
Attribute-Driven Edge Bundling for General Graphs
with Applications in Trail Analysis

Vsevolod Peysakhovich∗

ISAE, Toulouse, France
Christophe Hurter†

DGAC, Toulouse, France
Alexandru Telea‡

University of Groningen,
Netherlands

ABSTRACT

Edge bundling methods reduce visual clutter of dense and occluded
graphs. However, existing bundling techniques either ignore edge
properties such as direction and data attributes, or are otherwise com-
putationally not scalable, which makes them unsuitable for tasks
such as exploration of large trajectory datasets. We present a new
framework to generate bundled graph layouts according to any nu-
merical edge attributes such as directions, timestamps or weights.
We propose a GPU-based implementation linear in number of edges,
which makes our algorithm applicable to large datasets. We demon-
strate our method with applications in the analysis of aircraft trajec-
tory datasets and eye-movement traces.

Index Terms: I.3.3 [Computing Methodologies]: Computer
Graphics—Picture/Image Generation; I.3.6 [Computing Methodolo-
gies]: Computer Graphics—Methodology and Techniques

1 INTRODUCTION

Large attributed graphs are ubiquitous in many application domains,
such as traffic analysis and planning, network analysis, and bioinfor-
matics. They represent a special subclass of general graphs where
edge directions encode essential information for the analysis task at
hand. For such graphs, classical visual metaphors such as node-link
diagrams produce too much clutter to generate useful pictures.

Graph bundling methods attempt to reduce clutter by grouping
edges found to be compatible into so-called bundles. Yet, few such
methods handle attributed graphs – edge compatibility is mainly
based on spatial position and does not use attributes such as edge di-
rection or data values. Reasoning about such attributes (seeing their
values reflected in the bundling) is essential in many applications.
Bundling methods for attributed graphs exist, but are computation-
ally not scalable, and thus not usable for large-scale data exploration.

We present Attribute-Driven Edge Bundling (ADEB), a general-
ized edge bundling technique based on edge advection in compatible
vector subspaces, which extends the recent kernel density estimation
edge-bundling (KDEEB) [23] with the following contributions:

1. generation of bundled layouts where edge compatibility is de-
fined by one or several numerical edge attributes, e.g., direc-
tion, time, or weight;

2. a simple and scalable GPU implementation of our method;
3. applications of ADEB for exploring trail (airline trajectory and

eye tracking) datasets demonstrating the method’s added value
as opposed to classical bundling of undirected graphs.

The structure of this paper is as follows. Section 2 reviews related
work on edge bundling and trail visualization. Section 3 presents
ADEB’s mathematical framework and its implementation. Section 4
applies ADEB to the visual analysis of traffic and eye tracking data.
Section 5 discusses our method. Section 6 concludes the paper.

∗e-mail: vsevolod.peysakhovich@isae.fr
†e-mail: christophe.hurter@enac.fr
‡e-mail: a.c.telea@rug.nl

2 RELATED WORK

We next briefly review several state-of-the-art edge bundling meth-
ods and trail visualization techniques.

2.1 Edge bundling techniques

Key to edge bundling is the reduction of edge-edge clutter by group-
ing so-called compatible edges into spatially compact and thin bun-
dles. This allows an easier visual detection of coarse-scale con-
nectivity patterns in the input graph and supports tasks like finding
node-groups which are connected to each other by edge-groups (bun-
dles) [13, 41]. Such strategies are similar to cartographic map gener-
alization, concerned with legibly depicting a complex world in static
2D views [5]. Clutter causes and reduction strategies are discussed
by Ellis and Dix [11] and Zhou [45]. Edge bundling has been of in-
creased interest in recent research. We group them according to the
edge simplification level (data, geometry, and image), as follows.
Data-based methods: Such methods reduce clutter by showing a
simpler graph obtained by filtering or by aggregating edges [11]. In-
teractive tools, such as NodeTrix, compact dense subgraphs into ma-
trix representations [17, 16]. Ploceus displays networks from dif-
ferent perspectives, at different abstraction levels, and with different
edge semantics [33]. Filtering can be done by user-specified queries
based on multivariate criteria, or by automated methods using edge
metrics such as centrality [43] or spanning trees [32].
Geometry-based methods: Large graphs can be visualized with
limited clutter by edge bundling techniques. Edges found to be com-
patible, i.e. close in the graph drawing and (optionally) similar in
attribute values are deformed to overlap, thereby increasing separat-
ing whitespace and thus reducing clutter at the expense of increas-
ing overdraw. Dickerson et al. merge edges by reducing non-planar
graphs to planar ones [8]. Flow maps use a binary clustering of graph
nodes to route curved edges along [36]. Several authors use flow map
control-meshes to cluster and route curved edges [38, 46]. Holten
generalized this idea by routing edges of compound graphs along the
graph’s hierarchy drawing [19]. Gansner and Koren bundle edges in
a circular node layout by area optimization metrics [14]. Edge rout-
ing can also use Delaunay [7] and Voronoi diagrams [29, 28] reflect-
ing the node positions. The most popular (and versatile) bundling
methods use force-based techniques that use a force field designed to
equal the gradient of a quality function to optimize [10, 20], and have
been adapted to separate bundles running in opposite directions [40].
A major issue of geometric techniques is computational complexity.
To reduce this, graph optimization techniques and multilevel cluster-
ing numerical methods have been proposed [37, 13].
Image-based methods: These methods exploit the parallel com-
puting power of modern GPUs to speed up bundling and/or offer
new visual metaphors for bundled graphs. Visual techniques include
color interpolation to show edge directions [19, 7]; and mapping at-
tributes such as local edge density or edge lengths via transparency
or hue maps [26, 29, 40, 22]. Bundles can be drawn as compact
shapes emphasized by shaded cushions [41, 39]. Animated textures
can be used to convey edge directions for both static and dynamic
graphs [24]. Image-based methods can also massively accelerate
bundling: Skeleton-based edge bundling (SBEB) creates strongly
ramified bundles by using GPU-computed skeletons or medial axes
of the graph drawing’s thresholded distance-transform as bundling

cues [12]. Recently, the force-directed idea of [20] was adapted for
a GPU setting, offering speed-ups of up to two orders of magnitude
compared to state-of-the-art geometric bundling methods [23, 24].

