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ABSTRACT

Principal curves are a long-standing and well-known method for sum-
marizing large scatterplots. They are defined as self-consistent curves
(or curve sets in the more general case) that locally pass through the
middle of the scatterplot data. However, computing principal curves
that capture well complex scatterplot topologies and are robust to
noise is hard and/or slow for large scatterplots. We present a fast
and robust approach for computing principal graphs (a generalization
of principal curves for more complex topologies) inspired by the
similarity to medial descriptors (curves locally centered in a shape).
Compared to state-of-the-art methods for computing principal graphs,
we outperform these in terms of computational scalability and robust-
ness to noise and resolution. We also demonstrate the advantages of
our method over other scatterplot summarization approaches.

1 INTRODUCTION

Scatterplots are one of the main approaches to perform visual data
analysis for understanding data distributions and variable relations
[6, 15]. They can be created from multidimensional data in various
ways, e.g., by selecting two dimensions or by applying dimensionality
reduction, or multidimensional projection (MP), methods [38].

For large datasets with complex topologies, or when many scatter-
plots need to be examined together, such as in scatterplot matrices
(SPLOMs), one wants to reduce the cognitive load of the analyst by
creating abstractions of scatterplots that extract and convey essential
aspects of the underlying data. Such known abstractions are density
maps [22], principal curves [18], trees [49], graphs [23], and skele-
tons [28]. Such abstractions can next be used to generate features or
characterizations of scatterplots [2] or to create a visual summary of
the data [35].

Principal curves (PCs) are one of the oldest of such abstractions
[18]. They summarize scatterplots by one-dimensional curves that
pass through the “middle” of the data. More formally, PCs are self-
consistent curves: The location of any PC point coincides with the
average of all scatterplot points that project there. Principal curves
have been used in many applications. In particular, they are part
of the original scagnostics characterizations proposed by Tukey and
Tukey [45]. They are also used for character recognition [23], ice
floe identification [1], and feature extraction and classification [4].
Principal graphs (PGs) generalize PCs to sets of connected self-
consistent curves that extend the summarization power of PCs to
more complex scatterplot topologies and geometries.

Computing PCs and PGs is not trivial. Limitations of current meth-
ods include long computation time, convergence rates that depend on
proper initialization, sensitivity to noise (spurious scatterplot points),
and no easy control of the summarization’s level of detail. We propose
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a new approach for computing PCs and PGs based on medial descrip-
tors (Sec. 3). Our main contributions can be summarized as: (C1) fast
and robust computation of principle graphs: Our approach is one to
two orders of magnitude faster than state-of-the-art methods, robust to
noise, can treat any scatterplot topology, is simple to use, and allows
one to specify the summarization’s level of detail; (C2) structured
summarization of scatterplots: the summarization is stored as a graph
structure, allowing for furcation analysis and visual summarization of
local density and deviations. Additionally, we propose an extended
Hausdorff distance for PG quality comparisons. To our knowledge,
this is the first time when PGs are compared quantitatively. In con-
trast to recent work in scatterplot summarization [28] that also uses
skeletons for summarization, the method we present here computes
PGs following their accepted formal definition [18], whereas in [28]
a different, simpler descriptor is computed that ignores scatterplot
density variations (cf. Fig. 11, Sec. 4.4).

To demonstrate the advantages of our method, we compare it
quantitatively to state-of-the-art PG construction approaches and also
to ground-truth data-generating curves. We also compare our method
qualitatively to other graph-like scatterplot abstraction methods and
outline the advantages of our approach in this regard (Sec. 4). Finally,
we show how our approach can be used for the visual analysis of
multidimensional data (Sec. 5).

2 RELATED WORK

Let D = {pi} ⊂ Rd , 1 ≤ i ≤ N, be a d-dimensional dataset with N
points pi. Let S = {xi} ⊂ R2 be a scatterplot generated from D,
where point xi maps the data point pi. We organize related work into
approaches for computing principal curves and graphs, approaches
for abstracting scatterplots, and approaches for abstracting shapes.

2.1 Principal curves and graphs
Hastie and Stuetzle introduced principal curves (PCs) as 1D curves
that pass through the “middle” of the data [18]. More formally, PCs
fulfill the self-consistency criterion, i.e., the average of all scatterplot
points that project to a PC point is equal to that point. PCs are
constructed from a polygonal line, initialized to the scatterplot’s first
principal component, whose vertices are iteratively optimized using a
projection and a conditional expectation step. This method, however,
is computationally inefficient and cannot handle multiple trends in a
scatterplot.

Banfield and Raftery [1] extended the original approach to handle
closed curves and to reduce bias using a penalty term. Tibshirani [44]
also tried to minimize bias by redefining PCs in terms of a mixture
model and conditionally independent distributions over the PC points.
Kégl et al. [24] provide a regularized version of PCs based on the self-
consistency criterion, where, given a bounded length, the PC always
exists. This approach uses iterative vertex creation-and-optimization
steps from an initial line based on distributions over Voronoi regions
of a polygonal line. We follow this idea to exploit the connection
between the points’ projection to the PC and the Voronoi regions.
Our approach can also handle closed curves.

Several other approaches estimate PCs using differing criteria
[3, 5, 10]. The only approach we know of that allows for PC self-
intersections is the one by Verbeek et al. [47]. They also used Voronoi
regions but optimized line segments instead of vertices, which are



subsequently connected. The resulting polyline segments only yield
a coarse PC approximation, which could be used to initialize other
PC algorithms [18].

Kégl and Kryzak [23] extended their polygonal line PC algorithm
to compute skeletons of binary shapes with applications in character
recognition. An initial graph is defined by thinning the input shapes.
The resulting vertices are optimized (displaced or deleted) according
to a number of angle criteria. While this method can handle complex
topologies, it does not actually compute PGs of arbitrary density
scatterplots, but only of binary shapes, which are a particular case
of uniformly and equally densely-sampled scatterplots. Özertem
and Erdogmus [30, 31] propose a subspace-constrained mean-shift
algorithm where points are moved following the local gradient and
local Hessian of the probability density function describing the scat-
terplot, which is computed using kernel density estimation (KDE).
The efficiency of this approach highly depends on the number of
points and amount of noise in the data. Our proposed approach also
allows for computing PGs. We compare it to both aforementioned
approaches [23, 30, 31] and show its higher robustness and speed.

