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ABSTRACT

Medial representations have been widely used for many shape analysis and processing tasks. Large
and complex 3D shapes are, in this context, a challenging case. Recently, several methods have been
proposed that extract point-based medial surfaces with high accuracy and computational scalability.
However, the resulting medial clouds are of limited use for shape processing due to the difficulty of
computing refined medial features from such clouds. In this paper, we show how to bridge the gap
between having a raw medial cloud and enriching this cloud with feature points, medial-point classi-
fication, medial axis decomposition into sheets, robust regularization, and Y-network extraction. We
further show how such properties can be used to support several shape processing sample applications
including edge detection and shape segmentation, for a wide range of complex 3D shapes.

c© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

3D shape processing is a topic of rising importance due to de-
velopments in 3D shape modeling and acquisition techniques,
such as structured light scanners, time-of-flight cameras or sur-
face extraction from 3D volumetric scans. Such shapes Ω⊂ R3

are typically represented by boundary sampling, by polygonal
meshes or dense point clouds. Processing such shapes is a vast
research area encompassing analysis (detecting shape features
like edges, flat areas, or thin regions), shape matching and reg-
istration, fairing and denoising, and segmentation.

While the above-mentioned processing can be done by using
the shape’s surface or boundary ∂Ω, an alternative way is given
by medial representations (Siddiqi and Pizer, 2009). Since their
introduction by Blum (1967), such representations have received
increasing attention due to their potential to simplify and gener-
alize many shape processing operations.

Computing medial axes for 2D shapes is a well-
understood topic, with efficient, robust, and easy-to-use
methods (Ogniewicz and Kubler, 1995; Telea and van Wijk,
2002; Falcão et al., 2004; Siddiqi and Pizer, 2009). The 2D
medial axis transform (MAT) full encodes a shape’s boundary
∂Ω by its medial axis. In contrast, 3D shapes admit two kinds
of medial structures: Surface skeletons generalize 2D medial
axes and their MATs to fully capture the shape’s geometry and
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topology. Curve skeletons capture the shape topology as a set of
1D curves, but do not provide the full boundary encoding given
by the MAT. Hence, curve skeletons are good descriptors for
tubular shapes such as vessel structures, but are less suited as
analysis and processing tools for generic 3D shapes.

Recently, fast and accurate medial-surface computation was
made possible for complex 3D models of millions of poly-
gons (Ma et al., 2012; Jalba et al., 2013). Yet, such meth-
ods provide only a medial point cloud, which is far from suf-
ficient for shape analysis and processing. Indeed, medial sur-
faces have a complex structure, consisting of several so-called
medial sheets, or manifolds. Medial points have several types,
which describe the kind of surface points they correspond to
via the MAT (Giblin and Kimia, 2004). Boundaries of these
curves, mapped via the MAT to shape edges (Reniers et al.,
2008a; Siddiqi and Pizer, 2009), can be used for shape segmen-
tation (Reniers and Telea, 2008b). Curves where sheets meet,
also called Y-intersection curves, help with shape reconstruction
and matching (Damon, 2006; Leymarie and Kimia, 2007; Chang
et al., 2009). The individual sheets map to separate shape parts,
enabling shape simplification and segmentation.

While the above medial features can be relatively easily
computed for voxel-based representations (Reniers and Telea,
2008a,b), their computation for point-cloud medial surfaces is
far from trivial (Jalba et al., 2013; Ma et al., 2012; Telea and
Jalba, 2012; Kustra et al., 2014). Extracting features such as
endpoints, branches, and junctions from curve skeletons is much
easier than for medial surfaces, making the former more fre-
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quently used in applications, even though they encode less in-
formation than the latter. To become effectively useful for real-
world applications, medial-surface point-cloud methods need
enhancement in the sense of classifying medial points, comput-
ing separate medial sheets, extracting sheet boundaries and Y-
intersection curves, and mapping all these higher-level medial
features robustly and efficiently to the shape surface.

In this paper, we show how to efficiently and robustly con-
struct all above features from medial surface point-clouds, by
combining several input-shape and medial properties. This
makes 3D medial clouds as easy to use as the more commonly
used curve skeletons, and opens the way for using such medial
clouds for many shape analysis and processing applications.

The structure of this paper is as follows. Section 2 reviews
related work, with a focus on computing high-level features for
medial surfaces. Section 3 presents our methods to compute
such features from raw medial clouds. Section 4 illustrates the
applicability of our computed medial features for part-based and
patch-based shape segmentation and classification. Section 5
discusses our techniques. Section 6 concludes the paper.

2. Related work

2.1. Basic definitions

We first outline the definitions required to introduce and dis-
cuss related work. Given a shape Ω⊂R3 with boundary ∂Ω, we
first define its distance transform DT∂Ω : R3→ R+

DT∂Ω(x ∈Ω) = min
y∈∂Ω

‖x−y‖. (1)

The surface skeleton of Ω is next defined as

SΩ = {x ∈Ω |∃ f1 ∈ ∂Ω, f2 ∈ ∂Ω, f1 , f2,

‖x− f1‖= ‖x− f2‖= DT∂Ω(x)}, (2)

where f1 and f2 are two of the contact points with ∂Ω of the
maximally inscribed ball in Ω centered at x, also called fea-
ture points (Strzodka and Telea, 2004; Reniers and Telea, 2007;
Hesselink and Roerdink, 2008). The vectors v1 = f1 − x and
v2 = f2−x are called feature vectors or spoke vectors (Stolpner
et al., 2009), and are locally parallel to ∇DT∂Ω (Siddiqi et al.,
2002). The tuple (SΩ,DT∂Ω) is called the medial axis transform
(MAT) of Ω, and provides a full description of the boundary ∂Ω,
i.e. allows one to fully reconstruct ∂Ω given the MAT. For 3D
shapes, SΩ is a set of manifolds with boundaries which meet
along a set of so called Y-intersection curves (Damon, 2006;
Leymarie and Kimia, 2007; Chang et al., 2009). The set of all
feature points of a skeleton point

