-SNE, and used for OPF-

Semi’s pseudo-labeling from S to U τ , for samples with confi-

dence above τ = 0 . 8 . OPFSemi’s pseud labels are used to retrain

VGG-16, and the network is tested on T (this is one iteration of

conf-DeepFA looping out of five);
• conf-DeepFA iter= best : As above, but we compute CHI on the 2D

projections (over ten iterations) and select the model obtained

from the iteration with the highest CHI value;
• conf-DeepFA iter = wor st : As above, but we select the iteration with

the lowest CHI value.

.6.1. Q6: Results

Table 9 shows the mean label propagation accuracy, classifica-

ion accuracy, κ , and their standard deviation over three splits after

ve iterations, for the best among ten iterations, and for the worst

mong ten iterations. First, we consistently see that the highest

HI values lead to the best classification results (accuracy and κ)

n the test set, except for P.cysts with and without impurities (for

 con v) and MNIST (for L ml p). Also, the lowest CHI values lead to the

orst classification results on the test set. The iteration with the

est CHI value yields better results than those that we have found

o far in our earlier experiments (last of five iterations). For MNIST,

.eggs with and without impurities, Coconut, and COVID19, the

est iteration using L con v obtains better classification results than

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Table 9

Q5) Results for experiments comparing the label propagation in the t-SNE projected space of distinct layers (a) L con v (last convolutional layer’s output), and (b) L ml p (last

MLP layer’s output) during ten iterations of conf-DeepFA looping with τ = 0 . 8 . The result for five iterations, and both the best and worst iterations chosen by the CHI value

are presented. Best values per dataset and per layer L in bold.

L con v L ml p

dataset metric iter = 5 iter = worst iter = best iter = 5 iter = worst iter = best

CHI 3805.08 ± 2544.0 1582.67 ± 1173.2 5430.51 ±2356.6 2807.49 ± 1172.5 1104.40 ± 198.9 4055.42 ±83.5

prop. kappa 0.560920 ± 0.317 0.423657 ± 0.310 0.704985 ±0.112 0.523341 ± 0.058 0.379667 ± 0.056 0.599035 ±0.023

acc 0.605778 ± 0.282 0.533556 ± 0.282 0.743556 ±0.078 0.584000 ±0.057 0.462000 ± 0.069 0.548000 ± 0.163

MNIST kappa 0.561751 ± 0.314 0.479521 ± 0.316 0.714611 ±0.087 0.537411 ±0.063 0.401889 ± 0.076 0.496539 ± 0.183

CHI 6161.35 ± 766.6 4200.59 ± 646.2 6729.25 ±413.4 7599.88 ±308.6 3434.74 ± 740.5 7599.88 ±308.6

prop. kappa 0.980513 ± 0.001 0.978596 ± 0.006 0.981472 ±0.002 0.977636 ±0.003 0.961359 ± 0.008 0.977636 ±0.003

acc 0.976146 ± 0.008 0.975518 ± 0.007 0.979284 ±0.005 0.977401 ±0.000 0.972379 ± 0.007 0.977401 ±0.000

H.eggs (w/o imp) kappa 0.971776 ± 0.009 0.971012 ± 0.008 0.975469 ±0.006 0.973232 ±0.000 0.967319 ± 0.008 0.973232 ±0.000

CHI 2447.19 ± 209.7 1453.61 ± 511.9 3098.45 ±219.9 2786.55 ± 198.5 1854.04 ± 253.9 3534.84 ±260.9

prop. kappa 0.773862 ±0.015 0.672889 ± 0.062 0.684681 ± 0.032 0.807765 ±0.043 0.680152 ± 0.076 0.791739 ± 0.065

acc 0.851211 ±0.011 0.793829 ± 0.036 0.791811 ± 0.025 0.861592 ± 0.033 0.816609 ± 0.041 0.863898 ±0.031

P.cysts (w/o imp) kappa 0.797588 ±0.018 0.712134 ± 0.059 0.729677 ± 0.026 0.810277 ± 0.048 0.750887 ± 0.055 0.817631 ±0.039

CHI 774.15 ± 214.7 499.97 ± 47.4 920.94 ±340.6 5546.44 ± 8201.1 570.23 ± 313.8 8664.83 ±12964.6

prop. kappa 0.819094 ± 0.043 0.775107 ± 0.050 0.824502 ±0.038 0.824582 ± 0.029 0.796519 ± 0.009 0.830402 ±0.042

acc 0.958610 ± 0.002 0.952607 ± 0.009 0.959242 ±0.006 0.961137 ± 0.005 0.955134 ± 0.006 0.964613 ±0.005