2.2 Scatterplot abstraction

Scatterplot abstractions are used to generate features and/or metrics
to characterize a scatterplot [2] or to create a visual summary of the
data [35].

Tukey and Tukey [45] proposed to characterize scatterplots by sev-
eral so-called scagnostics (scatterplot diagnostics) measures. These
include measures from geometric graph analysis, measures computed
from PCs, and kernel-based measures. To increase the efficiency
of computing such measures, Wilkinson et al. [49] defined graph-
theoretic characterization measures based on the geometric charac-
teristics of a minimum spanning tree (MST) of the binned point
distribution of S. Although these measures are much faster to com-
pute than the original ones [45], extracting scagnostics from large
scatterplots is still seen as computationally challenging [9].

Reddy et al. [34] extended PCs to so-called data skeletons or
principal trees which summarize scatterplots where multiple trends
occur. They partition the dataset D into k clusters and compute a
minimum spanning tree (MST) from their centroids. D is then filtered
to contain only clusters traversed by the MST from one endpoint
to another. For m such endpoints, m(m− 1)/2 PCs are computed,
which is quite computationally intensive. Also, if k is not chosen
appropriately, the summarization does not capture well the shape of
S.

Gerber et al. [16] proposed a simplified geometric representation
of high-dimensional data based on regression curves and dimension-
ality reduction. The set of regression curves represents a topology-
based skeleton of the data D. While not directly applicable to 2D
scatterplots S⊂R2, this method can be used to simplify density maps
computed from scatterplots.

Visual summarization can cover more than the position of scat-
terplot points. At point level (xi ∈ S), one can encode information
about the dimensions of pi in color, opacity, shading [8], or glyph
shape. This works well for scatterplots of under thousand points or
when subsampling S to create more visual space to encode data for
groups of related points, e.g., via tag clouds [33]. In large scatter-
plots, overplotting occurs so attributes of individual points cannot
be distinguished anymore. At scatterplot level, this can be mitigated
by aggregating values via density maps [27, 36]. At an even higher
aggregation level, functional boxplots, computed by binning over
data ranges, show summary statistics [39]. For large SPLOMs de-
picting high-dimensional datasets, a focus-plus-context approach is
used [50], as individual scatterplots become too small to understand.
We propose to summarize scatterplots using their PGs enriched to
visually encode density and deviation of the data.

2.3 Shape abstraction

Scatterplots can be seen as a particular form of 2D shapes. While they
are, formally speaking, not compact subsets of R2 (as shapes are), for
a large point count and when rendered on small target areas (like in
large SPLOMs), scatterplots converge in the limit to compact shapes.
Moreover, humans perceive scatterplots and shapes by means of the
same type of visual features, e.g., size, skewness, orientation, genus,
curvature, and thickness [32]. Hence, shape abstraction techniques
in computer vision are also relevant for scatterplot characterization.

Medial axes, or skeletons, are one such powerful descriptor [37].
For a 2D shape Ω⊂ R2 with boundary ∂Ω, let DTΩ be its so-called
distance transform [7], given by

DTΩ(x ∈ R2) = min
y∈∂Ω

‖x−y‖. (1)

The skeleton of Ω is defined as

SΩ = {x ∈Ω|∃f1 ∈ ∂Ω, f2 ∈ ∂Ω, f1 6= f2,

‖x− f1‖= ‖x− f2‖= DTΩ(x)} (2)

The points fi, called feature points of skeleton point x, are the closest
points on ∂Ω to x and define the feature transform FTΩ of Ω [20].
Computing SΩ by directly applying Eqn. 2 is delicate, since small de-
tails over ∂Ω can create large changes, also called spurious branches,
in SΩ [37]. To address this, one computes regularized skeletons
Sτ

Ω
= {x ∈ SΩ|γ(x)≥ τ}. Here, γ : S→R+ is a so-called importance

metric, low over spurious branches and high elsewhere on SΩ. A
well-known such metric sets γ(x) to the shortest path along ∂Ω be-
tween the feature points f1 and f2 of x [14,40,41,43]. Hence, Sτ

Ω
is a

multiscale skeleton in which all branches of SΩ caused by boundary
details shorter than τ length-units have been removed. Multiscale
skeletons of shapes sampled as images of megapixel resolution can
be computed in subsecond time on the CPU [43] and milliseconds
on the GPU [13].

Besides simplifying binary shapes, skeletons have also been used
to summarize scatterplots by Matute et al. [28]. They show that
their measures based on medial axes outperform earlier scagnostics
measures in terms of closeness to perceptually-based similarity and
computational efficiency. The resulting skeletons were defined as
point-sets where the structure of the scatterplot is not maintained. Our
proposed principal graph maintains the information of the topology
of the data defined as node-link structure. Moreover, and similar
to Wilkinson et al. [49], their approach ignores the local density
variations in a scatterplot. Thus, it does not compute principal curves
or graphs in the sense of any of the definitions above [18, 23, 30,
31], but simply a locally-centered one-dimensional summarization
of the scatterplot shape. The main motivation behind this simple,
but density-ignoring summarization was that it was much faster to
compute than ‘true’ density-aware PG methods. The approach we
propose computes true PGs, but at a fraction of the cost of existing
methods. We will show later, cf. Figure 11 in Sec. 4.4, an example of
the differences between a true, density-centered PG and the simpler
skeleton summarization proposed in [28]. In a different context,
skeletons have been used to summarize large graphs and trail-sets by
bundling [13, 42]. This approach shares the limitations of [28], i.e.,
the local edge density is not considered during summarization.