2.2 Trail visualization

Trail datasets consist of sequences of points recording the motion
of objects, e.g. vehicles, or object parts, e.g. eyes or human sil-
houettes. Such datasets have three main features. First, they can
be described as attributed graphs, where nodes represent trajectory
endpoints and (curved) edge control points represent actual motion
paths. Attributes include motion direction, speed, and timestamps.
Secondly, they are typically very large: For instance, 15 minutes of
eye tracking data recorded at 50 Hz already gives 45K sample points;
air traffic recorded at a country’s scale over a week can yield over a
million sample points [22]. Finally, they are complex, e.g. contain
many intersecting trails covering large spatial domains. All these
factors make trail exploration a challenging proposal with respect to
attribute depiction, clutter reduction, and computational scalability.
We discuss below several methods related to this task.
Trajectory exploration: Interactive brushing-and-linking tech-
niques help locally reducing clutter when exploring large multivari-
ate trajectory datasets, by selecting up to three dimensions to show
in a single 2D view [26]. Focus+context interaction helps further
reducing clutter and posing complex spatial-and-data queries [25].
Extracting events of interest from different kinds of spatio-temporal
data is discussed (but not fully implemented) by Beard et al. [3]. The
same query idea is used to extract trajectory parts in [15, 2].
Eye tracking exploration: Density maps tackle the visual scalabil-
ity problem by aggregating spatially close information for eye track
analysis [2, 1, 34]. Burch et al. transform eye tracks into a dynamic
graph to help exploration [4]. Areas of interest (AOI) provide infor-
mation about dwell times, transitions, fixation points, and AOI hits,
but require accurate a priori knowledge to define such areas [9, 18].
A few methods exist that are able to group eye-movement paths;
however, they are neither visual nor very intuitive to use [31]. An
overview of eye movement pattern analysis is given by Laube [30].

Given the size and clutter of trail datasets, bundling methods have
emerged as an effective way to show the coarse-scale connectivity
structure of these datasets [23, 20, 12, 29, 7, 22]. However, as analyz-
ing trail datasets requires reasoning about trail attributes (e.g. times-
tamps, speed, and direction), undirected bundling techniques are of
limited use. For instance, a bundle connecting two node-groups A
and B will only tell that A and B are connected, but not in which
direction(s) and at which time instant(s) objects moved from A to B.
As a side effect, mixing edges of different attribute values in a bundle
makes the attribute-based shading-and-blending schemes proposed
by several authors [20, 29, 22] of limited effectiveness. Conversely,
using bundling techniques for attributed graphs [40, 20] is not prac-
tical, as these are far too slow for large datasets such as trail data.

3 ADEB FRAMEWORK

We next describe our ADEB method, a framework that bundles large
graphs using an edge-compatibility scheme that can be flexibly con-
trolled to include (mixes of) edge attributes. We first outline the main
elements of the KDEEB algorithm from which ADEB is inspired
(Sec. 3.1). Section 3.2 presents ADEB’s mathematical details. Sec-
tions 3.3 and 3.4 explain how to use attributes to create various edge
compatibility metrics. Implementation details are given in Sec. 3.5.

3.1 Kernel density bundling

We first review the main principles of the kernel density estimation
edge bundling (KDEEB) technique. Let G = {ei}1≤i≤N ⊂ R2 be the
drawing of a graph of N edges, where each edge ei is represented
by a straight line or arbitrary 2D curve. First, an edge-density map

ρ : R2→ R+ is computed using kernel density estimation

ρ(x ∈ R2) =
1
h2

N

∑
i=1

∫
y∈ei

K
(

x−y
h

)
, (1)

where K : R2→R+ is a bivariate radial kernel obtained from a sym-
metric univariate non-negative kernel function of bandwidth h > 0,
e.g. Gaussian or Epanechnikov. The bundling of G is given by the
fixed point of the ordinary differential equation

dx
dt

=
h(t)∇ρ(x, t)

max(‖∇ρ(x, t)‖,ε)
, ∀x ∈ G, (2)

with initial conditions given by the input graph drawing G. The
regularization constant ε � 1 takes care of zero gradients. After
a few Euler iterations used to solve Eqn. 2, during which one re-
samples edges, recomputes ρ , decreases h, and makes a 1D Lapla-
cian smoothing pass over G’s edges, KDEEB converges and aggre-
gates edges into bundles. Note that KDEEB is nothing else but the
well-known mean-shift algorithm [6] applied to the graph drawing
G. Hence, KDEEB inherits smoothness, noise robustness, and con-
vergence results proven for mean-shift. For details, we refer to [23].

3.2 Mathematical model for ADEB
We proceed by first introducing a few necessary definitions.
Edge directions: Consider a given drawing G = {ei}1≤i≤N of a di-
rected graph or trail dataset. For each point x ∈ ei ⊂ G, we denote
by d(x) the unit vector tangent to the curve representing ei, oriented
in the direction given by walking on ei from its start to its end point.
For our trail datasets (Sec. 2.2), ei will be typically a 2D curve rather
than straight line (as in a classical node-link graph drawing), so d
changes along ei. Secondly, note that d encodes the local directions
of the initial graph drawing, given as input to the bundling process.
Flow direction map: Given a graph drawing G as above, the flow
direction map θ : R2→ R2 is defined as

