
To appear in an IEEE VGTC sponsored conference proceedings

Visualizing Metrics on Areas of Interest in Software Architecture Diagrams

Heorhiy Byelas∗ Alexandru Telea†

Institute of Mathematics and Computer Science

University of Groningen, the Netherlands

ABSTRACT

We present a new method for the combined visualization of soft-
ware architecture diagrams, such as UML class diagrams or compo-
nent diagrams, and software metrics defined on groups of diagram
elements. Our method extends an existing rendering technique for
the so-called areas of interest in system architecture diagrams to
visualize several metrics, possibly having missing values, defined
on overlapping areas of interest. For this, we use a solution that
combines texturing, blending, and smooth scattered-data point in-
terpolation. Our new method simplifies the task of visually cor-
relating the distribution and outlier values of a multivariate metric
dataset with a system’s structure. We demonstrate the application
of our method on component and class diagrams extracted from
real-world systems.

Index Terms: I.3.4 [Graphics Utilities]: Graphics editors—
Paint systems; D.2.2 [Design tools and techniques]: Modules and
interfaces—Computer-aided software engineering

1 INTRODUCTION

Software architecture diagrams are widely used in software engi-
neering. They describe the structural and functional relations be-
tween different system elements, such as objects, interfaces, and
components. Besides diagrams, software metrics, which describe
the quality attributes of the elements present in the diagram, play
an essential role in forward and reverse engineering, reengineering,
and maintenance. In all such activities, software architects need
to easily correlate several metrics, computed on a system, with the
system structure, captured by its architecture diagram.

In UML class diagrams [8], metrics can be associated with classes,
relations between classes, groups of classes, or class members, e.g.
methods. To correlate metrics with each other and with the system
architecture, we must find effective ways to combine the presenta-
tion of several metrics and the architecture in a single picture.

We present here a new way to visualize several software metrics,
modeled as a multivariate dataset, together with a system’s struc-
ture, modeled as an architecture diagram. We specifically consider
metrics defined on software components (e.g. classes), or groups
thereof, also called areas of interest (AOIs) [3]. We call these class-
level metrics. We extend an existing technique for rendering AOIs
by using blending and texturing to render several metrics, defined as
a multivariate dataset with potentially missing values, atop of such
areas, so that users can spot metric-metric and metric-area corre-
lations. Our technique removes the need of drawing metric icons
atop of the diagram elements, so we use this space to show other
information, such class member metrics or text annotations.

∗e-mail: h.v.byelas@rug.nl
†e-mail: a.c.telea@rug.nl

This paper is structured as follows. Section 2 reviews related work
in visualizing the combination of system structure and software
metrics. Section 3 presents our new technique for rendering sev-
eral metrics atop of AOIs. Section 4 presents two case studies of
using our new rendering technique on three UML diagrams. Sec-
tion 5 discusses the obtained results. Section 6 concludes the paper.

2 RELATED WORK

Software system structure is typically visualized using diagrams,
such as UML diagrams for object-oriented systems [8] or similar
metaphors for component-based systems. Metrics can be computed
by static analysis tools [16], simulation tools [1] or dynamic anal-
ysis tools such as profilers or debuggers. Traditionally, metrics are
shown as separate numerical tables, making their correlation with
large diagrams difficult and time-consuming.

Several attempts have been made to combine metrics and UML-like
diagrams. Lanza et al. render class-level metrics by mapping them
to the class size and/or color [7]. In this way, two metrics can be
shown simultaneously. Similar techniques are used by many soft-
ware visualization tools, such as the well-known Rigi toolkit [13].
An extensive overview of such tools is given by Diehl [5]. Of-
ten, however, diagram element sizes may be constrained (fixed) to
a predefined layout, so they cannot be used to show a metric. This
happens when UML diagrams are created in the design process: de-
signers carefully craft the layout of diagrams and would not accept
the elements’ sizes or positions to be modified, as this destroys their
’mental map’. Element background colors may also be constrained
e.g. when we want to draw method names or other text annotations
inside each class. Termeer et al. show UML class-level metrics
with icons scaled, colored, and drawn atop classes [12]. This tech-
nique can show individual metric values and helps spotting outliers.
However, correlating several metrics on a large diagram is difficult,
as one has to memorize the metric values while visually scanning
the diagram.