F(x ∈ SΩ) = {f ∈ ∂Ω| ‖x− f‖= DT∂Ω(x)} (3)

is called the feature transform (FT) of x (Hesselink and
Roerdink, 2008; Jalba et al., 2013). The cardinality ‖F(x)‖ of
F(x) is related to the location of x on skeletal manifolds (Giblin
and Kimia, 2004; Pizer et al., 2003) (see also Fig. 3): In the con-
tinuous case, points x inside skeletal manifolds, also called A1
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points, have exactly two feature points; points on Y-intersection
curves of k ≥ 3 manifolds, also called A1

k points, have k feature

points; and points on manifold boundaries, also called A3 points,
have for F(x) an entire circle sector or spherical segment, whose
size is proportional with DT∂Ω(x). F and its inverse F−1 estab-
lish a bidirectional mapping between SΩ and ∂Ω, and are thereby
important shape analysis instruments (Siddiqi and Pizer, 2009).

Besides surface skeletons (Eqn. 2), 3D shapes also admit so-
called curve skeletons. These are curvilinear descriptors locally
centered in the shape, according to various definitions (Cornea
et al., 2007). Curve skeletons are effective in capturing the topol-
ogy of tubular 3D shapes and also allow a limited reconstruction
and part-based segmentation of such shapes (Reniers and Telea,
2008a; Arcelli et al., 2011). However, they do not provide the
full MAT given by surface skeletons, nor do they capture fea-
tures such as shape edges or enable patch-based segmentation,
fairing, or simplification for the more general non-tubular shape
family (Reniers and Telea, 2008a; Giesen et al., 2009; Miklos
et al., 2010). A recent comparison of curve and surface skele-
tons is given in Sobiecki et al. (2014). Given the above, we focus
our discussion next on surface skeletons.

A key component of any skeletonization method is regular-
ization, i.e. removing (pruning) from SΩ all points which en-
code small-scale surface features, such as noise. This is usually
done by computing an importance measure µ : SΩ → R+ and
next upper-thresholding it (Shaked and Bruckstein, 1998; Da-
mon, 2006). Both local and global measures exist. Local mea-
sures cannot separate locally-identical, yet globally-different,
contexts (see e.g. Fig. 1 in Reniers et al. (2008b)). Thresh-
olding local measures can disconnect skeletons (Siddiqi et al.,
2002; Pizer et al., 2003; Sud et al., 2005) and makes prun-
ing less intuitive (Shaked and Bruckstein, 1998). Local mea-
sures include the angle between feature vectors, the distance-
to-boundary (Amenta et al., 2001; Foskey et al., 2003; Sud
et al., 2005), divergence metrics (Siddiqi et al., 2002; Bouix
et al., 2005), first-order moments (Rumpf and Telea, 2002),
and indicators of the multi-valueness of ∇DT∂Ω (Stolpner et al.,
2009, 2011). A good survey of such methods is given in Sid-
diqi and Pizer (2009). Global measures monotonically increase
from the skeleton boundary ∂SΩ inwards. Thresholding them
yields connected skeletons which capture details at a user-given
scale. Miklos et al. (2010) propose a measure based on the
geometric properties of an union of balls (UoB) approxima-
tion of Ω (Giesen et al., 2009). Dey and Sun propose the me-
dial geodesic function (MGF), equal to the length of the short-
est geodesic between feature points (Dey and Sun, 2006; Pro-
haska and Hege, 2002). Reniers et al. (2008b) extend the MGF
for surface and curve skeletons using geodesic lengths and sur-
face areas between geodesics, respectively, inspired by collapse
metrics used to extract 2D multiscale skeletons (Ogniewicz and
Kubler, 1995; Falcão et al., 2004; Telea and van Wijk, 2002).

2.2. Computing medial surfaces and their features

Many methods have been proposed in the last decade to com-
pute medial surfaces. These can be classified in thinning, field,
and geometric (mesh-based) methods (Jalba et al., 2013; Arcelli
et al., 2011; Miklos et al., 2010). Thinning removes ∂Ω vox-
els while preserving homotopy (Palagyi and Kuba, 1999; Bai
et al., 2007; Pudney, 1998; Arcelli et al., 2011). Thinning is
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simple and fast, but can be sensitive to rigid Euclidean transfor-
mations. Field methods find SΩ along singularities of DT∂Ω or
related fields (Leymarie and Levine, 1992; Kimmel et al., 1995;
Wan et al., 2001; Rumpf and Telea, 2002; Siddiqi et al., 2002;
Hesselink and Roerdink, 2008; Rossi and Torsello, 2012) and
can be efficiently implemented on GPUs (Sud et al., 2005; Cao
et al., 2010). Mesh methods use a surface sampling of ∂Ω only,
which is cheaper and faster than the volumetric sampling of Ω

used by field and thinning methods. They include Voronoi di-
agrams (Amenta et al., 2001; Dey and Zhao, 2003) and finding
maximally inscribed balls (Leymarie and Kimia, 2007; Miklos
et al., 2010; Ma et al., 2012; Jalba et al., 2013). Given their
scalability, we focus next on mesh-based methods only.

