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Surface and curve skeletons are important shape descriptors with applications in shape matching, sim-
plification, retrieval, and animation. In recent years, many surface and curve skeletonization methods
for 3D shapes have been proposed. However, practical comparisons of such methods against each other
and against given quality criteria are quite limited in the literature. In this paper, we compare 4 surface
and 6 recent curve skeletonization methods that operate on voxel shapes. We first compare the selected
methods from a global perspective, using the quality criteria established by a reference paper in the field.
Next, we propose a detailed comparison that refines the gained insights by highlighting small-scale dif-
ferences between skeletons obtained by different methods.
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1. Introduction

Skeletons are shape descriptors with many applications in
shape processing, registration, retrieval, matching, animation,
and compression [1]. 3D shapes admit two types of skeletons: Sur-
face skeletons are 2D manifolds formed by the loci of maximally-
inscribed balls within a shape [1,2]. Curve skeletons are 1D curves
which are locally centered in the shape and capture the shape’s
part-whole structure [3].

Since the early skeleton definition by Blum [4], many methods
have been proposed to compute the two skeleton types. Such
methods differ in theoretical aspects, e.g. the exact definition for
curve skeletons, and practical aspects, e.g. space discretization
(voxels vs meshes); the various approximations being used; and
the actual skeleton extraction algorithm. These aspects, and the
inherent sensitivity of skeletons to boundary noise, makes differ-
ent methods produce widely different skeletons for the same input.
This causes challenges for the users of skeletons in both research
and practical contexts.

Recognizing these challenges, Cornea et al. [3] have presented a
taxonomy of curve skeletonization methods and the way these
satisfy a set of desirable skeletal properties, and illustrated these
for four such methods. Since this publication, several new
skeletonization methods have been proposed. A recent study ex-
tended the work in [3] by comparing methods of a particular class
(contraction-based methods for meshed shapes) against Cornea’s
criteria [5]. These two studies however cover only a very limited
fraction of the current skeletonization methods. Also, papers intro-
ducing new skeletonization methods typically present only few
additional comparisons. Table 1 illustrates this for a selection of
methods, which is by no means exhaustive. Finally, very few com-
parisons of surface skeletons with curve skeletons are presented,
so there are still many open questions on the relationships of the
two skeleton types. As computational advances allow implement-
ing increasingly complex skeletonization methods, the challenge of
understanding the relative pro’s and con’s of such new methods
only grows.

In this paper, we address the above challenges by presenting a
comparison of 4 surface and 6 curve skeletonization methods. In
contrast to [5], we focus here on voxel-based methods. In addition
to [3], we cover here methods having emerged after their study
was published. We use in our comparison the same desirable crite-
ria as in [3]. In addition, we also propose a detailed comparison
that aims to provide a fine-grained detail view on the subtle differ-
ences between skeletons computed by different methods, includ-
ing comparisons of curve with surface skeletons. Our results offer
additional insight in limitations and challenges of current methods
which, to our knowledge, have not been highlighted so far. These
results represent further support for the quest of designing better
skeletonization methods.
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Table 1
Recent 3D skeletonization papers. For each method, we show its type (Volume or
Mesh), and the surface- and/or curve-skeletonization methods it is compared with.
Dashes show that a method does not compute the respective (curve or surface)
skeleton type. Last three rows are survey papers.

Method Compared with

Type Name Surface skeleton Curve skeleton

M Jalba et al. [8] [19] [7,14]
M Giesen et al. [19] [12,47,48] –
M Huang et al. [18] – [15]
M Au et al. [14] – [49,37,30,34]
M Dey and Sun [34] – [30]
M Tagliasacchi et al. [50] – [34,14]

V Arcelli et al. [45] – 0
V Reniers et al. [7] 0 0
V Hesselink et al. [26] 0 –
V Siddiqi et al. [25] 0 –
V Liu et al. [51] – [7,37]
V Ju et al. [52] [53] [53]
M + V Livesu et al. [35] – [30,34,14,51]

M Sobiecki et al. [5] – [14–16,54]
M + V Cornea et al. [3] – [37,49,30,13]
V Our contribution [25,26,7,52] [25,7,52,51,45,37]
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This paper is organized as follows. Section 2 reviews related
work. Section 3 presents the compared methods and comparison
criteria. Section 4 presents the comparison methodology. Section 5
presents our comparison results. Section 6 discusses these results.
Section 7 concludes the paper.