Drawing metrics using icons or modifying the size or color of di-
agram elements emphasizes the relation of a metric with a single
element. However, we may want to visualize metrics defined on
groups of elements, e.g. safety of all multithreaded components,
speed of all performance-critical components, and so on. Byelas
and Telea partially addressed this: They surround groups of related
elements, also called areas of interest (AOIs), with a smooth con-
tour, similarly to the way humans draw such groups on paper dia-
grams [3]. This shows which elements are in which AOI, e.g. all
multithreaded elements in our example. However, AOIs themselves
cannot show metric values (e.g. the safety metric in our example)
so correlating structure with metrics is still a problem.

3 PROPOSED METHOD

First, we introduce our data model. Consider a system diagram
with n areas of interest A1 . . . An defined over its elements, where
ei j, j ∈ [1, |Ai|] are the elements in area Ai and |Ai| is the number
of elements in area i. For each Ai, we have a metric mi : [1, |Ai|] →
R∪None defined over its elements1. mi j, the value of mi on e j,

1Several metrics defined on the same area are handled analogously

1

To appear in an IEEE VGTC sponsored conference proceedings

low

high

10..20
pixelsb) constant interpolation c) smoothing d) texturing

A low
B none
C medium
D high

element value

a) metric values

Figure 1: Smooth interpolation of element metrics over an area-of-interest

can have either a numerical value, or None, if that value is missing.
Missing metric values are frequent in software analysis, e.g due to
various limitations of the analysis tools [16]. The set of metrics
mi can be seen as a multivariate scattered-point dataset [11], with
elements j as data points and the metric values i as variables.
We want to show all metric values for all areas in one image, so that

• we can compare the metric values of each element,

• we can visually follow how a metric varies over an area,

• we see the elements having missing values,

• we do not draw metrics on the elements themselves.

• we use, but do not change, a given diagram layout

The original AOI method [3] constructs a contour that encloses the
elements located in an area of interest (see e.g. Fig. 1 b). We show
next how to render several metrics so that metric values, elements,
and areas of interest can be easily correlated. We use a two step
solution. First, we render the values of a single metric mi over a
given area Ai (Sec. 3.1). Next we combine all metrics mi for all
areas Ai in a single image (Sec. 3.2). Finally, we add shading to the
areas to further emphasize their structure (Sec. 3.3).

3.1 Rendering a single metric

Termeer et al. show element metrics using icons scaled and col-
ored by metric values, drawn atop of the elements [12]. This has
several drawbacks. Consider a diagram with five metrics over five
areas of interest (Fig. 5). First, icon sizes are constrained by the
element sizes (which can be small), so it is hard to see the specific
metric values. Second, we want to keep the element surfaces free
to draw other data, such as method names and annotations. Third,
correlating metrics with areas of interest, e.g. seeing how metric
values change over one or several areas, is difficult, since there is
no explicit visual correspondence (mapping) from metrics to areas.

We address these issues by rendering metric values outside the di-
agram elements. Denote by {ei} the elements in area A, with met-
ric values mi - we drop area-indexes here since we consider a sin-
gle area. We encode missing metric values in a separate dataset
pi : [1..|A|]→{0,1}, i.e. set pi to 0 if mi is missing, else set pi to 1.

Our key idea is to produce an interpolation function M of the val-
ues mi over area A. M (x) should equal the given metric values mi

for points x inside or close to the elements ei, and vary smoothly
in-between. We compute M as follows. First, we compute the
Delaunay triangulation of A using the Triangle library [10]. Next,
we initialize M at each triangulation vertex x with the metric value
m(eclosest) of the element

eclosest = argmin
i∈[1..|A|],mi 6=None

(||ei −x||)

i.e. the closest element to point x which has a metric value. This
yields an approximation of the Voronoi diagram of the element set
{ei}, so M is a piecewise-constant interpolation of {mi} over A.
Figure 1 b shows M for the metric values in Fig. 1 a, using a red-
to-blue colormap2 . Element D has a maximum value, as shown by
the surrounding red color. Element A has a minimum value, shown
by the blue color. Elements E and F do not belong to the area.
Element B, although inside the area, has no value. We show this
using a neutral gray hue, as follows. We compute an interpolation
P of the set {pi} over A, just as the interpolation M of {mi}. With
M and P , we now compute the hue-saturation-value color of any
point x ∈ A as

h(x) = rainbow(M (x)) (1)

s(x) = P(x) (2)

v(x) = 1 (3)

where rainbow() is the chosen colormap (see Fig. 1 d). Hence,
points having metric values are rendered with saturated colors,
while points with missing values are gray. Finally, we render the
area’s border using a soft gray texture.

