
A N A LY S I S A N D E X P L O R AT I O N
O F L A R G E 3 D S H A P E D ATA B A S E S

xingyu chen

Cover: Projection of a 3D shape database using features extracted by
deep learning.

Analysis and Exploration of Large 3D Shape Databases

Xingyu Chen
PhD Thesis

Analysis and Exploration
of Large 3D Shape Databases

PhD thesis

to obtain the degree of PhD at the
University of Groningen
on the authority of the

Rector Magni�cus Prof. C. Wijmenga
and in accordance with

the decision by the College of Deans.

This thesis will be defended in public on

Monday 14 June 2021 at 12.45 hours

by

Xingyu Chen

born on July 23rd, 1993
in Hunan, China

Supervisors
Prof. A. C. Telea
Prof. J. Kosinka

Assessment committee
Prof. R. C. Veltkamp
Prof. A. X. Falcão
Prof. M. Biehl

A B S T R A C T

Many applications generate digital descriptions of 3D shapes. As more
methods emerge for the acquisition, creation, and processing of such
content, so do grow the size and complexity of collections of 3D shapes,
generically known as shape databases. Exploring the wealth of content
present in such databases is an increasingly di�cult, and important,
problem, especially for the case of unannotated databases with limited
search functionality.

We identi�ed three key problems in this �eld: exploration, examina-
tion, and analysis of 3D shape data. This thesis discusses these prob-
lems and proposes several solutions to each of them, as follows. First,
we propose methods for creating visual overviews of large 3D shape
collections based on feature engineering and also on deep learning fea-
tures. Our methods can automatically organize hundreds of thousands
of 3D shapes by their similarity and also support incremental updates
of shape databases. Secondly, we propose a novel method for the exam-
ination of individual shapes, with the aim of specifying rotations of 3D
shapes, using axes inferred from the visible shape structure extracted us-
ing silhouette skeletons. An executed user study shows that, when com-
bined with traditional viewpoint speci�cation mechanisms, our method
reduces task completion times and increases user satisfaction, while not
introducing additional costs. Finally, we present a method for analyzing
families of structurally related shapes by computing consistent curve
skeletons from the given families to induce semantic information on
skeleton branches. The computed so-called co-skeletons also increase
the robustness of curve skeleton computation, lifting the skeleton sim-
pli�cation power from individual shapes to shape families.

v

S A M E N VAT T I N G

Veel toepassingen genereren beschrijvingen van 3D vormen. Als meer
methoden beschikbaar komen voor de acquisitie, creatie en verwerking
van dergelijke informatie zo groeien ook de grootte en complexiteit van
verzamelingen van 3D vormen, algemeen bekend als vormdatabases.
Het exploreren van de inhoud van dergelijke databases is een steeds
moeilijker en tegelijkertijd belangrijk probleem, in het bijzonder voor
het geval van databases zonder annotaties en met beperkte zoekfunc-
ties.

We identi�ceren drie markante problemen in deze context: exploratie,
examinatie, en analyse van 3D vormgegevens. Dit proefschrift discussi-
eert deze problemen en stelt verscheidene oplossingen voor elk daarvan
zoals volgt. Ten eerste worden methodes voorgesteld voor het creëren
van visuele samenvattingen van grote 3D vormverzamelingen met be-
hulp van feature engineering en ook het diep leren van features. Deze
methodes kunnen honderdduizenden 3D vormen automatisch organise-
ren volgens hun similariteit en ook staan incrementele veranderingen
van de vormdatabase toe. Ten tweede wordt een nieuwe methode ge-
presenteerd voor het examineren van individuele vormen, door de spe-
ci�catie van rotaties van deze vormen langs assen die berekend wor-
den vanuit de zichtbare vormstructuur door midden van silhouetskelet-
ten. Een gebruikersstudie laat zien dat onze methode, wanneer gecom-
bineerd met klassieke kijkpuntspeci�catiemechanismen, de nodige tijd
om een taak te voltooien reduceert en de gebruikerstevredenheid bevor-
dert zonder extra kosten te introduceren. Ten slotte wordt een methode
gepresenteerd voor de analyse van families van door hun structuur ge-
relateerde vormen, die consistente curveskeletten berekent voor een ge-
hele familie om semantische informatie te induceren langs de skelettak-
ken. De zogenaamde co-skeletten die worden berekend doen ook de
robuustheid van curveskeletberekening toenemen, zodat de versimpe-
lingskracht van skeletten voor individuele vormen wordt nu toegekend
aan gehele vormfamilies.

vi

P U B L I C AT I O N S

This thesis is the result of the following publications:

• Visual Exploration of 3D Shape Databases Via Feature Selec-
tion [28]

• Co-skeletons: Consistent curve skeletons for shape families [176]

• Interactive Axis-based 3D Rotation Speci�cation using Image
Skeletons [186]

This thesis is also based on the following papers which are currently
under review:

• Scalable Visual Exploration of 3D Shape Databases via Feature
Synthesis and Selection [29]

• Skeleton-and-Trackball Interactive Rotation Speci�cation for 3D
Scenes [185]

The following publications constitute prior work of the author. While
not explicitly included in this thesis, the material discussed in these pub-
lications has outlined the necessity for better tools for exploration and
examination of large and complex collections of multi-media items. This
thesis further examines this problem for the speci�c context of 3D shape
databases.

• A fuzzy ontology for geography knowledge of China’s College
Entrance Examination [27]

• Classi�cation of medical consultation text using mobile agent sys-
tem based on Naïve Bayes classi�er [26]

• Question answering over knowledgebase with attention-based
LSTM networks and knowledge embeddings [22]

• Tree-LSTM Guided attention pooling of DCNN for semantic sen-
tence modeling [21]

vii

C O N T E N T S

1 introduction 1

2 related work 7
2.1 Shape representation 7
2.2 3D shape collection exploration 8
2.3 3D shape examination 10
2.4 3D shape analysis 12

2.4.1 Medial descriptors 13
2.4.2 Histogram-based descriptors 15

3 visual exploration of 3d shape databases via
feature selection 17
3.1 Introduction 17
3.2 Related work 18
3.3 Proposed method 20

3.3.1 Overview 20
3.3.2 Preprocessing 21
3.3.3 Local feature extraction 21
3.3.4 Feature vector computation 24
3.3.5 Dimensionality reduction 24

3.4 Applications 25
3.4.1 Optimal scatterplot creation 25
3.4.2 Fast computation of near-optimal projection

scatterplot 29
3.4.3 User-driven projection engineering 30
3.4.4 Use cases 32

3.5 Discussion 36
3.6 Conclusion 37

4 scalable visual exploration of 3d shape
databases 39
4.1 Related work 39
4.2 Feature learning method 40

4.2.1 Experiments and results 43
4.2.2 Computational performance 49

4.3 Discussion 50
4.4 Conclusion 52

5 skeleton-and-trackball rotation for 3d
scenes 55
5.1 Introduction 55
5.2 Related work 57

ix

contents

5.3 Proposed method 58
5.3.1 Rotation axis computation 58
5.3.2 Controlling the rotation 62
5.3.3 Improvements of basic method 63

5.4 Formative evaluation 66
5.5 Detailed evaluation — User study 69

5.5.1 Evaluation design 69
5.5.2 Evaluation execution 72
5.5.3 Analysis of results 74

5.5.3.1 Analysis of timing results 74
5.5.3.2 Analysis of questionnaire re-

sults 77
5.6 Discussion 79

5.6.1 Technical aspects 79
5.6.2 Usability and applicability 81

5.7 Conclusion 82

6 co-skeletons: consistent curve skeletons for
shape families 83
6.1 Introduction 83
6.2 Related work 86
6.3 Proposed method 87
6.4 Skeleton pruning details 92

6.4.1 Semantic pruning 92
6.4.2 Skeleton pruning 94

6.5 Results and applications 95
6.5.1 Co-skeleton results 95
6.5.2 Co-skeleton applications 96

6.6 Discussion and conclusion 101

7 conclusion 103
7.1 Shape exploration 103
7.2 Shape examination 104
7.3 Shape analysis 105
7.4 Future work 106

acknowledgments 125

x

1I N T R O D U C T I O N

The world we live in consists of three-dimensional shapes; they are the
basic elements of our life. We see, touch, and interact with them at every
moment. Although we know how to interact with 3D shapes intuitively,
the details of their structure, topology, and properties are still worth for
us to study. Apart from their ubiquity in the real world, 3D shapes are
also an essential ingredient of the digital ones. In recent years, signi�-
cant advances in data storage, computational speed, cloud computing,
and Internet speed have made it possible to build more and more ap-
plications that revolve — metaphorically but also literally — around 3D
scenes. As a consequence, 3D shapes are ubiquitous in many applica-
tion domains. For example, 3D video games are now the main type of
computer games; they are seen by numerous users as more vivid and
attractive than 2D or text-based games. The best-selling video games
on personal computers, mobile phones, and consoles last year are all
3D games [73]. Another case in point is the spread of virtual reality
(VR) [12, 188]. People can experience a completely di�erent world from
the real one with a VR headset. This technique is very useful in gaming,
�lm, and housing industries, and its advent has spawned an increased
need for the creation and management of 3D shapes.

3D content creation and acquisition technologies have made big
progress in the last decades. As a consequence of the increasing num-
ber of 3D shapes being created, manipulated, and exchanged, databases
(also called collections or repositories) of 3D shapes have emerged [150,
165]. In the beginning, such databases were quite small collections of
tens to hundreds of shapes, typically dedicated to a single application
and used by a few specialists. Over time, these have evolved into large
databases of hundreds of thousands of shapes, representing objects of
di�erent types, collected from various sources, stored in various for-
mats, and used by thousands or even millions of people with di�erent
training and interests. Apart from the explicit creation of 3D shapes
by digital modeling and acquisition (scanning), large collections of 3D
shapes are created implicitly in medical science, for instance when ex-
tracting various anatomical structures from 3D Computer Tomography
(CT) or Magnetic Resonance Imaging (MRI) scans [79, 105].

Regardless of their origin and creation process, 3D shapes typically
come with additional data attributes, such as type of object being rep-
resented (e.g., cars, planes, furniture, natural shapes, speci�c kinds of
anatomical tumors), size of object, quality of the representation (e.g. res-
olution of a mesh), and provenance (author of the data). When available,
such attributes can be also stored into shape databases, alongside the ac-

1

introduction

tual geometry that describes the shapes [126]. As such, a shape database
is essentially a large and complex multidimensional dataset, where the
observation, or sample, is the shape plus all its measured or associated
data; and each measurement type represents a separate dimension.

Without any doubt, the emergence of (public) large 3D shape
databases represents a major help for all stakeholders interested in
creating applications that revolve around 3D content. On the other
hand, the size and complexity nature of such databases also creates
new problems and challenges. As such, the problems of analyzing and
exploring such 3D shape databases have grown into a research �eld
of its own. To illustrate this, we outline next several instances of the
above joint analysis-and-exploration problems.

Search and exploration: A typical starting problem for users facing
such 3D shape databases is to �nd the shapes they are interested in
among the many ones present in the database. After all, the main pur-
pose of such databases is precisely to facilitate reuse of 3D shapes, and
for this to occur, one needs to �nd the shapes one can reuse. Current
3D shape database systems often o�er search mechanisms for users to
search shapes in their collections. Many databases also provide naviga-
tion systems to help users exploring their collections. Each of these two
main methods has its strengths and weaknesses, as follows.

A search system will list the objects it �nds (retrieves) that are re-
lated to the search information (query speci�cation) supplied by its
users. Typical search information includes keywords, sketches [37], and
sample shapes [150]. Every time when a user submits a search request,
the system queries the database to �nd – or retrieve – the shapes that
meet the search condition within a certain tolerance, and then presents
these results to the user. If the system cannot �nd any matching shape,
it tells the user this search request failed and asks the user to try to
search with other information. Relaxing the search tolerance increases
the likelihood of returning more results to the user, but also the likeli-
hood that some of these returned results will not be relevant. In general,
search methods are e�cient when users know what they are looking for,
know how to describe their requirements, have an idea what shapes
a database contains, and have a reasonable understanding of how the
search is actually executed. Simply put, when users are familiar with
the target databases and their underlying structure and search mecha-
nisms, a search system is a very e�cient tool for �nding the shapes one
is looking for.

Di�erent from the search system, exploration methods are more suit-
able for non-targeted search. Such methods come into play in situations
when the users do not know their desired shapes exactly; know what
they are looking for but not how to specify the query via the available
search mechanisms; observe that targeted search does not e�ectively re-
turn what they are looking for; or, more generally even, are interested to

2

introduction

browse a shape database to get familiar with its contents, without hav-
ing a speci�c target object in mind. As such, exploration di�ers from
search or querying. In both cases, the process is supposed to deliver
some set of shapes deemed of interest by the user. Still, search has a
clear way of deciding what types of shapes are to be returned in a query,
based on a set of explicit search criteria. In contrast, exploration does
not typically use concrete criteria to say, beforehand, whether a shape is
or is not of interest. The set of shapes found of interest that are returned
from exploration is, often, a process of the insights discovered or found
during exploration itself by the user. Exploration mechanisms for 3D
shape databases are typically created around thumbnail galleries and
hierarchies [125]. Users can explore the database, which often use these
two methods — hierarchies and thumbnails — combined, like browsing
photos in their computer �le system or navigating the products on a
web shopping portal. However, free exploration becomes di�cult when
3D shape databases become large, that is, contain thousands of shapes
or more. Hierarchical organization helps this, but it also introduces a
limitation, as all available content has to be organized along the lines of
a single, or a few, prede�ned hierarchies. The analogy with a �le system
holds here: It is di�cult for users to create a comprehensive overview of
all their (tens of) thousands of �les [16].

Both search and exploration are important and useful tools for
e�ectively and e�ciently (re)using the available content in 3D shape
databases. They are also complementary mechanisms, used in di�erent
situations, as outlined above. However, we note that, whereas 3D
shape retrieval has been extensively explored [90, 133, 137, 150, 165],
the area of 3D shape database exploration, albeit older, has received
relatively less attention. Easily creating an overview of a large, possibly
un-annotated and unstructured, 3D shape database, that groups shapes
together by similarity in ways that enable users to understand at a
glance what the database contains, is still challenging.

Shape examination: At a lower level of detail following the explo-
ration of an entire 3D shape database, one is interested in studying a
single (or a few) 3D shapes. This serves multiple purposes, e.g., �nding
whether the shape corresponds to the one that was searched for in the
database by examining the shape’s �ne-grained details; and �nding as-
pects related to the quality of the shape representation, such as 3D mesh
quality (or lack thereof). Understanding these aspects in detail is next
important for the decision whether the shape is indeed directly suited
for further use in a speci�c application; if it needs preprocessing before
such usage, e.g., mesh repairing to improve grading or closing holes; or
whether the shape is actually unsuitable for that application and a new
search in the 3D database must be executed. More generally put, the ex-
amination follows the exploration stage in 3D shape databases much
like in other contexts in the information visualization arena, follow-

3

introduction

ing Shneiderman’s mantra [135] “Overview �rst, zoom and �lter, then
details-on-demand”. In our context, the overview stage relates to the
exploration; the zoom and �lter to targeted search; and the details-on-
demand to the examination stage, respectively.

Shape examination takes usually the form of viewing the shape –
or few selected shapes – from various viewpoints and with various
rendering modes. Since the advent of 3D graphics, many methods
have been proposed for manipulating the viewpoint to explore virtual
worlds, such as the virtual trackball and its enhancements [56]. How-
ever, manipulating 3D content using a 2D screen — the most typical
setting — is still di�cult. In this context, we ask ourselves if we can
improve this process by providing virtual viewpoint manipulation
tools that exploit information present in the 3D shapes. Also, it is
important to note that shape examination takes place usually after a
search and/or exploration process was �rst executed to �nd the (small)
set of candidates of interest to examine.

Shape analysis: Once one has decided that a shape (or a small set of
shapes) found in a 3D database is suitable for the application at hand,
typically by examining them in detail as outlined above, the shape typ-
ically undergoes some form of processing. This can take many forms.
For instance, one can analyze the shape by extracting metrics relevant
for understanding the shape quantitatively or for comparing various
shapes, especially important in engineering and medical contexts [83];
or one can process the shape to remove noise, improve its meshing qual-
ity, or otherwise obtain di�erent shapes from a base one [172]. In con-
trast to all operations listed above – search, exploration, and examina-
tion – analysis is the only operation that can actually modify a shape.
Analysis is most closely connected to examination, as one needs to
study the shape in detail, both before and after the analysis.

A particularly interesting topic in this context is the joint process-
ing of sets of related shapes, such as obtained as result of a 3D shape
database query. Since such shapes are related — by their common as-
pects that have been used by the query to retrieve them in the �rst place
— it is arguable that such commonality can be also exploited when pro-
cessing them. Simply put, we would, in that case, process the set, or fam-
ily, of shapes, rather than each shape individually. This can have several
advantages. For example, for delicate operations that strongly depend
on the quality of a 3D shape — and which may fail or produce other-
wise low-quality results from a single poor-quality shape — we can use
the redundancy and variability present in a shape collection to make
them more robust. Moreover, the results of these operations next de-
scribe the entire collection rather than individual shapes. This can help
further the processing of large shape collections in terms of computa-
tional scalability. However, shape retrieval (searching) and shape analy-
sis (processing) are typically treated separately in classical 3D pipelines.

4

introduction

We believe that a joint approach is of added value and we aim to explore
such approaches next.

Summarizing the above, we can now introduce our main research
question:

How to help users in exploring, examining, and analyzing shapes and
their families present in large 3D collections?

Note that, in practice (and thus in solving our research question),
the three above-mentioned operations — exploration, examination, and
analysis — are typically executed several times each, and in various or-
ders. For example, one can do a quick exploration (or search) to �nd
shapes of interest in a database; then, examine these in detail, and �-
nally decide to select a few for further analysis. However, one can also
integrate the analysis step into the search process, by e.g. extracting
shape features that are used by the search mechanism in contexts such
as content-based shape retrieval. As such, in the following, we do not
assume a particular order in which these three tasks are needed to be
executed.

We approach our research question along the three dimensions
outlined above — search and exploration, shape examination, and
shape analysis — by various parts of our research. We present these
next along the structure of our thesis, as follows.

Chapter 1, the current chapter, presents the research object of our
work, which includes exploration of 3D shape databases, 3D shape
examination, and 3D shape analysis.

Chapter 2 presents the related work of our thesis, which includes
research concerning 3D shape database exploration, 3D shape exami-
nation, and 3D shape analysis using skeletons.

Chapter 3 presents our solution to build an exploration system for large
3D shape databases. We introduce here several 3D shape properties
that can be also used in 3D shape analysis such as discussed later on in
Chapter 6. We then propose several methods that use these properties
to create summarizations of 3D shape database for exploration. Our
proposal allows one to easily create visual overviews of 3D shape
databases where structurally similar objects are placed close to each
other. Additionally, our proposal allows the user to control the way
that such overviews are generated in a visual analytics manner, that is,
by novel mechanisms for interactively exploring and selecting the way
in which shape properties, computed from their actual descriptions,
in�uence the creation of the overview.

5

introduction

Chapter 4 presents an improved solution for the exploration problem
studied in Chapter 3. Rather than precompute a set of engineered
feature descriptors, as the approach in Chapter 3 does, we now use a
deep learning set-up for reusing feature vectors computed during the
training of a 3D shape classi�er. Our set-up uses a recent deep learning
method for constructing 2D projections with attractive scalability,
out-of-sample, and stability properties and combines it in a novel
way with another recent deep learning method designed for feature
extraction for classi�cation. We show how visual overviews can be
created in a signi�cantly more computationally scalable way from
high-dimensional feature vectors using our combined deep learning
approach. We explore several architectures and training modes for our
approach. Our proposal is demonstrated in terms of scalability, ease of
use, and robustness on large-scale 3D shape databases.

Chapter 5 turns our focus to the examination part of our research
question. We show here how 3D rotations can be easily speci�ed for
arbitrary 3D shapes using a single click operation in a classical 2D
projection view. In contrast to other 3D rotation speci�cations, we
use information available from the shape’s projection, computed and
extracted using the so-called shape skeleton. This way, rotation axes
automatically ‘latch’ to the visible parts of the examined 3D shapes. To
our knowledge, this is the �rst time that 2D skeletons have been used
to assist the interactive creation of rotation axes for 3D shapes. We in-
clude a user study that compares our interactive rotation speci�cation
technique with classical virtual trackball rotation, showing that our
technique augments the added value of virtual trackball.

Chapter 6 turns to the third and last part of our research question,
namely shape analysis. As Chapter 5 shows that 2D skeletons are
useful descriptors for the examination of 3D shapes, we now consider
the computation of 3D curve skeletons for the same shapes. In line
with the search paradigm outlined earlier in this chapter, we ask
ourselves whether one can compute such 3D curve skeletons jointly
for a set of similar shapes, such as delivered by the result of a query on
a 3D shape database. We present a method that computes such novel
joint descriptors which we call co-skeletons. We show that computing
co-skeletons, as opposed to individual 3D curve skeletons for each
shape in a collection, comes with added value in terms of capturing
the essence of the shapes present in the collection and, at the same
time, being more robust to small-scale noise or variability present in
the individual shapes. Also, we show the added value of co-skeletons
for applications such as shape co-deformation and co-segmentation.

Chapter 7 concludes this thesis by summarizing our contributions and
also sketching possible directions for future work.

6

2R E L AT E D W O R K

As outlined in Chapter 1, analyzing and understanding large 3D shape
databases and 3D shapes is an important topic with many applications
in a wide range of disciplines. Given this, it is not surprising that related
work spans a wide set of sub-disciplines in computer science, ranging
from machine learning and geometry processing to computer graphics,
human-computer interaction, and information visualization. Given the
sheer size of these �elds, we do not aim here to provide a complete
overview of related work to shape processing, exploration, and exam-
ination. Rather, we focus our discussion of related work to the most
important classes of techniques in these respective �elds, which also
relate to our current work. Additional related work will be introduced
in the next chapters in the context of the more speci�c technical top-
ics discussed there individually. As such, this chapter should be seen
as a reading guideline that introduces the reader to the more speci�c
technical information discussed in the following chapters.

This chapter is structured as follows. Section 2.1 outlines fundamen-
tal concepts related to 3D shape representation. Section 2.2 presents
related work in the direction of the exploration of 3D shape collections.
Section 2.3 presents work related to the task of examining individual 3D
shapes in interactive settings. Finally, Section 2.4 introduces notations
and work related to the context of shape descriptors, which are key to
our own work described in the next chapters.

2.1 shape representation

3D shapes can be stored in computer systems in numerous formats.
Such as polygonal mesh, point cloud, CGS (Constructive Solid Geom-
etry) [122], octrees [115], splines, etc. By using these formats, we can
display 3D shapes on screens. When doing 3D shape analysis tasks,
each of them has its advantages. For instance, when computing the
volume or the surface area of a recorded 3D shape, the polygonal mesh
is more convenient than CSG; when doing 3D shape segmentation,
CSG is more convenient than the polygonal mesh. In this thesis, we
mainly use the polygonal mesh and point cloud to represent 3D shapes.

Polygonalmesh: Encoding the surface geometry of 3D models by their
approximation surfaces is a very popular way to store 3D models in
computer systems. The polygonal mesh method covers a 3D model’s
surface by a mesh that consists of many small polygons. The vertices of
the polygons and optionally the outward normal vector of the vertices

7

related work

are recorded. As such, a 3D shape can be represented as its surface mesh
< which is the combination of a group of polygons. Each polygon can
be de�ned by its vertices. As such, the polygonal mesh of a 3D shape can
be represented as< = (+ = [E8], � = [58]), which is an array of vertices
E8 ∈ R3 and a collection of (polygonal) faces 58 , typically an array of
indices into the vertex array.

The polygonal mesh approximates the real surface geometry of 3D
models. Therefore, meshes are not precise representations of 3D shapes.
When the polygons get smaller and �ner, the mesh is more precise to
approximate the model. On the other hand, the smaller polygons size
means the larger quantity of polygons — a larger number of vertices
and faces. This will take more storage space and will take more time
for rendering or analysis tasks.

Point clouds: Sampling points on the surface of 3D models is another
method we apply to represent shapes. A 3D shape is represented by a
point cloud % = {G8 } ∈ R3 which is a set of points in space. Point clouds
can be directly rendered and inspected [128], and they can be converted
into surface meshes. It is a very simple and powerful way to represent
shapes. Recently, it received a lot of attention since it can be easily used
in various deep learning methods [53].

2.2 3d shape collection exploration

As outlined in Chapter 1, exploring 3D shape collections can be
structured, from a task perspective, into targeted exploration and free
exploration. Targeted exploration corresponds to the goal of �nding
shapes that match speci�c characteristics of interest to the user. Free
exploration, or browsing, corresponds to the goal of �nding what a
certain 3D shape database contains in general and/or �nding how
such a database is organized. From the perspective of techniques
used, exploration of 3D shape databases can be structured along three
modalities, as follows.

Keyword search uses words to search for shapes whose annotation
data — also called metadata — contains those words. From all explo-
ration mechanisms, keyword search is the simplest to support, and
therefore the oldest and most widespread form of searching for 3D
content, present in many shape databases, such as TurboSquid [164]
and Aim@Shape [1], to mention just a few. Such databases allow
providers to upload models with associated keywords for subsequent
search. However, keyword lists are only weakly structured, possibly
containing redundant or vague keywords, potentially added this way to
increase exposure rate. Besides general-purpose databases of this type,
more specialized ones exist, such as containing 3D shapes related to
space exploration [104]. Overall, keyword search is popular and widely

8

2.2 3d shape collection exploration

supported, but works best for targeted searches performed by users
aware of a database’s organization, requires a good annotation with
speci�c keywords, and is less e�ective for the task of free exploration
or browsing. Given these limitations of keyword search, but also
the fact that many solutions are already established for this type of
exploration, we will not focus further in our work on this modality.

Hierarchical exploration systems organize shapes along with
di�erent criteria, following an existing taxonomy of the targeted 3D
shape universe at hand. Such systems support exploration (apart from
the keyword search) by allowing users to browse the hierarchy, with
shapes or shape categories depicted by thumbnails, much like when
exploring a �le system. Examples of such systems are the Prince-
ton Shape Benchmark [134], Aim@Shape [1], or the ITI 3D search
engine [66] that allows browsing multiple hierarchically-organized
shape databases. Hierarchy browsing supports browsing better than
keyword-based search. Yet, it typically only allows examining a single
path (shape subset) at a time, and thus cannot provide a rich global
overview of an entire database. Moreover, its e�ectiveness relies on
the provided hierarchy, which may or may not match the way users
see the grouping of shapes. At a larger scale, de�ning a good hierarchy
is challenging: if a 3D shape database evolves freely, it may need to
accommodate, in the future, shapes which do not easily �t within
the existing hierarchy. While any given hierarchy can be re�ned, this
can be a costly procedure, especially if levels close to the hierarchy
root need to be edited and existing shapes in the database require
re-distribution in the edited hierarchy. Additionally, as for keyword
search, hierarchical exploration is well known and many solutions
exist for 3D shape databases to this end [125, 161]. As such, we do not
explore this direction further in our work.

Content based shape retrieval (CBSR) allows users to search
for shapes similar to a given query shape, and therefore depend far
less on an upfront organization of the database in terms of suitable
keywords or hierarchies and/or on the user’s familiarity with these.
Good surveys of CBSR methods are provided by [17, 150]. These
methods essentially extract a high-dimensional descriptor from the
query and database shapes, and then search and retrieve the most
similar shapes to the query based on a suitable distance metric in
descriptor space. Many types of descriptors and distance metrics
have been proposed, as follows. Global descriptors, such as shape
elongation, eccentricity, and compactness, are simple, yet crude ways
to discriminate between highly di�erent shapes. Local descriptors,
such as saliency, shape thickness, and shape contexts capture more
�ne-grained shape details [129, 131, 138, 151]. Topological descriptors,
such as based on curve skeletons [69] or surface skeletons [47] capture

9

related work

the part-whole shape structure. Finally, view-based descriptors capture
the appearance of the shape from multiple viewpoints [32, 133].
Kalogerakis et al. [74] provide a tool to compute several types of shape
features. Apart from such hand-engineered descriptors, deep learning
has proved e�ective in automatically extracting low-dimensional
representations of shape with high accuracy for query tasks [147] and
also for related classi�cation tasks [116]. CBSR frees the user from
the burden of specifying keywords or choosing explicit navigation
paths in a hierarchy to examine a shape database. Additionally, CBSR
assists in �nding the most similar shapes to a given prototype (query).
However, CBSR does not readily support the task of general-purpose
exploration of a shape database, e.g., seeing how all the shapes within
it are organized in terms of similarity.

Summarizing the above, keyword search, hierarchical exploration,
and CBSR o�er largely complementary mechanisms for exploring a
shape database, and can be readily combined in a 3D database explo-
ration system. However, as outlined, none of these methods o�er a com-
pact, complete, and detailed overview of an entire database. Moreover,
such mechanisms do not explain why a set of shapes are deemed sim-
ilar. In earlier work, Rauber et al. [117] have used interactive feature
selection to improve image classi�cation, which is related, but not the
same, to our goal of exploring data collections. Such functionalities are
essential in contexts where users do not know precisely what they are
looking for and would like to understand the information contained in
a database before proceeding to more speci�c queries.

Free exploration of high-dimensional data spaces — such as our
3D shape databases can be seen — are, however, not new in informa-
tion visualization. For instance, treemaps provide highly scalable ap-
proaches to explore large hierarchies up to hundreds of thousands of
elements [16]. Closer to our goal and interests, so-called dimensional-
ity reduction, or projection, methods, allow data scientists to create
overviews of datasets containing millions of samples each having up to
thousands of attributes or data dimensions [42]. Such dimensions corre-
spond precisely to the features extracted in CBSR. Both these classes of
techniques ideally match our goal of free exploration. We elaborate on
these topics, also introducing more speci�c related work, in the contexts
of Chapters 3 and 4.

2.3 3d shape examination

The second step of exploration, following after targeted search or free
browsing, is to examine a (typically small) subset of shapes of interest.
These are either the results of a query (in targeted search) or a subset
of shapes deemed to be of interest obtained from free exploration, e.g.,
the contents of a sub-hierarchy in the case of data that is presented

10

2.3 3d shape examination

hierarchically. Once such a small subset of shapes of interest — in the
limit, a single shape — is obtained, by any means deemed suitable, the
shapes in question are examined one by one and in detail.