2. Related work

2.1. Skeletonization methods

For a shape X � R3 with boundary @X, we first define its dis-
tance transform DT@X : R3 ! Rþ

DT@Xðx 2 XÞ ¼ min
y2@X
kx� yk: ð1Þ

The surface skeleton, also called the medial surface, SX of X is next
defined as

SX ¼ fx 2 X j 9 f 1; f 2 2 @X; f 1 – f 2; kx� f 1k ¼ kx� f 2k ¼ DT@XðxÞg
ð2Þ

where f 1 and f 2 are the contact points with @X of the maximally-
inscribed ball in X centered at x [6,7], also called feature transform
(FT) points [8]. When X � R2, Eq. (2) yields the 2D skeleton, also
called the medial axis, of the shape X. Surface skeletons contain sev-
eral manifolds with boundaries which meet along a set of Y-inter-
section curves [9–11]. Curve skeletons are loosely defined as 1D
structures locally centered within a shape X � R3.

Surface and curve skeletons can be computed by geometric, dis-
tance field, general field, and thinning methods. Geometric meth-
ods include Voronoi diagrams [12] and subsets thereof [13], mesh
contraction in normal direction [14–17], mean-shift-like clustering
[18], and union-of-balls approaches [19,20,8]. Such methods use
meshed shape representations and thus scale well to handle
high-resolution models [20,8]. Distance-field methods find SX

along singularities of DT@X [21–26] and can be efficiently done on
GPUs [27,28]. General-field methods use fields smoother (with
fewer singularities) than distance transforms [29–32]. Such
methods are more robust for noisy shapes. Various regularization
metrics, e.g. the angle between feature vectors [33,27], or the geo-
desic distance between feature points [34,7], are used to eliminate
spurious skeleton details caused by noise on @X. Field methods can
also compute 3D curve skeletons by backprojecting 2D skeletons of
2D projections [35] or axis-aligned slices [36] of the shape back
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
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into 3D. Field methods are implemented for both voxel and mesh
shapes. Thinning methods remove @X voxels while preserving
connectivity [37,38]. Tools from mathematical morphology [39]
were among the first used to compute curve skeletons by thinning.
The residue of openings, based on Lantuéjoul’s formula [40], usu-
ally leads to disconnected skeleton branches, whereas methods
based on homotopic thinning transformations [40–42,37] yield
connected skeletons. Constraining thinning by distance-to-bound-
ary order [43–45] or flux-order [46] further enforces centeredness.
Further details on related work and such methods are given in
Section 3.2.

2.2. The challenge of comparison

Unsurprisingly, the wealth of existing skeletonization methods
makes an exhaustive comparison hard. Aspects which contribute
to this challenge are (a) different shape representations (voxels
vs meshes vs point clouds), (b) the unavailability of several imple-
mentations, and (c) different skeleton definitions. The last aspect is
particularly important: For surface skeletons, one could argue that
Eq. (2) is a unique definition against which all methods can be
checked. However, both spatial discretizations of Eq. (2) and heu-
ristic regularizations that remove small-scale ‘noise’ details allow
multiple weak forms of Eq. (2) [26,7,19]. For curve skeletons, the
problem is even harder, as these have no unique definition, not
even in the continuous R3 space.

Such aspects make it hard to analytically compare, and reason
about, the properties of the produced skeletons. As such, qualita-
tive comparisons have been proposed. In 2007, Cornea et al. com-
pared four curve-skeletonization methods, one from each class
listed in Section 2.1. To facilitate the comparison, they also propose
several quality criteria that skeletons should obey. Six years later,
this comparison was extended for six other contraction-based
curve-skeletonization methods [5]. Schaap et al. proposed a quan-
titative comparison of 13 centerline extraction algorithms for cor-
onary artery datasets [55]. As reference, they use a centerline
constructed by manual annotation by expert users. However, in
contrast to the tubular artery shapes considered in [55], manual
construction of curve, and even more so of surface, skeletons for
general 3D shapes not feasible. A cursory scan over many skeleton-
ization papers shows that such method comparisons are very lim-
ited (see Table 1). As such, more comparison studies are strongly
needed to better understand the strengths and limitations of exist-
ing methods.
3. Methods

We next describe a study that adds 4 surface and 6 curve skel-
etonization methods for voxel shapes to the existing comparison
surveys mentioned in Section 2. Section 3.1 presents the desirable
criteria that we compare against. Section 3.2 introduces the meth-
ods selected for comparison.

3.1. Comparison criteria

Following [3,1,5,8], we focus on the following well-known qual-
ity criteria for curve and surface skeletons:

Homotopy: The skeleton is topologically equivalent to the in-
put shape (same number of connected components, cavities, and
tunnels).

Thin: The skeleton should be as thin as the sampling model
used allows it. Voxel-based skeletons should be one voxel thick,
i.e., no 2� 2 foreground-voxel configurations should exist.

Centered: For surface skeletons, this is equivalent to Eq. (2). For
curve skeletons, no unique centeredness definition exists. An
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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useful weak form of curve-skeleton centeredness says that the
curve skeleton should be a subset of the surface skeleton, since
the latter is by definition centered in the shape [50,54,8].