In the final step, we smooth our piecewise-constant interpolation.
For this, we apply a Laplacian filter [4] on M and P , by setting
the value of each triangle vertex x to the average value of all vertices
connected to it, and repeating the process for 30..50 iterations. The
points contained inside the elements ei are kept fixed to the pre-
scribed metric values mi, to enforce the interpolation’s boundary
conditions. The result shows the values mi close to their elements
ei, smooths values in-between, and grays out colors close to ele-
ments without values (see Fig. 1 c).

3.2 Combining several metrics

Now we must combine several metrics defined on possibly over-
lapping areas. We cannot simply additively blend areas of different
colors as in [3], as this would mix the individual colors which show
metric values beyond recognition. We use a texture-based solution:
For each area Ai, we use a different texture3. We carefully designed
a small set of textures (Fig. 2). The overlap of any textures in this set
creates a visually different pattern. The textures contain just opac-
ity: black denotes opaque zones, white gaps are fully transparent,
gray indicates an alpha value between 0 and 1.

We now render each area Ai by combining its color (showing met-
rics) computed by interpolation (Sec. 3.1) with its transparency tex-
ture (showing the area’s identity) using OpenGL’s texture modula-
tion. Figure 1 d shows the application of texture c from Fig. 2 on

2The colormap choice is discussed further in Sec. 5
3We can relax this: non-overlapping areas can use the same texture, see

Fig. 6.

2

To appear in an IEEE VGTC sponsored conference proceedings

a) b)

c) d) e)

10..20 pixels

Figure 2: The proposed set of textures. Gray value denotes opacity

the area in Fig. 1 c. To maximize information visibility, we draw ar-
eas starting from the largest to the smallest one, so that small areas
appear atop large areas.

Figure 3 shows three overlapping areas defined over four elements.
Transparency creates hole-like patterns that let us see which tex-
tures, i.e. which areas, overlap, since each area has a different tex-
ture. The visual ’weaving’ of the textures also lets us distinguish
their different colors, hence correlate metric values. For example,
we see that D has low values in area 1 and high values in area 3 -
blue circles atop red diagonal lines; B has high values in area 1 and
no value in area 3 - red circles atop gray diagonal lines; and so on.

Transparency acts more like a stencil, so there is little or no actual
blending; colors do not mix, but get spatially woven. Color interpo-
lation spreads the metrics information from elements over entire ar-
eas, creating large smooth hue spots which are easier to follow than
rapid changes. We acknowledge this is a controversial issue: color
blending may suggest that there is a continuous metric variation
over an AOI, which is not the case. If less blending is perceived as
better, one can simply do less smoothing iterations: See e.g. Fig. 10
where only a few iterations are done, which yields well-separated
color areas around the elements, and almost no interpolated colors.
For instance, the transition between blue and green in A2 is sharp
and quick . Also, one can use discrete (categorical) colormaps with
no change in the method, if these are seen to produce less ambigu-
ous results.

Area Elements Texture

A1

A2

A3

B, D

A, B, C

A, C, D

Figure 3: Diagram showing three areas of interest with metrics

3.3 Shading for enhanced area separation

Although each area has its own distinctive texture, this can create
confusing overlaps where it is hard to tell where an area exactly
stops and another one starts. This happens e.g. where contours of
different areas run almost tangent.