3 METHOD

Our method follows the iterative principle used by most existing
PC techniques, which we outline in Section 3.1. We then detail our
method to generate PGs in Sections 3.2-3.4. Finally, we augment
our PG summarizations with encodings of local density and standard
deviation of the data in Section 3.5.



3.1 Iterative principal curve construction
The original approach for computing PCs [18], and up to large ex-
tents all follow-up approaches [1, 23, 47], iteratively adapts an ex-
plicit polyline-based representation f of the PC to satisfy the self-
consistency criterion given a scatterplot S. First, f is initialized with
an estimate f 0 of the PC. Finding a good estimate f 0 is important to
reduce the number of iterations and crucial to yield converging PCs.
Then, in each iteration the following two steps are executed:
Projection step: Assuming a 1D parametric representation f j(λ )⊂
R2 of the PC after j iterations, the points xi ∈ S are projected onto
f j(λ ). For this, one evaluates a so-called projection index λ f j (x)
[18], i.e., the value of λ for which f j(λ ) is closest to x, as

λ f j (x) = sup
λ

{λ : ‖x− f j(λ )‖= inf
µ
‖x− f j(µ)‖} . (3)

Conditional expectation step: A new curve f j+1 is estimated from
the current f j by shifting points y ∈ f j towards the average of all
points that project to y. The process repeats until f j converges. For
details, we refer to Fig. 3 in [18] and related text.

3.2 Skeleton-based principal graph construction
Our method, to which we refer as Skeleton-based Principal Graph
(SPG), is based on the following key observation: Let Z ⊂ R2 be
a compact 2D subset that covers a subset of points SZ ⊂ S of a
scatterplot S. If points in SZ are uniformly distributed over Z, then the
PC of SZ coincides with the medial skeleton of SZ . For non-uniform
distributions, the PC deviates from the skeleton of SZ in the sense
that it is “pulled” away towards the higher-density areas of Z rather
than staying in its geometric center. Hence, skeletons and PCs are
closely related.

Our method takes advantage of this relationship, as follows (see
also pseudocode in Alg. 1): We start by creating a scatterplot S from
a given high-dimensional dataset D using any suitable method, e.g.,
dimension selection or multidimensional projection (line 1). Next,
we transform S to a compact shape Ω and extract its skeleton SΩ

(lines 2-4, Sec. 3.3). We then use SΩ to initialize our principal graph
G (line 5) and perform the projection and conditional expectation
steps mentioned in Sec. 3.1 (lines 6-12). Since SΩ is a good approx-
imation of the PG, the process converges after a few steps. Finally,
we optionally augment the resulting principal graph G to visually
summarize local density and standard deviation of the data (Sec. 3.5).
In summary, SPG consists of a skeleton construction step (with pa-
rameters σSPG,τSPG,rSPG, see Sec. 3.3 ) and an iterative principal
graph construction (with parameters mSPG,gSPG, see Sec. 3.4).

Algorithm 1 Skeleton-based principal graph construction

Require: D, σSPG,rSPG,τSPG,mSPG,gSPG
1: S← pro jection(D)
2: I← densityEstimation(S,rSPG,σSPG)
3: Ω← binaryShape(I)
4: Sτ

Ω
← sketelonization(Ω,τSPG)

5: G← initializeGraph(Sτ
Ω
,mSPG)

6: while max‖ĉi− ci‖ ≥ ε do
7: for all ci in G do
8: V N← neighborVoronoiCells(ci,gSPG)
9: cg = centroid(x ∈ S∩V N)

10: ĉi←
cg+ci

2
11: end for
12: end while

3.3 Skeleton construction
To construct a skeleton, we need a compact 2D shape Ω embedded in
R2. We construct such a shape from a scatterplot S as follows. First,

Figure 1: Skeleton generation for the Spiral dataset. The scatterplot
(left) is convolved with a Gaussian kernel, and a compact shape (blue
in right image) is obtained by thresholding the expected average
density. The skeleton of this shape is shown in red in the right image.

we discretize (bin) S to a grayscale image with rSPG× rSPG pixels
, i.e., the desired resolution. Next, we compute the discrete kernel
density estimation (KDE) I(x) of S for x ∈ [1,rSPG]

2 by

I(x) = ∑
y∈S

K
(
‖x−y‖

R

)
(4)

where K is a Gaussian kernel of standard deviation σSPG pixels,
stored as a R×R pixels grayscale texture, where R = 3σSPG + 1
ensures a proper kernel discretization [17]. Next, we obtain a com-
pact binary shape Ω by upper thresholding I by the average density
ρ̂ = N/(rSPG)

2 of the scatterplot S. Figure 1 shows the shape Ω for
the Spiral dataset from [25]. Thesholding I at higher density values
preserves only denser scatterplot regions and eliminates (possibly spu-
rious) low-density details; lower thresholds capture more of S. That
is, points in S farther away from their nearest neighbors than σSPG
are filtered out. This provides a simple but robust way to capture, or
summarize, the essence of S into a 2D shape.

Having Ω, we now compute its distance transform and skeleton
(following Eqns. 1, 2) using the Augmented Fast Marching Method
(AFMM) [43]. Next, we regularize SΩ using the boundary-length im-
portance metric γ (Sec. 2.3). Following [43] , we set τ to roughly 5%
of the boundary length ‖∂Ω‖, which yields a good balance between
keeping details of the scatterplot’s shape and not creating overly
detailed spurious branches.

Figure 2: PG generation from skeleton of Spiral dataset. The image
and inset show graph vertices or control points (yellow), graph edges
(red), and original scatterplot points (blue).

3.4 Iterative principal graph construction
We generate the initial estimate of the principal graph G from the
skeleton Sτ (Ω). Before doing this, we perform a topologically stable



one-pass thinning step on Sτ (Ω). This ensures that the skeleton we
next consider to generate G is always one pixel thick, which makes
its conversion into a graph simpler. To generate the vertices of G, we
sample the 1D curve set Sτ (Ω) in arc-length space using a sampling
distance mSPG, i.e., two consecutive vertices, linked by an edge in G,
are at a distance mSPG along the pixel-chain that defines Sτ (Ω). We
start sampling from the endpoints of the branches of Sτ (Ω) or, when
Sτ (Ω) consists only of loops, from a randomly selected point in it.
The initial estimate G is then the straight-line drawing of this graph,
i.e., with edges rendered as line segments. Figure 2 shows the graph
G for the Spiral dataset shown earlier in Fig. 1.