Several aspects are important during the detailed examination step.
Following the traditional computer graphics pipeline [63], we mention
below two sub-steps in this examination process:

• viewing: This step corresponds to selecting a suitable viewpoint,
including eye position, viewing vector, up vector, projection
transformation, and viewport sizes;

• presentation: This step corresponds to selecting a suitable lighting
model, as well as layers of (material) properties that are used to
display the 3D shape in a realistic way, e.g. using textures, simpli-
�ed way, e.g. using simple Gouraud shading [63], or color-coding
various properties of the shape such as surface Gaussian curva-
ture [152, 155].

Presentation modalities are further the object of computer graphics
and rendering research which is out of our scope. We focus next on the
viewing step. Within this step, one typically needs to specify various
combinations of translation (panning), scaling (zooming), and rotation
transformations. Whereas translation and scaling are relatively easy to
specify by interactive means such as keyboard and mouse or similar
interaction devices, rotation is more challenging. The issue, in our
context, is that specifying a general 3D rotation by using such tools
typically involves specifying six parameters corresponding e.g. to a
rotation axis given by a location and a direction in 3D, and an angle.
Note that this speci�cation involves a practical trade-o�: Specifying a
3D axis requires, formally speaking, only 4 degrees of freedom; thus,
adding a rotation angle around it brings one to the need of specifying 5
degrees of freedom. However, existing 3D interaction tools often prefer
to allow users to specify 3D rotation axes using more parameters. For
instance, specifying a 3D axis can be done by selecting two 3D points,
which amounts to specifying six parameters. This makes the spec-
i�cation arguably more natural but increases the number of parameters.

Rotation speci�cation: To address the above challenges, many tech-
niques have been proposed to ease the speci�cation of 3D rotations.
The trackball metaphor [23] is one of the oldest and likely most pop-
ular techniques. Given a 3D center-of-rotation x, the scene is rotated
around an axis passing through x and determined by the projections
on a hemisphere centered at x of the 2D screen-space locations p1 and
p2 corresponding to a (mouse) pointer motion. The rotation angle U is
controlled by the amount of pointer motion. While simple to implement
and use, trackball rotation does not allow precise control of the actual
axis around which one rotates, as this axis constantly changes while

11

related work

the user moves the pointer [6, 187]. Several usability studies of trackball
and alternative 3D rotation mechanisms explain these limitations in de-
tail [49, 59, 68, 109]. Several re�nements of the original trackball [23]
were proposed to address these [64, 136]. In particular, Henriksen et
al. [56] formally analyze the trackball’s principle and its limitations and
also propose improvements which address some, but not all, limitations.
At the other extreme, world-coordinate-axis rotations allow rotating a
3D scene around the x, y, or z axes [67, 187]. The rotation axis and rota-
tion angle are chosen by simple click-and-drag gestures in the viewport.
This works best when the scene is already pre-aligned with a world axis
so that rotating around that axis yields meaningful viewpoints.

Pre-alignment of 3D models is a common preprocessing stage in vi-
sualization [19]. Principal Component Analysis (PCA) does this by com-
puting a 3D shape’s eigenvectors e1, e2 and e3, ordered by their eigen-
values _1 ≥ _2 ≥ _3, so that the coordinate system {e8 } is right-handed.
Next, the shape is aligned with the viewing coordinate system (G,~, I)
by a simple 3D rotation around the shape’s barycenter [77, 150]. Yet, pre-
alignment is not e�ective when the scene does not have a clear main
axis (_1 close to _2) or when the major eigenvector does not match the
rotation axis desired by the user.

3D rotations can be speci�ed by classical (mouse and keyboard) [187]
but also touch interfaces. Yu et al. [182] present a direct-touch explo-
ration technique for 3D scenes called Frame Interaction with 3D space
(FI3D). Guo et al. [51] extend FI3D with constrained rotation, trackball
rotation, and rotation around a user-de�ned center. [181] used trackball
interaction to control rotation around two world axes by mapping it to
single-touch interaction. Hancock et al. [54, 55] use two or three touch
input to manipulate 3D shapes on touch tables and, in this context, high-
lighted the challenge of specifying 3D rotations. All above works stress
the need for simple rotation-speci�cation mechanisms using a minimal
number of touch points and/or keyboard controls.

More related work related to interactive examination of 3D shapes
is discussed in Chapter 5, which also introduces our contributions to
addressing this examination task.

2.4 3d shape analysis

Shape descriptors are a generic term used for quantities computed from
3D shapes which serve, next, a wide range of applications such as detec-
tion, registration, recognition, classi�cation, and retrieval of 3D objects.
In our work, we involve shape descriptors for all our three tasks, as
follows:

• exploration: We use shape descriptors for capturing the similarity
of shapes in a 3D database. This allows us to create overviews for
free exploration, as discussed next in Chapters 3 and 4;

12

2.4 3d shape analysis

• examination: Separately, we use shape descriptors to capture the
salient visible aspects of a 3D shape from a given viewpoint. This,
next, allows us to infer suitable 3D axes that match the respective
shape view, which we further use to construct 3D rotations for
shape examination. This use of shape descriptors is covered in
Chapter 5.

• analysis: Finally, we use shape descriptors to capture the salient
structural properties of a set of similar 3D shapes. This allows
us to robustly compute a simpli�ed description of the entire set
of shapes, which we call a co-skeleton. Co-skeletons and their
associated descriptors are discussed in Chapter 6.

From a technical point of view, we use two types of shape descriptors
to support our exploration, examination, and analysis goals. These
two types are medial descriptors and histogram-based descriptors. We
introduce them next.

2.4.1 Medial descriptors

Also known as skeletons — a term that we prefer next for being shorter
— medial descriptors have been used for decades to capture the symme-
try structure of shapes [14, 139]. For a shape Ω ⊂ R= , = ∈ {2, 3} with
boundary mΩ, its skeleton is de�ned as

(Ω = {x ∈ Ω |∃f1 ∈ mΩ, f2 ∈ mΩ : f1 ≠ f2∧||x−f1 | | = | |x−f2 | | = �)Ω (x},
(2.1)

where f8 are called the feature points [103] of skeletal point x and �)Ω
is the distance transform [31, 124] of skeletal point x, de�ned as

�)Ω (x ∈ Ω) = min
y∈mΩ
‖x − y‖ . (2.2)

These feature points de�ne the so-called feature transform [57, 149]

�)Ω (x ∈ Ω) = arg min
y∈mΩ

‖x − y‖, (2.3)

which gives, for each point x in a shape Ω, its set of feature points on mΩ,
or contact points with mΩ of the maximally inscribed disk in Ω centered
at x.

The above de�nitions for skeletons, feature transforms, and dis-
tance transforms are generic for any embedding dimensionality of
shapes. In particular, they hold identically for 2D shapes and 3D

13

related work

shapes. However, in practice, skeletons are computed di�erently for
2D and 3D shapes for both practical and algorithmic reasons, as follows.

2D skeletons: Many methods compute skeletons of 2D shapes, which
are described as either polyline contours [108] or binary images [31, 44,
45, 158]. State-of-the-art methods regularize the skeleton by removing
its so-called spurious branches caused by small noise perturbations of
the boundary mΩ, which bring no added value, but only complicate fur-
ther usage of the skeleton. Regularization typically de�nes a so-called
importance d (x) ∈ R+ |x ∈ (Ω which is low on noise branches and high
elsewhere on (Ω . Several authors [31, 44, 45, 108, 158] set d to the length
of the shortest path along mΩ between the two feature points f1 and f2
of x. Upper thresholding d by a su�ciently high value removes noise
branches. Importance regularization can be e�ciently implemented on
the GPU [41] using fast distance transform computation [18]. Overall,
2D skeletonization can be seen, both from a practical and a theoretical
perspective, as a solved problem. The theory of 2D skeletonization is
described in detail by Siddiqi and Pizer [139]; their work, actually, also
covers 3D skeletonization, but to a lesser extent.

From a practical perspective, current 2D skeletonization algorithms
can handle 2D binary images of resolutions of thousands pixels
squared in milliseconds, and produce pixel-thin, centered, multiscale
skeletons for arbitrarily noisy 2D shapes [41]. In our work, we use such
state-of-the-art 2D skeletonization methods to compute 2D skeletons
of silhouettes (projections) of 3D shapes in real time for interactive
examination, as detailed next in Chapter 5.

3D skeletons: In 3D, two skeleton types exist [149]: Surface skeletons,
de�ned by Eqn. 2.1 for Ω ⊂ R3, consist of complex intersecting man-
ifolds with boundary, and hence are hard to compute and utilize [149].
Curve skeletons are curve-sets in R3 that locally capture the tubular
symmetry of shapes [30]. They are structurally much simpler than sur-
face skeletons and enable many applications such as shape segmen-
tation [123] and animation [13]. Yet, they still cannot be computed in
real time, and require a well-cured de�nition of Ω as a watertight,
non-self-intersecting, �ne mesh [143] or a high-resolution voxel vol-
ume [45, 118].

Kustra et al. [80] and Livesu et al. [95] address the above challenges
of 3D curve-skeleton computation by using an image based approach.
They compute an approximate 3D curve skeleton from 2D skeletons
extracted from multiple 2D views of a shape. While far simpler and
also more robust than true 3D skeleton extraction, such methods
need hundreds of views and cannot be run at interactive rates. Our
work for interactive 3D shape examination in Chapter 5 also uses an
image-space skeleton computation, but uses di�erent, simpler, heuris-
tics than [80, 95] to estimate 3D depth and a single view, thereby achiev-

14

2.4 3d shape analysis

ing the speed required for interactivity. Separately, our work on shape
analysis in Chapter 4 uses 3D curve skeletons computed by the meth-
ods described in [5] and [148], which, following a recent survey [149]
and also additional quantitative and qualitative evaluations [143, 144],
are found to excel in terms of genericity, computational scalability, ro-
bustness to noise and type of 3D shape, and quality of the resulting 3D
curve skeletons.

2.4.2 Histogram-based descriptors

Many types of shape descriptors exist in the 3D retrieval literature. Fol-
lowing key surveys in this area [126, 150], such descriptors can be clas-
si�ed as either local or global. To explain the di�erence, let S be a set
of 3D shapes Ω ∈ S under study, such as a 3D shape database. Local de-
scriptors essentially are functions 5 : mΩ → R: , that is, they compute a
:-dimensional value for every location (or neighborhood) x ∈ mΩ on the
shape surface. Global descriptors, in contrast, are functions 5 : S → R: ,
that is, they compute a single :-dimensional value for a given shape Ω.

For descriptors to be e�ective in shape analysis or retrieval tasks,
they should be invariant to changes of the shape which are deemed
uninteresting for the application at hand. Such changes regard orien-
tation, size, meshing resolution, and location (in the embedding space).
Global descriptors can be computed to be invariant to such changes ei-
ther natively (by de�nition) — e.g., consider the volume or surface area
of a shape — or by suitable alignment transformation. Local descrip-
tors, however, are by nature dependent on the location x ∈ mΩ where
they are de�ned; e.g., consider the Gaussian curvature for a given sur-
face mΩ. Since di�erent shapes to be compared typically have di�erent
resolution – and, even if they had the same resolution, one could not
guarantee a one-to-one correspondence of their sample points x ∈ mΩ
— local descriptors need to be made invariant, that is, converted into
suitable global descriptors.

An established way to handle this local-to-global descriptor conver-
sion is to use histograms. Simply put, a histogram descriptor ℎ5 takes
a local descriptor 5 and bins its range over mΩ into a suitable set of
bins, and next computes the frequency of values of 5 over each such
bin. Since normalized by the sample count — typically this being either
the face count or vertex count of a shape surface mΩ — histograms are
invariant to aspects such as resolution and sampling order. Additional
simple transformations such as translation of barycenter to the origin,
unit-box scaling, and usage of principal component orientations [150]
can be used to make such descriptors also invariant to location, scale,
and orientation. Next, by using a �xed bin count =, histogram descrip-
tors e�ectively reduce a shape to an =-dimensional scalar feature vec-
tor, or a := dimensional vector if the local descriptor was already a :-
dimensional function. Examples of such histogram descriptors that we

15

related work

use in our work are shape contexts [8] and fast point feature histograms
(FPFH) [129]. We note that, besides surface local features de�ned on mΩ,
also features extracted from the shape’s 3D curve skeleton, such as the
local diameter of skeletal cuts, can be used to create such global de-
scriptors via histograms [46, 47]. We use histogram-based descriptors
further in our work on shape database exploration (Chapter 3) and also
for shape analysis (Chapter 6).

16

3V I S UA L E X P L O R AT I O N O F 3 D S H A P E D ATA B A S E S
V I A F E AT U R E S E L E C T I O N

In this chapter, we use shape properties for constructing e�ective vi-
sual representations of 3D shape databases as projections of multidi-
mensional feature vectors extracted from their shapes. We present sev-
eral methods to construct e�ective projections in which di�erent-class
shapes are well separated from each other. First, we propose a greedy
heuristic for searching for near-optimal projections in the space of fea-
ture combinations. Next, we show how human insight can improve the
quality of the constructed projections by iteratively identifying and se-
lecting a small subset of features that are responsible for characterizing
di�erent classes. Our methods allow users to construct high-quality pro-
jections with low e�ort, to explain these projections in terms of the con-
tribution of di�erent features, and to identify both useful features and
features that work adversely for the separation task. We demonstrate
our approach on a real-world 3D shape database.

3.1 introduction

Recent developments in 3D content creation and 3D content acquisition
technologies, including modeling and authoring tools and 3D scanning
techniques, have led to a rapid increase in the number and complexity of
available 3D models. Such models are typically stored in so-called shape
databases [66, 130]. Such databases o�er various mechanisms enabling
users to browse or search them to locate models of interest for a speci�c
application at hand.

As shape databases increase, so does the di�culty that users have in
locating models of interest therein [150]. Typical mechanisms o�ered to
support this task include searching by keywords, browsing the database
along with one or a few prede�ned hierarchies, or content-based shape
retrieval (CBSR). While e�cient for certain scenarios, all these mecha-
nisms have limitations: Keyword search assumes good-quality labeling
of shapes with relevant keywords, and also that the user is familiar with
relevant search terms. Hierarchy browsing is most e�ective when the
organization of shapes follows the way the user wants to explore them.
Finally, CBSR works well when the user aims to search for shapes sim-
ilar to an existing query shape.

Besides the above targeted use-cases, more generic ones involve users
who simply want to explore the entire database to see what it contains.
This is relevant in cases where users want to �rst get a good overview
of what a database contains before deciding to invest more e�ort into

17

visual exploration of 3d shape databases via feature selection

exploring or using it; and also in cases where users do not have speci�c
searches in mind. Existing mechanisms o�ered for the above scenarios
are linear in nature, showing either a small part of the database at a
single time and/or asking the user to perform lengthy navigations to
create a mental map of the database itself, much like when navigating
a web domain.

We address this task by a di�erent, visual, approach. We construct a
compact and scalable overview of an entire shape database, with shapes
organized by similarity. We o�er details-on-demand mechanisms to en-
able users to control the separation quality of the similar-shape groups
in the visual overview; understand what makes a set of shapes similar
(or two or more sets of shapes di�erent); and �nd features that have
high, respectively little, value for the shape classi�cation task. Our ap-
proach is simple to use; requires no prior knowledge of the organization
of a shape database; nor a prior organization or labeling of the database;
handles any type of 3D shape represented by a polygon mesh; and scales
visually and computationally to real-world large shape databases. Addi-
tionally, our proposal is useful for both end-users (who aim to explore
a shape database) and technical users (who aim to engineer features to
query or classify shapes in such databases).

This chapter is structured as follows. Section 3.2 outlines related work
in exploring 3D shape databases. Section 3.3 details our pipeline that
consists of shape normalization, feature extraction, and dimensionality
reduction. Section 3.4 presents our automatic and user-driven methods
for constructing high-quality projections for exploring shape databases
and demonstrates these on a real-world shape database. Section 3.6 con-
cludes this chapter.

3.2 related work

CBSR, already covered in Section 2.2, and multidimensional projections
(MPs) are realted to our 3D shape database exploration solution.

Multidimensional projections: also called dimensionality-reduction
techniques, are the instrument of choice for reducing the number of
dimensions of a dataset so that important data structures (e.g. clusters,
correlations, outliers) are still preserved [40, 145]. MPs are used both for
data preprocessing, e.g. to reduce the number of features that a classi�er
will next use; but also for visual exploration: Indeed, when the number
of target dimensions is low (2 or 3), the initial dataset is reduced to a 2D
or 3D scatterplot, which can be directly visualized to perceive the data
structure [142].

Finding ‘good’ projections for a given dataset (or more exactly, a fam-
ily of datasets generated by a speci�c problem) is an open problem in
data science, for two key reasons. First, virtually any projection algo-
rithm will have to drop information as it reduces the number of dimen-

18

3.2 related work

sions from hundreds or even more to just a few. Secondly, there are tens
of di�erent MP algorithms, which have in turn many parameters. Ex-
ploring the entire space of projection possibilities is not feasible, even
for a single dataset. To evaluate how useful a certain projection is, a
variety of quality measures have been proposed [99, 100].

Several projection method families have emerged, aiming to optimize
di�erent types of quality metrics [89], as follows.

A�ne and Projective methods are a family of multivariate embed-
dings including RadViz [33, 34, 60, 107] and Star Coordinates [75, 76].
They are generally simple to implement and fast to compute but have
typically poor preservation of the high-dimensional data structure (de-
�ned e.g. in terms of inter-point distances or point neighborhoods).

Orthographic Projections, such as the multivariate Orthographic Star
Coordinates [88], generalize the concept of bivariate orthographic pro-
jections, such as scatterplots. They prevent distortions better by main-
taining a set of orthography-preserving constraints.

Distance-based projection techniques aim to preserve the inter-point
distances as they map points from the high dimensional space to the low
(2D or 3D) dimensional space. For instance, Multidimensional scaling
(MDS) [162] preserves distances between the data records under projec-
tion via the spectrum of a data-dependent centered distance matrix.

PCA-based techniques also belong to this family. They are very sim-
ple and fast to compute but fail to preserve data structure when the
high-dimensional points are not spread on, or close to, a hyperplane.
With Glimmer [65], a high-performance approach for multilevel MDS
on graphic processing units is known. The large amount of distance
information required to build up a projection can be reduced by part
linear multidimensional projection (PLMP) [112] to a small number of
pairwise distances between some so-called representative data samples,
which substantially increases the performance of the projection process.
Local a�ne multivariate projection (LAMP) [71] provides a local data
projection technique by minimizing the distances of the projected data
points with the aid of (interactively) initialized seed or control points in
the visualization space. LAMP is particularly interesting in applications
where one does not precisely know the quality or meaningfulness of the
original dimensions; in such cases, one can ‘rearrange’ the projection by
moving the control points so that the emerging patterns (e.g. clusters)
better match the user’s perception of similarity between items.

Recently, t-SNE [97] has gained wide popularity. Its two main ad-
vantages are that it only needs a pairwise distance (similarity) matrix,
rather than actual dimensions of points; and that if the data contains
well-separated clusters, such clusters become very apparent in the (2D)
projection. However, t-SNE is a quite slow method, and also sensitive to
its parameter setting. Finally, UMAP [102] applies the theories of fuzzy
mathematics and Riemannian geometry to build a solution that can gen-
erate similar quality results as t-SNE with faster speed.

19

visual exploration of 3d shape databases via feature selection

In this chapter, we use t-SNE and UMAP for multidimensional pro-
jection. While they can create good results, they are quite slow when
the aim data size is really large. So we apply NNProj, a neural network
method, for multidimensional projection in Chapter 4.

3.3 proposed method

To support the overall exploration of 3D shape databases, we propose to
augment existing mechanisms (keyword search, hierarchies, and CBSR)
by a visual navigation approach. Our approach allows users to see a
complete overview of an entire database and the way shapes are or-
ganized in terms of similarity. Next, it allows selecting speci�c shapes
or shape properties and �nding similar shapes (from the perspective
of one or several such properties), and also �nding out how properties
discriminate between di�erent shapes. We now detail our approach.

3.3.1 Overview

We start by introducing some notations. A mesh < = (+ = [x8], � =

[59]) is a collection of vertices x8 ⊂ R3 and faces 59 , assumed to be
triangles for simplicity. A shape database is a set of shapes " = {<: }.
No restrictions are placed here, i.e., shapes can be of di�erent kinds,
sampling resolutions, and require no extra organization or annotations,
e.g., classes or hierarchies.

Our key idea is to present a visual overview of " in which every
shape <: is represented by a thumbnail rendering thereof, and visual
distances between two shapes <8 and < 9 re�ect their similarity. The
visual overview is interactively linked with detail views in which users
can explore speci�c shape details. The combination of overview and de-
tails, following Shneiderman’s visual exploration mantra [135], enables
both free and targeted exploration of the shape database along the use-
cases outlined in Section 3.2.

We create our overview-and-detail visual exploration as follows.
First, we preprocess all meshes in " to normalize them in terms of
sampling resolution and size. Secondly, we extract local features from
all meshes < ∈ " (Section 3.3.3). These features capture the re-
spective shapes at a �ne level of detail. Next, we aggregate local fea-
tures into �xed-length feature vectors (Section 3.3.4). Finally, we use a
dimensionality-reduction algorithm to project the shapes, represented
by their feature vectors, onto 2D screen space (Section 3.3.5). We de-
scribe all these steps next.

20

3.3 proposed method

3.3.2 Preprocessing

Since we do not pose any constraints on the shapes in" , these can come
with virtually any sampling resolution, orientation, and at any scale.
Such variations are known to pose problems when computing virtually
any type of shape descriptor [17]. Hence, as a �rst step, we normalize
all shapes < ∈ " by �rst remeshing them, with a target edge-length
of 1% of <’s bounding-box diagonal. Next, we translate and scale the
remeshed shapes to �t the [−1, 1]3 cube.

3.3.3 Local feature extraction

To characterize shapes, we extract several so-called local features from
each. Such features describe the shape at or in the neighborhood
of every vertex x8 ∈ < and are therefore good at capturing local
characteristics. We compute seven local feature types, as follows.

Gaussian Curvature (Gc): Gaussian curvature describes the overall
non-�atness of a shape close to a given point. For every vertex x ∈ <
we compute its Gaussian curvature as

�2 (x) = 2c −
∑
5 ∈� (x)

\x,5 , (3.1)

where � (x) is the set of faces in � incident with x and \x,5 is the angle
in face 5 at vertex x.

Average Geodesic Distance (Agd): We estimate the geodesic distance
3 (x, y) between a pair of vertices x and y of< as the geometric length
of the shortest path in the edge connectivity graph of< between x and
y. This distance can be easily and e�ciently estimated using Dijkstra’s
shortest-path algorithm with A* heuristics and edge weights equal to
edge lengths. More accurate estimations of the geodesic distance be-
tween two points on a polygonal mesh exist, including computing the
distance �eld (or transform) �) (x) of x over � and tracing a stream-
line in −∇�) (x) from x until it reaches y [113]; GPU minimization of
cut-length using pivoting slice planes passing through x and y [70]; or
hybrid search techniques [166]. While more accurate than the Dijkstra
approach we use, these methods are considerably more complex to im-
plement, slower to run, and require careful tuning and/or specialized
platforms (GPU support). For a detailed comparison of geodesic estima-
tion methods on polygonal meshes, we refer to [70]. More importantly,
we do not use the individual geodesic lengths, but aggregate them into
per-shape feature vectors (Section 3.3.4). As such, high geodesic estima-
tion precision is less important.

21

visual exploration of 3d shape databases via feature selection

Given the above, we estimate the average geodesic distance of a ver-
tex x as

�63 (x) =
∑

y∈+ 3 (x, y)
|+ | . (3.2)

Normal Diameter (Nd): We �rst estimate the surface normal at a ver-
tex x as

n(x) =
∑
5 ∈� (x)

n(5)\x,5 , (3.3)

where n(5) is the outward normal of face 5 . Given the above, let r be
a ray starting at x and advancing in the direction −n(x). The normal
diameter #3 (x) is then the distance along r from x to the closest face
5 ∈ � \ � (x).

Normal Angle (Na) and Point Angle (Pa): These features describe
how vertices x ∈ + are spread around the shape itself. In detail,
let e1 be the dominant eigenvector of the shape covariance matrix
given by all vertices + . As known, e1 gives the direction in which
the shape spreads the most. Next, for every vertex x ∈ + , we de�ne
the normal angle #0(x) as the angle (dot product) between e1 and
the surface normal n(x); and the Point Angle %0(x) as the angle (dot
product) between e1 and the vector c−x, where c is the barycenter of<.

Shape Context (Sc): The shape context descriptor is a 2D histogram
that characterizes how vertices of a shape are ‘seen’ in terms of distance
and orientation from a given vertex of that shape [8]. For a vertex
x ∈ + , the shape context describes the number of vertices in + that are
within a given distance range and direction range to x. To compute
(2 , we �rst build a local coordinate system at every vertex x, using the
eigenvectors of the shape covariance matrix in the neighborhood of
x. This ensures that this coordinate system is aligned with the shape
locally — one of its axes will be the normal n(x), whereas the two
other ones are tangent to the surface of< at x. Next, we discretize the
orientations around x into the eight octants of the local coordinate
system, and distances using a set of bins (distance ranges) (C8 , C8+1)
de�ned by a distance-set) = {0, C1, C2, . . . , C=, 1}, = ∈ N+. In practice, we
use) = [0, 0.1, 0.3, 1]. Hence, for each vertex x, we get a shape context
vector with 8 × 3 = 24 elements.

Point Feature Histogram (PFH): PFH [129] is a complex descriptor
that captures the local geometry in the vicinity of a vertex. Given a pair

22

3.3 proposed method

of vertices y and ȳ, one �rst de�nes a local coordinate frame (u, v,w)
as

u = m,
v = (ȳ − y) × u,
w = u × v,

(3.4)

where m is the vertex normal at y (Figure 3.1). Next, the variation of
the shape geometry between points y and ȳ is captured by three polar
coordinates

U = v · m̄,

q = u · ȳ − y
‖ȳ − y‖ ,

\ = arctan2(w · m̄, u · m̄),

(3.5)

where m̄ is the vertex normal at ȳ. Next, three histograms are built to
capture the distributions of U, q, \ for a given vertex x by considering
all pairs (y, ȳ) ∈ #x,: × #x,: in the :-nearest neighbors #x,: of x. In
practice, we set : = 30 and use 5 bins for each histogram. This delivers
a PFH feature vector of 53 = 125 entries.

u = m

v = (ȳ − y) × u

w = u × v

y
ȳ − y ȳ

w

v

u

q
U

\

m̄

Figure 3.1: PFH descriptor computation [138].

Fast Point Feature Histogram (FPFH): While PFH models a neigh-
borhood #x,: by all its point-pairs, the Simpli�ed Point Feature His-
togram (SPFH) models #x,: by the characteristics of the pairs (x, y ∈
#x,:). We proceed analogously to binning the U, q, \ distributions in
three histograms of 11 bins each, obtaining a feature vector of 3×11 = 33
elements. With this vector, we �nally compute the FPFH value of a ver-
tex x following [129] as the distance-weighted average of the SPFH val-
ues over the neighborhood #x,: as

�%�� (x) = (%�� (x) + 1
:

∑
y∈#x,:

(%�� (y)
‖x − y‖ . (3.6)

23

visual exploration of 3d shape databases via feature selection

3.3.4 Feature vector computation

The features described in Section 3.3.3 are local, i.e., they take di�erent
values for every mesh vertex x ∈ + . To be able to compare meshes to
each other, we need to reduce these to same-length global descriptors.
For this, we use a simple histogram-based solution that aggregates the
values of every local descriptor, at all vertices of a mesh, into a �xed-
length (10 bin) histogram. Note that some descriptors are by de�nition
high-dimensional — for instance, the shape context (2 has 24 dimen-
sions. Hence, for a 3-dimensional descriptor, we compute a histogram
having 103 bins. Table 1 shows the local features, their dimensionality,
and the number of bins used to quantize each. To summarizing, we re-
duce every shape< to an 1870-dimensional feature vector F .

Table 1: Local features, their dimensionalities and binning.
Name Dimensionality Bins

Gaussian curvature (Gc) 1 10
Average geodesic distance (Agd) 1 10

Normal diameter (Nd) 1 10
Normal angle (Na) 1 10

Point angle (Pa) 1 10
Shape context (Sc) 24 240

Point Feature Histogram (PFH) 125 1250
Fast Point Feature Histogram (FPFH) 33 330

Total 1870

3.3.5 Dimensionality reduction

So far, we have reduced a shape database " to a set of |" | 1870-
dimensional feature vectors. We next create a visual representation of
the shape database by projecting all these vectors onto 2D using the
well-known t-SNE dimensionality reduction method [97]. Simply put, t-
SNE constructs a 2D scatterplot % (") = {% (<:)}, where every shape
<: ∈ " is represented by a point % (<) ∈ R2, so that the distances be-
tween scatterplot points re�ect (encode) the similarities of their feature
vectors.

An important concern when proposing such a representation is to
gauge its quality. To do this, we use the classes (labels) of the shapes. For
a database where each shape< has a categorical label 2 (<) ∈ � , where
� is a set of categories (e.g., keywords describing the di�erent shapes in
a database), we de�ne the neighborhood hit #� (<) as the proportion
of the :-nearest neighbors of % (<) that have the same label 2 (<) as
< itself [111]. In practice, we set : = 10, following related applications

24

3.4 applications

that gauge projection quality [111]. With this, we can next de�ne the
neighborhood hit of an entire class 2 ∈ � as

#�2 (2) =
∑
<∈" :2 (<)=2 #� (<)
|< ∈ " : 2 (<) = 2 | . (3.7)

Finally, at the highest aggregation level, we de�ne the neighborhood hit
for an entire scatterplot % (") for a shape database " as

#�B (") =
∑
<∈" #� (<)
|" | . (3.8)

The above two #� metrics describe how a mesh (point in the 2D pro-
jection scatterplot) is separated from points of di�erent kinds: #�2
shows whether a group of points representing same-class meshes is
well-separated in a scatterplot (something we desire since we want next
to use the scatterplot to answer the question “How many shape classes
are in a database, and how similar are they to each other?”). #�B shows
how well a whole scatterplot can represent an entire shape database.
Both #� metrics range between 0 and 1, with higher values indicating
better separation, which is preferred.

3.4 applications

We next demonstrate our visual exploration approach on a subset of the
Princeton Shape Benchmark [134] having 280 meshes from 14 classes,
with 20 meshes from each class. As outlined earlier, these meshes are
not labeled, hierarchically organized, or otherwise preprocessed.

3.4.1 Optimal scatterplot creation

The projection scatterplot (Section 3.3.5) is the central view that shows
an entire shape database. Hence, creating a good scatterplot is impor-
tant for all exploration tasks addressed next. In this section, we explore
the following questions:

Q1: How can we create a good projection scatterplot?