To alleviate this, we emphasize each area A by shading, as follows.
We construct a signal S over A that is zero on the contour ∂A
of A, one further from the contour, and varies smoothly with the
distance within a narrow band of thickness δ along the contour. We
compute S on the same triangle mesh as M and P used for the
color interpolation (Sec. 3.1), as follows. First, we set S to 0 on the
contour vertices and 1 elsewhere. Next, we use the same Laplacian
filter as for color smoothing, keeping S fixed to 0 on the contour
points, for 10..30 iterations. More iterations increase the thickness
of the shading effect. After each iteration, we renormalize S to the
range [0,1].

We now use S as luminance by setting v(x) = S in Eqn. 3. This
darkens areas close to their borders, but keeps them bright in the
middle. Normalization ensures that shading is always bright in the
middle of an area and dark on the contour. A direct application
of shading would only affect the texture stripes (non-transparent)
but would not show up in the texture ’holes’. This would create a
broken, distracting shading effect. We prevent this by increasing
the holes’ opacity in the texture patterns from 0 (fully transparent)
to 0.2 (slightly opaque).

Overall, we obtain the effect of convex, shaded 3D shapes - com-
pare Fig. 3 (no shading) with Fig. 4 (with shading). At overlaps,
the shaded shapes get woven by blending. The darkened borders
help to visually separate areas (see the images in Sec. 4). The slight
opacity of the texture pattern holes is able to show the shading close
to the areas’ contours and also a faint hue of the interpolated colors,
i.e. metrics, in the pattern holes. This further strengthens the vi-
sual cohesion of all elements within an area and limits the breaking
effect of the holes, but still allows pattern weaving to take place.
When using textures to show metrics, as users noted on several oc-
casions, textures seem to complicate the visual tracking of an area’s
contour, so shading has a stronger value for areas textured to show
metrics.

Figure 4: Enhanced areas using shading (compare with Fig. 3)

4 APPLICATIONS

We now illustrate the use of our multivariate metric-and-structure
visualization in two different case studies.

3

To appear in an IEEE VGTC sponsored conference proceedings

4.1 Case Study - JPEG Decoder Architecture

We consider a real-world software project: the architecture of a
component-based JPEG decoder [2, 14]. The system model was
built and its operation numerically simulated using the CARAT
toolkit [1]. This delivered several run-time performance metrics.
We next show two such metrics:

• µCPU : CPU usage for active components (each active compo-
nent has its own process)

• µmem: memory usage for passive components (a passive com-
ponent is used by active processes)

Given the actual architecture of the JPEG decoder, not all compo-
nents have both memory and CPU metric values.

The decoder performs five tasks (T 1 . . . T5): JPEG stream starter
(T 1), inverse discrete cosine transform (IDCT), IDCT column pro-
cess (T2), IDCT row process (T 3), rasterization (T 4), and render-
ing (T 5). For a detailed description, we refer to [2]. We consider
six areas: A1 . . .A5 contain the components in tasks T 1 . . .T 5. Each
component has a memory usage metric µmem for each task area it
is part of. The sixth area ACPU holds all active components, which
also have a CPU usage metric µCPU . We now address two goals
which were named as important by the developers:

• understanding the distribution of tasks over the system struc-
ture and the memory usage of passive components

• understanding the CPU utilization over different tasks

To illustrate the advantage of our method, we first use metric
icons [12]) to show the memory usage metric. First, we draw the
areas T 1. . . T 5. Next, we draw pie and height-bar icons colored by
task and scaled to show memory usage µmem (Fig. 5). The metric
legend shows the tasks’ colors and also shows where each icon from
each task-area is placed within each element (see [12]). However,
in Fig. 5 it is hard to tell the metric values of each component for
each area it belongs to. We cannot increase icon sizes, as each icon
already takes one-sixth of a component’s size. It is hard to visually
correlate metric values over large areas. Also, a missing icon has
an ambiguous meaning: does it show a zero µmem = 0 or missing
metric value or a missing metric value µmem = None?

We now use our new technique. Each area (task) uses a different
texture (see legend in Fig. 6 left). Color shows the memory us-
age µmem (blue=low, red=high). We now better see which value
µmem each component has in each area, even though the images in
Fig. 6 are half the size of the icon-based visualization in Fig. 5.
We see, for instance, that components A, C, D, E and F use much
more memory than the rest in at least one task they are involved
in. Components A and C consume high memory amounts in the
tasks they are involved in (T 1 and T 3 for A and T 2 and T 4 for C).
Component C is the main memory consumer of the entire system,
as both textures surrounding it are red. Indeed: C implements the
decoder’s pixel raster buffer, which consumes a lot of memory. Fi-
nally, we see that components D . . .F have a similar memory usage
pattern: low in task T 4, high in task T 5. The results match the
design expectations, as rendering (T 5) is more memory-demanding
than rasterization (T 4).