Smoothness: As centeredness, smoothness is hard to formally
define. Surface skeleton manifolds are at least C2 continuous
[2,1]. Curve-skeletons are centered subsets thereof [50,54]. Hence,
it is arguable that curve skeletons should be also per-branch C2. In
any case, curve skeletons should not exhibit curvature discontinu-
ities induced by the sampling of either the input surface or curve
skeleton representation.

Regularization: Skeletons should capture fine-scale details,
such as bumps or edges, of the input shape. Users should be able
to select the scale of significant details which the skeleton should
capture. All smaller-scale details are regarded as noise, and should
thus be eliminated. This criterion subsumes the so-called noise
robustness and detail preservation criteria. Since the definition of
noise vs details is an application-dependent scale issue, we chose
to use here instead the criterion of regularization, defined as the
ability of user-controlled skeleton simplification [20,8,54].

Sampling robustness: The difference between skeletons com-
puted for two voxel samplings of a shape should be proportional
with the input-sampling differences.

Scalability: Skeletonization methods should be able to extract
skeletons of large (10243 or similar) voxel volumes in (tens of) sec-
onds on a modern PC with 16 GB RAM.

3.2. Selected methods for comparison

To select actual methods, we used the following criteria:

� model: We study only voxel-based methods. Mesh-based meth-
ods were recently separately covered in [5];
� type: We chose methods in each class (distance-field, general-

field, and thinning). Geometric methods are not studied, as
these typically use a mesh representation;
� coverage: We chose to compare several methods not surveyed

by [3];
� quality: We chose methods whose advertised features match

the quality criteria in Section 3.1, in particular, methods which
can handle large voxel volumes;
� generality: We chose methods that handle any shapes, regard-

less of form, complexity, or genus. In particular, this eliminates
methods that cannot handle shapes with tunnels, methods that
only work for tubular shapes and/or branch-less shapes;
� availability: We chose methods with a public (or easily replica-

ble) implementation, so our results can be verified.

Using these criteria, we selected 6 curve skeletonization (CS)
and 4 surface skeletonization (SS) methods, as follows (note that
some methods produce both curve and surface skeletons):

Integer Medial Axis transform (IMA, CS): Roerdink et al. pro-
posed IMA, a distance-field method that computes one feature
point per voxel (also called single-point feature transform [7]) of
@X. Regularized surface skeletons are found as those voxels whose
27-neighborhoods contain feature points located on @X further
apart than a user-given value c, similar to the distance-and-angle
regularization in [27]. IMA has a time complexity that is linear in
the number of input voxels, is very simple to implement, and can
be easily parallelized.

Multiscale Skeletons (MS, SS and CS): Reniers et al. proposed
MS [7], a general-field method that computes the surface skeleton
following Eq. (2) using the feature transform of [56]. Surface skel-
etons are regularized by an importance metric equal to the length
of the shortest path on @X between feature points. Curve skeletons
are detected as those surface-skeleton points admitting two differ-
ent such shortest paths, following [34], and regularized based on
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
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the area enclosed by the two shortest paths mentioned above.
Thresholding the importance delivers a hierarchy of nested skele-
tons describing the shape at different scales. Skeleton connectivity
is implied by the conjectured, but not proved, monotonicity of the
importance metric.

Hamilton–Jacobi Skeletons (HJ, SS and CS): Siddiqi et al. pro-
posed HJ, one of the first general-field methods. HJ detects medial
points, which coincide with the shocks of the grassfire flow, as
points where the average outward flux of the distance-transform
gradient is non-zero [25]. A flux-ordered homotopy-preserving
thinning is used to simplify the surface skeleton. With sufficient
simplification, curve skeletons are obtained. The idea has been fur-
ther enhanced with subpixel flux calculations andimproved with
error correction in areas of large curvature [57]. To our knowledge,
this enhancement has only been tested for 2D shapes. We imple-
mented the curvature-correction enhancement for 3D shapes for
our comparison.

Distance-Driven Skeletonization (DDS, CS): To extract surface
skeletons, Arcelli et al. combine iterative thinning and distance-
field methods to remove non-skeletal voxels while updating the
distance transform based on a h3;4;5i scheme [45]. From these,
curve skeletons can be further extracted by a similar thinning
based on several heuristics that approximate the distance trans-
form DT@S of the surface skeleton boundary @S over the surface
skeleton S. Both skeleton types are further regularized by an
importance metric similar in concept with, but implemented dif-
ferently from, the collapse metric in [7]. DDS guarantees con-
nected, voxel-thin, and rotation-invariant skeletons.

Thinvox (TV, CS): TV implements the 3D directional thinning
proposed by Pálagyi and Kuba [37] to compute curve skeletons.
Several computational optimizations are added, including GPU
acceleration. TV is part of the binvox package [58]. Given the wide
popularity and usage of binvox, we included TV in our comparison.