θ(x ∈ R2) =
1
h2

N

∑
i=1

∫
y∈ei

d(y)K
(

x−y
h

)
, (3)

where K is the same kernel as in Eqn. 1. We can think of θ as being
a 2D viscous fluid flow whose boundary conditions are given by the
d values on G. The bandwidth h in this analogy is the fluid viscosity.
Note that several points have θ(x) = 0, e.g., points equidistant from
two parallel opposite-direction edges of. In our analogy, these would
be flow separation lines. Points x close to an edge have values θ(x)
close to the edge direction d. The flow magnitude ‖θ‖ decreases
monotonically and smoothly away from the flow boundary G.
Directional compatibility: At each point x ∈ G, we define a sub-
space Ωx,c of compatible directions as

Ωx,c =

{
y ∈ R2 \ker(θ)

∣∣∣∣d(x) ·θ(y)‖θ(y)‖
≥ c
}
⊂ R2, (4)

where ker(θ)= {x∈R2|‖θ(x)‖= 0} and c∈ [−1,1] is a compatibil-
ity factor. This factor represents the cosine of the maximum allowed
angle between the edge direction and flow direction at y. Thus, Ωx,0
covers all points where the flow direction deviates from d(x) by π/2
at most, and Ωx,−1 ≡ R2. In general, given a point x of the initial
graph drawing G, Ωx,c gives all points in R2 where the flow map θ

has roughly the same direction as x, subject to the factor c.
Given the ρ and θ maps, the subspace Ωx,c is defined at each point

x∈G. We can now define the ADEB bundling of G as the fixed point
of the ordinary differential equation

dx
dt

=
h(t)∇Ωx,c ρ(x, t)

max(‖∇Ωx,c ρ(x, t)‖,ε)
, ∀x ∈ G (5)

In contrast to KDEEB (Eqn. 2), the gradient ∇Ωx,c ρ is estimated now
only over the subspace of compatible directions Ωx,c. In analogy
with KDEEB, we solve Eqn. 5 by a few Euler iterations, during
which we resample edges, recompute ρ and θ , decrease h, and make
a 1D Laplacian smoothing pass to remove small wiggles.

A
D

E
B

 (
c
=

c
o

s
 π

)
A

D
E

B
 (
c
=

c
o

s
 π
/6

)
In

p
u

t
d

a
ta

s
e

ts

Figure 1: Influence of compatibility factor on bundling result.

In summary, while KDEEB advects points of a given drawing to-
wards local maxima of its edge density, ADEB advects points to-
wards local density maxima of compatible directions. Figure 1 shows
the influence of the compatibility factor c on four simple graphs.
Edges are colored using a directional colormap (see color wheel in
figure: edges going west are red, edges going north are purple, edges
going south are green, and edges going east are blue). Luminance
is linearly increased along edges, so their direction is also shown
by following the dark-to-saturated color gradient, in line with [21].
The top row shows the input graphs, which are simple for illustration
purposes. The middle row uses c = cos(π), in which case ADEB
produces identical results with KDEEB. As shown by the colors,
bundles contain edges running in different directions. This creates
bundles which arguably do not reflect well the connectivity pattern
in the input graph, see e.g. the second row from left. The bottom
row shows ADEB for c = cos(π/6), which creates bundles contain-
ing only edges having similar directions. As argued also by Selassie
et al., this is useful to separate a graph into several bundled ‘layers’,
each representing the bundling of a subset of edges having locally
similar directions [40]. The bottom-right image in Fig. 1 shows this:
The input graph (top-right image), which contains edges of alternat-
ing directions as indicated by the arrows, has been effectively bun-
dled to yield two very similar red and purple bundle structures, one
for each input direction (compare this example with Fig. 7 in [40]).

3.3 Attribute-based bundling

Apart from direction, we can easily use other edge attributes to define
edge compatibility. Consider for instance that edge ei has, at point
x, an attribute value ti(x) ∈ R. We next transform ti to a vector ti =
(tx

i , t
y
i) ∈ R2 by using polar coordinates, i.e. set

tx
i (x) = cos

(
ti(x)− tmin

tmax− tmin
·π
)
, ty

i (x) = sin
(

ti(x)− tmin

tmax− tmin
·π
)

(6)

with ti ∈ [tmin, tmax] over the entire G. Next, we use ADEB (Sec. 3.2)
unchanged. The resulting flow direction map encodes the compat-
ibility of our edge-attribute ti. The compatibility factor c is to be
set accordingly: For instance, if edges are compatible in time when
their timestamp difference is less than σ seconds and the maximum
timestamp value is tmax, then c should be set to cos(σπ

tmax
).

3.4 Multi-criteria bundling

We can use ADEB to bundle graphs using compatibility criteria de-
fined by several attributes. Suppose that we compute two flow di-
rection maps corresponding to edge direction and edge timestamps
respectively. We can next compute two subspaces of compatible di-
rections and compatible timestamps. Next, by computing the gra-
dient ∇ρ over the intersection of these two subspaces, the result of
Eqn. 5 is a multi-criteria bundled layout.

Figure 2 shows this for a dataset recording the gaze for a one-
minute exploration of Ilya Repin’s painting Unexpected Visitor. Sim-
ilar to Yarbus [44], a subject was asked to look at the painting and
first assess and verbalize the age of the main characters, and next the
age of secondary characters. Using time-based compatibility, ADEB
bundles together the trails separated in time (Fig. 2 b, trails colored
by time via a blue-green-red colormap). We find that there are two
main ‘visual scans’ in this scenario – first, a scan between the faces of
foreground characters A and B (green bundle), followed by a second
scan between background characters C and D (red bundle). How-
ever, since we don’t use direction for bundling, we cannot tell if in
these scans the eye moved from left to right, right to left, or both
directions. Figure 2 b shows the result of directional bundling, col-
ored by trail directions like in Fig. 1. We now see that both scans
A-B and C-D include left-to-right (blue) and right-to-left (red) bun-
dles of similar thickness. Hence, the eye moved in both cases in both
directions, and it did so in a balanced way (comparable amount of
times in both directions). However, close to character C, the ends of
the C-D bundles are pulled towards and mixed with the A-B bundles,
even though the two scans are temporally separated. Using time-and-
direction based compatibility, we can obtain both desirable effects
shown before (Fig. 2 d): Each scan is separated in a left-to-right and
right-to-left bundle, and temporally different scans are not mixed.