H.larvae

kappa 0.807432 ±0.017 0.755035 ± 0.068 0.806115 ± 0.031 0.823241 ± 0.040 0.785666 ± 0.054 0.840656 ±0.035

CHI 1041.17 ± 8.9 724.86 ± 54.2 1108.63 ±37.9 1187.05 ± 47.2 846.19 ± 31.8 1319.95 ±72.3

prop. kappa 0.904969 ±0.003 0.837934 ± 0.031 0.885585 ± 0.014 0.861352 ± 0.033 0.810120 ± 0.012 0.870839 ±0.019

acc 0.945024 ± 0.006 0.917427 ± 0.022 0.945676 ±0.005 0.930465 ± 0.015 0.915906 ± 0.014 0.931986 ±0.014

H.eggs kappa 0.902488 ± 0.010 0.851161 ± 0.040 0.904525 ±0.009 0.875675 ± 0.025 0.847946 ± 0.027 0.878822 ±0.024

CHI 842.15 ± 212.7 737.011 ± 256.6 1329.19 ±115.3 1590.07 ± 128.3 1155.53 ± 289.7 1861.46 ±197.0

prop. kappa 0.631756 ±0.057 0.626103 ± 0.075 0.631550 ± 0.063 0.652409 ± 0.060 0.632259 ± 0.017 0.668595 ±0.040

acc 0.808545 ± 0.036 0.811796 ±0.021 0.792523 ± 0.039 0.812609 ± 0.026 0.800882 ± 0.032 0.813886 ±0.020

P.cysts kappa 0.682719 ±0.070 0.682633 ± 0.055 0.665641 ± 0.056 0.681252 ± 0.051 0.668188 ± 0.052 0.696163 ±0.029

CHI 4043.65 ± 1101.3 1338.66 ± 707.1 5028.79 ±1068.9 2811.05 ± 1232.2 930.54 ± 762.9 4469.81 ±1436.5

prop. kappa 0.623280 ± 0.057 0.448743 ± 0.125 0.623487 ±0.105 0.514769 ± 0.114 0.370199 ± 0.228 0.571377 ±0.092

acc 0.887186 ±0.018 0.863914 ± 0.016 0.886760 ± 0.015 0.872996 ± 0.024 0.834823 ± 0.041 0.879239 ±0.013

Coconut kappa 0.652869 ± 0.060 0.537551 ± 0.071 0.669792 ±0.040 0.577084 ± 0.116 0.379283 ± 0.274 0.634328 ±0.043

CHI 1112.59 ± 512.8 511.67 ± 110.9 1516.63 ±270.7 3712.00 ± 951.4 1827.87 ± 677.0 4830.30 ±882.7

prop. kappa 0.430679 ± 0.036 0.410851 ± 0.046 0.494343 ±0.025 0.516374 ± 0.034 0.360516 ± 0.014 0.538565 ±0.034

acc 0.672126 ± 0.041 0.646614 ± 0.046 0.713491 ±0.012 0.699108 ± 0.033 0.634016 ± 0.032 0.699318 ±0.033

COVID19 kappa 0.490593 ± 0.059 0.459456 ± 0.056 0.555074 ±0.019 0.546634 ± 0.043 0.436049 ± 0.044 0.548049 ±0.044

Fig. 9. Q6) Results of CHI (top) and κ (bottom) for the studied datasets, considering the last convolutional layer (left) and the last mlp layer (right) for conf-DeepFA with

fixed certainty value (τ = 0 . 8). The worst (red) and the best (green) iterations out of ten iterations were chosen based in the worst and best CHI values on the training set

respectively. The results after five iterations (orange) are also shown. The datasets are ordered by higher κ values in x axis (from left to right). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

w

i

i

5

a

T

t

C

t

l

y

c

e

κ
t

t

f

p

hen using L mlp . For this dataset, using L con v with the highest- CHI

teration selection strategy increases κ by 0.15 as compared to us-

ng the last iteration.