Iterative Thinning Process (ITP, SS and CS): Ju et al. compute,
with ITP, skeletons of volumetric models by alternating thinning
and a novel skeleton pruning routine [52]. ITP creates a family of
skeletons parameterized by two user-specified values that deter-
mine respectively the size of curve and surface features on the
skeleton. The method was, however, tested mainly on tubular-
and-thin-plate shapes.

Robust Thinning (RT, CS): In [51], Liu et al. propose RT, a thin-
ning method that works on cell-complex representations built
using voxelization techniques. RT uses a ‘medial persistence’
importance metric that discriminates object parts with different
anisotropic elongations, e.g., tubes or plates, similar to ITP [52].
Based on medial persistence, RT can produce a continuum between
surface-and-curve skeletons and ‘pure’ curve skeletons, and is
claimed to be more robust to noise than ITP. In our comparison,
we used only the curve skeletons produced by RT, as the other
tested methods do not produce mixed skeletons.
4. Comparison methodology

We used the selected methods to extract curve and surface skel-
etons from a set of 38 shapes available in PLY mesh format. Shapes
range from simple to very complex in terms of topology (branches
and tunnels), surface detail, number of triangles (30 K to over 1 M),
and cover both synthetic and natural objects. Fig. 1 (left column)
shows a selection. First, we used binvox [58] to voxelize the shapes
to several resolutions ranging from 1283 to 10243 voxels. Next, we
ran each method on each voxel shape, tuning the method’s regular-
ization parameters (if any) so as to (a) eliminate spurious (noise)
branches but (b) keep detail branches. In total, several hundreds
of skeletonization runs were performed. Finally, for each method,
and based on the values found in the previous pass, we chose a
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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Fig. 1. Curve and surface skeletons of different shapes, computed, from left to right, by 6 curve and 4 surface skeletonization methods (see Section 4). The input volume has a
resolution of 5123 voxels. Dotted markers indicate various problems of the produced skeletons and underlying methods. Details thereof are shown below the main image.
(see Section 5.1).
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fixed set of parameter values that gives overall good results. These
values were next used for all shapes treated by the respective
method. Obtaining such results was quite easy for all studied
methods, except ITP-curve, where we could not always eliminate
spurious branches and keep important ones intact at the same time
for all studied shapes. For testing, we used two 3.5 GHz, PC with
32 GB RAM, running Windows 7 and Linux respectively, depending
on the requirements of each method’s implementation. The data-
sets and software implementations used are publicly available at
[59].
5. Results

Our results include two parts: A global comparison (Section 5.1)
and a detailed comparison (Section 5.2). Both are described next.
5.1. Global comparison

Homotopy: All studied SS methods captured well the input
shape topology, including protrusions and tunnels, and delivered
connected skeletons (Fig. 1, 4 right columns). The only method that
had issues here was ITP. The frog model (Fig. 1, bottom row) is an
example of such issues: Although the input is of genus 0, the ITP
surface skeleton exhibits a number of small spurious holes in the
leg regions (Fig. 1, detail D). For curve skeletons, we see more var-
iation: For most tubular shapes, all CS methods produce skeletons
which match the input’s topology. For non-tubular shapes, like
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
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rockerarm and casting, the topology of the produced results varies
widely. The frog model is also the most challenging for CS methods:
Although the model is relatively smooth and has, in most areas, a
tubular structure, the computed curve skeletons vary strongly be-
tween all methods.

Thin: For our methods, this criterion implies one-voxel-thin
skeletal manifolds and curve skeletons. Visual inspection shows
that not all methods satisfy this. For surface skeletons, MS and HJ
exhibit small-size thick clusters of several voxels around the man-
ifold Y-intersection curves. IMA and ITP-surface perform the best.
For curve skeletons, all methods produce voxel-thin curves, except
HJ and MS, which create spurious thick surface fragments (see
Fig. 1, details E; F on casting and frog). This is explained by the fact
that, in contrast to the other studied methods, HJ and MS do not
have an explicit thinning step or similar postprocessing to guaran-
tee voxel-thin skeletons.

Centered: Visual comparison of the four SS types computed
shows that these appear well centered within their input shapes.
This may appear less evident for ITP (Fig. 1, rightmost column).
However, closer inspection shows that ITP differs from the other
skeletons mainly around the boundaries of the skeletal manifolds,
i.e., in regions where different methods use different degrees of
simplification. In ‘core’ areas, ITP skeletons are very similar to the
other surface skeletons computed. For CSs, centeredness differ-
ences range from small for simple models (horse, fertility) to visibly
large ones (rockerarm, frog). This is partially expected, since all
studied methods use different CS definitions. However, we also
found CS fragments which arguably cannot be centered within
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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any reasonable centeredness definition – see e.g. details A;B on
rockerarm and frog, Fig. 1. To better assess centeredness, we pro-
pose detailed skeleton comparison further in Section 5.2.