Recent mesh-based surface skeletonization methods (Ma
et al., 2012; Jalba et al., 2013) can extract highly accurate
medial surfaces of complex meshed surfaces of millions of
polygons in subsecond time using GPU acceleration techniques,
and thereby make medial surfaces usable in interactive contexts.
However, such methods deliver only a medial point cloud, i.e.,
an unorganized set of medial points with two corresponding
feature points. The practical usefulness of such descriptors is
quite limited, as mentioned already in Ma et al. (2012) and
Jalba et al. (2013), since one cannot directly reason about
the relationships between several medial-cloud points or the
relationship of such points with the surface points. We identify
two classes of challenges in this respect, as follows.

Feature points: Computing the correct feature transform F
(Eqn. 3) for each medial point is crucial for several subsequent
operations. For instance, any application that uses Giblin’s
classification (Giblin and Kimia, 2004) requires exactly esti-
mating ‖F(x)‖ for all x ∈ SΩ. While this is relatively easy for
voxel-based skeletons (Reniers et al., 2008a; Reniers and Telea,
2008b) due to the regular sampling of both ∂Ω and SΩ, this
is far from trivial for medial clouds. Incorrect or incomplete
estimation of F creates challenges for all regularization methods
that use feature points or feature vectors. Consider for instance
the class of MGF methods, which measure the geodesic distance
µ between two given feature points f1 ∈ F(x) and f2 ∈ F(x) of a
medial point x (Dey and Sun, 2006; Reniers et al., 2008b; Jalba
et al., 2013). A3 and A1

k,k,2 points, in Giblin’s terminology, have
more than two feature points. Which pair {f1, f2} ⊂ F(x) should
we use here? Using any such pair breaks off the continuity of µ
over SΩ, which in turn means that we cannot obtain noise-free
and compact medial surfaces by simply thresholding µ.

Skeleton decomposition: Decomposing the medial surface into
separate sheets is a key step for using this descriptor for further
shape analysis or classification (Stolpner et al., 2011; Siddiqi
and Pizer, 2009). The same applies to finding Y-intersection
curves and sheet boundaries, i.e., the medial scaffold (Leymarie
and Kimia, 2007). This decomposition has been previously at-
tempted by using local medial geometry properties. This is rel-
atively easy to do for finely-sampled voxel skeletons (Reniers
and Telea, 2008c), leading to using medial surfaces to create
compelling multiscale shape segmentations (Reniers and Telea,
2008b). Doing all above for medial clouds is, however, far from
trivial. As shown in Kustra et al. (2014), using generic point-
cloud segmentation methods for 3D skeletons is doable, but ex-

tremely challenging, since medial surfaces consist of numerous
intersecting manifolds with boundaries, which are hard to cap-
ture even by very dense point clouds. In addition, the parameter
settings in Kustra et al. (2014) are far from trivial, as they are
related to local medial geometrical properties, such as maximum
local connectivity angle. This adds difficulty in decomposing
the medial axis, and requires a caseby-case parameter followed
by a visual check to ensure the medial axis is decomposed in a
satisfactory manner. In this paper, a different approach is taken
to compute these abstractions. Rather than using the local geo-
metric properties, the relationships between the medial points xi
feature vectors f1, f2 and their correspondence to surface proper-
ties is used. The next sections address this method.

3. Computing refined medial features

To address the challenges outlined in Sec. 2.2, we next present
several new methods for computing the above-mentioned
higher-level features from skeletal point clouds. We start by
showing how to robustly classify medial points following Giblin
and Kimia (2004), find skeletal boundaries and Y-curves, and ro-
bustly regularize the medial surface (Sec. 3.1). We next use these
features to robustly segment the medial surface into separate
manifolds (Sec. 3.2). Figure 1 shows the steps of our feature-
computation pipeline and also the applications enabled by it. As
input for all these operations, we only assume a surface skeleton
represented by an unstructured and unoriented point-cloud hav-
ing exactly one skeleton point per surface point and exactly two
feature-points per skeleton point, as computed e.g. by Ma et al.
(2012); Jalba et al. (2013); Hesselink and Roerdink (2008).

3.1. Medial points classification

3.1.1. Estimating the feature transform
To classify unstructured medial clouds following Giblin and

Kimia (2004), we first need to estimate the feature transform
F(x ∈ SΩ) (Eqn. 3). As explained earlier, F is not directly avail-
able in most skeletonization methods; in particular, our point-
cloud methods (Ma et al., 2012; Jalba et al., 2013) only compute
two feature points per skeleton point. To find all feature points,
we proceed as follows. Let DTx be next a shorthand for DT∂Ω(x).
For each skeleton point x ∈ SΩ, we first find the closest points
Fτ(x)⊂ ∂Ω in a radius DTx + τ, where τ is defined as a fraction
of ερ∂Ω(x), where ρ∂Ω(x) is the average point density on ∂Ω

in a small neighborhood around f1(x)∪ f2(x), and ε is a small
constant set to 0.1. The slightly increased radius determines that
the set Fτ(x) will conservatively contain all feature points of x,
i.e. F(x) ⊂ Fτ(x). Setting τ to track the local sampling density
of ∂Ω allows us to conservatively estimate Fτ for non-uniformly
sampled meshes without introducing too many false-positives,
i.e., minimizing the set Fτ \F .