3.5 Implementation details

We evaluate the two components θx and θy of the flow direction θ

by using Eqn. 3 twice, for the two corresponding components dx and
dy of the edge direction vector d respectively. We implement this on
the GPU by splatting the kernel K at all edge sample points using
additive blending, and accumulating the resulting θx and θy values in
two floating-point textures. Next, we compute the density gradient
∇Ωx,c ρ by finite differences, on a compatible subspace Ωx,c ∩νε (x),
where νε (x) is a neighborhood of x of radius ε ≥ h> 0. While cover-
ing the neighborhood νε (x), each point y of it is tested for directional
compatibility. The finite differences are computed only on points
that pass the compatibility test in Eqn. 4. Finally, while doing the
bundling iterations that solve Eqn. 5, we relax the user-given com-
patibility value c so it reaches cosπ at the last iteration. This way,
the first iterations force edges to aggregate into compatible bundles,
while the last iterations ‘compact’ edges already found to be com-
patible into smoother final bundles.

Our method has similar complexity and computational perfor-
mance with KDEEB. Specifically, computing the flow direction map
θ takes twice the time required for KDEEB’s density map com-
putation. Estimating the directional compatibility criterion adds
only a simple logical condition for the density gradient computa-
tion. Memory-wise, our method requires two floating-point buffers
of the size of the graph drawing G, which is a negligible cost in-
crease as compared to KDEEB. Compared to FDEB [20] and divided
edges [40], two other prominent directional bundling techniques, our
method is over one order of magnitude faster (see also Sec. 5).

We render the bundled edges as curves colored by the value of
one attribute of interest, e.g. time or direction. We also scale the
curve thickness at each point x with the local edge-density value ρ(x)
(Eqn. 1). Bundles (or bundle fragments) thus appear locally thicker
in areas where they contain many edges, thereby enabling users to
estimate the importance of the respective connection patterns.

a) Raw eye trails

c) Bundling by direction

b) Bundling by time

d) Bundling by direction and time

A
B

C

D

Figure 2: Multi-criteria bundling of an eye tracking dataset.

4 APPLICATIONS

We next present two applications of ADEB for the qualitative analy-
sis of trail datasets represented by directed attributed graphs.

4.1 Aircraft traffic exploration

Our first application concerns the exploration of aircraft traffic.
Given a geographical region (e.g., a country), aircraft position is pe-
riodically recorded over a given time interval (e.g., days or weeks) by
a mix of observations from ground radar stations and signals emitted
by onboard transceivers. This generates a set of trails, attributed by
the measured quantities (aircraft timestamp, position, speed, height,
and ID). Considering landing and takeoff points as nodes and trails
as edges, such data can be modeled as a directed attributed graph.
Such data is used by air traffic controllers both online (to keep safe
distances between flying aircraft) and offline (to optimize air traffic
flows, e.g., minimize delays and optimize flight routes).

Edge bundling has already been used to highlight coarse-scale
connection patterns in air traffic data [23, 22]. However, this causes
problems when tasks at hand involve reasoning about flight direc-
tions. Indeed, existing directional bundling techniques are either not
scalable enough [40] or need expensive preprocessing steps [12]. To
separate different directions mixed in the same bundle, interaction
can be used, e.g. the MoleView semantic lens that smoothly inter-
polates between bundled and unbundled trails at locations of inter-
est [25]. However, this approach only provides local insights.
Dataset: The analyzed dataset is 24 hours (February 8th, 2009)

of recorded aircraft trails over France (Fig. 3, 18858 trajectories,
415257 records or sample points). We detail below two exploration
scenarios, performed by an ATC expert, using our ADEB bundling
technique, embedded in the FromDaDy visual exploration tool [26].
Findings have been cross-checked by a separate air traffic controller.
Overview analysis: Exploration started by analyzing an overview
of the flight patterns. Figure 3 a shows the input trail set. Trails are
color-coded based on direction, as in Fig. 2. To emphasize direction,
we made them dark and saturated at the start points and bright and
desaturated at end points. Figure 3 b shows the directionally bundled
trails, color-coded as above. Compared to the unbundled image, we
can now see the different incoming and outgoing aircraft ‘flows’ at
several main European cities (Paris, London, Zürich). We’ll explore
these further below. Secondly, we notice the complex flight pattern
over Lyon, which differs significantly from the pattern above Paris.
Indeed, while Paris does not have transit traffic (aircrafts that fly over
a given area without landing), Lyon has major transit flows. One
such example is formed by the red and blue bundles linking Zürich
to Spain (Fig. 3 b, bundle b). Over the entire image, we see sev-
eral such bundle-pairs having similar thickness in the two directions,
e.g. the one ending in London (Fig. 3 b, bundle a). Since bundle
width maps the number of bundled trails (Sec. 3.5), this shows us
that such paired flows contain balanced traffic in the two directions.
Such flows correspond to daily commuting flights.
Detailed analysis: We next zoom to explore flight details in a circle
of about 100 km around the Paris area (Fig. 3 c). We discover that
this flow pattern has four main incoming and four outgoing flows
(see arrows in the figure). Also, we see that there are only a few
thin bundles whose endpoints are not in the center of the image –
thus, we confirm the overview finding that Paris has little transit
traffic. Most bundles start/end at two concentrated locations (dot-
ted circles in the figure). These correspond to the two main Paris
airports, Roissy and Orly. The detail analysis also shows us facts
that were not visible on the overview: For Roissy, the thickness of
the main bundles (marked by arrows) show that west and north de-
partures are far fewer than south and east ones. More interestingly,
we see that, at this scale, bundle-pairs corresponding to departure-
arrival flows in the same main direction, are far less parallel than in
the coarse-scale visualization. This matches existing knowledge that
landing-departing patterns close to airports are much wider spread
(in direction) than in-flight patterns, as the former need all to share a
smaller geographical area. For Orly airport, we immediately see that
traffic is far smaller than for Roissy, and it goes mainly to the south
and south-west (bundles sw and s). Only a very thin bundle goes
from Orly to the north (arrow n). This matches known evidence on
this airport: Orly mainly serves domestic flights and is in the north of
France; as such, its traffic goes mainly to the south and south-west.