Figure 3: Closest points (small dots) to a set of control points (large
dots) for Spiral dataset. Color indicates which scatterplot points are
associated to which control points.

Having the graph G, we now implement the two PC computation
steps (Sec. 3.1) for PGs as follows.
Projection step: Let C = {c1, . . . ,cn} be the n control points (ver-
tices) of G. Consider the 2D Voronoi diagram V (C) having C as sites.
Cell V (ci) of V (C) contains all pixels closer to ci than to any other
control point in C. Due to its relationship to Eqn. 2, computing V (C)
is straight forward: We run the AFMM skeletonization algorithm
(Sec. 3.3) with the set of pixels containing the control points C as
input shape. The resulting feature transform FTC(x), evaluated at
any pixel x, provides the control point in C closest to x. Figure 3
shows this: Large dots are control points in C. Small dots are the
scatterplot points, colored to indicate their closest control point. As
a side note, we can also see here the analogy between the distance
transform DTC(x) and the projection index λ f (x) (Eqn. 3). The rela-
tionship between Voronoi diagrams and the projection of scatterplot
points on the PC had been pointed out in earlier work [23,24,47], but
our usage of image-based Voronoi diagrams to define PGs is novel.
Furthermore, we note that earlier methods to compute image-based
Voronoi diagrams exist such as based on splatting the radial profile of
a one-point DT encoded as a polygon mesh [21] or as a luminance
texture . However, such methods are significantly slower, as splatting
causes a large amount of overdraw (for the description of the problem,
see the critique of [22] in [13]), or use a coarse DT sampling, which
decreases accuracy. In contrast, our method is pixel-accurate and
runs in O(N logN) for an image of N pixels.

Figure 4: (left) Voronoi cells for graph G. (right) Union V N of
neighboring Voronoi cells that affect two selected control points
marked red and green, respectively, for gSPG = 1. Control points
move in the direction of their respective centroids.

Conditional expectation step: Using the feature transform FTC, we
can find, for any control point ci ∈ C, the set of scatterplot points

closest to ci as N(ci) = {x ∈ S|FTC(x) = ci}. Then, we simply move
the control point ci half-way towards the average of N(ci), yielding
an updated control point ĉi. Note that ci are not constrained to the
image grid, i.e., the control points have all freedom to move to best
approximate the PG.

We repeat the projection and conditional expectation steps until
C converges, i.e., until max‖ĉi− ci‖ ≤ ε , where ε is set to one pixel.
This is similar to applying Lloyd’s method [26] for constructing
weighted Voronoi diagrams – though, in our case, we do not have
explicit cell weights we want to realize. A similar relationship be-
tween k-means and the conditional expectation step was proposed
earlier [47], where k-means was extended to k-line segments. Our
work is different, as we do not use k-means.

Directly applying the update rules above can result to instability,
as even small changes to the positions of ci may significantly change
the shapes of their corresponding Voronoi cells V (ci), a well-known
“duality” to the skeletal instability mentioned in Sec. 2.3. To address
this, we move the control point ci to the average of all scatterplot
points in the union V N of all Voronoi cells V (c j) whose centers c j
have at most topological distance gSPG ∈ N from ci on the graph G
(Fig. 4). For control points ci which have a single neighbor in G, i.e.,
endpoints of paths in G, we always set gSPG = 0 such that these points
do not drift inwards. Overall, gSPG has the effect of a smoothing
low-pass filter that removes unwanted oscillations from an iterative
converging process. Using gSPG = 1 yields the desired smoothness
and stability. For similar examples, though in the different context
of edge bundling, we refer to literature [13, 46]. If gSPG = 0, the
control points for the generated Voronoi diagrams correspond to the
respective cells’ mass-centers, i.e., our computation yields centroidal
Voronoi tessellations [12].

Our algorithm converges in a few iterations (less than 10 in all
tested cases). Key to this process is the initialization of the PG with
the (sampled) medial skeleton which, as explained above, is already
quite close to the desired PG, modulo accounting for the variation
in scatterplot point density. Figure 5 details this: Here, we show the
so-called generating curve (green) used to create the scatterplot by
spreading points around it [18, 24], the skeleton initializing the PG
generation (red), and the final PG (yellow). We see that all three
curves are very close to each other. It is important to stress that no
other PC method we know of has a comparably good initialization.

Figure 5: Generating curve (green) for scatterplot (blue), skeleton
(red), and computed principal curve (yellow) for Spiral dataset. We
observe very good agreement between the three curves. Small vari-
ations in shape may result in diverging curves for skeleton-based
summarizations (black frame) [28].

3.5 Visual summarization of local properties
We propose to optionally enhance the summarization delivered by
the PG G of a scatterplot S by visually encoding local density and
standard deviation. For each control point ci of PG G, we generate
local statistics within the respective Voronoi cell V (ci).

We define a line li that goes through control point ci and is orthog-
onal to the tangent to PG G at ci. We project all scatterplot points
within Voronoi cell V (ci) to line li. Then, we can create 1D summary
statistics within li such as computing the standard deviation σi from



ci. To define the tangent we have to consider three cases: If the degree
of ci within G is 1, i.e., ci is an endpoint, then the tangent is the line
that contains the only graph edge that connects ci. If the degree of ci
is 2, then the tangent is defined as the line that contains ci and has the
same (minimum) angle to the two edges connecting ci. If the degree
of ci is larger than 2, i.e., we have a branching, then we combine
multiple degree 2-case by taking the average direction of the tangents.
To visually encode the standard deviation, we encapsulate the PG
with bands, where the band width at control points ci to both sides
encodes σi. This visual encoding is inspired by the bands in curve
box plots [29], which is a generalization of boxplots to curves.