Given the finite tolerance τ and the discrete sampling of ∂Ω,
Fτ(x) will also contain surface points which are slightly further
from x than feature points; this is especially salient for points
x of type A3, that map to circular or spherical sectors on ∂Ω

via the feature transform. However, as we shall see next, the
conservative estimation of F(x) given by Fτ(x) does not pose
any problems to our medial attribute computation.
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Fig. 1. Refined skeletal features computed from medial point clouds (top row) and subsequently enabled applications (bottom row).

3.1.2. Classification of medial points
Since Fτ(x) is essentially a dilated, or fuzzy, version of F(x),

it consists of one or several point clusters centered around actual
feature points. A cluster Ci(x)⊂ Fτ(x) can be defined as

Ci(x) = {f ∈ Fτ(x)|max
f∈Ci

min
g,f∈Ci

‖f−g‖< min
f∈Ci

min
h<Ci
‖f−h‖} (4)

i.e., all points which are closer to each other than to any point
from another cluster C j,i(x) for the same skeleton-point x.

We observed that the number of these clusters is a good in-
dicator of the type of the medial point x: For A3 points, there
is one such cluster, whose diameter is proportional to DTx; for
A1

2 points, we find two clusters; and for A1
k,k≥3 points, we find

k clusters. To compute k, we cluster the point-set Fτ(x) by a
single-linkage hierarchical agglomerative method based on the
Euclidean distance between the points. Next, we cut the result-
ing dendrogram, or cluster-tree, at a distance value equal to the
average local sampling density ρ∂Ω. This results in k clusters.
The value of k gives us the type of point x, as explained above.

p

∂Ω

SΩ

p

q

∂Ω

SΩ

α

D
T
p

f p1
f q2

f q1
f q2

τ

τ

one single cluster:

p wrongly classified as A3

two separate clusters:

q correctly classified as A2
1

dmin

ρ
S

ρ
∂Ω

a) b)

α

D
T
p

D
T
q

e e

σ

Bp
Bq

Fig. 2. Skeleton point classification based on fuzzy Fτ analysis. The figure is
drawn for a 2D skeleton, for illustration simplicity.

Let us justify why k is a good point-type indicator. Fig. 2 a
shows an incorrect classification of medial point p which is on
the skeleton SΩ branch ended by point e. Since the intersection

of ∂Ω with a ball Bp of radius DTp + τ and center p (dotted red
circle) yields a single cluster (thick red line), p is incorrectly
marked as A3 rather than as A1

2. This is caused by (1) the value
τ used to compute Fτ being too large; (2) p being close to e;
and (3) the bump on ∂Ω corresponding to e being too shallow.
Consider now the minimal distance dmin from p that we have to
move on SΩ away from e to find a point q which is correctly
classified as A1

2 (Fig. 2 b). This happens when the intersection
of the ball Bq of radius DTq +τ and center q (dotted blue circle)
yields two disconnected clusters on ∂Ω (marked thick blue). To
find dmin, note that the maximal ‘inward shift’ between the upper
parts of Bp and Bq equals σ = DTp−DTq + dmin. To cause the
disconnection of the compact cluster in Fig. 2 a, σ must be larger
than the maximal bump height on ∂Ω that fits in the sphere-shell
of thickness τ, i.e., DTp−DTq + dmin > τ. Since DTq−DTp =
dmin cosα, where α is the angle between a feature vector and the
tangent plane to SΩ, it follows that

dmin >
τ

1− cosα
. (5)

Separately, for a ∂Ω with local sampling density ρ∂Ω, the corre-
sponding skeleton sampling density is

ρS =
ρ∂Ω

sinα
. (6)

A correct classification should mark only a one sampling-point-
thin ‘band’ of skeleton points as A3 (skeleton boundary). If ρS is
smaller than the minimal ball-shift dmin needed to change point
type from A3 to A1

2, this band gets thicker, leading to the incor-
rect classification in Fig. 2 a. Substituting our value of τ = ερ∂Ω

(Sec. 3.1.1) in Eqn. 5, and next the values of dmin and ρS from
Eqns. 5 and 6 in the inequality ρS < dmin, it follows that incor-
rect classification can only appear if ε≥ 1−cosα

sinα
. For our chosen

value of ε = 0.1, this implies α . 11.4◦. In other words, for
any medial sheets except those corresponding to highly obtuse
angles on ∂Ω, our method finds skeleton boundaries (A3 points)
which are precisely one sample-point thick.
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Fig. 3. Medial cloud classification into different point types.

Following the above, if k = 1 or k = 2, we can confidently say
that we have found an A3, respectively A1

2, skeleton point. As k
increases, the spatial separation of the clusters decreases too, so
k does not reflect accurately the skeleton point type. We have
empirically verified that the cluster count k accurately finds A1

3
up to A1

4 points for densely-sampled surfaces ∂Ω. A more robust
way to find such Y-curve points, that is far less sensitive on the
sampling density of ∂Ω, is described further in Sec. 3.2.2, based
on the segmentation of SΩ into individual medial sheets.

Related to our work, Reniers et al. (2008a) found A3 points
by computing the set difference between the full medial surface
S and a simplified version Sτ of S, where τ is a small fixed value
and simplification uses the MGF metric (Sec. 2.1). Compared to
our approach, their method does not find A1

k,k>1 points, and does
not give an analysis of how to set parameter values.