.6.2. Q6: Discussion

Using CHIto select the labeled feature space: Fig. 9 shows CHI

nd κ for the last five, best, and worst iterations for L con v and L ml p .

he worst values (red) are always lower than the last-five itera-

ions (orange) and also lower than the best values (green) for both

HI and κ . We conclude that using CHI values computed from
13
he produced 2D feature space in training set and using pseudo-

abels (even prone to errors) to select the best and worst iterations

ields good classification results on the test set. This supports the

hoice of the best iteration of conf-DeepFA looping even for differ-

nt datasets. Also, we notice that higher CHI values lead to higher

values. For example, for MNIST, both CHI and κ are higher for

he L con v setup than for the L ml p setup. We also see that L mlp yields

o higher CHI (and κ) values than L con v for all datasets, except

or MNIST. Added-value of CHIevaluation in conf-DeepFA: Fig. 10

lots, for each dataset, the best κ chosen by the best CHI value

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

Fig. 10. Q6) Effectiveness of using CHI for choosing the best iteration in ext-DeepFA given by the best κ chosen by the best CHI in each iteration over the best possible κ in

the test set.

Fig. 11. Brief summary of the raised questions. For each addressed question, the compared experiments (orange, dashed) and the best result (blue, solid) are presented. Each

resulting answer leads and composes the final ext-DeepFA . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

d

a

l

T

i

6

m

t

fi

t

l

O

f

M

e

v

t

p

c

t

a

t

a

a

t

w

g

f

t

s

s

7

i

w

d

t

S

o

h

i

t

m

d

a

v

m

r

t

c

o

ivided by the highest κ obtained on the test set for both L con v
nd L mlp . We see that the CHI-based selection approach achieves at

east 95% of the best possible result in the test set for all datasets.

his confirms the added-value of using CHI for choosing the best

teration of conf-DeepFA .

. Answers to the studied questions

Fig. 11 summarizes our targeted questions, performed experi-

ents, and best obtained results per question. We evaluate (Q1)

he feature space generated by VGG-16 by feature extraction and

ne-tuning strategies and compare (Q2) OPFSemi label propaga-

ion with other semi-supervised methods within the annotation

ooping. Next, we include (Q3) a confidence sampling strategy to

PFSemi’s pseudo-labeling to define the most confident samples

or training VGG-16 and evaluate (Q4) a feature space produced by

obileNetV2, a recent deep architecture with much fewer param-

ters to optimize. We also compare (Q5) two feature spaces pro-

ided by distinct layers of the deep network and investigate (Q6)

he usage of a clustering metric to choose the best iteration in the

roposed looping.

Considering the proposed experimental setup for orig-DeepFA,

onf-DeepFA , and ext-DeepFA evaluation, we show that (Q1) self-

rained VGG-16 models based on feature extraction only are usu-

lly better than fine-tuned models. (Q2) OPFSemi label propaga-

ion yielded the best performance on the 2D projected space for

ll tested datasets. (Q3) Confidence-based sampling showed clear

dded value, with different confidence values for each dataset

hough. (Q4) MobileNetV2 was not able to learn a feature space in
14
hich OPFSemi propagated better labels than VGG-16. (Q5) Propa-

ating labels in different layers of the deep architecture led to dif-

erent label propagation and classification accuracies depending on

he dataset. (Q6) High values of the chosen clustering metric con-

istently led to the best propagation accuracy and classification re-

ults.

. Limitations

We can split our limitations into those related to the exper-

mental validation and the proposed technique. In validating our

ork, we explored eight datasets (from toy to real scenarios), two

eep-learning approaches (VGG-16 and MobileNetV2), five itera-

ions of the deep annotation loop, and one projection method (t-

NE). Exploring more combinations of such techniques is definitely

f extra added value. Using more than five looping iterations could

elp to understand how much the learned feature space can be

mproved.

Related to the limitations of the proposed technique, we see

hat the selection of the confidence threshold τ and layer depth

ay vary on the dataset. To solve that observed dataset depen-

ency, we plan to include user knowledge to select those values

nd layers. Although we have shown that the 2d projection pro-

ided by the t-SNE algorithm is suitable to offer relevant infor-

ation to OPFSemi’s label propagation, the t-SNE projection er-

ors were not considered to improve the performed label propaga-

ion and feature learning. Additionally, using the t-SNE algorithm

an be an issue due to its scalability: projecting more than dozens

f thousands of samples can cost minutes. We intend to analyze

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

f

t

8

a

t

u

i

s

m

t

d

t

k

b

f

k

(

t

a

s

W

l

s

t

t

c

a

o

p

t

c

i

t

n

t

i

l

o

D

c

i

D

A

#

0

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

urther the impact of the t-SNE projection errors and other projec-

ion techniques in our proposed pipeline.