Q2: Which features are best for grouping similar shapes (and, con-
versely, separating di�erent shapes) in the scatterplot?

Q3: Which is the minimal set of features required to generate a good-
quality scatterplot?

Concerning Q1, we could directly create and examine a t-SNE projec-
tion of the whole shape database as encoded by the 1870-dimensional
feature vectors we extracted (Section 3.3.4). However, using t-SNE is not
always easy, especially for high-dimensional data: This method maps

25

visual exploration of 3d shape databases via feature selection

N
H

 v
al

u
e

hi
gh

lo
w

B

A

features: Gc, Na, Pa, Agd, PFH NHs: 0.859
plier: 1.0

teddy: 0.985

cup: 0.98

ant: 0.975

fish: 0.945

chair: 0.895

glasses: 0.88

airplane: 0.875

table: 0.87

human: 0.855

hand: 0.805

fourleg: 0.765

bird: 0.66

octopus: 0.53

Figure 3.2: Three views of the optimal projection scatterplot for the Princeton
Shape Database, depicting classes and their#�2 values and the over-
all plot quality #�B (A), per-shape #� values (B), and actual shape
thumbnails (C).

similarities (of feature vectors) non-linearly to 2D distances; also, tun-
ing t-SNE’s parameters to yield a good embedding of high-dimensional
feature vectors is notoriously hard [170]. Hence, we �rst explore the
simpler solution of projecting only subsets of all extracted features. As
we have 8 feature types (Table 1), a natural idea is to try all combinations
of groups of feature types. This yields 28 − 1 = 255 possible projection
scatterplots. Following the scagnostics idea [163, 171], we compute all
these scatterplots (using t-SNE) and select the one having the highest
quality, measured by its #�B value.

Figure 3.2 shows three views of the optimal projection scatterplot, as
follows. Image A shows the scatterplot with points (shapes< ∈ ") col-
ored by their class value 2 (<). The text atop this image indicates the
feature subset leading to this optimal scatterplot (highest #�B = 0.859
value), namely (Gc, Na, Pa, Agd, PFH). The bar chart in image A shows
the #�2 values for all classes, with high values (well separated classes)
at the top. From this, we can see that pliers are perfectly separated from
all other classes (#�?;84AB = 1), while octopus is least well separated
(#�>2C>?DB = 0.53). Image B shows the optimal scatterplot colored by
#� values for all shapes, ranging between red (low#�) to yellow (high
#�). Red points in this image show shapes which are not projected well
— that is, placed close to shapes having di�erent classes. Finally, image
C shows the optimal scatterplot with shapes depicted by thumbnails.
From this image, we �nd that shapes of the classes pliers, teddies, cups,
ants, and �shes are well projected. However, birds are mixed with air-
planes; and fourlegs are mixed with humans and hands. The octopus

26

3.4 applications

class is visually split in the projection into several parts. While this op-
timal scatterplot is not perfect, it is still formally the best one we can
create given the combinations of our 8 available features. Indeed, while
class separation is not perfect, closely-projected shapes are still quite
similar. For instance, ants are surrounded by octopuses, which is ar-
guably logical, since both shape types have many thin and spread legs.
Similarly, airplanes and birds are close to each other; indeed, both have
wings and are relatively �at.

1.0

cup
teddy

table
hand

chair ant
human

airp
lane

glasses
fish

octopus
bird plier

N
H

c
 v

a
lu

e

0.8

0.6

0.4

0.2

fourle
g

Figure 3.3: #�2 statistics for the 14 classes in the shape database for all 255
projection scatterplots.

Figure 3.3 shows boxplot statistics of the #�2 values for the 14 shape
classes in our database for the 255 created projection scatterplots. Ide-
ally, we would like to see that every class has a very high #�2 value.
However, we see that birds and octopuses have quite low #�2 values,
con�rming the insights obtained earlier by visually examining the pro-
jection (Figure 3.2).

Finally, Figure 3.4 shows a complete view of how features a�ect the
quality of the produced projections. The bar chart shows the#�B values
of all possible 255 projections created by combining our 8 feature types,
sorted in increasing values from left to right. The matrix plot below
the bar chart shows which features (color-coded according to the leg-
end at the right) are used by which projection. Projections using more
than one feature have blue bars; projections that use exactly one fea-
ture have their bars colored by the respective feature. This plot gives us
several insights: (1) The quality di�erence between the best and worst
projections is signi�cant (#�B 0.831 vs 0.38), with better projections
using more features than poor ones. (2) Some features are really instru-
mental in achieving high quality, e.g. PFH (orange) and FPFH (purple),
which appear consistently in the right of the matrix plot in Figure 3.4,
whereas other features are actually adversely a�ecting quality, e.g. Sc
(green) which appears in the left of the matrix plot. This indicates either
that Sc is not a useful feature for discriminating classes in this database
or that it is poorly evaluated, e.g., by an insu�ciently dense sampling.
(3) Overall, the right of the matrix is more full than its left part, which

27

visual exploration of 3d shape databases via feature selection

G
c

S
c

N
a

P
a

P
F

H

F
P

F
H

A
gd

N
d

0.83

0.0

N
H

s

F
eatu

re

L
eg

en
d

best projection
w

orst projection
top 30%

 best projections

Figure
3.4:A

bar
chart

show
ing

the
#
�
B

scores
of

255
projections,sorted

on
increasing

value
(best

projections
to

the
right,w

orstones
to

the
left).The

color
blocks

under
a

bar
show

w
hich

features
are

used
for

thatprojection
(the

feature
colorlegend

on
the

right).Barsw
hich

are
notblue

only
use

one
feature,w

hose
identity

colorsthe
bar.Scanning

the
colorm

atrix
below

the
bars

row
-w

ise
tells

us
w

hich
projections

use
w

hich
features.W

e
see

thatPFH
(orange)and

FPFH
(purple)are

good
featuressince

theirblocksare
close

to
the

right.Conversely,Sc
(green)isnota

very
usefulfeature

since
itsblocksare

spread
to

the
left.

28

3.4 applications

means that using more features produces better segregating projections,
although the relation is not monotonic. (4) The highest-quality projec-
tions (roughly, the rightmost third of the bar chart) consistently use the
same mix of features (Gc, Na, Pa, PFH, FPFH, Agd, Nd). (5) The patterns
in the matrix plot of di�erent features look di�erent, which means there
are no redundant features in the considered set.

3.4.2 Fast computation of near-optimal projection scatterplot

Computing all possible scatterplots given a feature vector F to �nd the
optimal one is expensive, especially when the set F is large. We next
propose a greedy algorithm to accelerate this task (Alg. 1). The parame-
ter B gives the maximum size of the feature-set to search for. For every
search iteration,

(
B
|F |

)
feature combinations are examined, and the best

one, in terms of the realized #�B value, is retained. Better solutions are
obtained for larger B values, at the expense of longer search times. When
B = |F |, Alg. 1 compares all possible 2 |F | feature combinations. From
our tests, a quite good solution in terms of #�B value can be found by
setting B = 1. For this setting, the time complexity of our algorithm is
$ (|F |2).

Table 2 shows the results of our greedy algorithm, executed 5 times,
to account for the stochastic nature of the t-SNE projection. For every
round, we indicate the time taken by exhaustive search vs our greedy
search, and also the number of t-SNE projections being evaluated. We
see that our algorithm yields practically the same #�B quality as the
exhaustive search, but is roughly 5 times faster.

Algorithm 1 Computing near-optimal feature sets.
Input: Set of features F ; maximal size B , 1 ≤ B ≤ |F |, of feature-set to search

for
Output: Near-optimal feature set C

1: C := ∅
2: C=4F := ∅
3: repeat
4: C := C=4F
5: for each FBD1 ⊆ F, |FBD1 | ≤ B do
6: CC4<? := (C ∪ FBD1) − (C ∩ FBD1)
7: if #�B (CC4<?) > #�B (C=4F) then
8: C=4F := CC4<?
9: end if

10: end for
11: until (C=4F = C)
12: return C

29

visual exploration of 3d shape databases via feature selection

Table 2: Performance of the greedy algorithm.
Round Search method #�B Time (secs) t-SNE runs

1 Exhaustive 0.831 459.74 255
Greedy 0.831 103.49 56

2 Exhaustive 0.830 452.12 255
Greedy 0.830 84.98 48

3 Exhaustive 0.829 453.70 255
Greedy 0.820 70.24 40

4 Exhaustive 0.832 445.47 255
Greedy 0.832 111.71 64

5 Exhaustive 0.824 447.66 255
Greedy 0.824 97.39 55

3.4.3 User-driven projection engineering

Section 3.4.2 showed how we can automatically select features from the
eight existing feature classes (Table 1) to create a projection scatterplot
which best separates shapes from di�erent classes. However, using this
automatic approach has some disadvantages: (1) It is expensive, even
when using the proposed greedy algorithm for feature selection. (2) It
is too coarse-grained: All features of the same type, e.g., the 24 shape-
context (2 features are either selected all, or ignored, when constructing
the projection. (3) It is too simplistic: There are cases when, for instance,
we want to optimize for separation of certain classes more, based on
problem-speci�c constraints. Hence, user input in deciding which fea-
ture combination leads to the optimal projection is crucial.

We next address question Q2, rephrased as: How can we pick ‘good’
feature-bins (from the total set of 1870 bins) that separate classes in the
way we desire in a speci�c context? For this, we propose an interactive
tool based on feature scoring (Figure 3.5) which contains several views
(1–6) that allow the user to explore the e�ect of features on separating
classes of shapes in the database, and also select subsets of features
that lead to a desired, better, class separation. We explain these views
via an overview-and-details-on-demand work�ow, as follows.

Model and feature selector (1): The user starts by selecting the shape
classes and feature types of interest in this view. This allows them to
specify if they are interested in separating speci�c classes (which are
then to be selected) or, alternatively, interested in separating equally
well all classes from each other (in which case, all classes should
be selected). For instance, from our earlier experiments discussed in
Section 3.4.1, we saw that birds are hard to separate from airplanes.
The user can then select only these two classes in view (1) to explore
how to increase their separation. Separately, one can select the feature

30

3.4 applications

1.
 m

od
el

 a
nd

 fe
at

ur
e

se
le

ct
or

2. original scatterplot
6. separation

control

selected features

4. scoring
methods

5. refined scatterplot

3. feature scoring view

Figure 3.5: A user-driven projection engineering tool and its six views (Sec-
tion 3.4.3).

types (of the 8 computed ones) to use for creating the scatterplot.
This is useful to examine, or debug, the e�ect of a speci�c feature
type. Classes are categorically color-coded, and the same colors are
used in the scatterplots (2, 5). Similarly, feature types are categorically
color-coded with the same colors used in the feature scoring view (3).

Original scatterplot (2): This view shows a scatterplot using all
shape classes vs all feature types chosen in the selector (1). It acts as
a starting point for the exploration, which can next be re�ned to e.g.
produce better separation of desired classes or instances (shapes) using
the feature scoring views (3, 4) discussed next. Scatterplots can be
computed either with the t-SNE or UMAP [102] projection methods.
t-SNE spreads similar points better over the available 2D space but
takes longer to compute. UMAP creates denser clusters separated by
more whitespace but is faster to execute. For a trade-o� of these two
techniques, we refer to a recent survey [42].

Feature scoring views (3, 4): Each bar in the barchart (3) shows the
discriminative score of every element 58 of the 1870-dimensional feature
vector, i.e., how much 58 contributes to separating class 28 from a few
or from all other classes 2 9 ≠ 28 selected for exploration in view (1),
depending on the separation control (6, discussed later). Colors identify
to which feature types the elements 58 belong. For instance, the several

31

visual exploration of 3d shape databases via feature selection

purple bars in Figure 3.5(3) correspond to the 330 bins that the FPFH
feature (colored purple in Figure 3.5(1)) has. Scores are computed with
six scoring methods [117]: chi-squared, one-way ANOVA, Randomized
Decision Trees (RDT), Randomized Linear Regression (RLR), iterative
relief (IR), and Recursive Feature Elimination (RFE), which can be
chosen by the user in panel (4). The barchart supports two tasks:
First, it shows how the many bins that each feature is represented by
contributes to the separation power of that feature. Secondly, it allows
�ne-grained examination of the e�ect of each such bin on the class
separation: Users can freely select speci�c bins (from the 1870 available
ones) to create a new projection. The selected bins are displayed with a
blue border and listed, in decreasing score order, before the unselected
ones, in the barchart. The new projection created by the user-selected
bins is shown in view (5).

Re�ned scatterplot (5): This scatterplot shows instances from
the classes selected in view (1), projected according to the speci�c
feature-bins selected in the barchart (3). This is thus a re�ned view
of the original projection (1). By comparing the re�ned scatterplot
with the original one, one can thus see how a �ne-grained selection
of every single of the 1870 feature-vector components can improve
the projection or parts thereof. In other words, obtaining an optimal
projection is achieved in two steps: First, one can select entire features
(in view 1). This corresponds to considering or ignoring entire features
that capture di�erent aspects of shape. Upon obtaining a suitable
projection, one can re�ne it by selecting or deselecting individual bins
for the selected features. This corresponds to considering or ignoring
ranges of the values of the features under exploration.

Separation control (6): As mentioned, feature scoring measures how
well selected features separate a class 28 from one or several classes 2 9 ≠
28 . The view (6) allows controlling this. The view shows all shape classes
28 in the database. If all classes are selected in view (6), scoring will
measure how well a class 28 is separated from each of the other classes
2 9 ≠ 28 . If only one class 28 is selected in (6), then scoring will measure
the separation of 28 from ∪9≠82 9 . This way, one can �exibly measure the
separation of arbitrary groups of classes rather than only the separation
of individual classes themselves.

3.4.4 Use cases

We demonstrate the added value of our user-driven projection engi-
neering by answering several practical questions, as follows.

32

3.4 applications

glasses

ant

teddy cup

pliers

Classes:
cup teddy
table hand
ant chair
human airplane
glasses �sh
fourleg octopus
bird pliers

a) glasses:(Sc:1, PFH:1) b) ant:(Pa:1, FPFH:1, PFH:1)

c) teddy:(Nd:1, Gc:1) d) cup:(Agd:1, FPFH:1) d) pliers:(PFH:1)

Figure 3.6: Finding the minimal number of feature-bins able to separate �ve
shape classes from the rest of the database. Notation name:i indicates
that 8 bins of feature =0<4 are used.

A. What is the minimal number of features, and which are these, that
are su�cient to separate a given class of shapes from all others (Q3, Sec-
tion 3.4.1)?
Figure 3.6 illustrates this use-case for the classes glasses (a), ant (b),
teddy (c), cup (d), and pliers (e). For each class, we select the respective
class in the model selector (Figure 3.5(1)) and use next the feature
scoring view (Figure 3.5(3)) and separation control (Figure 3.5(6)) to
�nd the feature values (bins of the 1870-dimensional feature vector)
that best separate this class from the remaining ones. We assess sepa-
ration both visually, using the re�ned projection (Figure 3.5(5)) and its
corresponding #�B score. We �nd, this way, that these classes can be
separated very well from the rest of the database by a maximally three,
and sometimes just one, feature bin(s) of the 1870 computed ones, as
indicated in Figure 3.6. This is, we believe, a quite powerful (and novel)
result as it indicates that very little computational e�ort is needed for
classifying shapes in the Princeton Shape Database (and, by extension,
in other similar databases). In turn, this can considerably increase the
scalability of applications such as shape retrieval and classi�cation.

B. How can we explain the discriminatory power of the features found in
use-case A?

The computed feature scoring and the clear separation shown in the
re�ned projection scatterplots (Figure 3.6) are, in principle, enough
to let us choose the minimal set of feature-bins needed to separate a
class from all others. However, it is useful to double-check and explain

33

visual exploration of 3d shape databases via feature selection

Adg 6th Nd 1st FPFH 6th

an
t

te
dd

y
cu

p

fe
at

ur
e

va
lu

e

low

high

Figure 3.7: Feature-bins (Agd 6th bin, Nd 1st bin, and FPFH 6th bin) mapped on
three shapes. This shows how these speci�c feature bins can e�ec-
tively separate these shapes.

34

3.4 applications

this discriminatory power, to ensure that the features found this
way indeed re�ect meaningful di�erent properties of the respective
shape classes. For this, we choose shapes from the analyzed classes in
use-case A and color them by the values of the features found in the
same step to be strongly characteristic of speci�c classes. Figure 3.7
shows this for three such shapes and feature-bins, respectively. As
visible, the three feature-bins take indeed di�erent values for the
three shapes. Atop of this insight (which we already knew from the
analysis shown in Figure 3.6), we also see now that the Nd feature
has indeed low values on thin shape parts and large values on thick
ones, respectively. Similarly, we see that the Agd is large for shape
protrusions (e.g. ant and teddy legs) but is small for central shape parts
(e.g. teddy rump). The FPFH feature is harder to interpret visually;
still, we can see how it gets high values on roughly round shape parts
(teddy head and ant’s �rst and last segments) and low values elsewhere.

C. How can we create a good scatterplot which separates well all classes?

Classes:
cup teddy
table hand
ant chair
human airplane
glasses �sh
fourleg octopus
bird pliers

a) hand(10,0,0.584) b) table(5,0,0.745)

c) airplane(3,0,0.75) d) octopus(11,0,0.816) e) �sh(5,0,0.815) f) glasses(5,0,0.825)

g) bird(1,0,0.837) h) airplane,�sh,bird
(5,0,0.870)

i) airplane(10,0,0.880) j) all(4,8,0.873)

Figure 3.8: Incremental creation of high-quality projection scatterplot that sep-
arates all classes well. In each step, a few feature-bins (having high
scores, count indicated in green) are selected to separate one or sev-
eral classes from the rest, and a few feature-bins (having low scores,
count indicated in red) are removed from the selection. #�B at each
step are rendered blue.

35

visual exploration of 3d shape databases via feature selection

Figure 3.8 shows an example work�ow for this task. We start here with
a scatterplot that uses all 1870 features. Next, we search, using the fea-
ture scoring view (Figure 3.5(3)), for the feature-bins that are most dis-
criminatory, i.e., have the highest scores, for each of the classes in our
database, starting with the hand class (we could start from any other
class). As we progress investigating subsequent classes, we add feature-
bins which are discriminatory for these newly visited classes. In the
end, when we have considered all classes, we also remove features, from
the already added ones, which have low scores (that is, bring the least
discrimination value or even work adversely for this task). The entire
process can be done in one to two minutes. The di�erent images in Fig-
ure 3.8 show us how the quality (#�B value) of the scatterplot almost
monotonically improves as we add more feature-bins by considering
new classes. Note that, in this process, we may visit a certain class sev-
eral times (e.g. airplane), as features that score high for it may appear
several times during the exploration as we add other classes. The �nal
result (Figure 3.8j) contains all 14 classes, has a value #�B = 0.873,
and is obtained with a total set of 51 feature-bins. Note that this �nal
#�B value is higher than the one we found by the exhaustive search
(#�B = 0.831, Table 1). Indeed, our manual search is more �ne-grained,
as it allows us to consider individual feature-bins (of 1870 in total),
whereas the automatic search only considered entire features (of the
8 in total). Also, note that obtaining this result by exhaustive search
would be prohibitively expensive, as this would involve searching all
21870 combinations.

3.5 discussion

We discuss next several aspects of our method, as follows:

Dimensionality reduction: Currently, we directly reduce the dimen-
sionality of our 1870-dimensional feature vector to 2D using either
t-SNE or UMAP. However, this may be too hard a task for these
projection methods to perform, while at the same time preserving
neighborhoods. Another approach is to use more dedicated methods,
such as autoencoders, to reduce dimensionality to a lower value, and
then project this low-dimensional dataset to 2D using t-SNE or UMAP.
However, it has to be checked whether this approach can yield �nal
2D scatterplots that better preserve the structure of the shape database.
Concerning the choice of projection techniques, we used t-SNE and
UMAP as these techniques are known for their ability to separate well,
in the visual space, clusters of similar observations, as opposed to other
projection techniques [42].

Scalability: Our method depends on two key parameters in this
respect, namely the number of shapes in the database to be explored,

36

3.6 conclusion

and the number of features which are extracted from each shape. From
a computational viewpoint, feature extraction can be done o�ine, as
shapes are changed and/or new shapes are added to the database. Since,
typically, shape databases do not change with a high frequency, such
an o�ine extraction can be done without impeding the performance
of the end-user. Moreover, features can be extracted in parallel, both
among themselves and over di�erent shapes. We compute the t-SNE
projection using the scikit-learn implementation, which projects several
hundreds of instances in a few seconds; the UMAP implementation,
provided by the authors [102], works in real-time for this dataset size. If
needed, other, faster projections can be used [114]. From a visualization
viewpoint, the scatterplot, barchart, and matrix plot metaphors we
use scale well to hundreds of thousands of points (shapes) and tens of
features.

Evaluation: One important aspect concerning our proposal is evalu-
ating its e�ectiveness for di�erent types of tasks and users. In detail,
we identify end-users, for whom tasks involve getting an overview of
a shape database, �nding similar groups of shapes, �nding which fea-
tures make two shape groups similar (or di�erent), and �nding outlier
shapes; and technical users, for whom tasks involve selecting a small set
of features able to create e�ective visualizations for the �rst user group.
We consider such evaluations to be part of future work.

3.6 conclusion

We have presented an interactive visual analytics system for exploring
3D shape databases for CBSR applications. After reducing shapes to
high-dimensional feature vectors following standard feature extraction,
we visualize the similarity structure of a database by using dimensional-
ity reduction. To this end, we o�er several mechanisms for creating pro-
jections in which di�erent shape classes are separated well from each
other. First, we use a scagnostics approach to generate near-optimal
projections based on maximizing the quality of resulting projections,
using a greedy heuristic to optimize the search for suitable feature-sets.
Next, we propose a visual analytics approach to enable users to select
a small feature subset for separating speci�c classes, generate high-
separation projections for all classes, and gauge the separation power
(thus, added-value) of all available features. We show that this visual an-
alytics approach allows generating projections with better separation
quality than automatic approaches, and also helps �nding both discrim-
inating features (to be used in a CBSR system) and confusing features
(of little value for such systems). Our approach can be applied to any
3D shape database and feature-set, allowing CBSR engineers to stream-
line the process of designing and selecting e�ective features for shape

37

visual exploration of 3d shape databases via feature selection

classi�cation and retrieval. We demonstrate our work on a real-world
3D shape database.

Several extensions of this work are possible, as follows. First and fore-
most, performing a user study to gauge how well our approach can
support exploration tasks of typical end-users, is an important addition.
Secondly, since our approach is generic, it could be used to optimize
feature selection in other applications beyond CBSR, e.g., in image clas-
si�cation. More speci�cally, in the next chapter, we show how we can
increase the computational scalability, ease of use with little or no user
e�ort, and robustness to small shape changes of the overviews intro-
duced here for database exploration.

38

4S C A L A B L E V I S UA L E X P L O R AT I O N O F 3 D S H A P E
D ATA B A S E S

In Chapter 3, we have presented an interactive visual analytics system
for exploring 3D shape databases, by using feature selection based on
discriminative score of features and dimensionality reduction (DR) tech-
niques. As stated there, we provide several methods, including automat-
ical and user-driven methods, to create visual overviews for 3D shape
databases exploration.

However although visually e�ective, the approach in Chapter 3 has
a few limitations: (1) The hand-engineered features it uses may not
always best capture shape similarity, and also are delicate to com-
pute for poor-quality (non-watertight, self-intersecting, and/or variable-
resolution meshes). (2) The feature extraction and dimensionality re-
duction (DR) steps are computationally quite slow, and cannot scale to
real-world databases containing tens of thousands of shapes or more; (3)
The underlying DR technique used, t-SNE, is non-deterministic, mean-
ing that overviews created from the same database (let alone databases
where a few shapes change) will be di�erent, which makes it di�cult
for users to maintain their mental map. In this chapter, to overcome
these limitations, we extract features from 3D shapes using deep learn-
ing. Separately, we use deep learning for the deterministic computation
of DR projections. Together, this dual usage of deep learning overcomes
the two aforementioned limitations of the method in Chapter 3. As an
extra added value point, the approach presented in this chapter for cre-
ating 3D shape database overviews is also simpler to use, requiring little
to no user e�ort.

This chapter is structured as follows. Section 4.1 describes related
work in deep learning techniques. Section 4.2 presents the deep-
learning methods we used for the feature extraction and DR projection.
Section 4.3 discusses our proposal. Section 4.4 concludes the chapter.

4.1 related work

Machine learning techniques have been used for 3D shape analysis
tasks in recent years. Various deep networks have been proposed. View-
based methods [24, 146, 179, 180] project 3D shape in to 2D images from
di�erent angles and use standard 2D conventional neural networks
(CNN) to compute features. The learned 2D features then are used to
compute a global feature by pooling layers for classi�cation. 3D CNN
methods [101, 167] treat 3D shapes as structured 3D grids and use 3D
CNN kernels for 3D shape classi�cation and segmentation. In recent

39

scalable visual exploration of 3d shape databases

years, PointNet had been proposed to classify 3D shapes which rep-
resented as point clouds. PointNet [116] uses a multi-layer perceptron
(MLP) to learn the features of each point, and uses a max pooling layer
to compute the global feature.

These methods achieve high accuracy on 3D shape classi�cation
tasks. They all compute latent global features for 3D shapes, which are
used as the input of fully connected layers in their network structures.
Although these latent global features are not easy to understand for
us human beings, they are good representatives for 3D shapes in our
work to substitute traditional shape features. They can be computed
fast when we have the trained network; they are stable since many
databases do not change very quickly; and they have a powerful abil-
ity for classi�cation task, which will be good for our projection destina-
tion. Hence we apply PointNet as the representative method to extract
3D shape features in this chapter.

Another machine learning method we use in this chapter is
NNproj [43], which uses neural networks to learn the traditional multi-
dimensional projection methods (Section 4.2). By learning the projected
position of the high dimensional data generated by providing methods,
NNproj can put objects at desired positions as long as the data distri-
bution is similar to training data. Though the results of NNproj are not
as good as its learned methods, such as t-SNE, they are much faster.
NNproj is the only one we know in this class of methods. We use it in
this chapter to project the latent feature learned by PointNet.

4.2 feature learning method

Our proposal in Chapter 3 so far showed how we can construct good-
quality projections for exploring 3D shape databases. However, our so-
lution has several limitations:

• input quality: Computing the features in Section 3.3.3 involves
many constraints. For instance, computing �63 requires the
meshes to have a single connected component; computing �2
requires meshes to be manifold and water-tight. Overall, poor-
quality meshes (containing self-intersections, holes, and/or non-
uniform sampling) cause serious problems for feature computa-
tion;

• user e�ort: The feature selection process (Section 3.4.1), al-
though able to lead to good-quality projections, is time consum-
ing for the user and involves a non-negligible amount of trial and
error;

• replicability: The used projections (t-SNE and UMAP) are
non-parametric. That is, projecting the same (let alone slightly
changed) shape database will lead to di�erent scatterplots,

40

4.2 feature learning method

thereby not helping users to maintain their mental map of the
database;

• scalability: For large databases (more than a few hundred
shapes), the feature extraction and projection takes considerable
amounts of time;

• ease of use: Implementing and setting up the extraction of hand-
engineered features (Section 3.3.3) is a highly involved process.

We address all the above issues jointly by using a deep learning ap-
proach for both feature extraction (also next feature learning, following
deep learning terminology) and projection. Concretely, we adopt Point-
Net [116] for feature extraction and NNproj [43] for projection. We next
outline this approach and its components.

PointNet is a deep-learning model used to classify 3D shapes repre-
sented as point clouds with high accuracy [116] (see Figure 4.1, blue
part). For our visualization goals, and as a replacement of the hand-
engineered features described in Section 3.3.3, we use the latent fea-
tures extracted by PointNet (see Figure 4.1, yellow part), after training
it for its original classi�cation task using the labels present in the shape
database. NNproj is also using deep learning to create high-quality DR
projections of arbitrary high-dimensional data [43]. It is trained by pro-
viding it with several 2D scatterplots of corresponding feature vectors,
created by any desired DR technique, e.g., t-SNE. We use NNproj to re-
place t-SNE and UMAP in our visualization construction.

Our framework proposes three pipelines (P1, P2, P3) to create shape-
database overviews, as follows. The legend in Figure 4.1 shows which
models (networks) are part of the training, respectively, inference,
of each pipeline. P1 includes PointNet feature-extraction followed by
standard t-SNE projection thereof. P1 can already create overviews,
but these do not support incremental updating, since t-SNE is non-
parametric. Hence, we use P1 mainly for training P2 and P3, as outlined
next. P2 runs P1, then trains NNproj to imitate the thus-constructed
t-SNE projections, and then uses the trained NNproj instead of t-SNE
to create the �nal projection. P3 drops the classi�cation part of Point-
Net and trains the joint PointNet-NNProj network. To train P3, we use
projections for the training-set shapes created with P1 or P2. In other
words: The three pipelines are not di�erent solutions for the same end
goal. Rather, P1 is a lower-level pipeline, needed to train PointNet for
feature extraction; while P2 and P3 are, functionally identical pipelines
that users can choose to use for the �nal projection construction. The
di�erence between P2 and P3 is simply whether feature extraction and
projection are learned separately (P2) or jointly (P3).

For training all models described above, we use the ShapeNet [130]
database, which has 14921 shapes from 16 classes. We divide it into a
training set (12137 shapes) and a test set (2784 shapes). As this database

41

scalable visual exploration of 3d shape databases

P
1

P
2

tra
in

in
g

in
fe

re
n

c
e

P
3

P
o

in
tN

e
t fe

a
tu

re
 e

x
tra

ctio
n

P
o

in
tN

e
t cla

ssifi
ca

tio
n

C
o

m
b

in
e

d
 n

e
tw

o
rk

N
N

p
ro

j n
e

tw
o

rk

tS
N
E

p
ro
je
c
tio
n

O
u

tp
u

t

p
ro

je
c

tio
n

u
s

e
d

 to

tra
in

 P
2

u
s

e
d

 b
y

 P
1

In
p

u
t

s
h

a
p

e

d
a

ta
b

a
s

e

used
by P3

L
e

g
e

n
d

Figure
4.1:

A
rchitecture

ofproposed
netw

orksP1,P2,P3.

42

4.2 feature learning method

is quite large, and we have several models to train, we conducted ex-
periments to �nd how large the training sets of all our deep learning
models need to be for su�cient projection accuracy. Speci�cally, these
are:

• #% : the number of shapes for training PointNet,

• ## : the number of feature vectors to train NNProj, and

• #�: the number of shapes for training P3.

We tested 13 values for each of #% , ## , and #� , ranging from 320 to
12137. All networks were trained with 250 epochs and early stopping.