Smoothness: The studied four SS methods exhibit negligible
differences in terms of the smoothness of the extracted skeletal
manifolds. In contrast, CS methods show a wide variation here.
DDS, TV, and MS produced overall very smooth CS branches for
all studied models. RT creates small-scale staircase effects, slightly
larger than the voxel resolution used. However, these can be easily
eliminated by increasing resolution. HJ creates several unexpected
wiggles of various scales in the CS (e.g. Fig. 1, details A;B;G on
rockerarm, frog, and dino respectively). We could not correlate
the wiggles’ appearance with shape properties such as curvature,
thickness, smoothness, or voxel resolution. A possible explanation
of these effects is that HJ is mainly designed to compute (simpli-
fied) surface skeletons. Highly simplifying these skeletons can pro-
duce curve skeletons, but the simplification order is only
constrained by homotopy preservation. As such, HJ cannot guaran-
tee that a skeletal manifold gets simplified with equal speed from
all its boundaries inwards. When this does not happen, CS struc-
tures will still be contained by the SS, but not centered with re-
spect to the SS boundaries. Finally, ITP creates coarse-scale
staircase artifacts along CS branches (e.g. Fig. 1, rockerarm, detail
H). This can explained by the fact that, unlike e.g. DDS or TV, ITP
does not impose any geometry-based voxel removal order order
during the thinning process.
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Regularization: All studied SS and CS methods, except TV and
DDS, offer one or more parameters to eliminate skeleton branches
corresponding to small-scale noise on the input shape. TV does not
need such a parameter for its curve skeletons, as these are
noise-resistant by construction [37]. The DDS implementation we
obtained from its authors uses the fixed simplification values indi-
cated in [45]. To assess, in a global manner, the ease of noise elim-
ination, we showed in Fig. 1 the results obtained by using a fixed
set of regularization parameters, determined as described in
Section 4.

Further increase of the simplification level should keep the
most important skeletal branches, eliminating less important ones.
To study the effect of the regularization parameters on simplifica-
tion, we next varied these parameters for each method in order to
progressively simplify the produced skeletons. Fig. 2 shows this for
four progressively simplified instances of the dragon skeleton for
seven of the studied methods. Here, as we increase simplification,
we notice growing differences between the studied methods.
Among CS methods, MS and ITP offered the most intuitive way
to eliminate small-scale details and keep the main skeleton struc-
ture. HJ-curve was the hardest to control: Too little simplification
preserves spurious branches, such as the clearly not-centered
branch on the dragon’s back (Fig. 2, detail A). Increasing simplifica-
tion removes this branch, but also looses important skeletal struc-
tures such as the dragon’s legs and tail, which is an undesired effect
(Fig. 2, details B; C). Among SS methods, MS and IMA simplify quite
B

C

B

C

DD

surface skeletons (bottom 3 rows). See Section 5.1.

urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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similarly, the effect being of removing SS voxels in increasing dis-
tance from the SS boundary. However, higher simplification values
disconnect the IMA SS (Fig. 2, detail D). In contrast, MS never dis-
connected the SS, even for high simplification values. Simplifying
HJ-surface skeletons also proved quite challenging: The diver-
gence-based importance used by HJ is good for removing small-
scale noise, but produces arguably incorrect results, like genus
changes, when higher values are used (Fig. 2, bottom row). The
explanation resides in the fact that the divergence metric does
not have a monotonic evolution from the SS boundary inwards,
but can exhibit various local maxima [57].

Sampling robustness: Fig. 3 shows CS and SS results from the
studied methods, each ran on several instances of dragon, sampled
at resolutions between 2003 and 5123 voxels. For RT, we only used
2563 and 5123 voxels, since this method admits only power-of-two
resolutions. We chose dragon for testing, as it is the shape having
the highest amount of complex surface detail from our studied
model collection. Regularization is tuned so as to obtain the visu-
ally most similar results for all methods. For both SS and CS meth-
ods, we see that, as resolution increases, progressively more
skeletal details get captured, as expected. For SS methods and also
for TV, MS-curve, and RT, as resolution increases, the overall skel-
eton shape does not change significantly. However, methods that
not enforce homotopy (IMA and MS-curve) show skeleton discon-
nections at lower resolutions (Fig. 3, details A-C). These disappear
when resolution is increased. The situation is more subtle for the
remaining CS methods: HJ-curve, DDS, and TV show small-scale
branch twists, and even topological events (loops) which appear
and next disappear as resolution changes (Fig. 3, details D; E; F).
Upon closer inspection, we see that these loops are correct, as they
correspond to a tunnel in the input shape. In contrast, the lack of
such a tunnel for MS is incorrect. For ITP-surface and ITP-curve, a
large part of the SS, respectively CS structure varies with resolution
in a hard-to-control manner. We also note that we could not run all
methods for all resolutions – the empty places for MS and ITP in
Fig. 3 correspond to resolutions for which the respective imple-
mentations crashed for the dragon model.