Moreover, we associate a local density ρi with control point ci,
which we define as the number of points within Voronoi cell V (ci)
divided by the overall number of scatterplot points N and the average
length of the edges connected to ci. The local density is visually
encoded by the opacity of the bands. Figure 6 provides the PG sum-
marization for the Spiral dataset augmented with the band drawing.
By construction, this dataset has similar standard deviation and den-
sity throughout, which can be observed from the band’s (almost)
constant width and opacity.

Figure 6: Visual summarization of the scatterplot of the Spiral dataset.
The PG (red) summarizes shape and the surrounding band (yellow)
summarizes standard deviation (width) and local density (opacity),
which are both (almost) constant for this dataset.

4 EVALUATION

We evaluate our approach (SPG) with regard to noise, scatterplot
size, and resolution of the used images by comparing against the
two state-of-the-art methods that can handle PGs with intersections
and loops, namely, Kégl’s Principal Graphs (KPG) [23] and KDE-
based Subspace Constrained Mean Shift (KDE-SCMS) [31]. Both
implementations are available online at the respective authors’ web-
sites. We did not consider comparing to other methods [18,47], since
these are either obviously not handling curves having intersections
and/or loops or have been outperformed by the approaches we com-
pare against. Atop of the above, we provide a comparison to two
state-of-the-art approaches to characterize scatterplots by their shape,
namely Graph-Theoretic Scagnostics [49], implemented in R [48]
and Skeleton-based Scagnostics [28]. A more detailed overview of
the methods is provided below.

Name Function No. Points Noise Range Noise step
S(1-7) Spiral 1000 0.075 - 0.3 0.015
S(8-14) Spiral 5000 0.075 - 0.3 0.015
S(15-21) Spiral 10000 0.075 - 0.3 0.015
H(1-5) Helix 1000 0.15 - 0.3 0.0375
H(6-10) Helix 5000 0.15 - 0.3 0.0375
H(11-15) Helix 10000 0.15 - 0.3 0.0375
R(1-5) Rune 5000 0.075 - 0.225 0.0375
R(6-10) Rune 7500 0.075 - 0.225 0.0375
R(11-15) Rune 10000 0.075 - 0.225 0.0375

Table 1: Datasets with varying degrees of complexity, noise, and
sizes, used in our evaluation.

4.1 Compared methods
Kégl’s Principal Graphs (KPG): Kégl and Krzyzak [23] proposed
a principal graph algorithm for piecewise skeletonization. The
method is related to ours as it uses an image-based approach, as
well as medial skeletons. In contrast to our skeletons [43], they
compute skeletons by a (less accurate) thinning approach. As in our
case, the skeletal graph is fitted and smoothed to converge to a PG
using various vertex optimization steps. This method reads a binary
image as input, therefore we directly fed it with our binary shape Ω

constructed by KDE (Sec. 2.3).
Subspace Constrained Mean Shift (KDE-SCMS): Özertem and
Erdogmus [31] proposed a subspace-constrained mean-shift method
where scatterplot points are shifted using the local gradient and Hes-
sian of the data’s probability density function found via kernel density
estimation (KDE), using a Gaussian kernel, like we do. The local
gradient and Hessian are computed at each iteration.
Graph-Theoretic Scagnostics: Wilkinson et al. [49] defined nine
features to characterize scatterplots, using the scatterplot’s nearest-
neighbor-graph’s minimum spanning tree (MST) and Spearman’s
correlation coefficient. To increase efficiency, the MST is constructed
from binned data rather than the entire scatterplot.
Skeleton-based Scagnostics: Matute et al. [28] defined two dissim-
ilarity measures based on the adjacency graph formed by skeletons
constructed from scatterplots in much the same way we use ourselves
to initialize the PG construction (Sec. 2.3). These metrics are then
used to gauge how different, or similar, various scatterplots are.

4.2 Evaluation datasets
To compare the methods, we chose to use synthetic datasets. The key
reason is that, for such data, we have ground truth, i.e., we know what
the summarization should be. We used three generator curves with
and without loops, distribute points uniformly around them, and also
add Gaussian spatial noise (Fig. 7 a-c). A good PG algorithm should
extract curves that are close to these generators. Table 1 summarizes
the generated datasets, also available as supplementary material. The
three tested PG methods (Sec. 4.1) were each run 20 times per dataset,
after which we recorded their average performance. Figure 7 shows
examples of the PGs computed by each method. The datasets are
detailed next.
Spiral: The generating curve for this dataset is given by

x =−cos(t)∗ t, y = sin(t)∗ t

with t uniformly distributed in [0,2π], and noise added indepen-
dently over both x and y dimensions with a normal distribution
µ = 0. For our method (SPG), we used the parameters σSPG = 4,
τSPG = 15, mSPG = 6, and gSPG = 1, and three resolutions rSPG ∈
{128,192,256} pixels squared. We used the same resolutions for
KPG. For KDE-SCMS, we used σ = 0.5. The same σ was used to
generate the binary input shape Ω.
Helix: The generating curve is given by

x = t, y =±(1.0+ t)∗ cos(t)

with t uniformly distributed in [0,3π], and noise added independently
for both x and y dimensions with a normal distribution with µ = 0. For
our method, we used σSPG = 3, τSPG = 10, mSPG = 6, and gSPG = 1
for the three tested resolutions. For KDE-SCMS, σ = 0.5 was used
– the same value used to generate the binary shape Ω. For KPG, we
used its default parameters and varied only the image resolution.
Rune: The generating curves (concentric circles) are given by

x = r ∗ cos(t), y = r ∗ sin(t)

with r ∈ {1.5,3.0,4.5} and t is uniformly distributed in
{[0,2π], [0.4π,1.66π], [0.66π,1.5π]} for each level respectively. The
radial lines are defined by setting t to 0.25π and 1.25π and r as



Figure 7: Principal graphs for three datasets of increasing complexity (self-intersections and loops). (a) Spiral. (b) Helix. (c) Rune. Our method
(SPG) tested against two state-of-the-art methods (KPG, KDE-SCMS) as well as the data-generating curves.