4.2.1 Experiments and results

We now present the results of our three pipelines (P1, P2, P3) intro-
duced above and how these depend on the sizes of their respective
training sets #%, ## , and #� . We evaluate results both qualitatively
(by examining the output projections) and quantitatively, by the #�
metric (Section 3.3). Since our scatterplots are now larger than those
discussed in Section 3.4, we use now a correspondingly larger value
: = 20 to compute #� . For simplicity of exposition, we next compute
and discuss only the per-projection neighborhood hit (Eqn. 3.8),
denoted next as #� . We structure our evaluation along several points,
as follows.

Results: Figure 4.2 shows the overview projection created by P2,
with shape icons added to a subset of the database shapes, to limit
occlusion. The full projection is shown in the top-left inset as a
scatterplot colored by class labels. We see that the projection matches
our overall expectations: Shapes from di�erent classes are separated
well, and similar shapes are close to each other. As with any feature
extractor, including the original PointNet, some anomalies exist
however. For example, we see a green chair model (A) surrounded
by laptop shapes; and a purple lamp model (B) surrounded by table
models. This clearly happens since these two shapes are geometrically
very similar to the respective classes. Separately, the overview helps
us seeing structure within classes. For instance, the table class appears
to be visually split into four-legged (FL), round (RO), and bureaus or
desks (BU). Note that this information is not available in the original la-
bels of the shape database; it is only the projection that helped us �nd it.

How much data (#%) is needed to train PointNet? Table 3 shows
the test accuracy �� of PointNet for di�erent training-set sizes #% .
As #% increases, �� also increases until reaching a local maximum
(�� = 97.1%) for #% = 6000 shapes. The global maximum �� = 97.6%

43

scalable visual exploration of 3d shape databases

Shape classes

Full projection

A

laptops

B

tables
FL

BU

RO

BU

FL

Table subclasses

bureaus (desks)

four legged

RO round

Figure 4.2: Overview projection created by pipeline P2.

Table 3: PointNet training accuracy (��) and #� values for pipeline P1 when
training (%1)A08=) and testing (%1)4BC). The two color legends at the
bottom show accuracy (green shades) and #� values (yellow-red) re-
spectively in this table and the following ones.

low AC high AC
low NH high NH

is achieved, as expected, when using all #% = 12137 shapes in the
training set. We also see that for #% = 2000 we already get a very
good accuracy �� = 95.4%, su�cient for our visualization goals. With
the trained PointNet, we next extract features and project them using
t-SNE (pipeline P1). Table 3, row %1)A08= shows the #� projection
quality metric for P1 on its training sets of various sizes #% . Next, row
%1)4BC shows the same #� metric, this time for the test set. While
#� is slightly higher for the training set (as expected), the #� values
for the test set are also quite high, indicating that P1 produces good
quality projections.

How much data (#%, ##) is needed to train P2? Training P2 re-
quires training PointNet with #% shapes and next training NNproj
with ## feature vectors (Figure 4.1). So, P2’s quality depends on both
#% and ## . Table 4 (a–c) shows this dependency. In detail: Table 4(a)
shows the#� value of t-SNE when projecting di�erent sizes## of fea-
ture vector sets extracted by PointNet. We notice that there are some
#� �uctuations on the second row where ## = 320. However, when

44

4.2 feature learning method

#% and ## are both greater than 1000, the t-SNE projections all yield
good #� values (above 94%). The highest #� value (99.8%) appears for
#% = ## = 6000. We also see that the colors in the upper-right trian-
gle half of Table 4(a) are darker than in the lower-left triangle half: #�
is slightly higher when #% ≥ ## . Indeed, when #% ≥ ## , the input
data of t-SNE is a subset of PointNet’s training data. In contrast, when
#% < ## , t-SNE runs with some shapes that are not in PointNet’s
training set.

After creating the ground-truth scatterplots by t-SNE, we use them
to train NNProj. After this, P2 is ready to be used. Table 4(b) shows the
#� of P2 trained with di�erent ## and #% values, when projecting
NNproj’s training-data. The values in Table 4(b) are very close to their
counterparts in Table 4(a), being roughly 0.1% to 2% lower. This means

Table 4: #� projection quality for (a) ground-truth of pipeline P2; (b) P2 train-
ing; (c) P2 testing; and (d) P3, for di�erent values of the respective
training-set sizes #% , ## , and #� . Color mapping follows the one
in Table 3

(a)

P
2

gr
ou

nd
-t

ru
th

(b)

P
2

tr
ai

ni
ng

(c)

P
2

te
st

in
g

(d)

P
3

NH

45

scalable visual exploration of 3d shape databases

that NNproj was trained successfully, so P2 can project well its training
data.

Table 4(c) shows #� values when using P2 to project test data
(2784 shapes). Although the #� values are slightly lower than those in
Tabs. 4(a) and (b), all of them, except the �rst one (#% = 320, ## = 320)
outperform those delivered by our earlier feature engineering. Also,
we see that ## = 2000 and #% = 3000 are already enough to deliver
su�ciently high #� values, thus, high-quality projections. The overall
highest #� is obtained for #% = 6000, same as in Tabs. 4(a, b). An
interesting phenomenon happens when #% is small (320 or 1000). In
this case, we train PointNet with few shapes. We can see that this does
not yield high #� values. However, when next using more shapes to
train NNproj (## increases), #� also increases. That is, we can use a
small labeled dataset to train PointNet, and then use a larger unlabeled
dataset to improve P2’s performance.

How much data (#�) is enough to train P3? Table 4(d) shows
the #� results of P3, trained using P1 for di�erent training set sizes
#� , and compares them with those of P1 and P2. To ease comparison,
the values in rows %2)A08= and %2)4BC in Table 4(d) come from the
diagonals of Tabs. 4(b, c) for #� = ## = #% . Rows %1)A08= and
%1)4BC show the #� values of P1 projecting its training, respectively
test, data. Rows %3)A08= and %3)4BC show the #� values for P3
on training, respectively test, data. From Table 4(d), we see that P3
performs similarly to P2 on both training and test data, with good #�
values when having at least #� = 3000 training shapes.

How does PointNet’s accuracy in�uence P1 and P2? As explained,
PointNet was originally designed for classi�cation. However, we use
here PointNet’s feature vectors for projection. So, it is interesting to see
if the classi�cation-related accuracy (��) and projection-related quality
(#�) are correlated. Separately, we ask ourselves if there is a relation-
ship between the #� of ground truth t-SNE and the #� of projections
created with P2 and P3. To explore this, we draw scatterplots of these
values and compute their Pearson Correlation Coe�cients (PCC). Fig-
ure 4.3(a) shows the �� vs P1 #� and �� vs P2 #� scatterplots. The
plot contains 13 point-groups, one for P1 (blue), and the other 12 for an
setting of P2 each (green color-coded on ##). These point-groups
are visually indicated by di�erent colors and also connected by lines
for easing reading. The dotted line shows ideal correlation, for refer-
ence. We see that the PCCs of all these lines — each representing an
instance of P1 or P2 — are close to 1, so P1 and P2’s #� metric directly
correlates with PointNet’s accuracy.

Next, Figure 4.3(b) shows scatterplots of P2 and P3’s #� vs t-SNE’s
#� values. The plot contains 13 point-groups, one for P3 (red), and the
other 12 for a ## setting of P2 each (green color-coded on ##). The

46

4.2 feature learning method

N
H

of
P1

,P
2

N
H

of
P2

,P
3

AC

t-SNE NH

a) PointNet accuracy vs NH of P1, P2 pipelines

b) t-SNE NH quality vs NH of P2, P3 pipelines

Figure 4.3: a) Correlation of PointNet’s accuracy �� with the #� quality of
pipelines P1 and P2. b) Correlation of t-SNE’s #� quality with the
#� quality of pipelines P2 and P3.

PCCs of these lines are also close to 1, so P1 and P2’s #� quality is di-
rectly correlated with the ground-truth (t-SNE)’s quality. A similar cor-
relation — albeit for a di�erent deep learning model for performing pro-
jections — was mentioned in [43], but not formally assessed by means
of PCC. The data for P3 (red line) may seem at �rst sight far worse than
that for P2 (green lines). However, this is due to a single point for the
lowest t-SNE #� value. For all other values, the red line is practically in
the same area as the green lines, telling that P2 and P3 are very similar
from the perspective of t-SNE vs deep-learning-network produced #�
values.
How can we use classi�cation accuracy to interpret projections?
In P1 and P2, we trained PointNet for classi�cation. Besides a feature
vector, this delivers a con�dence value for the classi�cation. We can use
this value for our visual exploration goal, as follows. Figure 4.4 (top)
shows the training-set projected by P2, with point luminances encoding

47

scalable visual exploration of 3d shape databases

NP=320 NP=3000 NP=6000

T
ra

in
in

g
Te

st
in

g
(in

fe
re

nc
e)

0.883 1.0 0.999 1.0 0.999 1.0

0.766 1.0 0.999 1.0 0.999 1.0

Te
st

in
g(

in
fe

re
nc

e)
Tr

ai
ni

ng

NP=320 NP=3000 NP=6000

Figure 4.4: Classi�cation con�dence values (dark=low, bright=high con�-
dence), during training (top) and testing (bottom) for the P2 pipeline
trained with three #% values.

their classi�cation con�dences (dark=low, bright=high con�dence). We
immediately see that con�dence is high within same-class clusters and
low on the cluster borders. Also, as we increase the number of training
samples#% for the PointNet classi�er, we see how the con�dence nears
1.0 for most samples; although, the lowest-con�dence ones still remain
on cluster borders. Figure 4.4 (bottom) shows the same visualization for
a test-set projected by the trained P2. For a small test set #% = 300,
we see that con�dence is signi�cantly lower than on the training set.
For #% ≥ 3000, test set con�dence is basically the same (nearly one) as
training set con�dence. Importantly, we see that con�dence is relatively
lowest on the cluster borders also for the test data. We can use these vi-
sualizations (on the test data) to assess how con�dent we are that the
shape database projection indeed faithfully re�ects the similarities of
the underlying shapes. As expected, shapes close to cluster borders are
harder to classify, thus, have less discriminant feature vectors and are in
turn harder to project well. Upon seeing such images, users can decide
to e.g. further explore additional information concerning shapes hav-
ing low classi�cation con�dence. This type of insight is crucial when
interpreting projections as it is well known that such methods cannot
always place all their input data correctly [42, 99, 106].

48

4.2 feature learning method

4.2.2 Computational performance

We discuss next the computational performance of our three pipelines
P1–P3. For this, we split e�ort into setup e�ort, i.e., the time needed
to perform all operations required to have the pipeline ready for
inference; and inference e�ort, i.e., the time a pipeline needs to create
the projection of a shape database.

Setup time: Table 5 (top) shows the setup time for all three pipelines.
Columns # indicate the training set size for the three pipelines, i.e.,
#% for PointNet, ## for NNproj, and #� for P3, respectively. Row %1
shows the setup time for P1, identical to PointNet’s training time. Row
%2 shows the setup time for P2 when ## = #% (Table 5 (bottom) gives
more detailed information, see next). The setup time for P2 includes
training PointNet, feature extraction, ground truth generation (t-SNE),
and training NNproj. Comparing the �rst two rows in Table 5 (top),
we see that training PointNet is dominating the setup of P2. Row %3
shows the setup (training) time of P3 when we already have a ground
truth projection. We see that training P3 is slightly faster than training
P1 since P3’s network is slightly simpler. Finally, row %3′ shows the
setup time for P3 when we use P1 to create the ground truth needed
for training it. Table 5 (bottom) shows the setup time of P2 for all
combinations of #% and ## in our experiments. Values in this table
increase rapidly with #% and slightly with ## . That is, training
NNProj is negligible compared to training PointNet.

Inference time: Figure 4.5 shows the projection (inference) time for
three pipelines as a function of how many shapes they need to project.
We see that all three pipelines have linear time complexity. P1 and P2 are
really close and they are about 5 times faster than P1. The high relative
cost of P1, and its deviations from a perfect line, are explained by the
fact that P1 uses t-SNE, whose cost (a) is high and (b) varies depending
on its stochastic initialization, this explaining the wiggles in the blue

Table 5: Setup time, pipelines P1–P3 (top). Setup time of P2 as function of #%
and ## (bottom).

S
et

up
 ti

m
e

P
1-

P
3

S
et

up
 ti

m
e

de
ta

ils
 fo

r
P

2

time
(secs)

49

scalable visual exploration of 3d shape databases

pr
oj

ec
tio

n
tim

e(
s)

number of shapes

Figure 4.5: Projection time comparison for pipelines P1, P2, P3.

line in Figure 4.5 (for a related analysis, see [42]). In contrast, P2 and P3
show a perfect linear relation with the shape database size, as these are
purely deep-learning model executions.

These three pipelines are all much faster than our feature selection
method presented in Chapter 3 which takes about 127 hours to extract
the 8 features we listed in Table 1 for 320 shapes.

4.3 discussion

We discuss next several aspects of our proposal, as follows.

Feature selection vs feature learning: We have presented, in this
and the previous chapter, two approaches for creating shape-database
projections: selecting features from a pre-computed set based on fea-
ture engineering (Section 3.3) vs using an automatically learned feature
vector using deep learning (Section 4.2). We call these next the feature
selection (FS) and the feature learning (FL) approaches. Let us discuss
and contrast these two approaches.

Both approaches share the same aims, listed as Q1–Q3 in Section 3.4.1.
However, from this viewpoint, each approach has its own advantages
and limitations. As mentioned at the beginning of Section 4.2, FS has
some clear limitations with respect to input shapes, user e�ort, replica-
bility, scalability, and ease of use; thus, it does not fully address Q1. The
FL approach scores very highly on all these points: It accepts any point
cloud shape as input, so has no constraints on mesh quality (input shape
independence); it works fully automatically, not requiring any speci�c

50

4.3 discussion

user input (low user e�ort); it creates projections deterministically, thus
stably upon small-to-medium input changes (replicability); it scales lin-
early with the input size, being 4 orders of magnitude faster than FS;
and it is very easy to deploy, being based on standard deep learning
libraries [110]. Also, FL addresses Q2 (Section 3.4.1), i.e., which is the
minimal feature-set needed for a good projection, in a di�erent way
than FS: Its deep learning approach does not care about feature selec-
tion, but rather synthesizes features which are best for good projection
creation. The results in Section 4.2.1 show quite clearly that FL can cre-
ate high-quality projections this way, without having to worry about
feature selection. In contrast, FS must consider feature selection, since
it is by construction restricted to a �xed number of prede�ned features.

However, FS has two interrelated advantages over FL: First, it allows
users to see and select how features a�ect the projection (Q2, Sec-
tion 3.4.1). The bar chart view (Figure 3.4) allows users to �nd and select
features to optimize the projection quality. Secondly, the FL feature
scoring view (Figure 3.5) interacts with the projection view to enable
users to select speci�c features that explain the similarity of shapes in a
group and/or the separation of several groups. Using these views with
the FL features is not straightforward, since NNproj is trained on an
entire feature set and would need re-training if this set changes. Also,
the FL features are abstract, i.e., they do not have a concrete meaning
for users, thereby making reasoning about them extremely challenging.

Selecting the best feature learning approach: We have studied and
presented two approaches for jointly doing feature learning and pro-
jection, called P2 and P3. Which one is best? Our results (Section 4.2.1)
show that P2 and P3 produce very similar results, quality-wise, given
the same (amounts of) training data. P3 exhibits slightly higher quality
than P2, which makes sense, as P3 trains jointly for both feature
extraction and projection. Separately, the results in Section 4.2.1 show
very little variation in the performance of all pipelines as a function of
their training set sizes. In practice, as we discussed there, setting #% ,
, and #� around 3000 shapes gives good results for all pipelines,
with only minimal improvements obtained when tweaking these
training-set size values.

Learning projections: Currently, we train NNproj with all the
1024 PointNet features to create projections. We could reduce this
dimensionality to a lower value using an intermediate autoencoder
stage, or alternatively using a feature-selection optimization technique
as presented in Section 3.4.1. This would possibly make NNproj’s task
of learning projections easier in terms of training set size required
to obtain a certain class separation (#�) and/or epochs needed for
convergence. Concerning the choice of projection techniques, we used
t-SNE to train NNproj. However, learning other projection techniques

51

scalable visual exploration of 3d shape databases

such as UMAP may lead to ultimately better, easier to interpret,
projections.

Scalability: Both the FS and FL approaches depend linearly on the
number of shapes in the database to be explored and the number of
features which are extracted from each shape. Yet, as explained already,
FS is 4 orders of magnitudes slower. For handling real-world databases
of tens of thousands of shapes, like ShapeNet, the FL approach is
clearly more suitable. Note that both FS and FL approaches can be
applied o�ine, i.e., when shapes are changed and/or new shapes are
added to the database.

4.4 conclusion

We started this chapter by stating our aim of improving our approaches
presented in Chapter 3, that is, to construct a visual overview of large
3D shape databases with a stable, robust, easy to use, and high-quality
pipeline. Speed wise, we believe to have largely reached our goals. The
deep learning pipelines presented in this chapter are computationally
very scalable during the inference process. Their training stage is also
faster than the feature engineering methods discussed in Chapter 3.
Putting it together, that is, adding training and inference time, the
pipeline presented in this chapter is faster than the functionally com-
parable one presented in Chapter 3. Quality-wise, the computed neigh-
borhood hit (NH) values indicate that our deep learning pipelines cre-
ate good quality projections, the di�erences with respect to the simi-
lar quality metrics computed on ground-truth t-SNE projections being
very small and, we argue, not a�ecting the visual quality of our deep-
learned projections or their practical usage in applications. Separately,
following the earlier analyses of NNproj [43], our own experience dur-
ing the evaluations presented here, and the deterministic way in which
neural networks of the NNproj architecture operate, our visualizations
should be stable to additions, modi�cations, and removal of shapes in
a database. This directly corresponds to the out of sample capability of
NNproj. Last but not least, our deep learning approach is easy to use
as it requires no user intervention during inference and only a minimal
set-up of the hyperparameters during the training stage.

While the above results strongly support our claims on added value,
our current approach can be further improved, as it still has several lim-
itations. Given that the proposed deep learning pipelines are black-box
methods, when their results are not good, it is not evident what the
user should do to correct or improve that situation. For example, when
a shape gets projected in an ‘odd’ position, e.g., far away from similar
shapes, it is hard to know how to change the training process so as
to ‘move’ the respective shape closer to similar ones in the projection.

52

4.4 conclusion

Conversely, when the resulting projections appear satisfactory, which
is desirable, it is not easy to �nd the hard evidence to prove why this
process worked satisfactorily. This, in turn, means that it is hard to give
strong guarantees about the generalization power of the trained neural
networks, or, how they would project new 3D shapes which are, poten-
tially, quite di�erent from the ones seen during training. These are well-
known problems that our approach shares with other machine learning
models. Apart from these issues, an unexplored, but potentially inter-
esting direction, is to extend our approach to other media types besides
3D shapes. Indeed, nothing speci�c exists in our pipelines presented
in this chapter that ties them to use only 3D shapes. Having a replace-
ment network for PointNet which classi�es other media types than 3D
shapes would allow us to directly generalize our exploration views to
such other content types, like image, video, or audio databases.

53

5S K E L E T O N -A N D -T R A C K B A L L R O TAT I O N F O R 3 D
S C E N E S

In Chapters 3 and 4 we described several methods for generating presen-
tations of large 3D shape databases. Here, we move our focus onto our
second goal: examination of individual shapes. This chapter introduces
a method for specifying rotations of 3D shapes, which plays an impor-
tant role in the general task of examining 3D shapes. Finding a good
way to examine a 3D model can be di�cult. An e�ective and convenient
mechanism to do this will save a lot of e�ort when manipulating 3D
scenes and trying to �nd the right angles for visual examination. To this
end, a great many methods have been proposed [6, 19, 23, 51, 67, 150],
with many of these methods implemented in various 3D modeling sys-
tems. However, all these methods have various limitations in the sense
of the types of shapes they can handle, with or without preprocessing;
ease of use and learning; and e�ectiveness in the type of rotations they
can generate.

We aim to enlarge the palette of techniques available to users for
specifying 3D rotations, and to do this, we exploit information readily
available in the shape itself; or more precisely, in the shape’s projection
on the screen. We present a new technique for specifying rotations of
3D shapes around axes inferred from the local shape structure. We com-
pare our method with classical trackball rotation, both in isolation and
in combination, in a controlled user study. The results show that, when
combined with trackball, skeleton-based rotation reduces task comple-
tion times and increases user satisfaction, while not introducing addi-
tional costs, being thus an interesting addition to the palette of 3D ma-
nipulation tools.

5.1 introduction

Interactive exploration and navigation of 3D scenes is essential in many
applications such as CAD/CAM modeling, computer games, and data vi-
sualization [67]. 3D rotations are an important interaction tool, as they
allow examining scenes from various viewpoints. Two main 3D rota-
tion types exist: rotation around a center and rotation around an axis.
Rotation around a center can be easily speci�ed via classical mouse-
and-keyboard [187] or touch interfaces [182] by well-known metaphors
such as the virtual trackball [56]. Axis rotation is easy to specify if the
axis matches one of the world-coordinate axes. Rotations around arbi-
trary axes are much harder to specify, as this requires a total of 5 degrees
of freedom (4 for the axis and one for the rotation angle around the axis).

55

skeleton-and-trackball rotation for 3d scenes

Moreover, as explained in Section 2.3, several tools require more param-
eters to be speci�ed to derive such rotations, to make the speci�cation
process more natural.

For certain tasks, users do not need to rotate around any 3D axis.
Consider examining a (complex) 3D shape such as a statue: We can ar-
gue that a natural way to display this shape is with the statue’s head
upwards; and a good way to explore the shape from all viewpoints is to
rotate it around its vertical symmetry axis while keeping its upwards
orientation �xed.

Several methods support this exploration scenario by aligning the
shape’s main symmetry axis with one of the world coordinate axes and
then using a simple-to-specify rotation around this world axis [36]. This
falls short when (a) the studied shape does not admit a global symmetry
axis, although its parts may have local symmetry axes; (b) computing
such (local or global) symmetry axes is not simple; or (c) we do not want
to �rst align the shape with a world axis.

To address the above, we propose a novel interaction mechanism
based on local symmetry axes: The user points at a region of inter-
est (part) of the viewed 3D shape, from which a local symmetry axis
is computed. Next, one can rotate the shape around this axis with an
interactively speci�ed angle. This method allows an easy selection of
parts and automatic computation of their approximate 3D symmetry
axes, both done using the shape silhouette’s 2D skeleton. The method
handles any 3D scene, e.g., polygon mesh or polygon soup, point-based
or splat-based rendering, or a combination thereof, without preprocess-
ing; and works at interactive rates for scenes of hundreds of thousands
of primitives.

The skeleton-based rotation is not to be seen as a replacement, but
a complement, of classical trackball rotation. Yet, what this precisely
means, i.e., how the two rotation mechanisms perform when used in
practice, either separately or jointly, is an open question; also, a formal
evaluation of the e�ectiveness of skeleton-based rotation is an impor-
tant open research question.

Hence, we present the design and execution of a controlled user study
aimed at gauging the added value of skeleton-based rotation when used
against, but also combined with, trackball rotation. The results of our
study show that, when used together with trackball rotation, skeleton-
based rotation brings in added value, therefore being a good comple-
ment, and not a replacement, of trackball rotation. The structure of this
chapter is as follows. Section 5.2 presents related work on skeleton com-
putation. Section 5.3 details the skeleton-based rotation method. Sec-
tion 5.4 presents a formative evaluation aimed at �nding out how the
skeleton-based rotation is received by users. Section 5.5 presents an in-
depth quantitative and qualitative user study that studies the hypothe-
ses outlined by the formative study. Section 5.6 discusses the skeleton-

56

5.2 related work

based rotation and our �ndings regarding its best ways of use. Sec-
tion 5.7 concludes the chapter.

5.2 related work

We have shown the related work in interactive rotation speci�cation
and skeleton computation in Chapter 2. Here we repeat some de�nitions
of medial descriptors, skeletons, for helping some readers who jump
into this chapter directly and also refresh the memory of other readers.

Skeletons have been used for decades to capture the symmetry struc-
ture of shapes [14, 139]. Recalling the notations introduced in Sec-
tion 2.4.1 for ease of reading, for shapes Ω ⊂ R= , = ∈ {2, 3} with bound-
ary mΩ, skeletons are de�ned as

(Ω = {x ∈ Ω |∃f1 ∈ mΩ, f2 ∈ mΩ : f1 ≠ f2∧||x−f1 | | = | |x−f2 | | = �)Ω (x},
(5.1)

where f8 are called the feature points [103] of skeletal point x and �)Ω
is the distance transform [31, 124] of skeletal point x, de�ned as

�)Ω (x ∈ Ω) = min
y∈mΩ
‖x − y‖ . (5.2)

These feature points de�ne the so-called feature transform [57, 149]

�)Ω (x ∈ Ω) = arg min
y∈mΩ

‖x − y‖, (5.3)

which gives, for each point x in a shape Ω, its set of feature points on mΩ,
or contact points with mΩ of the maximally inscribed disk in Ω centered
at x.

To compute skeletons of 2D shapes, state-of-the-art methods regu-
larize the skeleton by removing its spurious branches caused by small
noise perturbations of the boundary mΩ. Regularization typically de-
�nes a so-called importance d (x) ∈ R+ |x ∈ (Ω which is low on noise
branches and high elsewhere on (Ω . Several authors [31, 44, 45, 108, 158]
set d to the length of the shortest path along mΩ between the two fea-
ture points f1 and f2 of x. Upper thresholding d by a su�ciently high
value removes noise branches.

In 3D, curve skeletons are curve-sets in R3 that locally capture the
tubular symmetry of shapes [30]. Curve skeletons still cannot be com-
puted in real time, and require a well-cured de�nition of Ω as a water-
tight, non-self-intersecting, �ne mesh [143] or a high-resolution voxel
volume [45, 118].

Our proposal also uses an image-space skeleton computation to
estimate 3D depth, and a single view, thereby achieving the speed
required for interactivity.

57

skeleton-and-trackball rotation for 3d scenes

5.3 proposed method

We construct a 3D rotation in �ve steps (Figure 5.1). We start by loading
the scene of interest — any arbitrary collection of 3D primitives, with
no constraints on topology or sampling resolution — into the viewer (a).
Next, the user can employ any mechanisms o�ered by the viewer, e.g.
trackball rotation, zoom, or pan, to choose a viewpoint of interest, from
which the scene shows a detail around which one would like to further
rotate to explore the scene. In our example, such a viewpoint (b) shows
the horse’s rump, around which — for the sake of illustration — we want
to rotate to examine the horse from di�erent angles.

5.3.1 Rotation axis computation

From the above-mentioned initial viewpoint, we compute the rotation
axis by performing three image-space operations, denoted as A, B, and
C next.

A. Silhouette extraction: This is the �rst operation in Figure 5.1, step
(d). We render the shape with Z bu�ering on and using the GL_LESS
OpenGL depth-test. Let Ω=40A be the resulting Z bu�er. We next �nd
the silhouette Ω of the shape as all pixels that have a value in Ω=40A dif-
ferent from the default (the latter being 1 for standard OpenGL settings).

B. Skeleton computation: We next compute the silhouette skeleton
(Ω (Eqn. 5.1) by the method in [158] (Figure 5.1, step (d)). To eliminate
spurious skeletal branches caused by small-scale noise along mΩ, we
regularize (Ω by the salience-based metric in [153]. This regularization
works as follows — see also the sketch in Figure 5.2c. For every point
x ∈ (Ω of the full skeleton delivered by Eqn. 5.1, we �rst compute the
importance d [158], i.e., the shortest path along mΩ between the two
feature points of x (see also Section 5.2). This path is marked red in
Figure 5.2c. As shown in [45, 149, 158], and outlined in Section 5.2, d
monotonically increases along skeletal branches from their endpoints
to the skeleton center, and equals, for a skeleton point x, the amount of
boundary which is captured (described) by x.

We next de�ne the salience of skeletal point x as

f (x) = d (x)
�)Ω (x)

, (5.4)

that is, the importance d normalized by the skeletal point’s distance to
boundary. As shown in [153], f is overall high on skeleton branches
caused by important (salient) cusps of mΩ and overall low on skele-
ton branches caused by small-scale details (noise cusps) along mΩ. Fig-
ure 5.2c shows this for a small cusp on the boundary of a 2D silhouette
of a noisy 3D dino shape. As we advance in this image along the black

58

5.3 proposed method

click
to start

e) rotation axis estim
ation

sihouette boundary
 ∂Ω

skeleton S
Ω

distance field D
T
S

Ω

clicked point p
skeleton
anchor s

p

skeleton
neighbors

 N
(s

p)
rotation
axis a

||p
-s

p || =
 rotation speed

(single click m
ode)

ps
p

b
) free

m
anipulation

c) view
point

of interest
d

) im
age-space com

putations
(silhouette, skeleton, Z

-buffers)
f) rotation along

local axis

m
ove

to control

release
to end

a) initial
pose

_
_

d

n
×
a

d・
(n

×
a
)

rotation angle
(click &

 drag m
ode)

Figure
5.1:Skeleton-based

rotation
pipeline

w
ith

toolstates(blue)and
useractions(green).

59

skeleton-and-trackball rotation for 3d scenes

skeleton branch into the shape’s rump (going below the grey area in the
picture), d stays constant, but the distance to boundary �)Ω increases,
causing f to decrease. Hence, we can regularize (Ω simply by remov-
ing all its pixels having a salience value lower than a �xed threshold f0.
Following [153], we set f0 = 1. Figure 5.2 illustrates this regularization
by showing the raw skeleton (Ω and its regularized version

(Ω = {x ∈ (Ω |f (x) ≥ f0} (5.5)

for the noisy dino shape. Salience regularization (Figure 5.2b) removes
all spurious branches created by boundary noise, but leaves the main
skeleton branches, corresponding to the animal’s limbs, rump, and tail,
intact. Images (d–g) in the �gure show the silhouette Ω, importance
d , distance transform �)Ω , and salience f for a zoom-in area around
the shape’s head, for better insight. Looking carefully at image (e), we
see that d has non-zero values also outside the main skeleton branch
corresponding to the animal’s neck, visible as light-blue pixels. While
such details may look insigni�cant, they are crucial: Thresholding d

by too low values — the alternative regularization to our proposal —
keeps many spurious skeletal branches, see the red inset in Figure 5.2a.
In contrast, f is practically zero outside the neck branch (Figure 5.2g).
So, thresholding f by f0 = 1 yields a clean skeleton, see the red inset
in Figure 5.2b. Salience regularization is simple and automatic to use,
requiring no free parameters, and hence preferable to d regularization
— which requires a careful setting of the threshold for d — or to any
other skeleton regularization we are aware of. For further details on
salience regularization, we refer to [153] and also its public implemen-
tation [154].