Figure 4: Aircraft traffic over Paris (bundled with KDEEB). Com-
pare with the ADEB directional bundling in Fig. 3 c.

Such insights cannot be obtained with a direction-agnostic
bundling method. To illustrate this, Fig. 4 shows the same zoom-in as

a b c

Paris Zurich

London

Spain

Figure 3: Aircraft trails analysis. (a) Raw data. (b) Directional bundling over France. (c) Zoom-in over Paris area.

in Fig. 3 c, bundled with KDEEB. The north departure bundle is now
mixed with north-east arrivals, and east departures get mixed with
south-east arrivals. Also, the several thin traffic bundles (aircraft that
do not start/stop at Paris) visible in Fig. 3 c get now aggregated. In
other words, undirected bundling keeps the very-coarse connection
patterns, but eliminates the finer ones that depend on direction.

4.2 Eye tracking exploration

Recent eye-tracking technology developments made eye movement
data increasingly used in applications in neuroscience, psychology,
human factors, training, and marketing. Such data consists of sam-
pled trails giving the motion of the subject’s gaze points while com-
pleting a given task. Its two most important elements are fixations
and saccades. Fixations describe points that the eye is attracted to
(thus, where attention is drawn). Saccades link fixations and model
how one ‘scans’ the image to link information given by fixations.

For fixation events, studied more often, attention and saliency
maps are often used to show regions of interest by locating high-
density fixation areas. However, the saccades linking such points are
also of great importance, especially to understand how low-level fix-
ation information is aggregated to form a higher-level understanding
of the picture. Specifically, spatially and temporally close saccades
are to be grouped into so-called scanpaths, and further analyzed to
understand how the image was processed [44]. Two kinds of visu-
alizations exist for scanpaths: either the gaze is dynamically played
back, or the sequence of saccades is depicted statically by connect-
ing consecutive fixation points by arrows. Both visualizations are
quite inconvenient for pattern analysis. Playback is necessarily local
in both time and space, and thereby cannot show the grouping. Play-
back is also time-consuming. Static drawings of raw scanpaths gen-
erate very cluttered images, especially when analyzing data produced
by lengthy experiments containing thousands of saccades [4, 27].

We next describe the use of attribute-based bundling for analyzing
such eye tracking datasets. First, we outline how we extracted an
attributed graph from raw eye-tracking data (Sec. 4.2.1). Next, we
detail two experiments where our bundling proved to be an effective
aid for getting insight into the recorded data (Secs. 4.2.2 and 4.2.3).

4.2.1 Preprocessing

Raw gaze data, recorded at 50 Hz, was preprocessed to extract fixa-
tions and saccades as follows. Consecutive sample points located in a
square of 20×20 pixels and separated by at least 200 ms were consid-
ered to be a fixation event. Points marked as a one fixation event were
replaced by their average. This reduces small-scale noise (scattered
close fixation points) generated by micro-saccades and eye tracking
device imprecision during a fixation. Clustering algorithms could
be used [6] to further reduce clutter and aggregate adjacent fixations
corresponding to one object of interest but separated spatially due to

the imprecision of human visual system. Next, trails formed by con-
secutive sample points were cut between fixation points, yielding the
saccades. Finally, a graph was created using fixations as nodes and
saccades as curved edges. Note that since human eye does not en-
code any information during the saccadic movement, curved edges
of our graph do not have direct attentional interpretation and thus
could be distorted.

4.2.2 Multitask experiment
Eye tracking technology can be used to study visual attention and
attention repartition. Consider, for example, how a pilot watches the
cockpit instruments during a certain manoeuvre (task). Such tasks,
e.g. take-off or landing, are typically split into multiple subtasks,
each involving several instruments between which the pilot has to
allocate attention. For each subtask, instruments have to be watched
in appropriate order and with a given frequency. For instance, the
priority of the Primary Flight Display (PFD) instrument with respect
to Flight Control Unit (FCU) will be different for the final landing
approach as compared to the cruise phase [35].
Data and tasks: This dataset is part of the priority management test-
ing of the pilot selection process of the French Civil Aviation School
(ENAC) [35]. The subject has to perform a main task containing four
concurrent subtasks of different nature (tracking, monitoring, target
detection, mental computing), with two priority conditions: (a) all
four subtasks have even priorities, and (b) two high-priority and two
low-priority subtasks (uneven priorities). Tasks are performed us-
ing a dashboard-like multitask interface on which several instruments
show dynamically-changing data. The interface and location of the
various instruments used for each task is shown in the background of
Fig. 5a. The top bar widgets let subjects monitor their performance
(four bars for each task, and one aggregated-performance bar). For
the uneven condition, subtask priorities are shown in Fig. 5b. A
detailed description of this experiment and the multitask design are
given in [35]. Each main task was run using both priority conditions,
and separately by two subject groups, one formed by experienced pi-
lots, and the other one formed by novices. The subjects’ gaze was
continuously recorded by eye tracking during the task execution. For
each such run, which took 4 minutes, we used the preprocessing in
Sec. 4.2.1 to obtain a graph having 234 saccades of 24 samples each
on average. Using this data, we next try to find similarities and dif-
ferences in task execution across users and priority conditions.
Results: Figure 5 shows the result of applying directional bundling
on four sample test runs, involving both priority conditions and
user groups, colored by direction as in earlier figures. Directional
bundling allows us to identify the main scanpaths (characteristic se-
quences of saccades) involved in each run, and also to compare these
scanpaths across users and conditions. Data is normalized in the
sense that all runs are of the same length (in time and number of
sample points), and also contain similar numbers of fixation points.