3.1.3. Skeleton regularization using A3 edge filtering
As outlined in Sec. 2.1, the MGF metric (Dey and Sun, 2006;

Reniers et al., 2008b) provides very good regularization proper-
ties such as separating spurious skeleton points from important
ones while maintaining skeleton connectivity. The MGF impor-
tance µ(x) of a medial point x equals the length of the longest
shortest-geodesic on ∂Ω between any two feature points of F(x).
Hence, the MGF requires an accurate computation of the feature
transform F (Eqn. 3). As discussed in Sec. 3.1.1, we compute
a conservative Fτ which may contain tens of feature points for
A3-type points. Computing shortest-geodesics between all such
point-pairs is very expensive. Given this cost, Jalba et al. (2013)
and Reniers et al. (2008b) compute the MGF using only two fea-
ture points per skeleton point, i.e. implicitly consider all medial
points to be of type A1

2. This has two problems. First, the impor-
tance µ for A3 points will be typically underestimated, since one
has no guarantee of finding the longest shortest-geodesic con-
necting any two feature points. This, in turn, creates a relatively
jagged appearance of the simplified skeleton. Secondly, com-
puting the MGF is expensive for large models, even when using
only two feature points per medial point and highly optimized
GPU implementations (Jalba et al., 2013).

We propose here an alternative way to regularize medial sur-
faces by simply filtering A3 points found by our classification.
Figure 4 shows this for a shape having highly rounded edges,
i.e. whose A3 points have many feature points. This is the kind
of shape where the aforementioned problem of the MGF metric

a) b)

Fig. 4. Skeleton regularization. (a) Rounded spleen shape with feature vec-
tors shown for A3 points. (b) Skeleton regularized by filtering A3 points.

occurs. Figure 4 a shows the medial cloud with feature vectors
(in red) for the A3 points. Figure 4 b shows our regularized skele-
ton, with all noisy points being removed. Since A3 points appear
only on the medial boundary by definition, our regularization
does not create gaps or disconnect the medial surface. Since
our method requires only a simple clustering of feature points
based on their Euclidean distance, it is considerably faster than
the MGF metric (see Sec. 5 for details). However, in contrast
to the MGF, our method cannot deliver a multiscale of progres-
sively simplified skeletons; we can only remove the finest scale
of noisy boundary points. As such, our regularization is useful
when one needs a clean and detail-rich surface skeleton for fur-
ther processing, rather than a multiscale skeleton representation.

3.2. Surface skeleton decomposition
Besides classifying skeleton points, higher level features can

be computed. One such feature is the decomposition of the me-
dial surface into separate sheets, used in shape analysis and seg-
mentation tasks (Leymarie and Kimia, 2007; Reniers and Telea,
2008b). While such decompositions can be computed relatively
easy for voxel skeletons (Reniers and Telea, 2008c), this is chal-
lenging for medial clouds, especially when these contain a large
number of complex sheets (Kustra et al., 2014).

We address this task by clustering the medial cloud based on
a novel definition of medial sheets that uses the medial cloud
properties (Sec. 3.2.1). Next, we use this decomposition to ro-
bustly find Y-intersection curves where several such sheets meet
(Sec. 3.2.2). Finally, we use the feature transform to construct
compact (meshed) sheet representations (Sec. 3.2.3).

3.2.1. Medial sheet computation
We first define the distance of two A1

2 points x and y as

δ(x,y) = ∑
a∈F(x)

min
b∈F(y)

MGF(a,b), (7)

where MGF(a,b) is the medial geodesic function, i.e. the length
of the shortest geodesic on ∂Ω between feature points a and
b (Reniers et al., 2008b). Next, we define a medial sheet γ as
all medial points having a distance δ lower than a threshold τ

γ = {x ∈ SΩ | ∃y ∈ SΩ,δ(x,y)< τ}. (8)

The rationale behind Eqn. 8 is that medial points x and y which
are close and belong to the same sheet have small distances
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(along ∂Ω) between their corresponding feature points. This
statement is supported as follows: Since medial sheets are lo-
cally smooth and have a low curvature (Pizer et al., 2003), their
feature vectors vary smoothly and slowly locally; in turn, this
implies that the corresponding feature points vary slowly and
smoothly across ∂Ω. Figure 5 illustrates this for a 2D shape (for
simplicity): Medial points x and y are on the same sheet, and
have small MGF distances between their feature points, thus a
small δ(x,y). In contrast, medial points w and z, which belong
to different sheets, have at least two feature vectors pointing in
different directions, thus a large δ(w,z).

Equations 7 and 8 define medial sheets without using any me-
dial connectivity information, and thus allow us to segment a
medial cloud into its sheets, as follows. First, we define a dis-
tance matrix M encoding the distances δ(x,y) between all me-
dial point pairs. For efficiency, we only compute matrix entries
that correspond to δ values below our chosen threshold τ, since
the sheet definition (Eqn. 8) only requires to know when δ < τ.
Secondly, when computing δ(x,y), if the length of the geodesic
traced on ∂Ω from x to y exceeds τ, we stop tracing it and skip
the respective matrix entry. Overall, this turns the computation
and storage of M from a quadratic process in the number of me-
dial points into a linear process, since any medial point x has
only a limited number of points y at close distance δ from it. Fi-
nally, we use M as input for a single-linkage hierarchical cluster-
ing (Jain and Murty, 1999), which outputs a partition of SΩ into
a set of medial sheets γi, so that γi∩γ j,i =∅ and ∪iγi = SΩ. Fig-
ure 5 c illustrates the separated sheets of the medial surface of a
palatine bone shape. Same-sheet points are marked by the same
color. Although the medial cloud is quite complex, its sheets
are cleanly separated. Such sheets can be processed to create
compact representations thereof, as discussed next in Sec. 3.2.3.