C. Rotation axis computation: This is step (e) in Figure 5.1. Let p be
the pixel under the user-controlled pointer (blue in Figure 5.1e). We �rst
�nd the closest skeleton point s? = argminy∈SΩ

‖p−y‖ by evaluating the
feature transform (Eqn. 5.3) �)

(Ω
(p) of the regularized skeleton (Ω at p.

Figure 5.1d shows the related distance transform�)
(Ω

. In our case, s? is
a point on the horse’s rump skeleton (cyan in Figure 5.1e). Next, we �nd
the neighbor points # (s?) of sp by searching depth-�rst from s? along
the pixel connectivity-graph of (Ω up to a �xed maximal distance set to
10% of the viewport size. # (s?) contains skeletal points along a single
branch in (Ω , or a few connected branches, if s? is close to a skeleton
junction. In our case, # (s?) contains a fragment of the horse’s rump
skeleton (red in Figure 5.1e). For each q ∈ # (s?), we set the depth qI as
the average of Ω5 0A (q) and Ω=40A (q). Here, Ω=40A is the Z bu�er of the
scene rendered as described in step A above; and Ω5 0A is the Z bu�er
of the scene rendered as before, but with front-face culling on, i.e., the
depth of the nearest backfacing polygons to the view plane.

Figure 5.3 shows how this works. The user clicks above the horse’s
rump and drags the pointer upwards (a). Image (b) shows the resulting

60

5.3 proposed method

a) noisy (non-regularized) skeleton (Ω b) regularized skeleton (Ω

d

51 52
G

skeleton (Ω

c) regularization d) silhouette Ωe) importance d f) distance �)Ω g) salience f

Figure 5.2: Raw skeleton (Ω with (a) noise-induced branches and (b) salience-
based regularized skeleton (Ω . c) Principle of salience regulariza-
tion. (d–g) Details of silhouette, importance, distance transform, and
salience values for the noisy dino’s head.

rotation. As visible in the inset in (a), the rotation axis (red) is centered
inside the rump, as its depth qI is the average of the near and far rump
faces. To better understand this, the image left to Figure 5.3a shows
the horse rendered transparently, seen from above. The depth values
in Ω=40A and Ω5 0A are shown in green, respectively blue. The skeleton
depth values (red) are the average of these. Note that, when the rotation
ends, the new silhouette skeleton does not match the rotation axis — see
inset in (b). This is normal and expected. If the user wants to start a new
rotation from (b), then the 2D skeleton from this image will be used to
compute a new, matching, rotation axis.

Next, we consider a case of overlapping shape parts (Figure 5.3c). The
user clicks left to the horse’s left front leg, which overlaps the right-
front one, and drags the pointer to the right. Image (d) shows the result-
ing rotation. The rotation axis (red) is centered inside the left front leg.
In this case, Ω5 0A (q) contains the Z values of the backfacing part of the
left front leg, so (Ω=40A (q) +Ω5 0A (q))/2 yields a value roughly halfway
this leg along the Z axis. The image left to Figure 5.3c clari�es this by
showing the horse from above and the respective depth values in Ω=40A
(green) and Ω5 0A (blue).

Separately, we handle non-watertight surfaces as follows: If Ω5 0A (q)
contains the default Z value (one), this means there’s no backfacing sur-

61

skeleton-and-trackball rotation for 3d scenes

a) b)

c) d)

Ωfar(q)

skeleton
depth values view

plane

view
plane

skeleton
pixel q

skeleton
pixel q

depth
axis

depth
axis

clicked
point p

clicked
point p

pointer
drag

pointer
drag

point p dragged here

point p
dragged
here

rotation

rotation

Ωfar

Ωnear(q)

Ωnear

q
z
=(Ωfar(q)+Ωnear(q))/2

Ωfar(q) Ωnear(q)

q
z
 =(Ωfar (q)+Ωnear(q))/2

Figure 5.3: Depth estimation of rotation axis for (a, b) non-overlapping part and
(c, d) overlapping parts. In both cases, the rotation axis (red) is nicely
centered in the shape. See Section 5.3.1.

face under a given pixel q, so the scene is not watertight at q. We then
set qI to Ω=40A (q).

We now have a set #3� = {(q ∈ # (s?), qI)} of 3D points that approx-
imate the 3D curve skeleton of our shape close to the pointer location
p. We set the 3D rotation axis a to the line passing through the aver-
age point of #3� and oriented along the largest eigenvector of #3� ’s
covariance matrix (Figure 5.1e, red dotted line).

5.3.2 Controlling the rotation

We propose three interactive mechanisms to control the rotation (Fig-
ure 5.1, step (f)):

• Indication: As the user moves the pointer p, we continuously
update the display of a. This shows along which axis the scene
would rotate if the user initiated rotation from p. If a is found
suitable, one can start rotating by a click following one of the
two modes listed next; else one can move the pointer p to �nd a
more suitable axis;

• Single click: In this mode, we compute a rotation speed f equal
to the distance ‖p − s? ‖ and a rotation direction X (clockwise or
anticlockwise) given by the sign of the cross-product (s? −p) ×n,
where n is the viewplane normal. We next continuously rotate
(spin) the shape around 0 with the speed f in direction X ;

• Click and drag: Let d be the drag vector created by the user as
she moves the pointer p from the current to the next place in the

62

5.3 proposed method

viewport with the control, e.g. mouse button, pressed. We rotate
the scene around a with an angle equal to d · (n× a) (Figure 5.1e).

We stop rotation when the user releases the control (mouse button). In
single-click mode, clicking closer to the shape rotates slowly, allowing
one to examine the shape in detail. Clicking farther rotates quicker to
e.g. explore the shape from the opposite side. The rotation direction is
given by the side of the skeleton where we click: To change from clock-
wise to counterclockwise rotation in Figure 5.1, we only need to click
below, rather than above, the horse’s rump. In click-and-drag mode, the
rotation speed and direction is given by the drag vector d: Values d
orthogonal to the rotation axis a create corresponding rotations clock-
wise or anticlockwise around a; values d along a yield no rotation. This
matches the intuition that, to rotate along an axis, we need to move the
pointer across that axis.

The skeleton-based construction of the rotation axis is key to the ef-
fectiveness of our approach: If the shape exhibits some elongated struc-
ture in the current view (e.g. rump or legs in Figure 5.1c), this structure
yields a skeleton branch. Clicking closer to this structure than to other
structures in the same view — e.g., clicking closer to the rump than
to the horse’s legs or neck — selects the respective skeleton branch to
rotate around. This way, the 3D rotation uses the ‘natural’ structure of
the viewed shape. We argue that this makes sense in an exploratory sce-
nario, since, during rotation, the shape parts we rotate around stay �xed
in the view as if one ’turns around’ them. The entire method requires a
single click and, optionally, a pointer drag motion to execute. This makes
our method simpler than other 3D rotation methods for freely speci�-
able 3D axes, and also applicable to contexts where no second button
or modi�er keys are available, e.g., touch screens.

5.3.3 Improvements of basic method

We next present three improvements of the local-axis rotation mecha-
nism described above.

Zoom level: A �rst issue regards computing the scene’s 2D silhouette
Ω (Section 5.3.1A). For this to work correctly, the entire scene must be
visible in the current viewport. If this is not the case, the silhouette
boundary mΩ will contain parts of the viewport borders. Figure 5.4a
shows this for a zoomed-in view of the horse model, with the above-
mentioned border parts marked purple. This leads to branches in the
skeleton (Ω that do not provide meaningful rotation axes. We prevent
this to occur by requiring that the entire scene is visible in the viewport
before initiating the rotation-axis computation. If this is not the case,
we do not allow the skeleton-based rotation to proceed but map the

63

skeleton-and-trackball rotation for 3d scenes

a) b)

c) d)

wrong skeleton
branches

B?

B? B?

Figure 5.4: Two problems of estimating rotation axes from skeletons. (a)
Zoomed-in scene. Anchor points close to (c), respectively farther
from (b, d) a skeleton junction. See Section 5.3.3.

user’s interaction to the standard trackball-based rotation.

Skeleton junctions: If the user selects p so that the skeleton anchor
s? is too close to a skeleton junction, then the neighbor-set # (s?) will
contain points belonging to more than two branches. Estimating a line
from such a point set (Section 5.3.1C) is unreliable, leading to possi-
bly meaningless rotation axes. Figures 5.4b–d illustrates the problem.
The corresponding skeleton points # (s?) used to estimate the axis are
shown in yellow, and the resulting axes in red. When s? is far from the
junction (Figures 5.4b, d), # (s?) contains mainly points from a single
skeleton branch, so the estimated rotation axes are reliable. When s?
is very close to a junction (Figure 5.4c), # (s?) contains points from all
three meeting skeletal branches, so, as the user moves the pointer p, the
estimated axis ‘�ips’ abruptly and can even assume orientations that do
not match any skeleton branch.

We measure the reliability of the axis a by the anisotropy ratio
W = _1/_3 of the largest to smallest eigenvalue of #3� ’s covariance
matrix. Other anisotropy metrics can be used equally well [38]. High W
values indicate elongated structures #3� , from which we can reliably
compute rotation axes. Low values, empirically detected as W < 5,
indicate problems to �nd a reliable rotation axis. When this occurs, we
prevent executing the axis-based rotation.

Selection distance: A third issue concerns the position of the point
p that starts the rotation: If one clicks too far from the silhouette Ω,
the rotation axis a may not match what one expects. To address this,

64

5.3 proposed method

DT
SΩ

�

a) b) c)

distance to silhouette d1 clicked point p1 closest silhouette
point q1 to p1

DT
Ω

_distance field

silhouette
boundary

∂Ω

closest silhouette
point q2 to p2distance to silhouette d2

clicked point p2

clicked point p1 closest silhouette
point q1 to p1

distance
field

shape thickness
at q1

clicked point p2

closest silhouette
point q2 to p2

shape thickness at q2

Figure 5.5: Improvements of axis-based rotation method. (a) A view of the shape
to be rotated. (b) Fixed maximum-distance setting for two clicked
points p1 and p2. (c) Thickness-based maximum-distance setting for
two clicked points p1 and p2.

we forbid the rotation when the distance 3 from p to Ω exceeds a given
upper limit 3<0G . That is, if the user clicks too far from any silhouette in
the viewport, the rotation mechanism does not start. This signals to the
user that, to initiate the rotation, she needs to click closer to a silhouette.
We compute 3 as �)Ω (p), where Ω is the viewpoint area outside Ω, i.e.,
all viewport pixels where Ω=40A equals the default Z bu�er value (see
Section 5.3.1A).

We studied two methods for estimating 3<0G (see Figure 5.5). First,
we set 3<0G to a �xed value, in practice 10% of the viewport size. Using
a constant 3<0G is however not optimal: We found that, when we want
to rotate around thick shape parts, e.g. the horse’s rump in Figure 5.5b,
it is intuitive to select p even quite far away from the silhouette. This
is the case of point p1 in Figure 5.5b. In contrast, when we want to
rotate around thin parts, such as the horse’s legs, it is not intuitive to
initiate the rotation by clicking too far away from these parts. This is the
situation of point p2 in Figure 5.5b. Hence, 3<0G depends on the scale
of the shape part we want to rotate around; selecting large parts can be
done by clicking farther away from them than selecting small parts.

We model this by setting 3<0G to the local shape thickness (Fig-
ure 5.5c). We estimate thickness as follows: We �nd the closest point
on the silhouette boundary mΩ to the clicked point p as q = �)Ω (p).
The shape thickness at q is the distance to the skeleton, i.e., �)

(Ω
(q).

This is the 2D equivalent of the more general 3D-shape-thickness es-
timation proposed in [157]. In Figure 5.5c, the point p1 is the farthest
clickable point around q1 to the silhouette that allows starting a rota-
tion around the rump. If we click further from the silhouette than the
distance 3<0G from p1 to q1, no rotation is done. For the leg part, the
farthest clickable point around q2 must, however, be much closer to the
silhouette (Figure 5.5c), since here the local shape thickness (distance
3<0G from p2 to q2) is smaller.

65

skeleton-and-trackball rotation for 3d scenes

5.4 formative evaluation

To evaluate our method, we conducted �rst a formative evaluation.
In this evaluation, only the authors of this work and a few other re-
searchers, familiar with 3D interactive data visualization, were involved.
This evaluation aimed at (a) verifying how the skeleton-based rotation
practically works on a number of di�erent 3D shapes; and (b) eliciting
preliminary observations from the subjects to construct next a more
in-depth evaluation study. We next present the results of this �rst eval-
uation phase. Section 5.5 details the second-phase evaluation designed
using these �ndings.

Figure 5.6 shows our 3D skeleton-based rotation applied to two 3D
mesh models. For extra insights, we recommend watching the demon-
stration videos [159]. First, we consider a 3D mesh model of a human
hand which is not watertight (open at the wrist). We start from a poor
viewpoint from which we cannot easily examine the shape (a). We click
close to the thumb (b) and drag to rotate around it (b–e), yielding a bet-
ter viewpoint (e). Next, we want to rotate around the shape to see the
other face, but keeping the shape roughly in place. Using a trackball or
world-coordinate axis rotation cannot easily achieve this. We click on
a point close to the shape-part we want to keep �xed during rotation
(f), near the wrist, and start rotation. Images (g–j) show the resulting
rotation.

Figure 5.6(k–ad) show a more complex ship shape. This mesh con-
tains multiple self-intersecting and/or disconnected parts, some very
thin (sails, mast, ropes) [81]. Computing a 3D skeleton for this shape
is extremely hard or even impossible, as Eqn. 5.1 requires a watertight,
non-self-intersecting, connected shape boundary mΩ. Our method does
not su�er from this, since we compute the skeleton of the 2D silhouette
of the shape. We start again from a poor viewing angle (k). Next, we
click close to the back mast to rotate around it, showing the ship from
various angles (l–o). Images (p–u) show a di�erent rotation, this time
around an axis found by clicking close to the front sail, which allows us
to see the ship from the front. Note how the 2D skeleton has changed af-
ter this rotation — compare images (p) with (v). This allows us to select
a new rotation axis by clicking on the main sail, to see the ship’s stern
from below (w–z). Finally, we click on the ship’s rump (aa) to rotate the
ship and make it vertical (ab-ad). The entire process of three rotations
took around 20 seconds.

Figure 5.7 shows a di�erent dataset type: a 3D point cloud that mod-
els a collision simulation between the Milky Way and the nearby An-
dromeda Galaxy [35, 39]. Its 160K points describe the positions of the
stars and dark matter in the simulation. Image (a) uses volume render-
ing to show the complex structure of the cloud, for illustration purposes.
We do not use this rendering, but rather render the cloud in our pipeline
using 3D spherical splats (b). Image (c) shows the cloud, rendered with

66

5.4 formative evaluation

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

click

drag

drag

drag

click

drag drag
drag

drag

(k) (l) (m) (n) (o)

click

drag drag

(p) (q) (r) (s) (t) (u)
click

drag
drag

click

drag drag

click
drag

drag

(v) (w) (x) (y) (z)

(aa) (ab) (ac) (ad)

Legend

pointer

clicked point p

pointer move d

rotation axis a

3D neighbors N
3D

rotation direction

Figure 5.6: Examples of two rotations (a–e), (f–j) for the hand shape and four
rotations (k–o), (p–u), (v–z), (aa–ad) for the ship model.

67

skeleton-and-trackball rotation for 3d scenes

(b) (c) (d) (e) (f)

click

drag drag

click

drag drag

click

drag

drag

(g) (h) (i) (j)

(k) (l) (m) (n)

(a)

Figure 5.7: Exploration of astronomical point cloud dataset. (a) Volume-
rendered overview [39]. Rotations around three 3D axes (b–f), (g–j),
(k–n).

half-transparent splats, so that opacity re�ects local point density. Since
we render a 3D sphere around each point, this results in a front and back
bu�er Ω=40A and Ω5 0A , just as when rendering a 3D polygonal model.
From these, we can compute the 2D skeleton of the cloud’s silhouette,
as shown in the �gure. Images (d–f) show a rotation around the central
tubular structure of the cloud, which reveals that the could is relatively
�at when seen from the last viewpoint (f). Image (g) shows the new 2D
skeleton corresponding to the viewpoint after this rotation. We next
click close to the upper high-density structure (f) and rotate around it.
Images (h–j) reveal a spiral-like structure present in the lower part of
the cloud, which was not visible earlier. To explore this structure bet-
ter, we next click on its local symmetry axis (l) and rotate around it.
Images (l–n) reveal now better this structure. As for the earlier exam-
ples, executing these three rotations took roughly 15 seconds. Scientists
involved with studied this dataset for roughly a decade appreciated pos-
itively the ease of use of the skeleton-based rotation as compared to the
standard trackball and multi-touch gestures.

We gathered several insights during our formative evaluation by free-
form discussions with the participants, that is, without following a strict
evaluation protocol based on tasks and quantitative responses. We sum-
marize below the most important ones:

• Skeleton rotation works quite well for relatively small changes
of viewpoint; more involved changes require decomposing the
desired rotation into a set of small-size changes and careful selec-
tion of their respective rotation axes;

68

5.5 detailed evaluation — user study

• Skeleton rotation seems to be most e�ective for precise rotations,
in contrast to typical trackball usage, which works well for larger,
but less precise, viewpoint changes;

• All participants stated that they believe that skeletons allow them
to perform certain types of rotation easier than if they had used
the trackball for the same tasks. However, they all mentioned that
they do not feel that skeletons can replace a trackball. Rather, they
believe that a free combination of both to be most e�ective. Since
they could only use the skeleton rotation (in our evaluation), they
do not know whether (or when) this tool works better than a
trackball;

• All participants agreed that measuring the added-value of skele-
ton rotation is very important for its adoption.

5.5 detailed evaluation — user study

The formative evaluation (Section 5.4) outlined that there is perceived
added-value in the skeleton rotation tool, but this value needs to be ac-
tually measured before users would consider adopting the tool — either
standalone or in combination with trackball. To deepen our understand-
ing of how skeleton-based rotation works, and to answer the above
questions, we designed and conducted a more extensive user evalua-
tion. We next describe the design, execution, and analysis of the results
of this evaluation.

5.5.1 Evaluation design

Tool: To assess how the skeleton rotation modality compares with the
trackball modality, we designed an experiment supported by an inter-
active tool. The tool has two windows: The target window shows a 3D
shape viewed from a viewpoint (pose) that is preselected by the eval-
uation designer. No interaction is allowed in this window. The source
window shows the same shape, which can be freely manipulated by the
user via the skeleton (S), the trackball (T), or both tools (B), activated via
the left, respectively right, mouse buttons. Both windows have the same
resolution (5122 pixels), use the same lighting and rendering parameters,
and have a �xed position on the computer screen, to simplify usage
during the experiment that invokes multiple runs of the tool. Besides
rotation, the tool also allows panning and zooming. We also added an
option to automatically zoom out to show the full extent of a shape. This
eliminates the issues described in Section 5.3.3, i.e., manipulations that
move part of the shape outside the window. When in S mode, the tool
shows the silhouette skeleton (black), nearest skeleton points (yellow),
and estimated rotation axis (red) as explained earlier in Section 5.3.1 and

69

skeleton-and-trackball rotation for 3d scenes

∈

Figure 5.8: Top: User evaluation showing the 12 trials for one modality (Sec-
tion 5.5.1). Each trial consists of a source window in which the user
interacts to align the shape to match the target window. Bottom: Exe-
cution of end-to-end user evaluation. The use of our interactive tool
in both design and evaluation modes is shown in red (Section 5.5.2).

shown e.g. in Figure 5.3. The user can interactively tune the simpli�ca-
tion level of the skeleton via the ‘+’ and ‘-’ keys, to show more or fewer
branches from which to select a suitable rotation axis (cf Figure 5.2).

Figure 5.8 (central inset) shows a �owchart of the tool’s operation,
which we detail next. Participants are asked to use the tool with each
modality in turn (S, T, B) to align the source with the target. The tool con-
tinuously computes, after each motion of the mouse pointer, the value

U = arccos
(
)A ("+B ·"+)C) − 1

2

)
, (5.6)

where "+B and "+C are the 3 × 3 OpenGL rotation matrices (ignoring,
thus, translation and scaling) corresponding to the pose of the shape in
the source and the target, respectively;)A is the matrix trace operator;
and) denotes matrix transposition. The value U ∈ [0, 180] is the
smallest rotation (around any axis) needed to obtain the target pose
from the source pose [10]. Note that Eqn. 5.6 is sensitive to mirroring,
which is desired, since rotations cannot cause mirroring. Alignment is

70

5.5 detailed evaluation — user study

considered completed when U < U<8= ; in practice, we set U<8= = 15 de-
grees. Also, note that Eqn. 5.6 only checks for rotation, and not scaling
or panning, di�erences. This makes sense, since the tested modalities
S, T, B control rotation only; scaling (zooming) and panning, though
allowed to help users to inspect shapes, are not part of our evaluation,
and perform identically with S, T, and B. During manipulation, the tool
continuously displays the current value of U . This shows users how far
away they are from the target rotation "+C , thus, from completing a
task. This feedback is useful when visual comparison of the source and
target poses is hard to do.

Shapes: We use the alignment tool to evaluate the performance of the S,
T, and B modalities on # = 4 shapes Ω8 , 1 ≤ 8 ≤ # , shown in Figure 5.8
(top). Shapes were selected so as to be familiar, have a structure that
exposes potential local-rotation axes, and have geometric complexity
ranging from simple (horse, hand) to complex (ship). The �ower shape
is of lower complexity than the ship; however, its manifold structure
makes it particularly hard to understand and manipulate, since it looks
quite similar from many viewpoints. All shapes use identical material
properties and no opacity or textures, to favor uniform evaluation. We
excluded the more complicated point-cloud shape (Figure 5.7) used
during formative evaluation (Section 5.4) since no more than �ve of our
recruited subjects had the technical background needed to understand
what such data means in the �rst place.

Task di�culties: For each shape, we use three target poses "+C to
capture three levels of di�culty of the alignment task:

• Easy: Alignment can be done by typically one or two manipula-
tions, such as a rotation around one of the G or ~ window axes,
or a rotation around a clearly-visible symmetry axis of the shape).
For example, the blue-framed target in Figure 5.8 can be obtained
from the green-framed pose (left to it) by a single counterclock-
wise rotation of the horse with 90 degrees around the ~ axis or,
alternatively, the rump’s skeleton;

• Hard: Alignment requires multiple rotations around many di�er-
ent rotation axes; it is not easy to see, from the source and target,
which would be these axes;

• Intermediate: Alignment di�culty is gauged as between the above
two extremes.

We call next the combination of shape Ω8 and start-and-end pose
("+B , "+C) a trial. Using multiple-di�culty trials aims to model tasks of
di�erent complexity. Trial di�culty was assessed by one of the authors
(who also designed the actual poses "+C) and agreed upon by the oth-
ers by independent testing. We veri�ed that all three modalities could

71

skeleton-and-trackball rotation for 3d scenes

accomplish all trials within a time C lower than a prede�ned timeout
C<0G = 120 seconds.

Figure 5.8 (top) shows the source (left window in each window-pair)
and target (right window in the same pair) windows for the 12 trials
spanning the 4 shapes using the T modality. Source windows show the
currently-enabled modality in red text, to remind users how they can in-
teract. We see, for instance, that the easy trial would require, in S mode,
a simple 90-degree rotation around the ~ axis (in T mode) for the ship
model, or around the main skeleton branch passing through the horse’s
rump for the horse model. In contrast, the hard task requires several in-
cremental rotations for all modalities. The 12 trials use identical initial
poses "+B and target poses "+C . That is, the user is asked to perform,
for each shape, the same alignment"+B → "+C using all three modali-
ties, thus ensuring that only the target pose (endpoint of manipulation)
and, of course, the used modality, a�ect the measured execution time.

In total, we thus execute 12 trials ×3 modalities = 36 runs. For each
run, we record the time needed for the user to complete it. If the user
fails to perform the alignment within the allowed timeout, the run is
considered failed and the user moves automatically to the next run.
Users can at any time (a) abort a run by pressing ‘ESC’ to move to
the next run; this helped impatient users who did not grasp how to
perform a given alignment task and did not want to wait until the
timeout; (b) abort the entire evaluation, if something goes entirely
wrong; and (c) reset the viewpoint to the initial one ("+B), to ‘undo’ all
manipulations performed so far if these are deemed unproductive.

Pose design: The di�erent target poses"+C were designed in advance
by us by using the S and T tools — intermixed — to freely change the
shape’s pose until obtaining the desired target poses, and stored, as ex-
plained, as 3 × 3 OpenGL rotation matrices.

5.5.2 Evaluation execution

Subjects: Twenty-seven persons took part in the evaluation. they
self-report ages of 9 to 64 years (median: 24, average: 26.9); and
gender being male (16) and female (11), see Figure 5.9b. To gauge their
experience with 3D manipulation, we asked them to report how many
times a year they used 3D games and/or 3D design software. Both
categories are reported in Figure 5.9b as ‘3D software usage’. Results
show a median of 30 times, with the minimum being zero (never) and
the maximum being basically every day. From these data, we conclude
that most participants should have a good practical mastery of 3D
manipulation. From the 27 participants, 13 were students in �elds as
diverse as Computer Science, social science, medicine, economy and so-
ciety, and mathematics; the other 14 were primary or secondary school
pupils (6) or employed in various liberal professions (8). All participants

72

5.5 detailed evaluation — user study

Age (years) 3D
software

Gender Student

m
al

e
fe

m
al

e

ye
s

no

a) b)

Figure 5.9: a) Setup employed during the user evaluation. b) Self-reported char-
acteristics of the experiment participants. See Section 5.5.2.

reported no color blindness issues. All except one were right-handed.
They all reside in the Netherlands or Belgium. Communication during
the training and experiment was done in the native language of each
participant by a (near-)native speaker. For participants with limited
English pro�ciency, all English material (tutorial, questionnaires) was
transcribed by the trainer.

Work�ow: Participants followed the evaluation work�ow showed in
Figure 5.8 (bottom). First, we created the information needed to execute
the 36 runs (Figure 5.8 (bottom, A)), as explained in Section 5.5.1. Next,
participants were given access, prior to the actual experiment, to a web
tutorial which describes both S and T tools in general, and also allows
users to practice with these tools by running the actual application to
execute some simple alignment tasks. No statistics were collected from
this intake phase. After intake, users asked if they felt interested in, and
able to follow, the tutorial. This intake acted as a simple �lter to separate
users with interest in the evaluation (and potential ability to do it) from
the rest, so as to minimize subsequent e�ort. Seven persons dropped
from the process due to lack of general computer skills (1 user), one
too young (6 years), one too old (82 years), and four due to technical
problems related to remote-deployment of the tool. These persons are
not included in any of the statistics further on nor in Figure 5.9b.

Next, a trainer (role �lled by di�erent co-authors) took part in a con-
trolled session where they explained to either individual participants or,
when social distancing rules due to the Corona pandemic were not appli-
cable, to groups of participants how the tool works and also illustrated it
live. The aim of this phase was to re�ne the knowledge disseminated by
the web tutorial and con�rm that participants understood well the eval-
uation process and tooling. Participants and trainers used Linux-based

73

skeleton-and-trackball rotation for 3d scenes

PCs (16 to 32GB RAM) with recent NVidia cards, wide screens, and a
classical two-button mouse. To maximize focus on the experiment, no
application was run on screen during the evaluation besides the two-
window tool described in Section 5.5.1. Training took both the in-person
form (with trainer and user(s) physically together), and via TeamViewer
or Skype screen sharing when social distancing rules mandated separa-
tion. Training took between 20 and 40 minutes per user and was done
until users told that they were con�dent to use the tool to manipulate
both a simple model and a complex one via all three modalities (S, T, B).
During this phase, we also veri�ed that the tool runs at real-time fram-
erates on the users’ computers so as to eliminate confusing e�ects due
to interaction lag; and that the users did not experience any di�culty
in using the keyboard shortcuts outlined in Section 5.5.1.

After training, and con�rmation by participants that they understand
the evaluation tool and tasks to be done, participants started executing
the 36 runs (Figure 5.8 (bottom, B). They could pause between runs as de-
sired but not change the orders of the runs. Figure 5.9a shows the setup
used during the evaluation by one of the actual participants; notice the
two-window interaction tool on the screen. In the end, the results of all
36 runs — that is, either completion time or run failure (either by time-
out or user abortion) — were saved in a database with no mention of
the user identity. Next, users completed a questionnaire covering both
personal and self-assessment data and answers to questions concerning
the usability of the tool. Both types of results (timing data and question-
naires) were further analyzed (Figure 5.8 (bottom, C)), as described in
Section 5.5.3.

5.5.3 Analysis of results

We next present both a quantitative analysis of the timing results and
an analysis of the qualitative data collected via questionnaires.

5.5.3.1 Analysis of timing results

A most relevant question is: How did performance (measured in comple-
tion time and/or the number of aborted runs) depend on the interaction
modality and shape? Figure 5.10a shows the average completion time,
for the successful runs, aggregated (overall users) per modality and next
per shape. User identities are categorically color-coded for ease of read-
ing the �gure. Median and interquartile ranges for each modality are
shown by black lines, respectively gray bands. We see that the S modal-
ity is signi�cantly slower than T and S. However, the B modality is faster
than T, both as median and interquartile range, and also for each spe-
ci�c shape. This is an interesting observation, as it suggests that, in B
mode, users did gain time by using S only for some speci�c manipula-
tions for which T was hard to use. A likely explanation for this is that

74

5.5 detailed evaluation — user study

Both (B) Trackball only (T) Skeleton only (S)

a)
 T

ot
al

 ti
m

e
(s

ec
on

ds
)

User

b)
 F

ai
le

d
ru

ns

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship
0

10

20

30

Figure 5.10: Completion time (a) and number of failed runs (b) per modality and
shape, all users. See Section 5.5.2.

the B modality was always used last during the trials. Hence, when in B
mode, users could discover the situations when S outperformed T, and
switch to S in those cases to gain time. We analyze this hypothesis fur-
ther below.