Tracking

Monitoring

Target detection

Computing

Task
performance

bars

Aggregated
performance
bar

(a) Novice user performance with even priorities

high priority

high priority

low priority

low priority

(b) Novice user performance with uneven priorities

1

2

3

34

4

(c) Expert performance with even priorities

1

1

1

(d) Expert performance with uneven priorities

Figure 5: Bundled eye-tracking trails of novice and expert subjects for a multitask experiment done with two priority conditions.

As such, differences between such bundled images reveal both inter-
subject and intra-subject similarities and differences.

Let us first analyze the influence of expertise level on the visual
attention distribution. The expert has more pronounced transitions
between the four subtasks as compared to the novice (Figs. 5a,5b),
as shown by the thicker bundles in Figs. 5c,5d. Given that the aver-
age saccade speed is very similar over humans, and the experiment
duration is identical for both user types, we deduce that the expert
needs less time to perform a subtask and spends more time to switch
between the four screen areas to update his knowledge about sub-
tasks. He also largely ignores the performance bar in his ‘attentional
walk’ as compared to a novice. This way of scanning an image, also
called ocular strategy, leads to better performance [35].

The ocular strategy changes when the priorities of the four sub-
tasks are uneven, as shown by the different structure of the bundles
in Figs. 5b,5d as compared to Figs. 5a,5c. Yet, the priority condition
affects novices and experts differently. The expert shifts his attention
to the more important subtasks, as shown by the increased bundle
coverage in the right part of Fig. 5d. In contrast, the novice almost
abandons the monitoring task and spends most of the time on the two
high-priority subtasks. For the uneven priority case, the tracking task
induces significant attention for both the expert and novice. This can
be due to the fact that, in this experiment, the user’s right hand al-
ways rests on the joystick that controls the tracking subtask, so they
unconsciously dedicate significant attention to this task, even when
they are instructed that tracking is a low-priority subtask.

Directional bundling also shows us the sequence (order) of atten-
dance of different instruments. Consider the expert participant with
even priorities (Fig. 5c). The main transitions between subtasks, cov-
ering about 80% of the entire set of saccades, are captured by the
following thick bundles: tracking to monitoring (green bundle 1),
monitoring to computing (two merging blue bundles 2), computing
to target detection (purple bundle 3), computing to tracking (red bun-
dle 4). Hence, a special order of subtask monitoring can be deduced.
First, we deduce that the expert monitored information in anticlock-
wise order (tracking, then monitoring, then computing, then track-
ing again). We also see, for the even priority case, that neither the
expert nor the novice do have significant transitions between target
detection and monitoring. For the uneven priority case, however,
the expert has many transitions from monitoring to target detection
(Fig. 5d, blue bundles 1). This shows that the expert remembered
that target detection is of high priority, and periodically switches at-
tention to it from the less important monitoring.

4.2.3 Landing experiment

Data and tasks: This dataset is part of a study conducted at the
French Aerospace Engineering School (ISAE). During the experi-
ment, a pilot performed a landing manoeuvre in a flight simulator.
The experiment lasted 15 minutes. The aim was to test a new cock-
pit instrument providing landing assistance, which we next call the
Landing Aid Instrument (LAI). More specifically, we wanted to un-
derstand whether (and how) the new LAI is used along the other

instruments. Eye tracking during the task was recorded and prepro-
cessed as outlined in Sec. 4.2.1, resulting in a graph with 1194 sac-
cades of 8 samples each on average.

Results: Figure 6 shows the raw trails from this experiment, the
results of our ADEB bundling, and those of undirected (KDEEB)
bundling. Bundles are directionally colored, as in earlier figures. The
background image shows the cockpit dashboard. Carefully inspect-
ing the raw trails (Fig. 6 a) reveals several saccades connecting the
Primary Flight Display (PFD, left), Navigation Display (ND, center),
Flight Control Unit (FCU, top-right), and the new Landing Aids In-
strument (LAI, bottom-right). However, the raw trails display is too
cluttered. We cannot be sure that we found all relevant instrument-
to-instrument trails, and we cannot see high-level scanpath patterns.
When using ADEB bundling (Fig. 6 b), the following connections
become obvious: faint purple bundle 1 LAI→FCU, blue bundle 2
PFD→LAI passing by ND, red bundle 3 in the opposite direction,
red bundle 4 FCU→PFD, and blue bundle 5 in the opposite direc-
tion. The bundle PFD-ND is denser than the PFD-FCU one, and
much denser than the PFD-LAI one. Thus, the main pattern in the
pilot’s gaze can be deduced: PFD→ND→FCU→PFD. The LAI is
rarely consulted because of its novelty – the pilot is used to land the
aircraft without this instrument. In more detail, we see that there
is no dense connection FCU→LAI. The pilots explained that, after
entering flight parameters on the FCU, they are used to check them
immediately on the PFD (as shown by the red bundle 4). Thus, to
better integrate the new LAI in this manoeuvre, a new training proto-
col should be designed in which pilots are specifically told when to
add the visual consultation of the LAI in their action sequence.

Figure 6 c shows the results of undirected bundling. We see, as in
our earlier aircraft trail-analysis (Fig. 3 c vs Fig. 4), that undirected
bundling highlights only very coarse-level connection patterns and
smooths our finer-grained ones. For example, the red LAI→PFD
and FCU→PFD bundles visible with ADEB (Fig. 6 b) are now hard
to see, as they appear to end at ND. More problematically, we no-
tice a quite thick bundle between FCU and LAI (Fig. 6 c, bundle 1),
which suggests that the subject did in fact frequently use the LAI
in conjunction with the FCU, which we know is not true. ADEB
bundling does not show this bundle, as there are not enough sac-
cades coherent in both space and time between FCU and LAI, and
thus conveys us the correct insight (LAI rarely used).