Figure 6 compares our method for extracting sheets from a
medial cloud with two other methods. Figure 6 a shows the
method of Reniers and Telea (2008c), which works in brief as
follows: Given a (voxel) medial surface S, its Y-network vox-
els SY are found based on the cardinality of the feature trans-
form for A1

3 points (Sec. 2.1). Next, separate medial sheets are
found as being the connected components of the voxel set S\SY .
This method is quite sensitive to the voxel sampling of the input
shape. For example, the cog wheel detail in Fig. 6 a (1283 vox-
els) shows two separate components c1 (red) and c2 (purple),
which actually are part of the same sheet. These are wrongly
separated since (1) the sampling resolution disconnects the de-
tected medial sheet half-way and (2) sheet detection is based
on connected component finding. Figure 6 b shows the method
of Kustra et al. (2014), which is a general-purpose clustering of
3D point clouds based on a similarity metric that accounts for
both distance (computed between nearest neighbors in the point
cloud) and local sheet flatness. Figure 6 c shows our method. As
visible, both Kustra et al. (2014) and our method correctly de-
tect a single sheet c instead of the two separate fragments c1 and
c2. Images (d-i) further compare our method with Kustra et al.
(2014) for two shapes and two different values of the nearest-
neighbor count NN, the key parameter of Kustra et al. (2014).
Two observations can be made here. First, we see how the re-
sults of Kustra et al. (2014) depend quite strongly on the NN

a) b) c)c)

d) e) f)d) e)e) f)

g) h) i)

NN=10 NN=8

NN=8NN=12

c1

c2

c c

Fig. 6. Medial sheet extraction: a) Reniers and Telea (2008c); b,d,e,g,h) Kus-
tra et al. (2014); c,f,i) our method. For Kustra et al. (2014), its key parame-
ter, the number of nearest neighbors NN, is indicated.

choice. In contrast, our method does not need such parame-
ter tuning. Secondly, and more importantly, the point-similarity
used by Kustra et al. (2014) is purely local, as it uses only inter-
point distances and local flatness of the sheets. In contrast, our
method uses a distance function (Eqn. 7) which captures global
shape properties, due to the underlying MGF function. This
makes the sheet computation far less sensitive to local shape
variations or small-scale noise.

3.2.2. Y-intersection curve extraction
Once the medial sheets γi are found, the Y-intersection curves

can be found as those points x ∈ SΩ that belong to at least two
different sheets. However, performing this test directly on the
medial sheet-set is not possible, since our sheets are disjoint, i.e.
γi ∩ γ j,i = ∅. Hence, we find Y-curve points as those skeleton
points x which have at least one k-nearest neighbor belonging
to a different sheet than the one containing x. Tuning k allows
controlling the thickness of the Y network being computed. Fig-
ure 7 shows three examples of Y networks, computed for k = 3.

3.2.3. Computing compact medial sheets
In Sec. 3.2.1, we computed medial sheets as unstructured

point clouds. Many shape processing operations require
compact sheets, e.g. in the form of a triangle mesh. We show
next how such meshes can be created based on an analysis
of the feature vectors v1(x) and v2(x) of each skeleton point
x (Sec. 2.1). The key idea is to use the feature vectors to
back-project the connectivity information captured by the ∂Ω
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low δ

input shape ∂Ω

skeleton SΩ
x y

w

z

high δ

hierarchical clustering

separated medial sheetsfeature points
skeleton points

a) b) c)

Fig. 5. Medial sheet computation: a) Distance function δ, illustrated in 2D. b) Sparse distance matrix, used as an input for hierarchical point clustering. c)
Medial sheets found for a palatine bone shape (see Sec. 3.2.1).

a) sternum b) cortex c) manubrium

Fig. 7. Y-network extraction with Y-curve points colored green.

mesh onto each sheet γ. The method has two steps, as follows.

Feature vector alignment: The projection

P(γ)=P1(γ)∪P2(γ)= {x∈ ∂Ω | ∃y∈ γ,x∈{f1(y), f2(y)}} (9)

of a sheet γ consists of two compact areas P1(γ) and P2(γ) of ∂Ω,
one for each side of γ. If we can isolate any of these two areas,
we can next simply transfer its connectivity information onto γ

to obtain our desired sheet mesh. For this, we reorder, or align,
the feature vectors v1(x) and v2(x) of all sheet points so that
all f1 are included in P1(γ), and all f2 are included in P2(γ), as
follows. First, we select an arbitrary reference point xre f ∈ γ and
mark it as visited. We next visit all other points x ∈ γ in order of
increasing distance to xre f and redefine their feature points as

fi = argmin
f∈{f1,f2}

MGF(f, fvis
i ), i ∈ {1,2}, (10)

where fvis
i is the closest visited (aligned) feature point to fi, and

mark f as visited. When all points of γ are visited, all feature
vectors v1 will be on the same side of γ as v1(xre f ), while
all v2 will be on the other side. We can next find the projec-
tion of side i∈ {1,2} of γ as Pi(γ) = {x∈ ∂Ω | ∃y∈ γ,x = fi(y)}.

Connectivity projection: We finally construct a meshed ver-
sion of γ by simply copying all triangle information from Pi(γ)
to γ, with i being either 1 or 2 (both sides are equally good).
That is, for any triangle t = {xi}1≤i≤3 in e.g. P1(γ), we con-
struct a triangle tγ = {yi}1≤i≤3 where xi = f1(yi). Figure 8 il-
lustrates the resulting meshed sheets for the surface skeletons
of several complex anatomical shapes from the open database
in Mitsuhashi et al. (2009), where neighbor sheets have differ-
ent colors for illustration purposes. Given these meshed sheets,
we can now use any polygon-based geometric algorithm to an-
alyze or process them further, e.g., to estimate curvature, areas,
elongation, or compute shortest paths or distance fields.