In our second scenario, we add the CPU utilization metric µCPU

(Fig. 6 right). The area ACPU , containing all active components us-
ing CPU cycles (G . . .K), intersects the task-areas T 1 . . .T 5. To
visually segregate the two aspects (tasks and CPU utilization),
we use diagonal stripes for the task-areas T 1 . . .T 5 and vertical
stripes for the CPU utilization area ACPU . We see now the CPU-
intensive components: J and K. We also see that all components

in ACPU miss memory consumption data: the diagonal stripes tex-
tures around all components (G . . .K) are gray (Fig. 6 left). This
is correct, as the design of this JPEG decoder splits data (passive)
components from algorithm (active) components.

Figure 7 shows the effect of adding shading. The left image de-
picts the six areas with color interpolation (showing metrics) but
no textures. We provide this image to emphasize the useful effect
of shading to understand area overlaps. The right image shows the
six areas and two metrics (memory and CPU usage). Compared to
Fig. 6 right, it is easier to tell in the shaded image which compo-
nents are in which areas.

4.2 Case Study - Large Class Diagrams

In our second application, we extract an UML class diagram from
the source code of a C++ graphics editor in a reverse engineering
process, using an ANTLR-based C++ parser [9]. Talking to the
system designer, we identified several high-level functional aspects:

• main: the application’s entry point

• core: the application’s control code

• logging: code involved in logging actions

• GUI: user interface code

• I/O: code for saving and loading data

• OpenGL: rendering code

• XML: code for loading 3D models

Each aspect yields an area-of-interest Ai. We now want to see which
class participates in which design aspect, and how much. An ideal
object-oriented design would require each class strongly involved
only in one aspect [7]. We quantify the participation degree pi j of
each class j in each aspect Ai as its code percentage specific to Ai.
For example, an OpenGL class has p = 0.5 if it has 50% OpenGL-
specific code. The goal is to understand how the identified aspects
map to actual classes, i.e. whether the code follows the intended
design, and whether we have modularity problems.

The entire system is shown in Fig. 8. The legend shows, for each
area Ai, the number of classes it contains, the number of classes
having missing values for that area’s metric pi (due to the fact that
we were unable to reliably estimate the percentage of code involved
in each aspect), and the texture used to show the area. We notice
several facts. Few classes participate in two aspects, and none take
part in three. This indicates a good functional modularity. The only
class strongly involved in two aspects is B, part of the main and
core areas. Since B is actually the system’s entry point, this strong
involvement is not a problem. Class E participates strongly in core
(red in A6) and weakly in GUI (blue in A1). E the main window, so
its weak involvement in core and strong in GUI is correct. Class D
is strongly I/O-related (A7), and also part of the core (A6). However,
its code is quite complex, so we were unable to assess how strongly
it belongs to the core (missing metric of D in A6).

Figure 9 shows the same diagram, areas, and metrics as in Fig. 8,
with shading added. As for the JPEG decoder example, shading
helps better seeing which elements are in which areas.

Figure 10 shows another class diagram: a part of our own UML
visualizer. We show two functional areas: classes involved in visu-
alization (A2), and the class hierarchy modeling a UML graphical
element, or glyph (A1). Colors show degrees of participation in the
two aspects. Since our metric-rendering does not draw on classes,
we can show an additional metric: the lines-of-code (LOC) for all
class methods, drawn atop of classes with purple bars. Long bars
indicate large methods. Methods are sorted in decreasing LOC from

4

To appear in an IEEE VGTC sponsored conference proceedings

Metrics legend

Figure 5: JPEG decoder architecture. Icons show the memory usage metric µmem over five tasks. Areas show the tasks. The metric legend
shows the placement of metric icons within each component. Although this figure is quite large, it is hard to correlate metric values and areas

Areas legend

T1

T2

T3

T4

T5

Areas legend

A B C D E F

CPU

G

H I

J K J K
G

H I

Figure 6: JPEG decoder architecture. Left: 5 tasks with memory usage metric. Right: a sixth task and a second metric is added (CPU usage)

top to bottom within each class. This effectively shows the size dis-
tribution of all methods, and correlates it with the participation of
each class in the two AOIs.