1.0+ s, with s uniformly distributed in [0,3]. Noise is independently
distributed in the x and y dimensions like for the Spiral and Helix
datasets. For our method, we use σSPG = 3, τSPG = 25, gSPG = 1,
and mSPG = 6. For KDE-SCMS we use σ = 0.5. For KPG, we
generated the shapes Ω like for the Spiral and Helix datasets.

4.3 Computational time comparison
Spiral: For a low point count, KDE-SCMS has similar speed to
our method (Fig. 8a). For larger point counts, our method becomes
much faster (Fig. 8b): For 10K points, noise=0.075 (S15 dataset),
KDE-SCMS takes 25160 ± 190 ms while our method takes 48.4 ±
1ms, i.e., over 600 times faster. KPG is even slower than KDE-SCMS
for low point counts. The quite drastic change in execution times vs
noise levels is caused by the smoothness of the compact shape Ω –
the smoother Ω is, the fewer branches it skeleton has, so a smaller
execution time ensues. For large scatterplots, timings reverse for
KDE-SCMS and KPG (Fig. 8b), due to the compact shape used in
KPG’s implementation. KPG and SPG both outperform KDE-SCMS
for large point counts. Yet, SPG is one to two orders of magnitude
faster than KPG.
Helix: As for Spiral, the speed of KDE-SCMS and SPG are quite
similar for low point counts (Fig. 8c). KPG is slower than both
approaches regardless of resolution. The speed variance of KPG de-
pends on the shape of the compact image it gets as input. For smooth
boundaries, a simpler skeleton is created with few vertices; non-
smooth boundaries cause spurious branches to be trimmed by KPG’s
rule set. For higher point counts (dataset H(6-10), Fig. 8d), our ap-
proach clearly outperforms KPG and KDE-SCMS speed-wise, as for
the Spiral dataset. KPG’s speed depends only on the default parame-
ters and image resolution, so similar execution times are achieved as
in Fig. 8c. For higher point counts (H11 dataset), our approach takes
38 ± 8.2 ms; KDE-SCMS takes 4.6×104±4×103 ms; and KPG

takes 1519 ± 34 ms for the lowest considered resolution. For the
highest resolution and noise level (H15 dataset), our approach takes
180.5 ± 20 ms; KDE-SCMS takes 6849×104±5.07×103 ms, and
KPG takes 8193 ± 740 ms respectively. Again, SPG is one to two
orders of magnitude faster.
Rune: We get similar timing patterns for low point counts (Fig. 8e):
KPG is slower on low point counts; KDE-SCMS gets slower with
noise level. We find again this trend reversed for higher point counts
(H(6-10) dataset, Fig. 8f). At the lowest point count, noise, and
resolution (R1 dataset), SPG takes 53 ± 4.8 ms; KDE-SCMS takes
12673± 1076 ms; and KPG takes 1752 ± 214.8 ms, respectively.
SPG is again about two orders of magnitude faster. For the most
complex dataset tested (R15), the difference is similar: SPG takes
375.4 ± 3.6 ms; KDE-SCMS takes 62824 ± 729.5 ms; and KPG
takes 20285 ± 1625 ms.

Our method is fast for two main reasons. First, our initialization
by the AFMM regularized skeleton gives us an already very good PG
estimate. Thus, we only need few (about 10) iterations to converge.
In contrast, KDE-SCMS needs substantially more iterations. KPG, on
the other hand, starts from a far less accurate skeleton (produced by
thinning), which requires several complex cleaning steps. Secondly,
our update step is very simple by just shifting a control point ci to the
average location of its neighbors N(ci) in the scatterplot S. Finding
the neighbors N(ci) is very fast (using FTC, see Sec. 3.4). In contrast,
KPG needs to shift all points in S at every iteration, and there are far
more points in S than on the skeleton (which yields the control-point
set C). Furthermore, KDE-SCMS uses a numerical optimization
(gradient descent) at each iteration, which is obviously more costly
than the simple shift-to-average operation we are performing. More
formally, for a scatterplot of |S| points, an image of N = r2

SPG pixels,
and a kernel K of R2 pixels (where by definition R ≤ rSPG), the
asymptotic costs of our method is O(|S| ·N) for computing the density
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(b) Spiral Dataset(8-14)
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(c) Helix Dataset(1-5)
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(d) Helix Dataset(6-10)
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(e) Rune Dataset(1-5)

0.1 0.15 0.2

0

1

2

3

4

5
·104

Gaussian noise level

E
xe

cu
tio

n
tim

e
(m

s)

(f) Rune Dataset(6-10)

Figure 8: Computation time for principal graphs for Spiral, Helix, and Rune datasets with varying number of points, noise levels, and resolutions
rSPG ∈ {128,192,256}. Our approach outperforms KDE-SCMS and KPG in terms of computational speed.

map, O(N logN) for computing the skeleton and associated quantities,
and O(I ·N logN) for computing the I conditional expectation steps
(since computing V (C) has the same cost as skeletonization). Since,
in practice, one uses a high but fixed image resolution N, the overall
cost is linear in the number of scatterplot points |S|.