5 DISCUSSION

We discuss next several technical aspects of our method.

Generality: Most earlier bundling methods use only edge length,
absolute angles, and relative distances (the latter which we also
use). So far, only [40] explicitly shows directional bundling; [20]
mentions this possibility, but does not actually demonstrate it.
Separately, attribute-based bundling is noted as a possibility in [41],
but not actually demonstrated. In contrast to all above, our ADEB
demonstrates how both local edge direction and edge attributes can
be added to earlier geometric compatibility metrics.

Scalability: The most prominent bundling techniques using edge
compatibility measures (beyond edge distance) are [20, 40]. Both
have a complexity of O(E2C) where E is the number of edges in the
input graph, and C the number of edge sampling-points. In contrast,
our method, just as KDEEB [23], is O(C). This makes our method
considerably more scalable than [20, 40], and of about the same
scalability as [23]. In detail, FDEB takes 19 seconds on a graph of
2101 edges and 205 nodes (the well-known US airlines dataset),
with 12 sample-points/edge on average (thus, roughly 25K sample
points in total); the method in [40] takes 24 seconds for the same
graph, for a sampling of up to 25 points/edge (up to 75K sample
points), excluding preprocessing costs which authors note to be 10%
of the total cost. For the same graph, KDEEB takes 0.5 seconds, at
86K sample points. ADEB takes 1.3 seconds for the same amount

x

a) Raw eye trails

c) KDEEB bundling

b) Directional bundling

PFD
ND

FCU

LAI

1

2

5

3

4

1

Figure 6: Raw and bundled eye trails, landing scenario (Sec. 4.2.3).

of sampling points. Overall, ADEB is roughly twice as slow as the
undirected KDEEB, but about 18 times faster than the directional
method in [40].

Interaction: Edge bundling aims to create simplified overviews
of complex graphs. To solve specific tasks, extra tools such
e.g. local levels-of-detail [25], attribute-based selection [26], or
interactive aggregation [42], are obviously beneficial. Such tools
can be easily added to ADEB. In line with earlier bundling pa-
pers [20, 12, 7, 23, 29, 40], we do not detail such extensions here,
so that our contribution on directional bundling is more focused and
easier to separate from such additional tooling mechanisms.

Limitations: Our attribute-based bundling implies that we can map
distances between attribute-values (in their original space) to angle
distances (Eqn. 6). This is immediate for quantitative and ordinal
attributes, but is not evident for categorical attributes. For the lat-
ter case, such a mapping would require an algebra definition on the
category space. Hence, for categorical attributes, we suggest to clus-
ter trails according to their category and perform separate bundling
computations for each such cluster (much like [41]). Separately, we
showed the added-value of ADEB vs a single undirected bundling
method (KDEEB). This leaves the open question whether other undi-
rected bundling methods would be comparably better. While such
comparisons are yet to be done, we argue that, for tasks that require

seeing and analyzing bundles of different directions, all undirected-
bundling methods would exhibit similar limitations as KDEEB. Fi-
nally, we note that our use-cases of ADEB for analyzing eye-tracking
data do not imply that ADEB is the ultimate technique to gain all
types of insights from such data, as compared to e.g. areas of inter-
est (AOIs), dwell-time-per-AOI, or transition matrices. Rather, we
employ this use-case to show how ADEB can be of added value as
opposed to a raw or undirected-bundling display of trails (Fig. 6).

6 CONCLUSION

In this paper, we proposed ADEB, a method that creates edge bun-
dles from attributed graphs where edge compatibility can be defined
by one or several attributes. ADEB is fast, simple to implement,
scalable, generic, and could be easily extended to handle dynamic
graphs. We demonstrated ADEB, and implicitly the added-value of
directional bundling, by showing two applications in the analysis of
aircraft trails and eye movement recordings.

Future work can target several aspects. Refined compatibility met-
rics (based on graph attributes) and visual metaphors could allow
users to better spot specific patterns of interest in large eye-tracking
datasets. Secondly, ADEB could be adapted to target additional do-
mains, such as creating simplified attribute-based visual representa-
tions of DTI fiber tracts. Finally, we aim to explore how ADEB can
be extended to handle attribute-based bundling of dynamic graphs.

ACKNOWLEDGEMENTS

The authors thank Nadine Matton (ENAC), Frederic Dehais (ISAE)
and Sebastien Scannella (ISAE) for the provided gaze datasets.

REFERENCES

[1] G. Andrienko, N. Andrienko, M. Burch, and D. Weiskopf. Vi-
sual analytics methodology for eye movement studies. IEEE TVCG,
18(12):2889–2898, 2012.

[2] G. Andrienko, N. Andrienko, and M. Heurich. An event-based concep-
tual model for context-aware movement analysis. Int J Geogr Info Sci,
25(9):1347–1370, 2011.

[3] K. Beard, H. Deese, and N. Pettigrew. A framework for visualization
and exploration of events. J. Inf. Vis., 7(2):133–151, 2008.

[4] M. Burch, F. Beck, M. Raschke, T. Blascheck, and D. Weiskopf. A dy-
namic graph visualization perspective on eye movement data. In Proc.
ETRA, pages 151–158. ACM, 2014.

[5] B. Buttenfield and R. McMaster. Map Generalization: Making rules
for knowledge representation. J. Wiley & Sons, 1991.

[6] D. Comaniciu and P. Meer. Mean shift: A robust approach toward fea-
ture space analysis. IEEE TPAMI, 24(5):603–619, 2002.