. Conclusion

We proposed an approach for labeling unsupervised samples

nd increasing the quality of image classification and extracted fea-

ure spaces when using very few supervised samples and many

nsupervised ones for training. To cover the weaknesses of an ex-

sting earlier approach, we designed a new approach by evaluating

ix questions that aim to explore the space of possible improve-

ents. Our investigation led to several findings. First, we showed

hat OPFSemi’s label propagation by minimum graph paths con-

ucted over t-SNE projections is better than other label propaga-

ion methods, even those using graphs, neighborhood distances, or

ernel tricks. Using a confidence sampling strategy, we selected the

est-labeled samples to retrain the model and minimized the ef-

ect of wrongly assigned labels in the learned feature space. To our

nowledge, we used for the first time the Calinski-Harabasz Index

CHI) to evaluate the learned feature space and pseudo-labels of

-SNE projected features in a 2D space. CHI reveals a correlation

mong the best 2D feature space, best pseudo-labels, and best clas-

ification results, even if these are pseudo-labels prone to errors.

hen using CHI values to choose the best iteration, we achieve at

east 95% of the best κ value achievable in the test set. This in-

ight opens new ways for using CHI as an evaluation strategy in

he learned and projected feature space and its pseudo labels.

To solve the observed dataset dependency in the selection of

he confidence threshold τ and layer depth, we plan next to in-

lude user knowledge to provide a semi-automatic pseudo-labeling

long the lines in [11] , but now considering the proposed looping

f the deep feature annotation method. Also, considering CHI can

rovide relevant information about the deep annotated features

o support the user in a semi-automatic fashion. We intend to

onsider self-supervised learning strategies in deep feature learn-

ng to improve the learned feature space. Additionally, we plan

o evaluate other projection methods (beyond t-SNE) with high

eighborhood preservation qualities for potential label propaga-

ion improvement. Ultimately, we expect that our automatic-and-

nteractive deep feature-based pseudo-labeling combination will

ead to higher quality and more explainable deep learning meth-

ds.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The authors acknowledge FAPESP grants #2014 / 12236 − 1 ,

2019 / 10705 − 8 , #2022/12668-5, CAPES grants with Finance Code

01, and CNPq grants #303808 / 2018 − 7 .

eferences

[1] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
C.L. Zitnick, Microsoft COCO: Common objects in context, in: Proc. ECCV, 2014,

pp. 740–755 .
[2] C. Sun, A. Shrivastava, S. Singh, A. Gupta, Revisiting unreasonable effectiveness

of data in deep learning era, in: Proc. ICCV, 2017, pp. 843–852 .
15
[3] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (null) (2012) 281–305 .

[4] D.H. Lee, Pseudo-label : The simple and efficient semi-supervised learning
method for deep neural networks, in: Proc. ICML-WREPL, 2013 .

[5] T. Miyato, S.-i. Maeda, M. Koyama, S. Ishii, Virtual adversarial training: a regu-
larization method for supervised and semi-supervised learning, IEEE PAMI 41

(8) (2018) 1979–1993 .
[6] L. Jing, Y. Tian, Self-supervised visual feature learning with deep neural net-

works: a survey, IEEE PAMI (2020), doi: 10.1109/TPAMI.2020.2992393 . 1–1

[7] H. Pham, Z. Dai, Q. Xie, Q.V. Le, Meta pseudo labels, in: Proc. CVPR, 2021,
pp. 11557–11568 .

[8] W. Amorim, A. Falcão, J. Papa, M. Carvalho, Improving semi-supervised learn-
ing through optimum connectivity, Pattern Recognit. 60 (2016) 72–85 .

[9] B.C. Benato, A.C. Telea, A.X. Falcão, Semi-supervised learning with interactive
label propagation guided by feature space projections, in: Proc. SIBGRAPI, 2018,

pp. 392–399 .

[10] W. Amorim, G. Rosa, Rogério, J. Castanho, F. Dotto, O. Rodrigues, A. Marana,
J. Papa, Semi-supervised learning with connectivity-driven convolutional neu-

ral networks, Pattern Recognit. Lett. 128 (2019) 16–22 .
[11] B.C. Benato, J.F. Gomes, A .C. Telea, A .X. Falcão, Semi-automatic data annotation

guided by feature space projection, Pattern Recognit. 109 (2021) 107612 .
12] B.C. Benato, J.F. Gomes, A.C. Telea, A.X. Falcão, Semi-supervised deep learning

based on label propagation in a 2D embedded space, in: Proc. CIARP, Springer,

2021, pp. 371–381 .
[13] V. Sindhwani, P. Niyogi, M. Belkin, Beyond the point cloud: From transductive

to semi-supervised learning, in: Proc. ICML, 2005, pp. 824–831 .
[14] L. van der Maaten, Accelerating t-SNE using tree-based algorithms, J. Mach.