We can use this image to understand how code complexity relates to
system structure, to predict potential maintenance hot-spots. First,
we see that area A1 contains a class hierarchy, rooted at A, which is
the glyph common interface. A1 is entirely contained inA2, which
is desirable, as glyphs are visualization objects. All glyph classes
in A1 have the same number of methods and similar bar graphs,
i.e. similar LOC distributions for their methods. This confirms a
desired property: all glyph subclasses should use the same coding
pattern. At closer code investigation, this was confirmed. Secondly,
we notice that class C, although in the visualization area A2, has no
metric here (is gray). C is also the root of a small class hierarchy.
This indicates a mix-in class: its code cannot be readily classified as
visualization, but it roots several visualization classes, so it is classi-
fied as visualization-related. The reason for the mix-in is clear when
looking at the class name: C is a C++ STL container (set), so its
two visualization subclasses inherit implementation rather than in-
terface.

The classes having the largest methods (longest bars) have also the
most methods: B, D, E. Stronger, the largest class B has also the

largest methods. This suggests a ’God class’ pattern [7]. Code
examination confirmed this: B contains a (complex) part of the
system’s data model. Correlating the methods’ LOC metric with
the areas, we also see that D and E are the largest visualization
classes, but the most complex class (B) is located outside these ar-
eas. Hence, we identified three potential maintenance hot-spots,
two in the visualization subsystem (D,E) and one outside (B). In
contrast, the glyph subsystem (area A1) contains only simple, small,
similar-pattern classes, hence should be much easier to maintain.

4.3 Informal User Feedback

We have conducted several informal evaluation studies of our pro-
posed multivariate metric visualization technique.

Our aim is to compare the effectiveness and acceptance of the new
texture-based technique as opposed to the classical icon-based tech-
niques. We compared our new method against [12] as both meth-
ods are implemented within the same UML visualization tool, so
we can share the same user interface, input file formats, and visual
look-and-feel. Moreover, we had a relatively large base of users al-
ready familiar with this UML visualization tool, in the framework
of a 2-year industry-academic cooperation project [14]. The user

5

To appear in an IEEE VGTC sponsored conference proceedings

Figure 7: JPEG decoder architecture. Left: shaded AOIs. Right: Adding shading to textured AOIs (compare with Fig. 6 right)

A1: GUI A2: logging

A3: OpenGL

A4: XML

A5: main

A7: I/O

A6: core

A

B

C

D

E
A
re

a
E
le
m

en
ts

Te
xt
ur

e

A1

A2

A3

7

M
is
si
ng

 v
al
ue

s

1

5 1

7 1

A4 7 1

A5

A6

A7

2

11

5

0

2

2

Figure 8: Large UML class diagram with 7 areas and over 50 classes. Metrics show the participation of classes in two aspects

base includes around 10 professional software engineers involved
in creating UML architecture diagrams, such as the JPEG decoder
(Sec. 4.1), and computing quality metrics on them.

We asked the designers to utilize both the icon-based and texture-
based metric visualizations to present their own work (diagrams and
metrics) in around 10 project meetings of around 20 participants
over a period of about 1 year. In such presentations, important
goals are to show metric-metric and metric-structure correlations,
as described in the previous sections. We silently observed the
presentations and gathered off-line feedback from presenters and
participants. Overall, there was a strong positive feedback about
using areas of interest: they are simple to understand and effective
to show software aspects. Metric icons were accepted only when
showing a single metric, possibly over several areas. Texture-based
metric visualizations were seen as more effective and intuitive when
correlating several metrics. The overlap of more than three metric
textures was, however, very hard to understand. In such cases, pre-
senters would switch metrics on and off to show only three metrics
simultaneously. Interestingly, color smoothing was not seen as a
problem, even though it generates colors between the diagram ele-
ments which do not correspond to actual values in the data. When
talking about this issue, we got the impression that users focus pre-

dominantly on the colors close to the diagram elements and use
color smoothing as a visual cue to navigate from element to ele-
ment over a given area, being aware that in-between colors do not
represent data.