[7] W. Cui, H. Zhou, H. Qu, P. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE TVCG, 14(6):1277–1284,
2008.

[8] M. Dickerson, D. Eppstein, M. Goodrich, and J. Meng. Confluent draw-
ings: Visualizing non-planar diagrams in a planar way. J. Graph Alg
Appl, 9(1):31–52, 2005.

[9] A. Duchowski. Eye tracking methodology: Theory and practice, vol-
ume 373. Springer, 2007.

[10] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing into
force-directed layout. In Proc. Graph Drawing, pages 8–19, 2007.

[11] G. Ellis and A. Dix. A taxonomy of clutter reduction for information
visualisation. IEEE TVCG, 13(6):1216–1223, 2007.

[12] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareira, and A. Telea. Skeleton-
based edge bundles for graph visualization. IEEE TVCG, 17(2):2364 –
2373, 2011.

[13] E. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. In Proc. PacificVis,
pages 187–194, 2011.

[14] E. Gansner and Y. Koren. Improved circular layouts. In Proc. Graph
Drawing, pages 386–398, 2006.

[15] R. Güting and M. Schneider. Moving objects databases. Elsevier, 2005.
[16] S. Hadlak, H. Schulz, and H. Schumann. In situ exploration of large

dynamic networks. IEEE TVCG, 17(12):2334–2343, 2011.

[17] N. Henry, J. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualiza-
tion of social networks. IEEE TVCG, 13(6):1302–1309, 2007.

[18] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. Van de Weijer. Eye tracking: A comprehensive guide to methods
and measures. Oxford University Press, 2011.

[19] D. Holten. Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data. IEEE TVCG, 12(5):741–748, 2006.

[20] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. CGF, 28(3):670–677, 2009.

[21] D. Holten and J. J. van Wijk. A user study on visualizing directed edges
in graphs. In Proc. ACM CHI, pages 2299–2308, 2009.

[22] C. Hurter, O. Ersoy, S. Fabrikant, T. Klein, and A. Telea. Bundled
visualization of dynamic graph and trail data. IEEE TVCG, 20(8):1141–
1157, 2014.

[23] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density
estimation. CGF, 31(3):435–443, 2012.

[24] C. Hurter, O. Ersoy, and A. Telea. Smooth bundling of large streaming
and sequence graphs. In Proc. PacificVis, pages 374–382. IEEE, 2013.

[25] C. Hurter, A. Telea, and O. Ersoy. MoleView: An attribute and
structure-based semantic lens for large element-based plots. IEEE
TVCG, 17(12):2600–2609, 2011.

[26] C. Hurter, B. Tissoires, and S. Conversy. FromDaDy: Spreading data
across views to support iterative exploration of aircraft trajectories.
IEEE TVCG, 15(6):1017–1024, 2009.

[27] H. Jarodzka, K. Holmqvist, and M. Nyström. A vector-based, multidi-
mensional scanpath similarity measure. In Proc. ETRA, pages 211–218.
ACM, 2010.

[28] A. Lambert, R. Bourqui, and D. Auber. 3D edge bundling for geograph-
ical data visualization. In Proc. IV, pages 329–335, 2010.

[29] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges
into bundles. CGF, 29(3):432–439, 2010.

[30] P. Laube. Progress in Movement Pattern Analysis. BMI Books, 2009.
[31] O. Le Meur and T. Baccino. Methods for comparing scanpaths and

saliency maps: strengths and weaknesses. Behavior research methods,
45(1):251–266, 2013.

[32] B. Lee, C. S. Parr, C. Plaisant, B. B. Bederson, V. D. Veksler, W. D.
Gray, and C. Kotfila. Treeplus: Interactive exploration of networks with
enhanced tree layouts. IEEE TVCG, 12(6):1414–1426, 2006.

[33] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis
of tabular data. In Proc. VAST, pages 41–50. IEEE, 2011.

[34] A. Marzuoli, C. Hurter, and E. Feron. Data visualization techniques for
airspace flow modeling. In Proc. CIDU, pages 79–86. IEEE, 2012.

[35] N. Matton, P. Paubel, J. Cegarra, and E. Raufaste. Resource allocation
strategies in multitasking after switch in task priorities. Advances in
Cognitive Engineering and Neuroergonomics, 11:187, 2014.

[36] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map
layout. In Proc. InfoVis, pages 219–224, 2005.

[37] S. Pupyrev, L. Nachmanson, S. Bereg, and A. E. Holroyd. Edge routing
with ordered bundles. In Graph Drawing, pages 136–147, 2012.

[38] H. Qu, H. Zhou, and Y. Wu. Controllable and progressive edge clus-
tering for large networks. In Proc. Graph Drawing, pages 399–404,
2006.

[39] R. Scheepens, N. Willems, H. van de Wetering, G. Andrienko, N. An-
drienko, and J. J. van Wijk. Composite density maps for multivariate
trajectories. IEEE TVCG, 17(12):2518–2527, 2011.

[40] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for direc-
tional network data. IEEE TVCG, 19(12):754–763, 2011.

[41] A. Telea and O. Ersoy. Image-based edge bundles: Simplified visual-
ization of large graphs. CGF, 29(3):543–551, 2010.

[42] S. van den Elzen and J. van Wijk. Multivariate network exploration and
presentation: from detail to overview via selections and aggregations.
IEEE TVCG, 20(12):2310–2319, 2014.

[43] F. van Ham and M. Wattenberg. Centrality based visualization of small
world graphs. CGF, 27(3):975–982, 2008.

[44] A. L. Yarbus. Eye Movements and Vision. Plenum Press, 1967.
[45] H. Zhou, P. Xu, Y. Xiaoru, and Q. Huamin. Edge bundling in informa-

tion visualization. Tsinghua Sci. Tech., 18(2):148–156, 2013.
[46] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-based hier-

archical edge clustering of graphs. In Proc. PacificVis, pages 55–62,
2008.