Learn. Res. 15 (1) (2014) 3221–3245 .
[15] B.C. Benato, A.C. Telea, A.X. Falcao, Iterative pseudo-labeling with deep fea-

ture annotation and confidence-based sampling, in: Proc. SIBGRAPI, IEEE, 2021,

pp. 192–198 .
[16] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, 2014. arxiv.org/abs/1409.1556.
[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv2: In-

verted residuals and linear bottlenecks, in: Proc. CVPR, 2018, pp. 4510–4520 .
[18] Y. Wang, Q. Yao, J.T. Kwok, L.M. Ni, Generalizing from a few examples: a survey

on few-shot learning, ACM Comput. Surv. 53 (3) (2020) 1–34 .

[19] Z. Yu, L. Chen, Z. Cheng, J. Luo, Transmatch: a transfer-learning scheme for
semi-supervised few-shot learning, CVPR, 2020 .

20] Y. Li, X. Chao, Semi-supervised few-shot learning approach for plant diseases
recognition, Plant Methods 17 (2021) 1–10 .

21] A. Zhmoginov, M. Sandler, M. Vladymyrov, Hypertransformer: model genera-
tion for supervised and semi-supervised few-shot learning, in: International

Conference on Machine Learning, PMLR, 2022, pp. 27075–27098 .

22] A. Iscen, G. Tolias, Y. Avrithis, O. Chum, Label propagation for deep semi-su-
pervised learning, in: Proc. ICCV, 2019, pp. 5070–5079 .

23] E. Arazo, D. Ortego, P. Albert, N.E. O’Connor, K. McGuinness, Pseudo-labeling
and confirmation bias in deep semi-supervised learning, in: Proc. IJCNN, IEEE,

2020, pp. 1–8 .
24] W. Shi, Y. Gong, C. Ding, Z.M. Tao, N. Zheng, Transductive semi-supervised deep

learning using min-max features, in: Proc. ECCV, 2018, pp. 299–315 .
25] X. Zhai, A. Oliver, A. Kolesnikov, L. Beyer, S4l: Self-supervised semi-supervised

learning, in: Proc. ICCV, 2019, pp. 1476–1485 .

26] P. Cascante-Bonilla, F. Tan, Y. Qi, V. Ordonez, Curriculum labeling: revisiting
pseudo-labeling for semi-supervised learning, arXiv preprint arXiv:20 01.060 01

(2020) .
27] N. Das, S. Chaba, R. Wu, S. Gandhi, D.H. Chau, X. Chu, GOGGLES: Automatic

image labeling with affinity coding, in: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, in: SIGMOD ’20, Association

for Computing Machinery, 2020, pp. 1717–1732 .

28] R. Wu, N. Das, S. Chaba, S. Gandhi, D.H. Chau, X. Chu, A cluster-then-label ap-
proach for few-shot learning with application to automatic image data label-

ing, J. Data and Information Quality 14 (3) (2022) .
29] B.C. Benato, A.X. Falcao, A.C. Telea, Linking data separation, visual separation,

and classifier performance using pseudo-labeling by contrastive learning, in:
Proc. VISAPP, IEEE, 2023 (to appear) .

30] M. Espadoto, R. Martins, A. Kerren, N. Hirata, A. Telea, Toward a quantitative

survey of dimension reduction techniques, IEEE TVC 27 (3) (2019) 2153–2173 .
31] Z. Tian, X. Zhai, G. van Steenpaal, L. Yu, E. Dimara, M. Espadoto, A. Telea, Quan-

titative and qualitative comparison of 2D and 3D projection techniques for
high-dimensional data, Information 12 (2021) .

32] Y. LeCun, C. Cortes, MNIST handwritten digit database(2010).
yann.lecun.com/exdb/mnist.

33] C. Suzuki, J. Gomes, A. Falcão, S. Shimizu, J. Papa, Automated diagnosis of

human intestinal parasites using optical microscopy images, in: Proc. Symp.
Biomedical Imaging, 2013, pp. 460–463 .