4. Applications

We next use our computed medial features (point classifi-
cation, regularization, and medial surface decomposition into
sheets) to support several shape analysis applications. These
examples implicitly illustrate the quality and robustness of our
feature computation methods. Secondly, they show how such
features enhance the added-value of surface skeletons by allow-
ing it to support the construction of surface processing tools.

d) e) f)

a) b) c)

Fig. 9. Soft edge detection using a) curvature estimation (Taubin, 1995); b)
skeleton method of Reniers et al. (2008a); c-f) our method.

4.1. Surface edge detection
Finding edges on a 3D surface has many applications in seg-

mentation and classification. Most existing edge detectors are
based on the surface’s curvature tensor (Moreton and Séquin,
1992; Taubin, 1995; Clarenz et al., 2004). A problem of such
detectors is that they operate at a given scale, i.e. find edges of
a sharpness range which must be specified. Using skeletons al-
lows finding both sharp and blunt edges, i.e., removes the need
to specify an edge-sharpness range: Following the observation
that medial surface boundaries (A3 points) correspond to curva-
ture maxima or edges on the input surface (Pizer et al., 2003),
Reniers et al. compute surface edges by finding A3 points as
explained in Sec. 3.1.2, and next back-projecting these on the
input surface by the feature transform (Reniers et al., 2008a).
We propose here an alternative approach: For each A3 skele-
tal point x, detected as explained in Sec. 3.1.2, we find all sur-
face points enclosed in a sphere of radius DTx + τ, with τ set
as explained in Sec. 3.1.1, and assign to each surface point the
smallest DTx value which encloses it. Remaining surface points
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a) scapula b) hip bone c) cortex d) ear

h) gyrus i) frontal bonef) manubrium g) sternume) xiphoid

capula

Fig. 8. Compact medial sheets computed for several anatomical models (Sec. 3.2.3).

are assigned a value of max(DTx). Figure 9 (a-c) compares our
method with the classical curvature detector of Taubin (1995)
and with Reniers et al. (2008a) for a brain cortex surface. The
goal is to find the sulcal brain structures, which correspond to
(soft) convex surface edges, an important task in many struc-
tural and functional anatomic brain analyses. The presence of
sulci is shown using a blue (concave) to red (sharp convex)
rainbow colormap, mapping the three studied detectors: mean
curvature (Taubin, 1995) (Fig. 9 a), geodesic distance to back-
projected A3 points (Reniers et al., 2008a) (Fig. 9 b), and our
sphere-radius metric (Fig. 9 c). Our method achieves a sharper
sulci separation than Reniers et al. (2008a), which in turn per-
forms better than Taubin (1995). Figure 9 d-f show our method
applied to three additional shapes which exhibit a mix of sharp
and blunt edges. As visible, our detector finds both sharp (and
thus, thin) and blunt (and thus, thick) edges. The edge sharpness
and thickness is also visible in the color mapping.

4.2. Patch-based segmentation

Patch-based segmentation (PBS) divides a shape ∂Ω into
patches, i.e. quasi-flat areas which are separated by sharp
creases. Most PBS methods work by clustering surface points
using, as similarity metric, the surface curvature or similar quan-
tities (Shamir, 2008). Since medial surfaces fully capture the
surface information via the MAT (Sec. 2.1), these medial sur-
faces can be used for PBS. For this, Reniers and Telea (2008b)
compute soft edges by using the feature transform of low-
importance medial-surface points, and next use these thick edges
to segment the shape. However, their method needs to handle a
large number of special cases (and is thereby quite complicated),
and only works for voxel shapes. We propose here a much sim-
pler approach: We project all skeleton-boundary points p (type
A3) to ∂Ω via our extended feature transform Fτ, i.e. compute
the set E = {x ∈ Fτ(p)|p ∈ SΩ ∧ type(p) = A3} ⊂ ∂Ω. The set
E consists of a thick version of the edges of ∂Ω. Due to the con-
servativeness of Fτ (Sec. 3.1.1), E will contain connected edges,

in contrast to e.g. a naive thresholding of the curvature of ∂Ω

or other similar local surface classifiers. Hence, we next find
patches by simply computing connected components of ∂Ω\E.
Finally, we add the points in E to their closest patch, thereby
making the resulting patches become a partition of ∂Ω.

Figure 10 shows our results, using the same color scheme as
Fig. 8. For models with clear, sharp, edges, we see how patches
neatly follow these edges (e.g. Fig. 10 a, rib sockets in Fig. 10 g,
skull concavity in Fig. 10 i). More importantly, our method han-
dles equally well models with soft edges (Figs. 10 b,c,f) and/or
mixes of sharp and soft edges (Figs. 10 d,g,h).