Figure 5.10b shows the number of failed runs per modality, shape,
and user. These are the largest for the S modality. This tells again that
S cannot be used alone as a general-purpose manipulation tool. If we
combine this insight with the total times per shape (Figure 5.10a), we
see that the perceived di�culty of the task varies signi�cantly over both
shapes and modalities: T and S behave quite similarly, with horse and
ship being easier to handle and �ower being the hardest. In contrast,
hand seems to be the hardest to handle by the S modality, as it has most
aborted runs. Upon a closer analysis, we found that the pose used by the
‘hard’ trial for hand (see the respective image in Figure 5.8 (top)) is quite

75

skeleton-and-trackball rotation for 3d scenes

easy to achieve with T (and thus also B), but quite di�cult to obtain us-
ing S, since it implies, at several points, performing a rotation around
an axis orthogonal to the hand’s palm, for which no skeleton line ex-
ists in the silhouette. The second-hardest shape for S is ship. Analyzing
the users’ detailed feedback showed us that ship’s complex geometry
produces a wealth of potential rotation axes with quite di�erent angles,
which makes the users’ choice (of the optimal rotation axis) hard. This
happens far less for the other simpler-structure shapes. Separately, Fig-
ure 5.10b shows that the number of aborted runs in B mode is far lower
than that in S mode, being practically the same as for T mode. This, and
the fact that B mode is fastest, reinforces our hypothesis that users em-
ploy the S tool in B mode only for very speci�c manipulations and revert
to T for all other operations. Hence, S works best as a complement, not
a replacement, of T.

Figure 5.11a introduces additional information in the analysis by
showing how the average times vary over the three task di�culty lev-
els (easy, moderate, hard, see Section 5.5.1). For all shapes and modal-
ities, the task labeled easy by us is, indeed, completed the fastest. The
other two di�culty levels are, however, not signi�cantly di�erent in
execution times. We also see that e�ort (time) is distributed relatively
uniformly overall di�culty levels for all shapes and modalities. This in-
dicates that there is no ‘outlier’ task or shape in our experiment that
would strongly bias our evaluation’s insights.

Finally, we examine the data from a user-centric perspective. Fig-
ure 5.11b shows the total time per user, split per modality, with the
fastest users at the right and the slowest at the left. We see a quite large
spread in performance, the fastest user being roughly 2.5 times faster
than the slowest one. We see that the T modality does not explain the
big speed di�erence — the red bars’ sizes do not correlate with the to-
tal time. In contrast, the blue bars show an increase when scanning the
chart right-to-left, at the 8Cℎ leftmost bar — meaning that the 8 slowest
users needed clearly more time to use the B modality as opposed to the
remaining 19 users. Scanning the graph right-to-left along its orange
bars shows a strongly increasing bar-size. That is, the main factor dif-
ferentiating slow from fast users is their skill in using the S tool. We
hypothesized that this skill has to do with the users’ familiarity with
3D manipulation tools. To examine this, we show a scatterplot of the
average time per user (all trials, all shapes) vs the user’s self-reported
number of days per year that one uses 3D computer games or 3D cre-
ation software (Figure 5.11c). All points in the plot reside in the lower
range of the ~ axis, i.e., all users report under 100 days/year of 3D tool
usage, except user 12 who indicated 3D gaming daily. The computed
correlation line shown in the �gure ('2 = 0.0022, ? = 0.813) indicates a
negligible inverse correlation of average time with 3D software usage.
Hence, our hypothesis is not con�rmed. The question what determines
the variability in users’ average completion times is still open.

76

5.5 detailed evaluation — user study

Flower Hand Horse Ship Flower Hand Horse Ship Flower Hand Horse Ship

Both (B) Trackball only (T) Skeleton only (S)

A
ve

ra
ge

 ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

140

Fast usersSlow users

To
ta

l t
im

e
(s

ec
on

ds
)

0

200

400

600

800

1000

Trackball only (T)

Skeleton only (S)

Both (B)

Hard

Moderate

Easy

a)

b) c)

User

Average time (seconds)

3D
 s

of
tw

ar
e

us
ag

e
(d

ay
s/

ye
ar

)

0

100

200

300

250

150

50

0 302010

correlation

line

outlier (user 12)

Figure 5.11: a) Average completion time per di�culty levels, modality, and
shape. b) Total time for all users, from slowest to fastest, split per
modality. c) Correlation of average time (all runs) with users’ fre-
quency of 3D software usage. See Section 5.5.2.

5.5.3.2 Analysis of questionnaire results

As mentioned at the beginning of Section 5.5.2, users completed a ques-
tionnaire following the experiment. They were asked to answer 13 ques-
tions concerning their experience with each of the three modalities (T, S,
B) using a 7-point Likert scale ((1=strongly disagree, 2=disagree, 3=dis-
agree somewhat, 4=no opinion, 5=agree somewhat, 6=agree, 7=strongly
agree). An extra question (Q14) asked which of the three modalities
users prefer overall. Figure 5.12 (bottom) shows these 14 questions. Here,
‘tool’ refers to the modality being evaluated. Following earlier studies
that highlight that user satisfaction is not the same as user e�ciency or
e�ectiveness when using interactive tools [49, 109], we included ques-
tions that aim to cover all these aspects. Users could also input free text

77

skeleton-and-trackball rotation for 3d scenes

to comment on their perceived advantages and limitations of all three
modalities or any other remarks.

Figure 5.12(top) shows the aggregated answers for Q1–Q13 for each
of the three modalities with box-and-whisker plots (box shows the in-
terquartile range; whiskers show data within 1.5 times this range). We
see that the S modality ranks, overall, worse than the T modality, except
for accuracy (Q5). Accuracy (Q5) can be explained by the fact that users
need to control a single degree of freedom with S — the rotation angle —
but two degrees of freedom with T. In other words, once a suitable rota-
tion axis is chosen, S allows one to precisely specify the rotation angle
around this axis. We also see that S helps completing the task less often
than T (Q10), which matches the failure rates shown in Figure 5.10b.
However, the B modality ranks in nearly all aspects better than both T
and S. This supports our hypothesis that S best complements, rather than
replaces, T. An interesting �nding are the scores for Q8 and Q6, which
show that B was perceived as less tiring to use, and needing fewer steps
to accomplish the task respectively, than both T and S. This matches
the results in Figure 5.10a that show that B is faster than both T and S —
thus, arguably less tiring to use. For Q14, 22 of the 27 users stated that
they prefer B overall, while the remaining 5 users preferred T, with none
mentioning S as the highest-preference tool. As for the previous �nd-
ings, this strongly supports our hypothesis that the S and T modalities
work best when combined.

From the free text that captures the user’s comments on the perceived
advantages and limitations of all three modalities, we could distil several
salient points. For space constraints, we list only a few below:

• Trackball (T): Several users praised T for being “easy to use”.
However, users also complained about trackball being imprecise
for performing �ne adjustments;

• Skeleton (S): This modality was mentioned as better than the
other two by only a few users, and speci�cally for the horse, hand,
and �ower models, because of their clear and simple skeletons,
which allow one to intuitively rotate the shape around its parts
(“easy to turn the hand around a �nger”’; “easy to turn the horse
around a leg”; “S helps to turn the �ower around its stem”). How-
ever, several users mentioned advantages of S when used in com-
bination with T. These are discussed below;

• Both (B): Overall, this modality received the most positive com-
ments. It was deemed the “most accurate”; and “feeling quick to
use when we have two methods [to choose from]”. Speci�cally,
users noted that B is “good for doing �nal adjustments / �ne tun-
ing the alignment” and that “S helps T to get the desired result
easily” and “I started with T and used S for �nal touches”. One
user also commented: “I work as a graphic designer with a lot

78

5.6 discussion

Trackball only (T) Skeleton only (S) Both modalities (B)

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

2

1

4

3

5

7

6

Q

S

Q1 The tool met my needs for performing the alignment task
Q2 The tool worked as expected (after following the training)
Q3 The tool helped me be more e�ective than the two other tools
Q4 The tool was easy to use
Q5 The tool was accurate
Q6 The tool requires the fewest steps (compared to the other two) to accomplish my goals
Q7 I felt that I have to think carefully to get a good result with this tool
Q8 The tool was tiring to use
Q9 Both occasional and regular users would like the tool
Q10 I can use the tool successfully every time
Q11 I learned to use the tool quickly
Q12 I easily remember how to use the tool
Q13 I am satis�ed with the tool
Q14 Which tool (T, S, or B) do you overall prefer?

Figure 5.12: Results of 13-point user questionnaire for the three modalities.
Questions are shown below the charts. See Section 5.5.3.2.

of 3D tools; I see how S helps me by providing a lot of control
when rotating, and I would love to have this tool along with my
other manipulation tools in my software [...] but I would not use
it standalone”.

Summarizing the above, we see that our initial hypothesis that the S
modality helps (complements) T for precision tasks is largely supported
by user experience.

5.6 discussion

We next discuss our proposed skeleton-based rotation method along a
number of dimensions.

5.6.1 Technical aspects

The skeleton-based rotation method presented in Section 5.3 has the
following main features:

79

skeleton-and-trackball rotation for 3d scenes

Genericity: We handle 3D meshes, polygon soups, and point clouds;
our only requirement is that these generate fragments with a depth
value. This contrasts using 3D curve skeletons for interaction, which
heavily constrain the input scene quality, and cannot be computed in
real time, as already mentioned. Also, the skeleton tool can be directly
combined (used alongside) any other interaction tool, such as trackball,
with no constraints.

Reversibility: Since 3D rotation axes are computed from 2D silhouette
skeletons, rotations are not, strictly speaking, invertible: Rotating from
a viewpoint v1 with an angle U around a 3D local axis a1 computed
from the silhouette Ω1 leads to a viewpoint v2 in which, from the
corresponding silhouette Ω2, a di�erent axis a2 ≠ a1 can be computed.
This is however a problem only if the user releases the pointer (mouse)
button to end the rotation; if the button is not released, the computation
of a new axis a2 is not started, so moving the pointer back will reverse
the rotation.

Scalability: Our method uses OpenGL 1.1 (primitive rendering and
Z-bu�er reading) plus the 2D image-based skeletonization method
in [158] used to compute the skeleton (Ω , its regularization (Ω , and the
feature transform �)

(Ω
. We implemented skeletonization in NVidia’s

CUDA and C++ to handle scenes of hundreds of thousands of poly-
gons rendered at 10002 pixel resolution in a few milliseconds on a
consumer-grade GPU, e.g. GTX 660. The skeletonization computational
complexity is linear in the number of silhouette pixels, i.e., $ (|Ω |).
This is due to the fact that the underlying distance transform used has
the same linear complexity. For details on this, we refer to the original
algorithm [18]. The separate code of this skeletonization method is
available at [156]. Implementing the two improvements presented in
Section 5.3 is also computationally e�cient: The skeleton’s distance
transform �)

(Ω
is already computed during the rotation axis estima-

tion (Section 5.3.1C). The distance �)Ω and feature transforms �)Ω
require one extra skeletonization pass of the background image Ω. All
in all, our method delivers interaction at over 100 frames-per-second
on the aforementioned consumer-grade GPU. The full code of our
skeleton-and-trackball manipulation tool (Section 5.5.1) is provided
online [159].

Novelty: To our knowledge, this is the �rst time when 2D image-based
skeletons have been used to perform interactive manipulations of 3D
shapes. Compared to similar view-based reconstructions of 3D curve
skeletons from their 2D silhouettes [80, 95], our method requires a
single viewpoint to compute an approximate 3D curve skeleton and is
two to three orders of magnitude faster.

80

5.6 discussion

5.6.2 Usability and applicability

The evaluation described in Section 5.5 con�rmed the insights elicited
from the earlier formative study (Section 5.4), i.e. that skeleton rotation
is best for precise, small-scale, �nal alignment touches; and that skele-
ton rotation best works as a complement, and not replacement, of track-
ball rotation. The latter point was supported by all types of data from
our evaluation — task timing, scores assigned by users to evaluation
questions, and free-form text feedback. The same data shows that users
rank the combined modality (B) as better than both S and T modalities
taken separately. The user scores also show that, overall, the combined
modality is easy to learn and use (Figure 5.12, Q2-4-8-11-12). Put to-
gether, all the above support our claim of added value for the skeleton-
based rotation technique.

Besides the above results, the user study also unveiled several
questions which we cannot fully answer:

User performance: There is a large variability of user performance,
measured as task success rates and completion times (see Figure 5.11b
and related text). We cannot explain this variability by di�erences in
the experiment setup, previous user familiarity with 3D manipulation,
amount of training with the evaluated tool, or other measured factors.
This variability may be due to user characteristics which the self-
reported variables (Figure 5.9b and related text) do not capture; to the
high heterogeneity of the user population; but also due to dependent
variables which we did not measure, e.g., how often did users use
the skeleton simpli�cation level (Section 5.5.1) to produce suitable
skeletons for generating rotation axes. Repeating the experiment with
a more homogeneous population and more measured variables would
help answering this question.

Applicability: An important limitation of our study is that, for the
B modality, we did not measure how (much) the task was completed
using each separate modality, i.e., S and T. The formative study (Sec-
tion 5.4), textual user feedback for the controlled experiment, and our
observation of the users during the experiment jointly show that, in
most cases involving moderate or hard tasks, trackball was �rst used
to obtain a viewpoint roughly close to the target one, which was next
�ne-tuned using skeleton. This is fully in line with our initial design
ideas (see Figure 5.1 and related text) and also with earlier �ndings on
what trackball best works for [56, 68, 109]. However, understanding
more precisely which are the rotation types that skeleton best sup-
ports would greatly help to improve the combined modality by e.g.
suggesting this modality to the user when it appears �t, and/or con-
versely, blocking this modality when it does not match the task at hand.

81

skeleton-and-trackball rotation for 3d scenes

Study limitations: Besides the above-mentioned aspects, our study
(Section 5.5) has further limitations: It uses only four shapes that cannot
capture the rich distributions of 3D shapes that need manipulation. Also,
it only covers the task of rotating from an initial pose to a given �nal
pose. Yet, manipulation is also used for free exploration and/or design
actions which do not require reaching a prede�ned pose. It is unclear
how to quantitatively measure the added value of interaction tools in
such contexts, beyond qualitative user-satisfaction questionnaires [56].
Also, we cannot exclude learning e�ects between the trials that address
the same task with di�erent modalities. Finally, what is the exact added-
value of all the rotation-speci�cation improvements (Section 5.3.3) was
not currently measured. Exploring all these directions is left to future
work.

5.7 conclusion

We proposed a method for specifying interactive rotations of 3D scenes
around local rotation axes using image skeletons. We compute such
axes from the skeleton of the 2D silhouette of the rendered scene, en-
hanced with depth information from the rendered Z bu�er. Specifying
such rotation axes requires a single click-and-drag gesture and no addi-
tional parameter settings. Our method is simple to implement, using dis-
tance and feature transforms provided by modern 2D skeletonization al-
gorithms; handles 3D scenes consisting of arbitrarily complex polygon
meshes (not necessarily watertight, connected, and/or of good quality)
or 3D point clouds; can be integrated in any 3D viewing system that
allows access to the Z bu�er; and works at interactive frame-rates even
for scenes of hundreds of thousands of primitives.

We measured the added value of the proposed rotation technique by
a formative study (to elicit main concerns from users) followed by a con-
trolled user study. Results showed that, when combined with trackball
rotation, our method leads to better results (in terms of task completion
times) and higher user satisfaction than trackball rotation alone. Also,
our method is easy to learn and does not carry a signi�cant learning or
execution cost for the users, thereby not increasing the costs of using
standard trackball rotation.

Several future work directions are possible. More cues can be used to
infer more accurate 3D curve skeletons from image data, such as shad-
ing and depth gradients, leading to more precise rotation axes. Such
data-driven cues could be also used to better control the rotation, and
also suggest to the user which of the two modalities (skeleton-based
or trackball rotation) are best for a given context. Separately, we aim
to deploy our joint skeleton-and-trackball rotation tool on touch dis-
plays (single or multiple inputs) and evaluate its e�ectiveness in sup-
porting domain experts to perform 3D exploration for speci�c applica-
tions, such as the astronomical data exploration outlined in Section 5.4.

82

6C O - S K E L E T O N S : C O N S I S T E N T C U R V E S K E L E T O N S
F O R S H A P E FA M I L I E S

The work presented so far in this thesis addressed the tasks of explo-
ration (Chapters 3 and 4) and examination (Chapter 5). These corre-
spond to the highest level of aggregation — exploring an entire 3D col-
lection — respectively the highest level of detail — exploring an indi-
vidual shape. In this chapter, we focus on an in-between level, that of
exploring a set of related 3D shapes, such as selected by the user in the
visual overviews created in Chapters 3 and 4 or as the result of a content-
based retrieval query. How can we jointly handle such a set of related
shapes? Addressing this would enable multiple use-cases, such as align-
ing all these related shapes in a common reference frame, computing
their variability or similarity, or extracting descriptors that jointly rep-
resent such a shape set.

We approach the above questions by proposing a skeletal descriptors
that represents an entire collection of related 3D shapes. More speci�-
cally, we present a method that computes consistent curve skeletons for
3D shapes from a given family, leading to a family-level descriptor that
we call co-skeleton. We argue that a group of related shapes can help us
to deduce the semantic correlations between their curve skeletons. We
also show the utility of our method by using co-skeletons for shape seg-
mentation and shape blending on real-world data. Our method is based
on the 3D curve skeletons computed by di�erent independent state-of-
the-art skeletonization methods and, as such, can be added to any 3D
shape processing pipeline that admits the computation of such standard
curve skeleton descriptors.

6.1 introduction

Skeletons are thin and locally centered structures which describe the
geometry, topology, and symmetry properties of shapes compactly and
intuitively. This makes skeletons powerful tools for applications such as
shape segmentation [119], manipulation [85, 178], and blending [2]. Ex-
isting skeletonization methods can be classi�ed in methods that com-
pute surface skeletons [3, 98] and methods that compute curve skele-
tons [5, 148]. Surface skeletons capture shape geometry better, but curve
skeletons are much simpler (and faster) to compute, represent, and an-
alyze, and are the dominant skeleton types currently used in applica-
tions [149].

Among the many existing curve skeletonization, important di�er-
ences exist regarding the quality of the produced skeletons, which is

83

co-skeletons: consistent curve skeletons for shape families

(a) Le et al. 2003 [93] (b) Liu et al. 2014 [85]

Figure 6.1: Curve skeletons extracted by Le et al. [93] and Liu et al. [85] for mesh
rigging. As visible, the produced skeletons are not always locally
centered and, at places, even exit the shape.

measured by criteria including thinness, centeredness, compactness, ro-
bustness to noise, homotopy equivalence to the input shape, and com-
putational complexity [143]. Quality issues create problems when using
skeletons in certain applications such as mesh rigging. Figure 6.1 shows
the curve skeletons (CSs) extracted by two such methods. The extracted
skeletons exhibit problems such as shrinkage of end branches with re-
spect to the corresponding shape parts or even exiting the shape at
places. Other skeletonization methods exhibit di�erent problems with
respect to the mentioned quality criteria. Given such problems, most
of the skeleton-based mesh rigging approaches require that skeletons
are manually speci�ed for the input shape, a process which is time-
consuming and error-prone.

Obtaining high quality curve skeletons — important for applications
like rigging [7] and shape segmentation [119] — has been done so far
by proposing increasingly improved skeletonization methods. Yet, new
methods may introduce new problems, more user parameters, or have a
more complex implementation [149]; and must be thoroughly tested on
large shape collections [143, 144]. Another problem of all skeletoniza-
tion methods is that they cannot guarantee that they preserve the same
level-of-detail on similar parts of any input shape. Given an actual shape
and parameter settings, details may be kept in the skeleton or simpli�ed
away. This creates inconsistent skeletons from the viewpoint of applica-
tions that use them further to manipulate shapes.

We propose a di�erent approach: Inspired by recent approaches on
co-analysis of 3D shape collections, rather than aiming to compute a
high-quality skeleton from a single shape, we use a collection of shapes
(of the same kind) to compute their skeletons. The intuition behind
this is that a given skeletonization method will be able to extract good-
quality skeletons frommost parts ofmost shapes, and will not fail consis-
tently on the same parts of all shapes. By combining information from

84

6.1 introduction

Figure 6.2: Left and middle columns: Skeletons extracted from the fourleg sub-
set of the Princeton Shape Benchmark (PSB) [25] using the Mean
Curvature Flow [148] and Mesh Contraction [5] methods, respec-
tively. These skeletons have a variable sampling density and pre-
serve (or not) similar details across di�erent shapes. Right column:
Co-skeletons extracted by our approach are more concise and con-
sistent in preserving similar details across di�erent shapes.

85

co-skeletons: consistent curve skeletons for shape families

all extracted skeletons, we obtain co-skeletons which represent well all
shapes in a given family with controlled and consistent sampling den-
sity and presence of signi�cant details in all skeletons, even when large
variations exist between individual shapes.

Our method works as follows: Given a 3D shape collection, we extract
the curve skeletons from all shapes, using any existing good-quality CS
method chosen by the user. Next, we use several descriptors to char-
acterize these skeletons, and use them to cluster similar branches from
di�erent skeletons. Finally, we infer the semantic correlation among cor-
responding edges and use this information to jointly prune all skeletons
to achieve conciseness (representing CSs with few sampling points and
edges) and consistency (the same type of shape detail creates the same
type of skeleton branch) over an entire shape family. We show our au-
tomatic co-skeleton extraction framework by applications of shape co-
segmentation and shape blending.

The structure of this chapter is as follows. Section 6.2 reviews re-
lated work in curve skeletonization. Section 6.3 outlines our framework.
Section 6.4 details our pruning algorithm for skeleton consistency. Sec-
tion 6.5 presents results and applications. Section 6.6 discusses our pro-
posal and outlines future work directions.

6.2 related work

Skeleton extraction and shape co-analysis are two aspect about our
work. In Section 2.4 we have introduced skeleton extraction, here we
present the related work on shape co-analysis.

Shape Co-analysis: There has been recent increasing interest in the
co-analysis of shape collections. The premise is that more informa-
tion can be extracted by analyzing a collection than when analyzing
individual shapes. An example hereof is co-segmentation — the simul-
taneous segmentation of all shapes in a set in a consistent manner.
This has been shown to be of great utility for modeling and textur-
ing [20, 74, 140]. Golovinskiy and Funkhouser [50] pioneered consis-
tent co-segmentation by aligning all shapes and then clustering their
primitives. Following this work, many co-segmentation approaches
have been proposed, using unsupervised learning [61, 140, 174] or semi-
supervised learning [169, 175]. Deep learning has shown excellent per-
formance in this direction, with several methods proposed for shape
segmentation [52, 168]. Yet, such methods heavily rely on large train-
ing datasets.

Besides co-segmentation, other approaches exist for the co-analysis
of a shape-set. Laga et al. [82] presented an e�ective algorithm to obtain
semantic correspondences between 3D shapes that �nds part-wise cor-
respondences. Kaick et al. [72] constructed a uni�ed shape co-hierarchy
from a shape set, providing a richer characterization of the shape-set be-

86

6.3 proposed method

MCF
method

... MC
method

Initial Skeleton

5 descriptors
(SDF, SC, CF, AGD, GB)
Skeleton description

spectral clustering
with EMD

Skeleton Clustering

clean up class labels

Semantic Pruning

reduce
skeleton sampling points

Skeleton Pruning

co-segmentation ... blending

Applications

Figure 6.3: Our method has six steps. Curve skeletons are extracted from 3D
input shapes using existing skeletonization methods. These skele-
tons are next reduced to �ve per-face descriptors. The descriptors
of all skeletons from a shape family are next clustered. Finally, we
prune (simplify) the clustered data to remove semantic noise (seman-
tic pruning) and obtain skeletons with a small sample count (skele-
ton pruning). We use co-skeletons for shape co-segmentation and
blending applications.

yond coarse template-based or part-level correspondence. Yumer and
Kara [183] propose a co-abstraction method where shapes in a set are
abstracted as much as possible while still preserving the unique geomet-
ric characteristics distinguishing them from each other. Xu et al. [177]
synthesize new shapes by analyzing a given shape-set using genetic
algorithms. Kim et al. [78] construct cuboid model templates of large
shape sets. Fish et al. [48] learn the con�gurations of a shape-set as geo-
metric distributions. Yumer and Kara [184] use co-constrained handles
to deform shape-sets to �nd and respect the geometric and spatial con-
straints among di�erent shape parts. Our work is inspired by these tech-
niques: We compute family-consistent skeletons in terms of sampling
density and semantic relevance. Hence, even if the underlying curve-
skeletonization method that we use is imperfect, the problems that it
creates on individual shapes are alleviated or removed by considering
all shapes in the family.

6.3 proposed method

Figure 6.3 shows the pipeline of our method. Our input is a collection
of # shapes I = {�1, . . . , �# }, �8 ⊂ R3, of one shape family. By a family,
we mean a set of shapes that belong to the same semantic class, e.g.,
four-legged animals or chairs. Shapes are represented as boundary
meshes [149]. The goal of our method is to obtain family-consistent

87

co-skeletons: consistent curve skeletons for shape families

curve skeletons S = {(1, . . . , (# }, one for each shape in the input
collection. For each shape �8 , we consider its curve skeleton (8 , modeled
as a set of 3D sample points %8 connected by edges �8 , i.e., (8 = (%8 , �8),
%8 ⊂ R3, �8 = {48,1, 48,2, . . . , 48,=8 } ⊂ %8 × %8 . For a collection I , we �rst
extract the initial skeletons (8 for each shape �8 individually, using ex-
isting state-of-the-art methods [5, 148]. We then extract features for all
skeleton edges 48, 9 and cluster edges in a joint descriptor space to infer
their semantic correlation. To obtain concise and family-consistent
skeletons, we propose and apply two pruning algorithms, which lead to
co-skeletons (8 suitable for shape co-segmentation and shape blending.
We next describe each step of our pipeline in turn.

Initial Skeleton Extraction: We extract shape skeletons (8 using the
mean curvature �ow (MCF) method [148] or, alternatively, the mesh
contraction (MC) method [5]. Any other curve skeletonization method
can be used directly, if desired. For selecting alternatives to MCF
and MC, one can study the survey of Sobiecki et al. [144] to pick the
method of choice based on various desirable properties, such as speed,
ease of use, type of input (mesh or voxel volume), or robustness. For
brevity, we next show results based on the MCF method [148], which
we found slightly easier to use than MC and producing smoother curve
skeletons (see also Figure 6.2). However, using MC yields very similar
co-skeletons to MCF, so the choice between the two is largely left to
the user’s preference. Regardless of the skeletonization method choice,
we compute skeletons for each shape with approximately |�8 | = 100
skeleton edges each.

Input AGD CF GB SC SDF

Figure 6.4: Feature extraction in our pipeline. Left column: Two examples of in-
put shapes with their initial curve skeletons (red) and the shape faces
(blue) associated with a selected skeleton edge. The other columns
show our �ve feature descriptors computed on the two models (fea-
ture names are detailed in Section 6.3). These descriptors are aggre-
gated, via their histogram distributions, to form the skeleton-edge
descriptors.

Skeleton Description: No matter which skeletonization technique
one uses, every skeleton edge can be mapped to a set of shape

88

6.3 proposed method

faces [149]. This mapping [57], known as the feature transform �) :
(→ P (�), with P denoting the power set, maps �) (4 ∈ () to the set
of faces in � that correspond to a skeleton edge 4 . The �) complements
topological shape information, captured by the curve-skeleton’s branch-
ing structure, with geometric information that encodes which skeleton
fragments capture which shape-surface details. Both information types
are essential for semantic or functional prediction.

We use �ve shape descriptors to characterize surface details, simi-
lar to previous co-analysis approaches [140, 173, 174]: Shape Diame-
ter Function (SDF) [132], Conformal Factor (CF) [11], Shape Contexts
(SC) [9], Average Geodesic Distance (AGD) [58], and Geodesic distance
to the Base of the shape (GB) [140]. These descriptors are de�ned on
mesh faces. Taking the computation of SC as an example, given a mesh
face, we compute the distribution of all other faces (weighted by their
area) in logarithmic geodesic-distance bins and uniform-angle bins,
where angles are measured relative to the normal of each face. Hence,
each shape face is described by �ve scalar values that correspond to the
�ve above mentioned descriptors.

Given a skeleton edge 48, 9 ∈ (8 with its associated faces �) (48, 9) ∈ �8
and their face descriptors, we use normalized histograms with a
speci�ed bin value to measure the feature distribution of 48, 9 . Using
histograms ensures that the number of faces |�) (48, 9) | belonging to
a skeleton edge 48, 9 is normalized over all skeleton edges. We next
compute a so-called descriptor space over all shapes �8 in a family.
Figure 6.4 shows two examples. The leftmost column shows the faces
(blue) associated to a skeleton edge (red). The other columns show
the �ve feature descriptors we compute, color-coded on a rainbow
colormap. As explained, these descriptors are ultimately recorded on
the skeleton edges via their feature histograms.

Skeleton Clustering: As already explained, there is no unanimously
accepted formal de�nition of 3D curve skeletons, let alone of co-
skeletons for a shape family. This implies that it is di�cult to de�ne
consistency. Hence, we proceed by processing all skeleton edges in a
shape family in a uni�ed and global manner. As we do not have explicit
semantic information, we resort to clustering, which is the approach of
choice in many related co-analysis techniques. We therefore simplify
(cluster) all edges of all skeletons of a shape family, together with their
computed descriptor values, in the per-family descriptor space. To sim-
plify notation, let 40 and 41 be two skeleton edges in the whole family.
For each descriptor, let ?0 = �) (40) be the set of faces corresponding
to an edge 40 . Let ℎ0,: be the histogram over ?0 of the :-th descriptor
(1 ≤ : ≤ 5). We de�ne the dissimilarity between two edges 40 and 41
with respect to the :-th descriptor as

3: (40, 41) = EMD(ℎ0,: , ℎ1,:),

89

co-skeletons: consistent curve skeletons for shape families

where EMD(ℎ, ℎ̄) is the Earth Mover’s Distance [127] between his-
tograms ℎ and ℎ̄. EMD is a typical method for evaluating dissimilarity
between two multidimensional distributions in a feature space. We next
apply a Gaussian kernel to the distances 3: to build an a�nity matrix
,: = (F0,1,:) for each descriptor : , with entries

F0,1,: = exp
(
−3: (40, 41)

2f2

)
, (6.1)

whereF0,1,: is the dissimilarity between 40 and 41 for the:-th descriptor.
We set the number of bins to 50 for each histogram, and f to the mean
of all dissimilarities, respectively.

We now seek a way to combine the �ve a�nity matrices,: into a
single matrix, to be next used to perform the co-skeleton computation.
We note that our �ve descriptors characterize partially-related shape
aspects. For instance, the AGD and CF descriptors take typically large
values on a shape’s center and low values on its extremities; see Fig-
ure 6.4. Hence, simply merging the �ve a�nity matrices,: into a sin-
gle matrix would result in redundant information. To avoid this, we use
a�nity-aggregation spectral clustering [174] to jointly perform feature
selection and clustering — that is, reduce the amount of redundant infor-
mation and also decompose the resulting information into self-similar
subsets. For this, we proceed as follows: Let U = [U1, . . . , U5] be weights
associated to the a�nity matrices ,1, . . . ,,5 that indicate how much
each matrix contributes to describing similarity over the shape family.
We formulate the a�nity-aggregation spectral clustering as

min
U,�

5∑
:=1

∑
0,1

U:F0,1,: ‖ 50 − 51 ‖2, (6.2)

where � = [51, · · · , 5<] is the indicator vector in joint feature space
having a total of< samples.