Scalability: Table 2 presents computational aspects of the
tested methods for the models in Fig. 1. To make results indepen-
dent of the input shape and its sampling, we computed Speed as
the number of processed input foreground voxels per millisecond.
This way, background voxels, which do not request computations
in the tested methods, are ignored. In contrast, Memory gives the
peak memory usage divided by the input volume size (voxels) for
normalization, since the studied methods allocate data arrays of
the size of the entire input volume (foreground and background
voxels). Intuitively, Speed can be seen as the throughput of a given
method, while Memory can be seen as the space cost per input vox-
el. The tested volumes range between 1283 and 10243 voxels. For
HJ, we include a single measurement for both the curve and surface
skeletons, since both are computed using the same algorithm, the
difference being only the simplification level applied as postpro-
cessing. Absolute memory usage ranges from 1.5 GB (IMA, fertility)
to 23.7 GB (HJ, elephant).

Several observations can be made. First, TV and IMA are the
fastest methods. Even if factoring the possible lack of optimizations
in the slower methods, this can be explained by the fact that TV
and IMA use quite simple algorithms. More interestingly, we see
that the throughputs of all methods are relatively uniform, less
so for HJ and MS. This indicates that most studied methods scale
computationally well. For HJ, this can be explained by the particu-
lar homotopy-preserving thinning used, whose complexity de-
pends on the number of detected skeleton end-points [57]. For
MS, this is explained by the regularization metric used, which
requires computation of geodesics between skeletal feature points.
Both above operations are, indeed, strongly dependent on the
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
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input’s shape, and not only on its size. Memory-wise, we see quite
large differences: Here, again, TV and IMA require less than one or-
der of magnitude less memory than the most expensive method,
HJ. As for speed, this is explained by the relative simplicity of TV
and IMA as compared to general-field methods – the former need
only two such fields (input volume and skeleton), while the latter
typically need to store many 3D floating-point fields over the en-
tire volume.

A different outlier is visible for the dragon dataset, which is
markedly slower to process than the other considered models. As
dragon is the model having by far the most amount of surface de-
tail, it will generate the most complex skeletons in terms of num-
ber of medial sheets or curves. Our observation that speed is
related to skeleton complexity matches the similar separate obser-
vations in [7,30]. However, we also see that the DDS and RT meth-
ods are less affected by the dragon model complexities in terms of
performance. Although these methods are, on average, slower than
the fastest considered methods, their throughput is much more
stable, i.e. fluctuates less, for different models. This stability is an
advantage in practice, as it allows one to estimate upfront the com-
putational time required by for skeletonizing a given model.
5.2. Detailed comparison

The global comparison presented in Section 5.1 outlines differ-
ences between the studied methods in terms of all criteria in Sec-
tion 3.1, except centeredness. Assessing centeredness differences
from image pairs is harder, since such differences can be small-
scale, local, and subtle. We next propose a visualization method
that addresses the following centeredness questions:

� Given two surface skeletons SS1 and SS2, or two curve skeletons
CS1 and CS2, which are the differences?
� Given a surface skeleton SS1 and a curve skeleton CS2, how well

is CS2 contained in SS1?

Given two (curve or surface) skeletons S1 and S2, sampled over
the same volume, we first define the scalar distance field

D12ðx 2 R3Þ ¼
miny2S2kx� yk ¼ DTS2 ðxÞ if x 2 S1

0 if x R S1

�

To compare two skeletons of the same kind (CS1 vs CS2, or SS1 vs
SS2), we draw the field D12 þ D21 over the voxel union S1 [ S2, nor-
malized by its maximum value, using a rainbow (blue-to-red) col-
ormap. Voxels in a skeleton which are close to the other skeleton
are blue. Note that D12ðxÞ ¼ D21ðxÞ ¼ 0;8x 2 S1 \ S2. Voxels in a
skeleton which are far away from the other skeleton are red (see
Fig. 4, inset). Comparing a curve skeleton CS1 with a surface skele-
ton SS2 is done differently, since we now want to show how well is
CS1 contained within SS2. For this, we color voxels in CS1 with D12,
and voxels in SS2 n CS1 with gray. Voxels in CS1 which are included
in SS2 are blue. Voxels in CS1 far from SS2 become red.

Fig. 4 shows a subset of the performed comparisons, for several
method-pairs, for the dragon model, at 5003 resolution. Each row i
or column j corresponds to a method; the image ði; jÞ shows the
comparison of the skeleton-pair ðSi; SjÞ. Fig. 5 shows the aggregated
maximum and average distances between the considered skeleton
pairs ðSi; SjÞ for five different sampling resolutions. All distances are
given as functions of the voxel size at resolution 1003, e.g., the size
of a voxel at resolution 2003 is 1=2, the size of a voxel a resolution
3003 is 1=3, and so on, so that we can assess how distances change
with resolution. From Figs. 4 and 5, the following observations can
be made.