4.4 Quality evaluation
Visual comparison: As outlined already, PGs should be very close
to the generating curve of a dataset, with the possible exception of
high-curvature areas. Figure 7 compares this visually. We see that the
KPG results degrade with increasing amount of noise: For the Helix
dataset, one branch was completely pruned due to KPG’s rule set; for
the Rune dataset, the PG curves are rather bumpy. KDE-SCMS has
issues with the choice of σ : For the Rune dataset, some areas become
a blob rather than a curve due to plateau convergence, while in other
areas the curve structure is missed already. In contrast, SPG produces
desired and expected results.
Quantitative comparison: To quantify quality, we measure the dif-
ference between PGs and the ground-truth generating curve. For this,
we adapt the well-known Hausdorff distance [19]: Given two PGs
G1 and G2, we define their distance D(G1,G2) ∈ R+ as

D(G1,G2) = max
(

max
x∈G1

(DTG2(x)),max
x∈G2

(DTG1(x))
)
. (5)

We found a median distance D of ≤ 0.10 when comparing our
extracted PGs with the generating curves for datasets S(1-21), H(1-
15), and R(1-15). The mean distances were 0.0491 ± 0.029 (Spiral),
0.0546 ± 0.0152 (Helix), and 0.089 ± 0.039 (Rune). The 25%,50%
and 75% distances were 0.016, 0.042 and 0.088 (S(1-21) dataset);
0.047, 0.052, and 0.066 (H(1-15) dataset); and 0.057399, 0.08686,
and 0.112841 (R(1-15) dataset).

We also compared the KPG results with the ground truth (generat-
ing curves). The mean Hausdorff distances KPG yields are 0.2069 ±
0.0064 (Spiral dataset), 0.1571 ± 0.0515 (Helix dataset), and 0.4145
± 0.20 (Rune dataset). These are considerably higher than the dis-
tances our method yields from the ground truth. We did not compute
these distances for KDE-SCMS, since this method does not deliver a
proper PG, i.e., a set of curves, but just a point density. Computing
the distance to the ground truth would require a way to simplify and
connect this point cloud, which is far from trivial. Overall, we con-
clude that our method delivers very close results to the ground truth
curves. This is, to our knowledge, the first time that the quality of
PGs has been quantified explicitly by distance measures.
Parameter setting: The parameters of our method (see Alg. 1) are
set as follows: We use the defaults τSPG = 0.05‖∂Ω‖ and gSPG = 1,
as discussed in Sec. 3.4. The image resolution rSPG is set as a function
of the visual space available to depict the final summarizations. If we
want to show a large SPLOM-like matrix of PGs, then rSPG = 256
suffices. For examining individual summarizations, rSPG = 512 gives
good results. Larger resolutions can be easily and still quickly com-
puted (see Sec. 4.3), but are not needed, since our PGs are intented to
show summarizations.

The remaining parameters to discuss are mSPG and σSPG. As stated
in Sec. 3.4 larger mSPG values yield coarser PGs. To analyze this,
we generate 10K samples with the Helix generator for various image
resolutions rSPG (datasets in the supplementary material). Figure 9
shows that the distance D to ground truth (Eqn. 5) increases with
mSPG and that the increase is faster for lower-resolution images.
Using the default setting mSPG = 0.05 · rSPG yields distances D of
roughly 0.02, which we consider acceptable in practice.

To examine the effect of parameter σSPG, we consider the Helix
datasets at rSPG = 2562 resolution for varying kernel sizes. Figure 10
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Figure 9: Distance between principal graphs and generating curves
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shows that the distance D between our results and ground truth is
overall low up to roughly σSPG = 5. Also, D increases faster for
noisier datasets. Hence, a good default setting is σSPG = 5.
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Figure 10: Distance between principal graphs and generating curves
for different datasets and values of the kernel size σSPG

Density effect: Summarizing purely a scatterplot’s shape (e.g., [28])
can be misleading, as the point density is not captured. Figure 11
shows this for point distributions within the shape for a linear func-
tion y = x with Gaussian noise added in the y dimension. We first
added points equally above and below the line y = x for a given noise
amount, generating a non-skewed distribution. We next generated two
skewed versions – a positively-skewed one with 3 to 1 points above vs
below the line, and a negative-skewed distribution, with a 1 to 3 points
ratio, respectively. Figure 11(top) shows density plots of these three
scatterplots, with higher densities mapped to brighter colors, and the
generating line in green. Since the overall shapes of the scatterplots
are the same (only their ‘internal’ densities vary), methods that purely
capture the scatterplot shape [28] would summarize all three such
plots identically. In contrast, our method correctly shifts the PG below
(Fig. 11e, red line), respectively above (Fig. 11f, red line) the generat-
ing line (green). The Hausdorff distances are 0.02476 (non-skewed
to positively skewed distributions), 0.0284 (non-skewed to negatively
skewed distributions), and 0.03592 (positively to negatively skewed
distributions). As expected, the difference between the two skewed
distributions is larger than the differences from non-skewed to any
skewed distribution.

Finally, let us compare how scagnostics metrics would differen-
tiate between the scatteplots in Fig. 11. Graph-theoretic scagnos-
tics [49] generate an MST from samples binned according to the
overall number of points within each bin. If this count falls under

Figure 11: (top) Differently skewed data distributions for scatterplots
of same shape: a) unskewed; b) negatively skewed; c) positively
skewed. [28] computes equal curves regardless of variation in density.
(bottom) SPG captures the skewed distributions leading to respec-
tively shifted PGs (red) , (e) below the curve for negatively skewed
distribution and (f) above for positively skewed, (d) overlapping the
generating curve (green).

Measure Non-skewed Skewed+ Skewed-
Outlying 0.0453 0.0456 0.0455
Skewed 0.5980 0.6020 0.5993
Clumpy 0.0076 0.0089 0.0119
Sparse 0.0140 0.0141 0.0141
Striated 0.0213 0.0174 0.0213
Convex 0.4920 0.4928 0.4928
Skinny 0.5798 0.5783 0.5783
Stringy 0.2753 0.3056 0.2858
Monotonic 0.9793 0.9852 0.9849

Table 2: Graph-theoretic scagnostics measures (computed using
R [48]) for differently skewed datasets of same shape deliver (al-
most) the same result.

a given threshold, the bin size is reduced. Given an equal number
of points in S, the point count per bin does not diverge greatly, so
the derived MST is similar. Table 2 shows the metrics for the nine
features computed by the R “scagnostics” package [48]. These show
that the three scatterplots in Fig. 11 are found quite similar – which,
as we argued, they are not, density-wise. In particular, the “Skewed”
metric characterizes the non-skewed plot as equally skewed as the
positively and negatively skewed plots. Dang and Wilkinson define
a distance in scagnostics space as the squared Euclidean distance
in the feature space [9]. According to this metric, the distances are
0.00098879 (non-skewed to positively-skewed), 0.00016473 (non-
skewed to negatively skewed), and 0.00042364 (positively skewed
to negatively skewed), thus rating the differences between the three
scatterplots in Fig. 11 as smaller than 0.001, i.e., considering them
practically identical even though obviously having different skews,
which is not desirable. Separately, skeleton-based scagnostics [28]
generates identical summarizations (skeleton curves) from all three
plots, as already mentioned above. Hence, any metrics derived from
it would then find the three scatterplots identical. As already outlined,
our method readily distinguishes these three plots as being different.