The minimization in Eqn. 6.2 involves two unknown vectors, U and
� . To solve for them, we use a two-step minimization approach that
alternatively �xes one unknown vector and varies the other. During
optimization, two additional constraints must be satis�ed: The �rst one
comes from normalized spectral clustering, i.e., the �nal diagonal matrix
� must satisfy

1 = � ′�� = � ′(U1�1 + · · · + U5�5)� =

5∑
:=1

U:B: , (6.3)

where

B: = � ′�:�

and �: is a diagonal matrix whose 8-th diagonal element is the sum of
the elements in the 8-th row of,: . Using this constraint, spectral clus-
tering typically converges to a result [96]. The second constraint comes

90

6.3 proposed method

from the Cauchy-Schwartz inequality, which leads to constraining the
sum of the weighted matrices in a normalized condition, i.e.,

5∑
:=1

√
U: = 1. (6.4)

By applying the Lagrange multiplier method to the constraints in
Eqns. 6.3 and 6.4, the problem of �nding U can be reduced to a one-
dimensional line-search problem, which is easy to solve. For more de-
tails, we refer the interested reader to [62].

Figure 6.5: Skeleton edge clustering in joint feature space. Family-consistent
semantic correlation can be deduced from the clusters.

After obtaining � , we run :-means in feature space to cluster the
data into � classes, where � is assigned according to the number of
parts of each shape in the input family I , under human supervision.
That is, for a given shape family, the user has to decide what is a
suitable number of parts that typical shapes in that family have — or,
putting it di�erently, by how many parts the user wants to model
shapes in that family. Figure 6.5 shows our clustering result on the
fourleg dataset, visualized using t-SNE [97] with di�erent clusters
colored di�erently. Points that are close in the embedding (2D) space
have thus similar feature vectors. Skeleton edges that belong to the
same cluster are assumed to be semantically similar. Note that this
assumption is reasonable as many co-analysis algorithms operate
under it (see Section 6.2). As the �gure shows, four large clusters
appear, which correspond to four parts of shapes in the fourleg dataset.

Semantic Pruning: We next use semantic pruning to remove so-called
semantic noise, which occurs in our clustering due to three reasons:

91

co-skeletons: consistent curve skeletons for shape families

(1) Shape meshes may contain noise, which propagates into the �ve
descriptors. (2) The descriptors themselves contain a certain amount
of fuzziness, as they only measure geometric properties rather than
the ‘true’ semantic ones. (3) Our feature selection and clustering
steps may introduce artifacts. To remedy these issues, we introduce
a semantic pruning step. This step uses the connectivity of skeleton
edges, based on the idea that two connected skeleton edges have a high
probability of carrying the same semantic information. Importantly,
semantic pruning only ‘merges’ the semantic information extracted
from di�erent skeletons in the same family; it does not actually remove
skeleton nodes, a task which is done next by the skeleton pruning. We
describe semantic pruning in detail in Section 6.4.1.

SkeletonPruning:A �nal concern is to compute compact co-skeletons,
i.e., having a small number of points. This assists, speed-wise, all oper-
ations that next use co-skeletons. To obtain compact co-skeletons, we
carry out skeleton pruning to reduce potential skeleton over-sampling.
Since existing skeleton-pruning algorithms do not take into account se-
mantic part information over a family of shapes [149], we propose a new
pruning procedure that considers and respects such semantic properties.
We describe skeleton pruning in detail in Section 6.4.2.

6.4 skeleton pruning details

We next describe the semantic and skeleton pruning algorithms which
aim to reduce semantic noise, respectively oversampling, in our pro-
duced co-skeletons.

6.4.1 Semantic pruning

As stated in Section 6.3, our semantic pruning exploits the observation
that two connected skeleton edges usually hold the same semantic infor-
mation. Hence, this connectivity information can add extra information
to the initial clustering results.

Our semantic pruning algorithm exploits four properties of a skele-
ton edge to measure the con�dence that two skeleton edges fall within
the same semantic part. These are the length of the edge, the angles
between the edge and the two edges connected to it, and the semantic
information of the connected edges themselves.
Edge length: Given a skeleton edge 48 , we compute its normalized
length ;8 (with respect to the longest edge in � , so ;8 ∈ [0, 1]) and its
angles V8, 9 to edges #8 = {4 9 } to which 48 is connected in the skele-
ton graph �. Let the cluster index of 48 , as computed by :-means (Sec-
tion 6.3), be denoted by 28 ∈ [1, . . . ,�]. Given our clustering, 28 thus

92

6.4 skeleton pruning details

encodes semantic similarity of the edges. With the above, we de�ne the
con�dence score 8 of 48 as

 8 = _;8 +
∑
4 9 ∈#8

18, 9; 9W (8, 9), (6.5)

where W (8, 9) = 1 when 28 = 2 9 and W (8, 9) = −1 otherwise. The
hyperparameter _ (default: 1.5) de�nes the relative weight given to
edge lengths vs edge angles in the con�dence score.

Edge angles: The angles V8, 9 are �rst normalized into [0, 1] by comput-
ing

1̂8, 9 = (1 + cos V8, 9)/2 (6.6)

and then mapped by a Gaussian kernel to yield the weights

18, 9 = exp

(
−
1̂2
8, 9

2

)
.

This way, the smaller the angle V8, 9 , the smaller the �nal weight 18, 9 .
When V8, 9 = c , we obtain the highest value of 18, 9 = 1.

Equation 6.5 assigns a low con�dence to an edge 48 when its con-
nected edges 4 9 have di�erent semantic de�nition, i.e., come from dif-
ferent clusters than 48 . Conversely, a high con�dence score tells that 4 9
has the same semantic information as 48 .

We next sort all skeleton edges 48 of a shape collection ascendingly on
their scores 8 and process them in this order as follows. For each 48 , we
re�ne its con�dence score 8 to equal the one of its highest-con�dence
edge-neighbor, i.e., 8 = max4 9 ∈#8

 9 . After processing an edge, we re-
fresh its con�dence score and that of its neighbours. We repeat the pro-
cess until we have processed approximately 10% of all edges (see Fig-
ure 6.6). This value has been set empirically based on tests comprising
many shape categories.

Figure 6.6: Semantic pruning for leaf skeleton edge (top) and a joint skeleton
edge (bottom). Colors show class. The role of semantic pruning is to
clean up class labels, not to remove edges; skeleton pruning does the
latter.

93

co-skeletons: consistent curve skeletons for shape families

6.4.2 Skeleton pruning

From the initial skeletons with their pruned semantic attributes, we
now perform skeleton pruning to reduce over-sampling and to remove
spurious branches. This way, we achieve compact co-skeletons that de-
scribe the respective shapes with a small number of sampling points
and edges.

In contrast to semantic pruning, we now focus on the nodes (ver-
tices) x8 ∈ % of the curve skeletons. We categorize all nodes into three
groups: leaf, joint, and branch. A leaf node is incident with only one
skeleton edge; a joint node with two edges; and a branch node with at
least three edges. As most nodes are joint nodes in curve skeletons, we
focus on pruning those only. Also, not pruning leaf or branch nodes en-
sures that the topology of the pruned skeletons stays identical to the ini-
tial ones. Node positions are not altered by pruning, so the pruned skele-
tons maintain their centeredness with respect to the original shapes. We

Figure 6.7: Illustration of our skeleton pruning process. A skeleton node is re-
moved depending on its associated angle and the lengths of its inci-
dent edges.

exclude from pruning joint nodes whose incident edges carry di�erent
semantic information (cluster labels 28). Pruning such nodes would be
di�cult, as we would need to somehow merge di�erent cluster labels
into newly created edges. Let 48 and 4 9 be the two incident edges for a
node candidate for pruning, and let V8, 9 be the angle spanned by these
edges. We use V8, 9 and the normalized edge lengths ;8 and ; 9 , de�ned as
in Section 6.4, to compute a node con�dence score as

+8, 9 = (;8 + ; 9)1̂8, 9 (6.7)

with 1̂8, 9 de�ned by Eqn. 6.6. Following Eqn. 6.7, nodes with large angles
and with short incident edges have low con�dence values. Conversely,
nodes with small angles and long incident edges get high con�dence
values. This models the fact that we want to prune densely-sampled
and relatively-straight skeleton branches. We sort all skeleton nodes
ascendingly on their con�dence values +8, 9 and prune (remove) nodes
in this order, one at a time. After each node removal, we recompute
the con�dence scores +8, 9 of the node’s two neighbors in the skeleton
graph. We prune until approximately 75% of the joint nodes are pruned.
Di�erent thresholds yield a more, respectively less, aggressive skeleton
simpli�cation, as desired by the application at hand (see Figure 6.7).

94

6.5 results and applications

6.5 results and applications

We tested our method on a PC with an Intel 4GHz i7 processor and 8GB
RAM. Our time complexity mainly depends on the descriptor computa-
tion. Clustering takes under 1 minute with 20 iterations for 2K skeleton
edges. Semantic pruning and skeleton pruning computations are lin-
ear in skeleton size, taking one second for 2K skeleton edges. Overall,
our end-to-end pipeline takes about 8 minutes for small datasets (20
shapes with around 2K skeleton edges/shape), and scales linearly for
larger data.

We demonstrate the utility of our co-skeletons by comparing our
results with the raw curve skeletons (extracted as explained in Sec-
tion 6.5.1). We also show co-skeletons in action in two applications:
shape segmentation and shape blending (Section 6.5.2).

6.5.1 Co-skeleton results

We compare our co-skeletons with the initial MCF and MC curve skele-
tons [5, 148]. As test data, we used the Princeton Shape Benchmark
(PSB) dataset [25], which contains sets of shapes of multiple types,
e.g., animals, chairs, human models, furniture, and vehicles. Figure 6.2
shows that our co-skeletons are signi�cantly more concise (have fewer
nodes) than the original curve skeletons, while preserving overall desir-
able characteristics such as centeredness and topology. Moreover, each
edge of our co-skeletons is annotated with semantic information (color-
coded in Figure 6.2). For instance, all edges pertaining to the animals’
heads, legs, or rump, have the same color. Such semantic information
can next be used in a wide range of applications, such as shape match-
ing, retrieval, or segmentation.

Figure 6.8: A correct case (left) and a wrong case (right) of semantic pruning in
one example. Our approach may fail to deal with the case of succes-
sive semantic noise in skeleton edges.

Figure 6.8 shows an additional result of our pruning: In most cases,
even in the presence of semantic noise, our approach succeeds. Yet, in
cases with signi�cant semantic noise, our approach may fail. This is
due to the fact that our method uses a voting mechanism that takes

95

co-skeletons: consistent curve skeletons for shape families

into account the semantic information of connected skeleton edges. One
potential remedy is the use of a better, more robust, initial skeletoniza-
tion method, than [148] or [5]. Any (existing or future) skeletonization
method that accepts 3D meshes as input, and produces a polyline rep-
resentation of the curve skeleton, together with the feature transform
of its points, is directly applicable.

6.5.2 Co-skeleton applications

We next aim to show the potential of co-skeletons by presenting two
applications that may bene�t from them: shape co-segmentation and
shape blending.

(a) Fourleg dataset (b) Human dataset

Figure 6.9: Segmentation results based on our co-skeletons. Di�erent colors de-
pict di�erent semantic parts. The pruned (co-)skeletons inherently
encode co-segmentation results. Further results can be found in Fig-
ure 6.10.

Co-segmentation: Since skeleton edges are inherently linked to col-
lections of faces of the input shape(s), we can use the semantic informa-
tion our algorithm produces to segment shapes. Like state-of-the-art
co-segmentation approaches [61, 140, 174], we also use the graph cut
algorithm [15] to optimize the boundaries of di�erent segments. Fig-
ure 6.9 shows several segmentation results based on our co-skeletons
for the fourleg (Figure 6.9a) and human datasets (Figure 6.9b). As visible,
the produced segmentations are consistent, in the sense that di�erent
shapes (from the same family) get segmented at approximately the same
level of detail — four limbs, rump, and head, for the fourleg shapes, and
rump, head, legs (thigh, calf, foot), and hands (forearm, arm), respec-
tively. However, details such as ears or horns for the fourleg shapes,
are sometimes not separately segmented, for the shapes in which they
are very small. Here we showcase our method on further results. Fig-
ure 6.10 presents (co-)segmentation results based on our co-skeletons

96

6.5 results and applications

Figure 6.10: Co-skeletonization and co-segmentation results of our method
based on Mean Curvature Flow [148] (top half) and Mesh Contrac-
tion [5] (bottom half).

building on the per-shape input skeletons computed using Mean Cur-
vature Flow [148] and Mesh Contraction [5].

We next compare our co-segmentation results to �ve state-of-the-art
methods [52, 61, 140, 168, 174]. Note that these are also co-segmentation
methods which consider shape families rather than individual shapes.
Similar to these methods, we measure the amount of area of a shape
that is labeled correctly as

acc(�) =
∑
8 08X (28 , C8)∑

8 08
, (6.8)

where 08 , 28 , and C8 are the area, label computed by our co-segmentation,
and respectively ground-truth label of face 8 of a given shape � , and X is
Kronecker’s delta.

97

co-skeletons: consistent curve skeletons for shape families

Table 6: Comparison of the average accuracy (Eqn. 6.8) of our co-segmentation
results vs existing techniques [52, 61, 140, 168, 174]. We separate unsu-
pervised techniques [61, 140, 174] and supervised ones [52, 168] for fair
comparison. [52, 168] use only 6 training shapes in their experiments.

Shape Average accuracy per category
category Ours [140] [61] [174] [52] [168]
Human 83.2 - 70.4 78.0 - -
Glasses 95.8 - 98.3 92.4 96.78 97.15

Airplane 80.2 - 83.3 79.6 95.56 93.90
Ant 88.1 - 92.9 90.1 - -

Chair 93.8 85.0 89.6 87.6 97.93 97.05
Octopus 92.4 - 97.5 96.8 98.61 98.67

Table 98.6 - 99.0 98.4 99.11 99.25
Teddy 89.8 - 97.1 94.9 98.00 98.04
Hand 83.4 - 91.9 90.3 - -
Plier 80.9 - 86.0 83.4 95.01 95.71
Fish 80.3 - 85.6 82.4 96.22 95.63
Bird 76.9 - 71.5 72.0 87.51 89.03

Armadillo 67.6 - 87.3 78.5 - -
Fourleg 92.1 77.3 88.7 87.7 - -

Candelabra 82.5 84.8 93.9 97.2 - -
Lamp 91.1 94.1 90.7 98.4 - -

Table 6 lists the accuracy values averaged per shape family for the
PSB benchmark, with unsupervised and supervised methods reported
separately. It shows that our co-segmentation achieves comparable re-
sults for this benchmark in the unsupervised group. However, we gain
better performance for some shape families, e.g., human and fourlegs,
due to the semantic pruning step. Our results are driven by skeletons, so
they contain both skeleton and segmentation information, in contrast to
other pure segmentation approaches. We also see that supervised learn-
ing methods perform overall better than unsupervised ones. Yet, as said,
supervised methods require signi�cant training data, which we do not
need. See also Figure 6.11 for additional insights.

Finally, we compare our segmentation results with nine classical
segmentation methods, which do not consider shape families (that is,
which are not of the co-segmentation type). Figure 6.12 shows the re-
sults for the hand and horse shapes from the PSB benchmark. The right-
most two columns show our results obtained with co-skeletons con-
structed from Mesh Contraction (MC) [5], respectively Mean Curvature
Flow (MCF) [148] base skeletons. We consider in the comparison both
skeleton-based and surface-based segmentation methods, as follows. In

98

6.5 results and applications

(a) Segmentation using the method of Sidi et al. [140]

(b) Segmentation using the method of Wu et al. [174]

Figure 6.11: Segmentation results using existing methods can lead to wrong
part prediction. Our method improves on these results (see Fig-
ure 6.9).

the �rst class, Reniers et al. [120] detect curve skeleton junctions and use
these to trace geodesic cuts to segment the parts of a shape. The method
was further improved in [121] to reduce oversegmentation. Tierny et
al. [160] segment shapes by analyzing their Reeb graphs, which are re-
lated to curve skeletons. Lien et al. [92] formulate (and solve) shape
segmentation and curve-skeleton computation as a joint optimization
problem. Feng et al. [46] extend the geodesic-cut-based segmentation
in [120, 121] to surface skeletons, which encode both shape geometry
and topology, thus provide more information for the segmentation. Fi-
nally, Li et al. [91] use mesh decimation methods for both shape segmen-
tation but also their curve-skeleton computation.

In the second class, we have methods that segment shapes purely
based on the information encoded by their surface. Lee et al. [86, 87]
segment surface meshes using snake cuts which are optimized based on
local mesh features such as curvature and excentricity. Attene et al. [4]
segment shapes by �tting primitives from a given set (library). Liu and
Zhang [94] encode the shape’s faces into a similarity matrix which they
then decompose by spectral clustering.

Overall, we see that our segmentation results (Figure 6.12 rightmost
two columns) compare very favorably with existing methods. In partic-
ular, our segment borders are smooth and wrap naturally around the
shape, while this is not always the case for the other methods (see Fig-
ure 6.12 c, h, i). Also, our co-skeletons ensure that there is no overseg-
mentation present, a phenomenon that can be observed for some of the
other methods (Figure 6.12 b, d, i). From these and other tested examples,

99

co-skeletons: consistent curve skeletons for shape families

a) Liu & Zhang [94]

g) Li et al. [91]

b) Lien et al. [92]

h) Lee et al. [86, 87]

c) Attene et al. [4]

i) Reniers et al. [120]

d) Tierny et al. [160]

j) Reniers et al. [121]

e) Reniers et al. [121]

k) Feng et al. [46]

f) Feng et al. [46]

Our method (MFC)

Our method (MFC) Our method (MC)

Our method (MC)

Figure 6.12: Comparison of our co-skeleton segmentation using MC and MCF
skeletons with nine other segmentation methods.

we noticed that our segmentation method produces results most similar
to the skeleton-cut method of Feng et al. (see Figure 6.12 f, k). This can
be explained by the fact that both methods optimize for smooth cuts,
though with di�erent mechanisms (Feng et al. use geodesic tracing; we
use graph cuts). Also, both methods use skeletons to drive the segmen-
tation. However, while we use curve skeletons which, as explained in
Section 6.2 are simple and fast to compute, in particular by the MC and
MCF methods that we use here, Feng et al. use surface skeletons, which
are considerably slower and more complex to compute and analyze.

Figure 6.12 shows an additional insight: We see that our segmenta-
tions obtained by skeletons computed with two quite di�erent methods
(MC and MCF) are very similar. This is due to the fact that we do not
use the raw skeletons for segmentation, but the co-skeletons which,
as explained, stabilize skeletons over an entire family by removing
outlier details. Further, this suggests that our segmentation approach
based on co-skeletons does not strongly depend on the underlying
skeletonization method. Hence, one can obtain similar segmentation

100

6.6 discussion and conclusion

results by substituting MC or MCF with other, better (e.g., faster and/or
easier to use) skeletonization methods.

Shape Blending: Besides shape segmentation, other applications also
bene�t from co-skeletons, including shape blending. Raw skeletons ex-
tracted using even state-of-the-art algorithms are typically inadequate
for shape blending, due to the lack of semantic information on skeleton
edges and/or over-sampling. To use skeletons, manual post-processing
for cleaning and/or annotation is typically needed. In contrast, our co-
skeletons can be directly used for shape blending.

We show this by using our co-skeletons to perform shape blending
by the technique of Alhashim et al. [2]. We �rst use skeleton edges to
reconstruct the spatio-structural graph, and augment this graph by con-
structing morphing paths between semantically-correlated parts/edges
of di�erent shapes of a family. This allows us to keep track of evolving
states of the shapes and maintain the topological constraints needed for
blending. Next, we select from the obtained results those which show
plausible blends and combinations (this selection is done by the user
based on what one actually deems to be plausible for a given application
context). Finally, we reconstruct shapes based on the structure graphs
through the feature transform (FT) mapping from skeleton edges to the
shape faces. This yields new blended shapes within the input family.
Figure 6.13 shows several examples of blended shapes, demonstrating
the e�ectiveness of our co-skeletons for family-based shape blending.

Figure 6.13: Evolution results on the fourleg dataset. Using our co-skeletons, we
can easily generate new shapes by evolving di�erent combinations
across each family. See Figure 6.2 for the initial shapes in the family.

6.6 discussion and conclusion

We have presented a novel approach to extracting co-skeletons of a
given set of related shapes. In contrast to per-shape skeletons, our co-
skeletons have similar quality, measured in terms of simpli�cation level,
centeredness, and preservation of details across all considered shapes in
a family. Our method has two main use cases. First, we reduce the de-

101

co-skeletons: consistent curve skeletons for shape families

pendence on the availability of a high-quality skeletonization method,
which may not be easy to set up for any set of shapes. Secondly, we
maximize the likelihood that the user obtains consistent skeletons over
similar-type shapes with no additional parameter tweaking e�ort. We
show the added value of co-skeletons on two applications: shape co-
segmentation and shape blending.

While e�ective, easy to use, fast, and generic, our method has some
limitations. First, we use multiple surface-based descriptors to infer the
semantic relationships between skeleton edges by ‘mapping’ such edges
to similar surface parts. Yet, the exact relation between speci�c types
of skeleton fragments (e.g., branch ends, junctions, or high-curvature
zones) and speci�c surface details (e.g. edges, dents, tubular structures,
or other detail types) is not yet fully clear. We aim to study this relation-
ship in more detail. Secondly, we used two curve-skeletonization meth-
ods [5, 148] to extract initial skeletons. It is important to study how our
co-skeleton proposal behaves when using other curve-skeletonization
methods (for a candidate set, see [144, 149]), so as to increase the con-
�dence that our co-skeleton quality does not (strongly) depend on the
choice of the underlying skeletonization method. In the long run, we
aim to remove this dependency on a speci�c skeletonization method
by extracting co-skeletons directly from a shape set. Thirdly, we used
here a set of 5 shape descriptors (Section 6.3) which are well-known
for related tasks in shape analysis literature. Whether other descriptors
would perform better for our task, is an open question.

Concerning the comparison with unsupervised shape segmentation
methods, we should say that our co-segmentation bene�ts from addi-
tional information, present in the number of shape parts which is set by
the user, which the aforementioned methods do not have. This shows,
on the one hand, that adding such semantic information (which is avail-
able once we consider an entire shape family) bene�ts segmentation.
On the other hand, this should not be seen as a limitation of unsuper-
vised methods since these methods do not utilize such extra informa-
tion.

Our co-skeleton validation is currently based on only two applica-
tions: shape co-segmentation and blending. While the initial results
presented here are encouraging, it is of high added value to examine
how co-skeletons work for other applications such as shape animation
and morphing, and to evaluate our co-skeletons on other benchmark
datasets, such as [84]. In this context, a speci�c application where co-
skeletons could be used is precisely the creation of overviews of large
3D shape databases. As an alternative to the engineered features ex-
plored in Chapter 3, one could use features extracted from co-skeletons.

102

7C O N C L U S I O N

We conclude here our work on analysis and exploration of large 3D
shape databases by revisiting the main research question listed in Chap-
ter 1, and a discussion on the methods, limits, and further extension of
our proposed answers.

Our main research question — how to help users in exploring, ex-
amining, and analyzing shapes and their families present in large 3D
collections? — was addressed by considering separately its three parts
(exploration, examination, and analysis). We discuss below our answers
and �ndings to each of these parts.

7.1 shape exploration

We �rst focused on this research question since, we argue, creating a
good overview of a 3D shape database is the ‘entry point’ to motivate
a user to further freely explore such data. As an underlying technique
for this overview, we used the framework provided by dimensionality
reduction, where we describe every 3D shape by a high dimensional
feature vector and next project all vectors of all shapes in a collection
to a two-dimensional scatterplot. Given that a good-quality projection
will place similar 3D shapes close to each other in the 2D space, the
user can next see and explore the structure of a whole 3D database by
interactively exploring the resulting projection, suitably annotated with
3D shape thumbnails and supported by mechanisms such as zooming,
panning, tooltips, and selection. We next proposed two instances of this
framework based on di�erent ways to extract the feature vectors and
project them to 2D, as follows.

In Chapter 3, we extracted features by hand engineering, and pro-
jected them to 2D by t-SNE. The key advantage of this approach is that,
using our visual analytics tools, the user can �rst and foremost see what
is the e�ect of the features used by the projection. In other words, one
can explain why certain shapes were found to be similar to others. Sec-
ondly, the user can interactively drive the construction of the projection
by selecting di�erent groups of features. There is, we believe, great po-
tential for hand engineering feature sets. By using them, one can create
customized views (projections) of the 3D shape database to emphasize,
or on the contrary, to remove, the e�ect captured by certain features.

This strength of the method presented in Chapter 3 is, however, re-
lated to its main weakness: Hand engineered features are quite expen-
sive to compute, especially for high-resolution 3D meshes. Also, fea-
tures of di�erent types can con�ict with each other: some are good to

103

conclusion

separate some types of shapes but bad to separate other shape types.
Moreover, while our feature pre-selection techniques discussed in Chap-
ter 3 signi�cantly reduce the search space for good feature-sets from
the huge set of all possible combinations to more manageable (smaller)
subsets, the space of possibilities is still very high, as it involves also tun-
ing various hyperparameters of the respective feature extractors. Sep-
arately, the t-SNE projection used in Chapter 3, while simple to use, is
quite slow and has a non-deterministic nature which makes it unsuit-
able in practice when one wants to create consecutive, stable, overviews
of the same 3D database.

We address both above problems — feature extraction and feature
projection — in Chapter 4 by using deep learning. For feature extrac-
tion, we leverage PointNet, an existing neural model for shape classi-
�cation. For feature projection, we leverage NNproj, a recent neural
model for generic dimensionality reduction. We present several archi-
tectures that combine the two models to achieve an end-to-end pipeline
for constructing the desired 3D shape database overviews. Qualitative
and quantitative studies show that our proposed pipeline achieves con-
siderably faster execution times (even when considering both inference
and training) than the hand engineered approach in Chapter 3. The re-
sulting overviews, such as the one shown saliently on the cover of this
thesis, are, we believe, of high visual quality, and give a compact but il-
lustrative idea to users of what a 3D shape database contains. Our deep
learning approach inherits also other desirable properties of such mod-
els, such as out-of-sample capability and being usable with minimal ef-
fort.

However, in symmetry with what was said above, the strength of
the method presented in Chapter 4 is also related to its main weakness:
While fast, automatic, and robust, this method is largely operating in a
‘black box’ manner. In contrast to the hand engineered method in Chap-
ter 3, our deep learned models cannot be (easily) explained to the user,
nor can the user (easily) steer a projection towards a di�erent arrange-
ment of the resulting 2D representations. While this is an expected limi-
tation, that we share with other machine learning methods, it leaves the
open question of how one could further unify the �exibility and explain-
ability of the hand-engineered approach with the speed and simplicity
of the deep-learned one.

7.2 shape examination

We take individual 3D shape examination as our second research fo-
cus as, we believe, this task follows immediately and naturally after the
exploration of the entire 3D database overview. We focus here on the
speci�cation of 3D rotations which is, we argue, the key way in which
users examine individual 3D objects in a viewer. We propose in Chap-
ter 5 an addition to traditional trackball methods in the form of a new

104

7.3 shape analysis

rotation mechanism that ‘latches’ automatically along 3D axes inferred
from the projection (silhouette) of a 3D shape viewed from a given view-
point. We propose a way to approximate the computation of such 3D
axes from the computation of the corresponding 2D silhouette skele-
tons, the latter being very fast, robust, precise, and fully automatic. We
achieve a good balance between the computation precision of the re-
sulting 3D axes and the computation speed, both which are necessary
for having an e�ective, respectively e�cient, rotation tool.

We evaluated our new 3D rotation method using a controlled user
study. The results show that, when taken in isolation, our new method
cannot surpass the classical virtual trackball. However, when used
alongside with virtual trackball, our new method brings in added value.
On the conceptual side, our method is, to our knowledge, the �rst time
when 2D image skeletons have been used for 3D interaction tasks. On
the limitation side, there are still several aspects in which our method
needs improvement: Certain 2D skeletal fragments do generate spuri-
ous, or at least, surprising, 3D rotation axes. Related to this, the 3D ro-
tations produced by the 2D skeletons are not always what one would
expect and may, as such, require further �ltering, constraining, or tun-
ing to become more natural to use. Also, identifying more speci�c ma-
nipulation contexts in terms of operations, applications, and/or shapes
where the skeleton based rotation, in combination with virtual trackball
and/or other interaction mechanisms, is an interesting direction for fu-
ture work.

7.3 shape analysis

Shape analysis is actually re�ected in all the earlier chapters of this the-
sis. Indeed, we employ shape features and shape descriptors for shape
exploration of an entire shape collection, respectively shape examina-
tion of a single shape. In Chapter 6, we take the middle road between
these two extremes, and analyze a subset of related shapes from the
perspective of extracting a joint 3D curve skeleton of the entire sub-
set, which we call the co-skeleton. We show how co-skeletons can be
extracted by leveraging existing state-of-the-art methods for extract-
ing individual 3D curve skeletons from each shape after which the
important parts common to, or representative for, the entire shape-
set is generated. Our approach achieves more concise and family-
consistent skeletons when compared to traditional per-shape methods,
and as such, can be seen �rst as a more robust replacement of existing
curve-skeletonization methods. Separately, our approach has the ‘out-
of-sample’ property within a shape family, to use a term employed sev-
eral times during this thesis to express generalization capabilities. This
allows us to use co-skeletons for the robust treatment of shape-sets in
applications such as consistent segmentation.

105

conclusion

Yet, our co-skeleton extraction has some limitations. We use, for
its computation, the shape’s surface descriptors which are similar to
the hand-engineered features discussed above in the context of Chap-
ter 3. As such, co-skeletons are also a�ected by issues such as compu-
tational scalability and sensitivity of the respective descriptor extractor
to several artifacts in the shape representations such as mesh quality or
non-watertight meshes. Additionally, the relationship between surface
patches and skeleton curves is not yet fully clear. More importantly,
while we leverage, as explained, existing curve-skeletonization meth-
ods, it would be conceptually, and also arguably practically, more inter-
esting to extract co-skeletons directly from the 3D shape descriptions.

7.4 future work

Many extensions of our work are possible based on the material pre-
sented in this thesis.