5 DISSCUSSION

We discuss several aspects of our technique, as follows.

Scalability: we can easily show up to 10 areas of interest, each with
its own metric, on diagrams of 20..80 of classes. Larger diagrams
occur very rarely in software engineering practice. The Delaunay
triangulator and Laplacian filter used are well-known for their fast,
subsecond performance on meshes of thousands of triangles. Ren-
dering a metric over an AOI uses a single texture pass over a triangle
mesh, which is also very fast on any graphics card.

Understandability: The main limitation is the number of distinct
areas that can overlap at one given place. Consider the AOIs A1 =
(A,B,C,D), A2 = (A,B,C) and A3 = (A,B,D) in Fig. 11, rendered
with textures shown in the legend. From the ’woven’ texture pattern
we believe it is reasonably easy to see which element is in which
area and the colors (metric values) at overlaps. The addition of

6

To appear in an IEEE VGTC sponsored conference proceedings

A
re

a
E
le
m

en
ts

Te
xt
ur

e

A1

A2

A3

7

M
is
si
ng

 v
al
ue

s

1

5 1

7 1

A4 7 1

A5

A6

A7

2

11

5

0

2

2

Figure 9: Visualization of the UML diagram in Fig. 8, now with area shading and half-transparent elements

shading (Sec. 3.3 further helps in separating areas with complex
overlaps. Yet, adding a fourth overlapping area would make this
image hard to understand.

Area Elements Texture

A1

A2

A3

A, B, C

A, B, D

A, B, C, D

Figure 11: Complex intersection of three overlapping areas

Obtaining a good pattern mix constrains the texture parameters. All
textures should have similar ratios of opaque-to-transparent pixels,
so we can ’see through’ at all overlaps. Ratios between 40% and
60% give good results - lower values yield too sparse textures, on
which we cannot see colors or shading; higher values yield occlu-
sion at overlaps, so we cannot see more than one texture. Patterns
must be chosen so that the overlap of any n−1 patterns looks differ-

ent from the nth pattern, n being the number of overlapping areas.
The texture set used here gives good results for n ≤ 3, as shown in

a different application [15]. Finally, the frequency range (related to
the pattern stripe thickness and circle radius) is important. Too thin
patterns are hard to distinguish at overlaps; too thick patterns do not
let the eye smoothly switch between areas at overlaps. We found an
empirically good pattern size in the range of 10..20 pixels (Fig. 2).

Related methods: To our knowledge, there is only one other soft-
ware visualization that uses textures to show numeric metric val-
ues [6]. Our method differs from this as follows. Holten et al en-
code two metrics in the texture frequency and luminance, and use a
treemap layout, so their areas are rectangular, cannot overlap, and
always contain a single element. We smoothly interpolate metrics
over arbitrarily-shaped, overlapping areas. We use a fixed texture-
set, use opacity to allow overlaps, and encode metric values in hue
and metric availability in saturation. Finally, we use luminance to
pseudo-shade the areas to visually emphasize contours rather than
encoding data. This is conceptually similar to the cushion treemaps
used by Holten et al, but generalizes to complex-shaped, overlap-
ping, areas.

The colormap choice can be considerably Here, we demonstrate
only a simple blue-to-red continuous colormap, for simplicity and
conciseness. However, better choices are available, such as other
hue gradients or discrete few-hue colormaps. Such issues need to
be further investigated. A second discussion point is our choice to
interpolate colors. As mentioned, this creates colors between el-
ements which do not correspond to actual values. However, we
believe this is acceptable since users are fully aware that there are
no data values except on the diagram elements, and smooth colors
help following the contents of a given area as opposed to hard color
boundaries between elements. Also, using a (discrete) few-hue col-
ormap would considerably alleviate this problem as there would be
less, or no, different hues created between the ones in the colormap.
Still, a rigorous user evaluation of the effectiveness and/or limita-
tions of color interpolation is still needed.