Surface-vs-surface: Surface skeletons are very similar with
each other, except at tips – see e.g. Fig. 4 (HJ vs IMA), which has
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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Fig. 3. Sampling robustness of all studied methods for different voxel resolutions (see Section 5.1).
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an overall (dark) blue color. We noticed the same similarity in the
other SS-vs-SS comparisons we did (not shown here for sake of
space). The red tips in Fig. 4 (HJ vs IMA) indicate minor differences
in terms of a few skeleton boundary voxels. These are expected
given the different pruning heuristics of the considered methods.
The fact that surface skeletons are quite similar strengthens (but
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
(2014), http://dx.doi.org/10.1016/j.patrec.2014.01.012
does not prove) our hypothesis that centeredness is well captured
– indeed, it would be surprising that methods using fundamentally
different principles would yield the same errors.

Curve-vs-curve: Curve skeletons exhibit largest differences in
terminal and central regions. In terminal regions, one skeleton
can be longer than the other, as shown by the red tips of several
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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Table 2
Performance comparison for models in Fig. 1. Speed gives the number of processed foreground voxels per millisecond. Mem. gives the peak memory usage (bytes/voxel) per input
volume size (see Section 5.1).

Methods TV DDS HJ curve/
surface

RT ITP, curve MS, curve MS, surface IMA ITP, surface

Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem. Speed Mem.

Dino 109.5 28.8 9.9 45.12 36.9 192 14.7 250 60.9 127 30.6 148 38.32 148 62.5 14.2 66.5 127
Dragon 61.2 24.6 10.6 46.8 14.8 597 10.8 175 25.7 127 7.2 135 27.2 120 45.8 11.9 25.7 127
Fertility 133.0 27.7 13.2 43.3 30.9 507 16.8 204 51.9 144 15.4 165 25.6 171 158.0 14.3 51.9 144
Rockerarm 111.4 28.4 14.3 50.7 52.3 270 22.3 203 51.9 114 17.9 161 13.5 161 99.4 13.9 49.3 120
Casting 109.8 31.7 12.6 45.6 49.7 322 19.7 203 48.6 114 9.3 124 29.1 124 87.5 14.1 53.2 115
Horse 120.5 29.2 10.2 47.3 52.1 270 25.9 204 54.9 125 13.7 145 32.9 157 94.3 14.0 54.9 127
Elephant 112.8 28.9 10.6 47.6 42.3 190 9.1 203 43.8 120 20.8 153 30.4 174 109.7 14.3 42.2 120
Frog 123.0 31.8 12.9 47.12 54.1 240 16.0 183 48.1 126 10.5 168 63.3 125 148.5 12.8 65.6 122
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skeleton branches. As for the SS-vs-SS case, this is due to the differ-
ent pruning heuristics of the studied methods, and is an expected
result which does not show lack of centeredness. However, along
the dragon’s central rump region, curve skeletons follow parallel,
but quite different, paths. This means that at least one of the
studied curve skeletons is poorly centered. This is a less expected
insight, which cannot be inferred easily from the typical curve-
skeleton images shown in typical skeletonization papers.
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
(2014), http://dx.doi.org/10.1016/j.patrec.2014.01.012
Curve-vs-surface: A perfect CS-in-SS inclusion is achieved only
by the HJ curve and surface skeletons (CS voxels are all dark blue in
Fig. 4, HJ-curve-vs-HJ-surface). This is expected, as both the CS and
SS are computed by the same base method (HJ). For all other stud-
ied cases, we see a number of warm-colored curve-skeleton voxels
(e.g. Fig. 4: TV-vs-HJ-surface, TV-vs-IMA, DDS-vs-IMA). Highest
differences occur at skeleton tips, which is expected, as already ex-
plained. However, the pair HJ-surface-vs-TV shows such red voxels
urface skeletonization methods for voxel shapes, Pattern Recognition Lett.
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also deep inside the curve skeleton. Overall, we conclude that
curve skeletons are generally well centered with respect to the
medial surface, but less well centered within this surface.