5 VISUAL MULTIDIMENSIONAL DATA ANALYSIS

Besides efficiently solving the computational problem of extracting
principal curves for arbitrary-shape-and-density scatterplots, our PGs
can facilitate multidimensional data analysis by providing summa-
rizations. Moreover, we can use our proposed distance (Eqn. 5) to
compute similarites between multiple PGs summarizing scatterplots
obtained by different methods, as follows.

When using dimension selection, the set of all scatterplots within
a SPLOM can be compared as proposed by e.g. Matute et al. [28].
Alternatively, one can sample the space of all linear projections from
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Figure 12: Visual data analysis of abalone dataset [11]. Middle column: MDS plots of 100 scatterplots for different weights wσ and wρ of the
extended Hausdorff distance. Left and right columns: Selected scatterplots from the MDS plot in the respective row. Top row: decrease of
variation from left (a) to right (b) in the MDS plot (wσ = 0.5). Middle row: Standard Hausdorff distance shows linear structures (c) at the
bottom of the MDS plot and curved structures (d) at the top. Bottom row: Elongated scatterplots with same density behaviour along the PC
show high similarity in MDS plot (wρ = 0.5).

a given d-dimensional space to a 2D visual space using some sam-
pling strategy. SPLOM views are a particular case hereof. Having
computed the pairwise distances of all considered scatterplots, the
resulting distance matrix can be fed to an MP method such as multi-
dimensional scaling (MDS) to show the similarities of all considered
scatterplots.

Since we augmented our PG summarizations by local properties
(local density and deviation, Sec. 3.5), we extend our distance D to
account for these properties. For this, we replace DTG in Eqn. 5 by

DT ′G(x,Q) = (1−wρ −wσ )DTG(x)+wρ (ρFTG(x)−ρFTQ(x))
2+

wσ (σFTG(x)−σFTQ(x))
2,

i.e., a weighted sum of shape distances captured by the PG, local den-
sities ρ , and deviations σ . The weights wρ and wσ can be chosen by
the user during an interactive exploration session to give the respec-
tive terms more or less influence. Note that, when comparing random
linear projections, the orientation of the plots shall not be captured
by the (extended) distance. Rotational and translation invariance can
be achieved by performing rotation and alignment transformations
on the PGs automatically. We apply a simple method that aligns G
and G′ by translating G′ to G’s origin. Rotations of G′ around the
origin are created by sampling the 360◦ rotation space. The minimal
(extended) distance obtained from all these transformations can then
be used as a suitable distance measure.

We apply this visual analysis approach to the real-world multidi-
mensional abalone dataset from the UCI Machine Learning Repos-
itory [11] (4,177 points in 8 dimensions). The sampling strategy
uses all SPLOM views plus 72 randomly added linear MPs, i.e., 100
scatterplots in total. Figure 12 shows the resulting MDS plots for

different weights wρ and wσ . SPLOM views are shown by green
points in the MDS view; other linear projections are shown as blue
points. Individual points can be selected to see the respective scat-
terplot summarizations using our augmented PGs. The center image
in Fig. 12 shows the MDS using the ‘raw’ distance D (Eqn. 5). We
see a roughly linear distribution. Plots at the bottom (Fig. 12c) are
summarized as a single, quite straight, curve. PG’s of plots at the top
(Fig. 12d) show an arching behavior. If we increase the weight wσ

of the standard deviation, the MDS plot (Fig. 12 (center, top)) shows
scatterplots with thin elongated structures to the right (Fig. 12a) and
scatterplots with more spread to the left (Fig. 12b). For increased den-
sity weights wρ , we show two PGs of scatterplots that are close in the
MDS plot (Fig. 12 (center, bottom)). We see that the two scatterplots
(Fig. 12e,f) indeed have similar shapes and tailed densities.

6 CONCLUSION

We have proposed a fast, simple to use, and robust method for com-
puting principal graphs (PGs) from scatterplots. We take advantage
of the relationship between medial axes of a compact shape repre-
sentation of a scatterplot and PCs maintaining the self-consistency
criterion. Our approach outperforms previous PG algorithms by being
on average two orders of magnitude faster; can treat any 2D scat-
terplot geometry and/or topology; behaves robustly in the presence
of noise; and yields results that are closer to the ground truth (data-
generating curves) than competing methods. Additionally, we show
how our PGs can compactly summarize local point-distribution char-
acteristics (density and standard deviation). We define an extended
Hausdorff distance between such augmented PGs and show how it
can be applied for interactive multdimensional data analysis.

Several future work directions are possible: First, given the very



low computational cost, our method could be used to summarize
higher-dimensional data than 2D scatterplots, in an interactive explo-
ration way. More refined local properties besides density and standard
deviation can be computed and depicted on the PGs, leading to more
powerful and insightful summarizations of data distributions. We can
apply the fast skeletonization implementation [13] to our method to
explore interactively various PG summarizations of scatterplots of
hundreds of thousands of points by changing the PG parameters in
real time. Finally, now that we have a fast, generic, and robust PG
algorithm, we can study how the produced summarizations can sup-
port more involved visual analytics tasks including large and complex
scatterplots.
Acknowledgments: This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) under contract LI-23/1.
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