34] J.E. Vargas-Muñoz, P. Zhou, A.X. Falcão, D. Tuia, Interactive coconut tree anno-
tation using feature space projections, in: Proc. IGARSS, 2019, pp. 5718–5721,

doi: 10.1109/IGARSS.2019.8899005 .
35] M.E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M.A. Kadir, Z.B. Mahbub,

K.R. Islam, M.S. Khan, A. Iqbal, N. Al Emadi, et al., Can ai help in screening viral

and covid-19 pneumonia? IEEE Access 8 (2020) 132665–132676 .
36] T. Rahman, A. Khandakar, Y. Qiblawey, A. Tahir, S. Kiranyaz, S.B.A. Kashem,

M.T. Islam, S. Al Maadeed, S.M. Zughaier, M.S. Khan, et al., Exploring the ef-
fect of image enhancement techniques on covid-19 detection using chest x-ray

images, Comput. Biol. Med. 132 (2021) 104319 .

http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0001
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0002
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0003
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0004
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0005
https://doi.org/10.1109/TPAMI.2020.2992393
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0007
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0008
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0009
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0010
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0011
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0012
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0013
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0014
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0015
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0016
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0017
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0018
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0019
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0020
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0021
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0022
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0023
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0024
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0025
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0026
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0027
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0028
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0029
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0030
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0031
https://doi.org/10.1109/IGARSS.2019.8899005
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0033
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0034

B.C. Benato, A.C. Telea and A.X. Falcão Pattern Recognition 141 (2023) 109649

[
[

[

B

s
a

i

l

A

h

v
U

t

A

U

t
p

t

37] F. Chollet, et al., Keras, 2015, (https://keras.io).
38] P. Rauber, A. Falcão, A. Telea, Projections as visual aids for classification system

design, Inf Vis (2017) .
39] T. Cali ́nski, J. Harabasz, A dendrite method for cluster analysis, Commun. Stat.

3 (1) (1974) 1–27 .

árbara C. Benato received her M.Sc. (2019) in Computer Science from Univer-

ity of Campinas, Brazil. She is currently a Ph.D. student in Computer Science
t University of Campinas, Brazil. Her research interests include machine learn-

ng, deep learning, pattern recognition and visual analytics applications in machine

earning.
16
lexandru C. Telea received his Ph.D. (20 0 0) in Computer Science from the Eind-
oven University of Technology, the Netherlands. He is currently a professor in

isual data analytics at the Department of Information and Computing Sciences,
trecht University. His interests include 3D multiscale shape processing, informa-

ion visualization, software visualization, machine learning, and visual analytics.

lexandre X. Falcão received his Ph.D. (1996) in Electrical Engineering from the

niversity of Campinas, Brazil. He is a Professor in Computer Science at the Insti-

ute of Computing, University of Campinas and his research interests include image
rocessing and analysis, machine learning and pattern recognition, data visualiza-

ion, medical imaging and remote sensing applications.

https://keras.io
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0035
http://refhub.elsevier.com/S0031-3203(23)00350-3/sbref0036

	Deep feature annotation by iterative meta-pseudo-labeling on 2D projections
	1 Introduction
	2 Related works
	3 Proposed pipeline
	3.1 Deep feature learning
	3.2 Layer selection
	3.3 Dimensionality reduction
	3.4 Label estimation
	3.5 Sample selection
	3.6 Evaluation of the projected labeled space

	4 Experimental setup
	4.1 Datasets
	4.2 Experimental setup
	4.3 Implementation details

	5 Experimental results
	5.1 Q1: Can a pretrained VGG-16 improve performance by self pseudo labeling?
	5.1.1 Q1: Results and discussion

	5.2 Q2: OPFSemi’s pseudo-labeling vs other comparable methods
	5.2.1 Q2: Results
	5.2.2 Q2: Discussion

	5.3 Q3: Effects of adding OPFSemi’s confidence
	5.3.1 Q3: Results
	5.3.2 Q3: Discussion

	5.4 Q4: Choice of the deep architecture
	5.4.1 Q4: Results
	5.4.2 Q4: Discussion

	5.5 Q5: Choice of the deep layer for feature extraction
	5.5.1 Q5: Results and discussion

	5.6 Q6: Choice of the best DeepFA iteration
	5.6.1 Q6: Results
	5.6.2 Q6: Discussion

	6 Answers to the studied questions
	7 Limitations
	8 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