Finally, using full-saturation hues on the areas is sometimes seen as
distracting. Fortunately, this is easy to tune: we provide a global
opacity control that allows users to set the overall opacity of all

7

To appear in an IEEE VGTC sponsored conference proceedings

A

B

C

area A1:

Glyph

interface

area A2:

visualization

subsystem

Area

Elements

Texture

A1 A2

8

Missing values 0

16

2

ED

Figure 10: UML class diagram with two areas, class-level participation metrics, and method-level lines-of-code metrics

AOIs, thus smoothly navigating between ’bare’ diagrams and dia-
grams with full-saturation textured areas. In practice, using a global
area opacity of 0.4..0.6 gives good results - the actual value used de-
pending on one’s taste and type of color screen.

6 CONCLUSION

We proposed a method to render a multivariate set of metrics, with
potential missing values, on elements of areas of interest on UML
diagrams, so that metric-area correlations and distributions of met-
rics over areas are easy to distinguish. We use a combination of tex-
turing, blending, and smooth spatial data interpolation techniques.
Texture patterns encode aspects in a diagram and also allow tex-
tures to visually interlace and show the colors of several metrics.
Additional shading further visually separates complex overlapping
areas. Although our interest is in software architecture diagrams,
our method can be used in many other contexts, such as organiza-
tion diagrams or spatial maps.

We would next like to study how interaction can help understanding
the metrics correlation. A second essential direction is to study the
practical effectiveness of the proposed methods by means of user
studies involving actual software engineers in the industry.

ACKNOWLEDGEMENTS

We would like to thank Egor Bondarev (TU Eindhoven) for sup-
porting us with the JPEG case study and the ITEA Trust4All con-
sortium for supporting part of our research.

REFERENCES

[1] E. Bondarev, M. Chaudron, H. Byelas, and P. de With. A toolkit for

design and performance analysis of real-time component-based soft-

ware systems. In Proc. Intl. Conf. in Software Eng. Advances, pages

4–8, 2006.

[2] E. Bondarev, M. Chaudron, and E. de Kock. Exploring performance

trade-offs of a JPEG decoder using the DeepCompass framework. In

Proc. Intl. Workshop on Software and Performance, pages 153–163,

2007.

[3] H. Byelas and A. Telea. Visualization of areas of interest on software

architecture diagrams. In Proc. ACM SoftVis, pages 105–114, 2006.

[4] L. da Fontoura Costa and R. M. Cesar. Shape Analysis and Classifi-

cation: Theory and Practice. CRC Press, 2004.

[5] S. Diehl. Software Visualization - Visualizing the Structure, Behaviour,

and Evolution of Software. Springer, 2007.

[6] D. Holten, R. Vliegen, and J. J. van Wijk. Visual realism for the vi-

sualization of software metrics. In Proc. VisSoft, pages 27–32. IEEE,

2005.

[7] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice -

Using Software Metrics to Characterize, Evaluate, and Improve the

Design of Object-Oriented Systems. Springer, 2006.

[8] OMG. The Unified Modeling Language. 2008. http://www.uml.

org.

[9] T. Parr and R. Quong. ANTLR: A predicated-LL(k) parser generator.

Software - Practice and Experience, 25(7):789–810, 1995.

[10] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator

and delaunay triangulator. In Proc. Applied Computational Geometry,

pages 124–133. ACM Press, 1996.

[11] R. Spence. Information Visualization: Design for Interaction (2nd

ed.). Prentice Hall, 2007.

[12] M. Termeer, C. Lange, A. Telea, and M. Chaudron. Visual exploration

of combined architectural and metric information. In Proc. VISSOFT,

pages 21–26. IEEE Press, 2005.

[13] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Mller. Pro-

grammable reverse engineering. Intl. J. of Software Eng. and Knowl-

edge Eng., pages 501–520, 1994.

[14] Trust4All. The Trust4All project, 2005. www.win.tue.nl/

trust4all.

[15] L. Voinea and A. Telea. Multiscale and multivariate visualizations of

software evolution. In Proc. SoftVis, pages 115–124. ACM, 2006.

[16] J. Wust. SDMETRICS: The software design metrics tool for UML.

2006. www.sdmetrics.com.

8