Resolution: Fig. 5 shows the variation of the maximal and aver-
age distances between the compared skeleton pairs for sampling
resolutions ranging between 1003 and 5003 voxels. Several obser-
vations can be made. On average, the compared skeletons are quite
close to each other (1 to 2 voxels), but the maximal distances can
be large (up to 11 voxels). The minimal distances (not shown in
the figure) are zero, for all considered skeleton-pairs. As resolution
increases, most (but not all) compared skeletons tend to become
closer, both in terms of average and maximal distances. This is
not surprising, since higher resolutions should allow a finer-
grained placement of skeleton voxels, thus a better approximation
of the actual skeletal locus. However, as the measured differences
do not monotonically decrease with resolution in all cases, this
suggests that there exist structural differences between the skele-
tons computed by the studied methods, which cannot be solved
simply by a finer sampling. Interestingly, HJ-surface is the method
which participates in the most similar skeleton-pairs, both in
terms of average and maximal distances, for all resolutions. Con-
versely, IMA participates in the least-similar skeleton pairs. If we
assume that all methods are, statistically speaking, equally valid
with respect to centeredness, this implies that HJ-surface delivers
a well-centered ‘consensus’ skeleton, and IMA delivers an outlier,
far less well centered, skeleton.
6. Discussion

Several points emerge from our comparison, as follows:
Best method: First, let us stress that the aim of our comparison

was not to designate the ‘best’ skeletonization method, but to high-
light pro’s and con’s of the studied methods with respect to a set of
accepted quality criteria. From this viewpoint, no CS or SS method
can be seen as optimal with respect to all considered criteria. For
surface skeletons, all methods create well-centered, noise-free,
skeletons. Noise (or detail) removal is the most intuitive with
MS. The other studied methods can remove noise or details, but
are less intuitive to control (produce disconnections, modify the
topology, or remove skeletal parts which one may regard as ‘core’
to the skeleton). For curve skeletons, DDS and TV are simple to use
(require no parameters), and produce clean, noise-free, but still de-
tailed, and reasonably smooth, curve-skeletons. However, they of-
fer less freedom for skeleton simplification. MS-curve arguably
produces the smoothest curve-skeletons, but does not guarantee
voxel-thickness. IMA produces centered, smooth, skeletons, and
is very simple to use, but has less intuitive simplification parame-
ters. HJ can produce high-quality surface skeletons. However, HJ
cannot produce centered curve skeletons for more complex shapes,
and also has a less intuitive simplification control. Performance-
wise, TV and IMA are the fastest methods, and the least demanding
in memory terms. However, the differences with the other studied
methods are not that large so as to warrant a clear winner.

Criteria: The covered comparison criteria are clearly not
exhaustive. Additional ones exist, e.g., skeleton invariance to iso-
metric transformations of the input shape [3,45] and input recon-
structibility from the skeleton [45,8]. Given the available space, we
chose to focus in more depth on a smaller number of criteria.
Studying how CS and SS methods perform on additional criteria
is subject for separate future work.

Methods: Our selection of compared methods cannot cover all
existing CS and SS techniques in existence, so our findings cannot
be directly generalized to any method. However, our comparison
outlined several non-evident challenges of a good representative
subset of recent methods. Most of the studied methods could
Please cite this article in press as: A. Sobiecki et al., Comparison of curve and s
(2014), http://dx.doi.org/10.1016/j.patrec.2014.01.012
extract curve and surface skeletons from a large variety of complex
shapes. However, we also discovered several problems with re-
spect to all considered quality criteria (except scalability), which
are visible only for certain combinations of complex input shapes
and method-specific parameter settings. As such, we argue that
more comparative studies are required for a better understanding
of the added value and limitations of skeletonization methods.

Standard: The various discretization and regularization tech-
niques used in skeletonization algorithms, together with the lack
of a unique formal CS definition, make comparisons of a given algo-
rithm with a ‘gold standard’ difficult. Evident problems, such as
thick or disconnected skeletons, are easy to check for. However,
checking criteria such as smoothness, noise robustness, and CS
centeredness, is much harder. As such, the question of what is
the ‘correct’ skeleton of a given shape is very hard to answer in
general. Rather than trying to answer this question, we advocate
a comparative approach that highlights differences between several
skeletonization methods with respect to input shape, input resolu-
tion, and simplification parameters.
7. Conclusion

In this paper, we presented a comparison of six curve-skeleton-
ization and four surface-skeletonization methods using voxel mod-
els. Compared to existing surveys in the area [3,5], we extend
insights by discussing ten methods (not covered by previous sur-
veys) with respect to established quality criteria for curve and sur-
face skeletons. We compare methods on a range of 3D shapes
ranging from simple to complex, covering both natural and syn-
thetic forms, and consider the effects of several parameters such
as simplification level and input resolution on the obtained skele-
tons. We include also a quantitative performance in terms of speed
and memory requirements. Finally, we propose a detail visualiza-
tion able to highlight small-scale centeredness differences between
curve and surface skeletons. Our work highlights challenges of, and
differences between, existing 3D skeletonization methods which to
our knowledge have not been highlighted in the literature. On a
higher level, our results expose several limitations of current skel-
etonization methods and underline the need for future work to-
wards extending such comparisons and also towards creating
better methods.

Future work in skeletonization comparison involves including
additional methods and quality criteria in this comparison. On a
more theoretical level, a promising direction is to devise new met-
rics for the quantitative comparison of the desired quality criteria
in ways that help algorithm designers pinpoint and next solve
causes for current limitations of such methods.
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