4.3. Medial sheet mapping segmentation

In contrast to patch-based segmentation (Sec. 4.2), part-based
segmentation (pBS) separates a shape ∂Ω into components that
are perceived as being the natural ‘parts’ of the shape (Shamir,
2008). Among the many methods for pBS, curve skeletons
are often used, as they readily capture the part-whole topology
of shapes having elongated protrusions. One way to compute
a pBS is to find the so-called junction points of curve skele-
tons (equivalent to Y-curves for surface skeletons), and then cut
the shape with curves that go around these points (Reniers and
Telea, 2008a). Such methods are robust and relatively simple to
implement, but work well only for shapes with a tubular struc-
ture, i.e., which have a meaningful curve skeleton. We propose
here to use the surface skeleton for pBS. For this, we compute its
medial sheets γ (Sec. 3.2.1), and next project these into ∂Ω using
P(γ) (Eqn. 9). Since all points on ∂Ω have a skeleton point by
construction (Jalba et al., 2013), the entire shape is covered by
such projections, which give us the ‘parts’ of the shape. The bor-
ders separating two such neighbor parts are nothing but the pro-
jections of the Y-curves. Since such curves are smooth (Siddiqi
and Pizer, 2009), and the feature-vector field used for projection
is also smooth (since parallel to ∇DT∂Ω which is divergence-free
away from the skeleton, see Siddiqi et al. (2002)), the resulting
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d) scapula

e) gyrus
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f) kidney
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Fig. 10. Patch based segmentation (Sec. 4.2).

part-borders will also be smooth. Figure 11 show several part-
based segmentation examples. Although many alternative pBS
segmentations are possible, we argue that the found segments
match well the perceived distinct shape parts. We note that such
segmentations cannot be achieved using only curve-skeletons,
since the shown shapes do not have a tubular structure.

5. Discussion

We discuss next several aspects related to our contribution –
showing that we can efficiently and easily compute high-level
medial features from large point-cloud skeletons, and that using
such features in various applications is a practical proposition.

Generality: We require as input only a raw medial 3D cloud
with two feature points per skeleton point. Such clouds can be
very efficiently computed by recent GPU methods (Ma et al.,
2012; Jalba et al., 2013) or older CPU methods (Hesselink and
Roerdink, 2008), for any type of 3D shape topology or geometry.

Point classification: To our knowledge, our work is the first
attempt to compute Giblin’s medial point classification (Giblin
and Kimia, 2004) for raw medial clouds. Using this classi-
fication to regularize skeletons (Sec. 3.1.3) is much simpler

a) scapula b) hip
bone

c) vertebra

d) cortex e) frontal bone

Fig. 11. Medial sheet mapping segmentation (Sec. 4.3).

to implement, and also much faster, than the MGF metric.
Compared to local regularization metrics (Siddiqi et al., 2002;
Pizer et al., 2003; Sud et al., 2005), we do not disconnect the
skeleton, and only remove a thin layer of boundary points. This
gives a simple, fast, automatic, and effective way to create clean
medial surfaces that preserve relevant skeletal details.

Medial sheet extraction: Separating sheets from a raw medial
cloud is a hard task, for which few methods exist, and for which
generic point-cloud clustering tools cannot be used (Chang et al.,
2009; Kustra et al., 2014). Our contribution – the similarity
metric (Eqn. 7) – combines both local and global shape infor-
mation, and enables a medial cloud segmentation into sheets
which is noise-resistant and has a simple parameter setting. In
detail, Kustra et al. (2014) requires tuning three parameters: The
number of nearest neighbors of each skeletal point, the maximal
allowed local-flatness of each sheet, and the sheet similarity. In
contrast, our method requires a single parameter, the maximum
MGF distance between feature-points of two skeleton-points
that are on the same sheet (τ in Eqn. 8). For all tested shapes, a
value of τ equal to four times the local point-density ρ∂Ω on the
input surface yielded optimal results such as shown in this paper.

Y-network extraction: Our Y-network extraction finds the
points around the Y-network of the skeleton. Exact Y-network
points are, by definition, not explicitly found by the core
skeletonization method we build atop, since this method always
assumes two contact points for each medial point (Eqn. 2).

Scalability: On an Intel Core i7 3.8 GHz computer, our method,
implemented in single-threaded C++, performs all described
steps (medial feature computation, edge detection, PBS and
pBS) in under 3 seconds for all shapes in this paper, which
range between 30K and 230K skeleton points. Memory used
is linear with the input point count. Medial sheet extraction
is more costly, as it uses the expensive MGF metric (Eqn. 7).
Timings for this step are given in Tab. 1, for CPU-based MGF
computation. If desired, higher performance can be easily
obtained by GPU-based MGF computation (Jalba et al. (2013))

Limitations: The quality of our medial features highly depends
on the quality of the input medial cloud. This depends next on
the sampling density of the input shape, since we require only
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Table 1. Medial sheet extraction times on the CPU.

Model Points ‖∂Ω‖ Sheet extraction (sec.)
Hip bone 24852 46.87
Xiphoid 64690 68.88
Vertebra 48924 49.09
Manubrium 65038 64.22
Spleen 29507 55.35
Sternum 27525 62.26
Scapula 233856 436.57
Ear 24900 49.58
Cortex 58490 133.98
Gyrus 29116 56.75
Frontal bone 48171 131.54

two feature points per medial point (Sec. 3).

Applications: For the segmentation and classification applica-
tions in Sec. 4, we note that better specific techniques (not using
medial descriptors) exist. Our sample applications are aimed at
showing the possibilities that refined medial features open, as
alternatives and in contrast to established approaches, and not as
a definitive solution to the underlying use-cases.

6. Conclusions

We have presented a set of techniques for computing refined
medial features from raw medial-surface point clouds. These
features include medial point classification, skeleton regulariza-
tion, Y-network extraction, separating medial sheets, and recon-
structing meshed sheets. Such features enrich the level on which
one can reason about medial surfaces, and open new ways for
shape processing applications using medial clouds. We provide,
for illustration, sample applications for edge detection and shape
segmentation. Overall, our work shows that the more complex
(and information-richer) surface skeletons can be, technically,
used with the same ease and computational efficiency as the sim-
pler, and so far more frequently used, curve skeletons.
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