First and foremost, our proposed methods for shape exploration, ex-
amination, and analysis could be organically merged into a single 3D
shape database system together with other traditional methods for
shape analysis and processing. The work�ow of such a system could
start with creating overviews of an entire shape database (Chapters 3
and 4). The user would next zoom-and-pan this overview to �nd a sub-
set of shapes of interest, which s/he could next examine in detail us-
ing the trackball-and-skeleton rotation (Chapter 5). Finally, if desired,
various shape analysis methods could be used on such a subset to fur-
ther process it, e.g., segment the shapes jointly (Chapter 6). The above
steps could be repeated several times and from several starting points,
as needed.

Separately, it is important to underline other ways in which our three
research targets can bene�t from each other. For example, the informa-
tion we get from co-skeletons can be used as features to help build vi-
sual overviews of 3D collections. We can use the cluster information
and shape features extracted during the creation of overviews to auto-
matically identify collections on which we want to run the co-skeleton
analysis. Separately, co-skeletons can help us rotate or align an entire
collection of related shapes rather than manipulate each such shape sep-
arately.

Another future work direction relates the possibilities for generaliza-
tion. Since the methods presented in Chapters 3, 4, and 6 are orthogonal
to each other, the techniques we use for feature extraction, feature ag-
gregation, skeleton extraction, and data projection could be replaced
by other suitable techniques that are better in one desirable aspect,
such as speed, simplicity, or robustness, without a�ecting our proposed
pipelines. Separately, since the deep learning approach in Chapter 4 is
not constrained to 3D shapes, one could readily envisage its adaptation

106

7.4 future work

to handle collections of other media types, such as images, video, or
audio data.

Finally, adding more visual explanations to our results can help our
target users. All our approaches could bene�t from this: Overviews
could be enhanced by explaining better why certain shapes are found to
be similar, thus placed close to each other, in analogy to related work in
dimensionality reduction [100, 141]. Skeleton-based rotations could be
enhanced by showing users more rotation possibilities, and ways to con-
trol these, before and during the rotation execution. Co-skeletons could
be enhanced to show not just the common parts of a family, but the
variance or variation therein as well. Last but not least, explaining the
operation of the deep learning models used to create 3D shape database
overviews is still an open and very actual research problem.

107

B I B L I O G R A P H Y

[1] Aim@Shape. Aim@shape digital shape workbench 5.0, 2019.
http://visionair.ge.imati.cnr.it.

[2] I. Alhashim, H. Li, K. Xu, J. Cao, R. Ma, and H. Zhang. Topology-
varying 3D shape creation via structural blending. ACM Trans.
Graph., 33(4):158:1–158:10, 2014.

[3] N. Amenta, S. Choi, and R. K. Kolluri. The power crust. In Proc.
ACM SMA, pages 249–266, 2001.

[4] M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical mesh
segmentation based on �tting primitives. Visual Computer, 22:
181–193, 2006.

[5] O. K. Au, C. Tai, H. Chu, D. Cohen-Or, and T. Lee. Skeleton extrac-
tion by mesh contraction. ACM Trans. Graph., 27(3):44:1–44:10,
2008.

[6] R. Bade, F. Ritter, and B. Preim. Usability comparison of mouse-
based interaction techniques for predictable 3D rotation. In Proc.
Smart Graphics (SG), pages 138–150, 2005.

[7] I. Baran and J. Popovic. Automatic rigging and animation of 3D
characters. ACM Trans. Graph., 26(3):72, 2007.

[8] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new de-
scriptor for shape matching and object recognition. In Proc. NIPS,
pages 831–837, 2001.

[9] S. Belongie, J. Malik, and J. Puzicha. Shape matching and ob-
ject recognition using shape contexts. IEEE TPAMI, 24(4):509–522,
2002.

[10] B. Belousov. Di�erence between two rotation matrices, 2016.
http://www.boris-belousov.net/2016/12/01/quat-dist.

[11] M. Ben-Chen and C. Gotsman. Characterizing shape using con-
formal factors. In Proc. 3DOR, pages 1–8, 2008.

[12] L. P. Berg and J. M. Vance. Industry use of virtual reality in prod-
uct design and manufacturing: a survey. Virtual Reality, 21:1–17,
2017.

[13] S. Bian, A. Zheng, E. Chaudhry, L. You, and J. J. Zhang. Automatic
generation of dynamic skin deformation for animated characters.
Symmetry, 10(4), 2018.

109

http://visionair.ge.imati.cnr.it
http://www.boris-belousov.net/2016/12/01/quat-dist

Bibliography

[14] H. Blum. A transformation for extracting new descriptors of
shape. In Models for the Perception of Speech and Visual Form,
pages 362–381. MIT Press, 1967.

[15] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-
imization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell.,
23(11):1222–1239, 2001.

[16] M. Bruls, K. Huizing, and J. J. van Wijk. Squari�ed treemaps. In
Proc. Data Visualization, pages 33–42, 2000.

[17] B. Bustos, D. Keim, D. Saupe, T. Schreck, and D. Vranic. Feature-
based similarity search in 3D object databases. ACMComput Surv,
37(4):345–387, 2005.

[18] T. T. Cao, K. Tang, A. Mohamed, and T. S. Tan. Parallel banding
algorithm to compute exact distance transform with the GPU.
In Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and
Games, pages 83–90, 2010.

[19] M. Chaouch and A. Verroust-Blondet. Alignment of 3D models.
Graphical Models, 71(2):63–76, 2009.

[20] S. Chaudhuri, E. Kalogerakis, L. J. Guibas, and V. Koltun. Proba-
bilistic reasoning for assembly-based 3D modeling. ACM Trans
Graph, 30(4), 2011.

[21] L. Chen, G. Zeng, Q. Zhang, and X. Chen. Tree-lstm guided at-
tention pooling of dcnn for semantic sentence modeling. In In-
ternational Conference on 5G for Future Wireless Networks, pages
52–59. Springer, 2017.

[22] L. Chen, G. Zeng, Q. Zhang, X. Chen, and D. Wu. Question an-
swering over knowledgebase with attention-based lstm networks
and knowledge embeddings. In 2017 IEEE 16th International Con-
ference on Cognitive Informatics & Cognitive Computing (ICCI*
CC), pages 243–246. IEEE, 2017.

[23] M. Chen, S. Mountford, and A. Sellen. A study in interactive 3D
rotation using 2D control devices. Comput Graph Forum, 22(4):
121–129, 1998.

[24] S. Chen, L. Zheng, Y. Zhang, Z. Sun, and K. Xu. Veram: View-
enhanced recurrent attention model for 3d shape classi�cation.
IEEE transactions on visualization and computer graphics, 25(12):
3244–3257, 2018.

[25] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark for
3D mesh segmentation. ACM Trans Graph, 28(3):1–12, 2009.

110

Bibliography

[26] X. Chen, G. Zeng, Q. Zhang, L. Chen, and Z. Wang. Classi�cation
of medical consultation text using mobile agent system based on
naïve bayes classi�er. In International Conference on 5G for Future
Wireless Networks, pages 371–384. Springer, 2017.

[27] X. Chen, G. Zeng, Q. Zhang, L. Chen, and D. Wu. A fuzzy ontol-
ogy for geography knowledge of china’s college entrance exami-
nation. In 2017 IEEE 16th International Conference on Cognitive
Informatics & Cognitive Computing (ICCI* CC), pages 237–242.
IEEE, 2017.

[28] X. Chen, G. Zeng, J. Kosinka, and A. Telea. Visual exploration of
3d shape databases via feature selection. In Proceedings of the 15th
International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications - Volume 3: IVAPP,,
pages 42–53. INSTICC, SciTePress, 2020. isbn 978-989-758-402-
2.

[29] X. Chen., G. Zeng, J. Kosinka, and A. Telea. Scalable visual explo-
ration of 3d shape databases via feature synthesis and selection.
InCommunications in Computer and Information Sciences (submit-
ted). Springer, 2020.

[30] N. Cornea, D. Silver, and P. Min. Curve-skeleton properties, ap-
plications, and algorithms. IEEE TVCG, 13(3):597–615, 2007.

[31] L. Costa and R. Cesar. Shape analysis and classi�cation. CRC
Press, 2000.

[32] C. M. Cyr and B. B. Kimia. 3D object recognition using shape
similiarity-based aspect graph. In Proc. IEEE ICCV, pages 254–
261, 2001.

[33] K. Daniels, G. Grinstein, A. Russell, and M. Glidden. Properties
of normalized radial visualizations. Information Visualization, 11
(4):273–300, 2012.

[34] L. Di Caro, V. Frias-Martinez, and E. Frias-Martinez. Analyzing
the role of dimension arrangement for data visualization in rad-
viz. In Paci�c-Asia Conference on Knowledge Discovery and Data
Mining, pages 125–132. Springer, 2010.

[35] J. Dubinski. When galaxies collide. Astronomy Now, 15(8):56–58,
2001.

[36] K. L. Du�n and W. A. Barrett. Spiders: A new user interface for
rotation and visualization of N-dimensional point sets. In Proc.
IEEE Visualization, pages 205–211, 1994.

[37] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and M. Alexa.
Sketch-based shape retrieval. ACM Trans Graph, 31(4), 2012.

111

Bibliography

[38] M. Emory and G. Iaccarino. Visualizing turbulence anisotropy
in the spatial domain with componentality contours. Cen-
ter for Turbulence Research Annual Research Briefs, pages 123–
138, 2014. url https://web.stanford.edu/group/ctr/
ResBriefs/2014/14_emory.pdf.

[39] J. D. et al. GRAVITAS: Portraits of a universe in mo-
tion, 2006. https://www.cita.utoronto.ca/~dubinski/
galaxydynamics/gravitas.html.

[40] D. Engel, L. Hüttenberger, and B. Hamann. A survey of di-
mension reduction methods for high-dimensional data analy-
sis and visualization. In Visualization of Large and Unstruc-
tured Data Sets: Applications in Geospatial Planning, Modeling
and Engineering-Proceedings of IRTG 1131 Workshop 2011. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[41] O. Ersoy, C. Hurter, F. Paulovich, G. Cantareiro, and A. Telea.
Skeleton-based edge bundling for graph visualization. IEEE
TVCG, 17(2):2364 – 2373, 2011.

[42] M. Espadoto, R. Martins, A. Kerren, N. Hirata, and A. Telea. To-
ward a quantitative survey of dimension reduction techniques.
IEEE TVCG, 27(3):2153–2173, 2019.

[43] M. Espadoto, N. Hirata, and A. Telea. Deep learning multidimen-
sional projections. J Inf Vis, 9(3):247–269, 2020.

[44] A. Falcão, J. Stol�, and R. Lotufo. The image foresting transform:
Theory, algorithms, and applications. IEEE TPAMI, 26(1):19–29,
2004.

[45] A. Falcao, C. Feng, J. Kustra, and A. Telea. Multiscale 2D medial
axes and 3D surface skeletons by the image foresting transform.
In P. Saha, G. Borgefors, and G. S. di Baja, editors, Skeletonization
– Theory, Methods, and Applications. Elsevier, 2017. Ch. 2.

[46] C. Feng, A. C. Jalba, and A. C. Telea. Part-based segmentation
by skeleton cut space analysis. In J. A. Benediktsson, J. Chanus-
sot, L. Najman, and H. Talbot, editors, Mathematical Morphology
and Its Applications to Signal and Image Processing, pages 607–618,
Cham, 2015. Springer International Publishing. isbn 978-3-319-
18720-4.

[47] C. Feng, A. C. Jalba, and A. C. Telea. Improved part-based seg-
mentation of voxel shapes by skeleton cut spaces. Mathematical
Morphology –Theory and Applications, 1(1), 2016.

[48] N. Fish, M. Averkiou, O. van Kaick, O. Sorkine-Hornung,
D. Cohen-Or, and N. J. Mitra. Meta-representation of shape fam-
ilies. ACM Trans. Graph., 33(4):34:1–34:11, 2014.

112

https://web.stanford.edu/group/ctr/ResBriefs/2014/14_emory.pdf
https://web.stanford.edu/group/ctr/ResBriefs/2014/14_emory.pdf
https://www.cita.utoronto.ca/~dubinski/galaxydynamics/gravitas.html
https://www.cita.utoronto.ca/~dubinski/galaxydynamics/gravitas.html

Bibliography

[49] E. Frokjaer, M. Hertzum, and K. Hornbaek. Measuring usability:
Are e�ectiveness, e�ciency, and satisfaction really correlated? In
Proc. CHI, pages 345–352, 2000.

[50] A. Golovinskiy and T. A. Funkhouser. Consistent segmentation
of 3D models. Computers & Graphics, 33(3):262–269, 2009.

[51] J. Guo, Y. Wang, P. Du, and L. Yu. A novel multi-touch approach
for 3D object free manipulation. In Proc. AniNex, pages 159–172.
Springer, 2017.

[52] K. Guo, D. Zou, and X. Chen. 3D mesh labeling via deep con-
volutional neural networks. ACM Trans. Graph., 35(1):3:1–3:12,
2015.

[53] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun. Deep
learning for 3D point clouds: A survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2019.

[54] M. Hancock, S. Carpendale, and A. Cockburn. Shallow-depth 3D
interaction: design and evaluation of one-, two- and three-touch
techniques. In Proc. ACM CHI, pages 1147–1156, 2007.

[55] M. Hancock, T. ten Cate, S. Carpendale, and T. Isenberg. Support-
ing sandtray therapy on an interactive tabletop. In Proc. ACM
CHI, pages 2133–2142, 2010.

[56] K. Henriksen, J. Sporring, and K. Hornbaek. Virtual trackballs
revisited. IEEE TVCG, 10(2):206–216, 2004.

[57] W. H. Hesselink and J. B. T. M. Roerdink. Euclidean skeletons of
digital image and volume data in linear time by the integer medial
axis transform. IEEE TPAMI, 30(12):2204–2217, 2008.

[58] M. Hilaga, Y. Shinagawa, T. Komura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes.
In Proc. ACM SIGGRAPH, pages 203–212, 2001.

[59] K. Hinckley, J. Tullio, R. Pausch, D. Pro�tt, and N. Kassell. Usabil-
ity analysis of 3D rotation techniques. In Proc. UIST, pages 1–10,
1997.

[60] P. Ho�man, G. Grinstein, K. Marx, I. Grosse, and E. Stanley. Dna
visual and analytic data mining. In Proceedings. Visualization’97
(Cat. No. 97CB36155), pages 437–441. IEEE, 1997.

[61] R. Hu, L. Fan, and L. Liu. Co-segmentation of 3D shapes via sub-
space clustering. Comput. Graph. Forum, 31(5):1703–1713, 2012.

[62] H. C. Huang, Y. Y. Chuang, and C. S. Chen. A�nity aggregation
for spectral clustering. In Computer Vision and Pattern Recogni-
tion (CVPR), pages 773–780. IEEE, 2012.

113

Bibliography

[63] J. Hughes, A. van Dam, M. McGuire, D. Sklar, J. Foley, S. Feiner,
and K. Akeley. Computer Graphics: Principles and Practice.
Addison-Wesley Professional, 3 edition, 2013.

[64] J. Hultquist. A virtual trackball. In Graphics Gems, volume 1,
pages 462–463, 1990.

[65] S. Ingram, T. Munzner, and M. Olano. Glimmer: Multilevel mds on
the gpu. IEEE Transactions on Visualization and Computer Graph-
ics, 15(2):249–261, 2008.

[66] ITI DB. The informatics & telematics institute database, 2019.
http://3d-search.iti.gr/3DSearch/index.html.

[67] B. Jackson, T. Lau, D. Schroeder, K. Toussaint, and D. Keefe. A
lightweight tangible 3D interface for interactive visualization of
thin �ber structures. IEEE TVCG, 19(12):2802–2809, 2013.

[68] I. Jacob and J. Oliver. Evaluation of techniques for specifying 3D
rotations with a 2D input device. In Proc. HCI, pages 63–76, 1995.

[69] A. Jalba, J. Kustra, and A. Telea. Surface and curve skeletonization
of large 3D models on the GPU. IEEE TPAMI, 35(6):1495–1508,
2013.

[70] A. Jalba, J. Kustra, and A. Telea. Computing surface and curve
skeletons from large meshes on the GPU. IEEE TPAMI, 35(6):783–
799, 2013.

[71] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G.
Nonato. Local a�ne multidimensional projection. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):2563–2571,
2011.

[72] O. van Kaick, K. Xu, H. Zhang, Y. Wang, S. Sun, A. Shamir, and
D. Cohen-Or. Co-hierarchical analysis of shape structures. ACM
Trans. Graph., 32(4):69:1–69:10, 2013.

[73] E. Kain. The 20 best-selling video games of 2019. Forbes, January
2019.

[74] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D mesh
segmentation and labeling. ACM Trans. Graph., 29(4):102:1–
102:12, 2010.

[75] E. Kandogan. Star coordinates: A multi-dimensional visualiza-
tion technique with uniform treatment of dimensions. In Proceed-
ings of the IEEE Information Visualization Symposium, volume 650,
page 22. Citeseer, 2000.

114

http://3d-search.iti.gr/3DSearch/index.html

Bibliography

[76] E. Kandogan. Visualizing multi-dimensional clusters, trends, and
outliers using star coordinates. In Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data
mining, pages 107–116, 2001.

[77] D. Kaye and I. Ivrissimtzis. Mesh alignment using grid based PCA.
In Proc. CGTA, pages 174–181, 2015.

[78] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi, and T. A.
Funkhouser. Learning part-based templates from large collec-
tions of 3D shapes. ACM Trans. Graph., 32(4):70:1–70:12, 2013.

[79] C. Kirbas and F. Quek. Vessel extraction techniques and algo-
rithms: a survey. In Proc. Third IEEE Symposium on Bioinformatics
and Bioengineering, 2003.

[80] J. Kustra, A. Jalba, and A. Telea. Probabilistic view-based curve
skeleton computation on the GPU. In Proc. VISAPP. SciTePress,
2013.

[81] J. Kustra, A. Jalba, and A. Telea. Robust segmentation of multiple
intersecting manifolds from unoriented noisy point clouds. Comp
Graph Forum, 33(4):73–87, 2014.

[82] H. Laga, M. Mortara, and M. Spagnuolo. Geometry and context
for semantic correspondences and functionality recognition in
man-made 3D shapes. ACM Trans. Graph., 32(5):150:1–150:16,
2013.

[83] H. Laga, Y. Guo, H. Tabia, R. B. Fisher, and M. Bennamoun. 3D
Shape Analysis: Fundamentals, Theory, and Applications. Wiley,
2019.

[84] G. Lavoué, J. P. Vandeborre, H. Benhabiles, M. Daoudi, K. Hueb-
ner, M. Mortara, and M. Spagnuolo. SHREC’12 track: 3D mesh
segmentation. In Proc. 3DOR, 2012.

[85] B. H. Le and Z. Deng. Robust and accurate skeletal rigging from
mesh sequences. ACMTrans.Graph., 33(4):84:1–84:10, 2014.

[86] Y. Lee, S. Lee, A. Shamir, and D. Cohen-Or. Intelligent mesh scis-
soring using 3D snakes. In Proc. IEEE Paci�c Graphics, pages 279–
287, 2004.

[87] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H. P. Seidel. Mesh
scissoring with minima rule and part salience. CAGD, 22:444–
465, 2005.

[88] D. J. Lehmann and H. Theisel. Orthographic star coordinates.
IEEE Transactions on Visualization and Computer Graphics, 19(12):
2615–2624, 2013.

115

Bibliography

[89] D. J. Lehmann and H. Theisel. Optimal sets of projections of high-
dimensional data. IEEE transactions on visualization and computer
graphics, 22(1):609–618, 2015.

[90] B. Li, Y. Lu, C. Lib, A. Godil, T. Schreck, M. Aono, M. Burtscher,
Q. Chen, N. K. C. amd Bin Fang, H. Fu, T. Furuya, H. Li, J. Liu, H. Jo-
han, R. Kosaka, H. Koyanagi, R. Ohbuchi, and C. Zou. A compar-
ison of 3D shape retrieval methods based on a large-scale bench-
mark supporting multimodal queries. CVIU, 131:1–27, 2015.

[91] X. Li, T. W. Woon, T. S. Tan, and Z. Huang. Decomposing polygon
meshes for interactive applications. In Proc. ACM SI3D, pages 35–
42, 2001.

[92] J. Lien, J. Keyser, and N. Amato. Simultaneous shape decomposi-
tion and skeletonization. In Proc. ACM SPM, pages 219–228, 2006.

[93] P. Liu, F. Wu, W. Ma, R. Liang, and M. Ouhyoung. Automatic
animation skeleton construction using repulsive force �eld. In
Proc. IEEE Paci�c Graphics, pages 409–413, 2003.

[94] R. Liu and H. Zhang. Segmentation of 3D meshes through spec-
tral clustering. In Proc. IEEE Paci�c Graphics, pages 298–305, 2004.

[95] M. Livesu, F. Guggeri, and R. Scateni. Reconstructing the curve-
skeletons of 3D shapes using the visual hull. IEEE TVCG, 18(11):
1891–1901, 2012.

[96] U. von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007.

[97] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Jour-
nal of machine learning research, 9(Nov):2579–2605, 2008.

[98] A. Manzanera, T. M. Bernard, F. J. Prêteux, and B. Longuet. Medial
faces from a concise 3D thinning algorithm. In Proc. ICCV, pages
337–343, 1999.

[99] R. Martins, D. Coimbra, R. Minghim, and A. Telea. Visual analy-
sis of dimensionality reduction quality for parameterized projec-
tions. Computers & Graphics, 41:26–42, 2014.

[100] R. M. Martins, R. Minghim, A. C. Telea, et al. Explaining neigh-
borhood preservation for multidimensional projections. InCGVC,
pages 7–14, 2015.

[101] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In 2015 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS),
pages 922–928. IEEE, 2015.

116

Bibliography

[102] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform man-
ifold approximation and projection for dimension reduction.
arXiv:1802.03426, 2018.

[103] A. Meijster, J. Roerdink, and W. Hesselink. A general algorithm
for computing distance transforms in linear time. In Mathemati-
cal Morphology and its Applications to Image and Signal Processing,
pages 331–340. Springer, 2002.

[104] NASA. Nasa 3D resources, 2019. https://nasa3d.arc.nasa.
gov.

[105] T. S. Newman and H. Yi. A survey of the marching cubes algo-
rithm. Computers & Graphics, 30(5):854–879, 2006.

[106] L. Nonato and M. Aupetit. Multidimensional projection for visual
analytics: Linking techniques with distortions, tasks, and layout
enrichment. IEEE TVCG, 2018. DOI:10.1109/TVCG.2018.2846735.

[107] L. Nováková and O. Štepánková. Multidimensional clusters in
radviz. In Proceedings of the 6th WSEAS International Conference
on Simulation, Modelling and Optimization, pages 470–475, 2006.

[108] R. L. Ogniewicz and O. Kübler. Hierarchic voronoi skeletons. Pat-
tern recognition, 28(3):343–359, 1995.

[109] T. Partala. Controlling a single 3D object: Viewpoint metaphors,
speed, and subjective satisfaction. In Proc. INTERACT, pages 536–
543, 1999.

[110] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An impera-
tive style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[111] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz.
Least square projection: A fast high-precision multidimensional
projection technique and its application to document mapping.
IEEE TVCG, 14(3):564–575, 2008.

[112] F. V. Paulovich, C. T. Silva, and L. G. Nonato. Two-phase mapping
for projecting massive data sets. IEEE Transactions on Visualiza-
tion and Computer Graphics, 16(6):1281–1290, 2010.

117

https://nasa3d.arc.nasa.gov
https://nasa3d.arc.nasa.gov

Bibliography

[113] G. Peyre and L. Cohen. Geodesic computations for fast and ac-
curate surface remeshing and parameterization. Progress in Non-
linear Di�erential Equations and Their Applications, 63:151–171,
2005.

[114] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eise-
mann, and A. Vilanova. Approximated and user steerable t-SNE
for progressive visual analytics. IEEE TVCG, 23(7):1739–1752,
2017.

[115] M. Potmesil. Generating octree models of 3d objects from their
silhouettes in a sequence of images. Computer Vision, Graphics,
and Image Processing, 40(1):1–29, 1987.

[116] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning
on point sets for 3d classi�cation and segmentation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[117] P. E. Rauber, R. R. O. da Silva, S. Feringa, M. E. Celebi, A. X. Fal-
cão, and A. C. Telea. Interactive image feature selection aided by
dimensionality reduction. In Proc. EuroVA, pages 19–23, 2015.

[118] D. Reniers, J. J. van Wijk, and A. Telea. Computing multiscale
skeletons of genus 0 objects using a global importance measure.
IEEE TVCG, 14(2):355–368, 2008.

[119] D. Reniers and A. Telea. Skeleton-based hierarchical shape seg-
mentation. In Proc. SMI, pages 179–188, 2007.

[120] D. Reniers and A. Telea. Hierarchical part-type segmentation us-
ing voxel-based curve skeletons. Visual Computer, 24:383–395,
2008.

[121] D. Reniers and A. Telea. Part-type segmentation of articulated
voxel shapes using the junction rule. CGF, 27(3):1845–1852, 2008.

[122] A. A. G. Requicha and J. R. Rossignac. Solid modeling and beyond.
IEEE Computer Graphics and Applications, 12(5):31–44, 1992. doi
10.1109/38.156011.

[123] R. S. V. Rodrigues, J. F. M. Morgado, and A. J. P. Gomes. Part-based
mesh segmentation: A survey. CompGraph Forum, 37(6):235–274,
2018.

[124] A. Rosenfeld and J. Pfaltz. Distance functions in digital pictures.
Patt Recogn, 1:33–61, 1968.

[125] J. Rossignac. Interactive exploration of distributed 3D databases
over the internet. In Proc. IEEE CGI, 1998.

118

http://dx.doi.org/10.1109/38.156011

Bibliography

[126] R. Rostami, F. S. Bashiri, B. Rostami, and Z. Yu. A survey on
data?driven 3D shape descriptors. Computer Graphics Forum, 38
(1):356–393, 2019.

[127] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance
as a metric for image retrieval. Intl J Computer Vision, 40(2):99–
121, 2000.

[128] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of the 27th an-
nual conference on Computer graphics and interactive techniques,
pages 343–352, 2000.

[129] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms
(FPFH) for 3D registration. In Proc. IEEE Intl. Conf. on Robotics and
Automation, pages 3212–3217, 2009.

[130] ShapeNet. ShapeNet online repository. https://www.shapenet.
org, 2019.

[131] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh par-
titioning and skeletonisation using the shape diameter function.
The Visual Computer, 24(4):249–262, 2008.

[132] L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang.
Contextual part analogies in 3D objects. Intl J on Comp Vision,
89(1-2):309–326, 2010.

[133] Y. T. Shen, D. Y. Chen, X. P. Tian, and M. Ouhyoung. 3d model
search engine based on light�eld descriptors. In Eurographics
2003 - Posters. Eurographics Association, 2003. doi 10.2312/egp.
20031031.

[134] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. The Princeton
shape benchmark. In Proc. SMI, pages 167–178, 2004. http://
shape.cs.princeton.edu/benchmark.

[135] B. Shneiderman. The eyes have it: A task by data type taxon-
omy for information visualizations. In Proc. IEEE Symp. on Visual
Languages, pages 336–343, 1996.

[136] K. Shoemake. Arcball: A user interface for specifying three-
dimensional orientation using a mouse. In Proc. Graphics Inter-
face, 1992.

[137] SHREC Committee. SHREC: Shape retrieval challenge, 2021.
https://www.shrec.net.

[138] E. Shtrom, G. Leifman, and A. Tal. Saliency detection in large
point sets. In Proc. IEEE ICCV, pages 3591–3598, 2013.

119

https://www.shapenet.org
https://www.shapenet.org
http://dx.doi.org/10.2312/egp.20031031
http://dx.doi.org/10.2312/egp.20031031
http://shape.cs.princeton.edu/benchmark
http://shape.cs.princeton.edu/benchmark
https://www.shrec.net

Bibliography

[139] K. Siddiqi and S. Pizer. Medial Representations: Mathematics, Al-
gorithms and Applications. Springer, 2008.

[140] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or.
Unsupervised co-segmentation of a set of shapes via descriptor-
space spectral clustering. ACM Trans Graph, 30(6):126:1–126:9,
2011.

[141] R. R. O. D. Silva, P. E. Rauber, R. M. Martins, R. Minghim, and A. C.
Telea. Attribute-based visual explanation of multidimensional
projections. In Eurovis Workshop on Visual Analytics, 2015.

[142] R. R. da Silva, P. E. Rauber, and A. C. Telea. Beyond the third
dimension: Visualizing high-dimensional data with projections.
Computing in Science & Engineering, 18(5):98–107, 2016.

[143] A. Sobiecki, H. Yasan, A. Jalba, and A. Telea. Qualitative compari-
son of contraction-based curve skeletonization methods. In Proc.
ISMM. Springer, 2013.

[144] A. Sobiecki, A. Jalba, and A. Telea. Comparison of curve and
surface skeletonization methods for voxel shapes. Patt Rec Lett,
47:147–156, 2014.

[145] C. O. S. Sorzano, J. Vargas, and A. P. Montano. A survey of dimen-
sionality reduction techniques. arXiv preprint arXiv:1403.2877,
2014.

[146] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Pro-
ceedings of the IEEE International Conference on Computer Vision
(ICCV), December 2015.

[147] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view
convolutional neural networks for 3D shape recognition. In Proc.
IEEE ICCV, pages 945–953, 2015.

[148] A. Tagliasacchi, I. Alhashim, M. Olson, and H. Zhang. Mean cur-
vature skeletons. Comp. Graph. Forum, 31(5):1735–1744, 2012.

[149] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and
A. Telea. 3D skeletons: A state-of-the-art report. Comp Graph
Forum, 35(2):573–597, 2016.

[150] J. Tangelder and R. Veltkamp. A survey of content based 3D shape
retrieval methods. Multimedia Tools and Applications, 39(3):441–
471, 2008.

[151] F. Tasse, J. Kosinka, and N. Dodgson. Cluster-based point set
saliency. In Proc. IEEE ICCV, pages 163–171, 2015.

120

Bibliography

[152] G. Taubin. Estimating the tensor of curvature of a surface from
a polyhedral approximation. In Proceedings of the Fifth Interna-
tional Conference on Computer Vision, pages 902–907, 1995.

[153] A. Telea. Feature preserving smoothing of shapes using saliency
skeletons. In Proc. VMLS, pages 136–148. Springer, 2011.

[154] A. Telea. Source code for salience skeleton computation,
2014. https://webspace.science.uu.nl/\simtelea001/
Shapes/Salience.

[155] A. Telea. Data Visualization: Principles and Practice. CRC Press,
2 edition, 2014.

[156] A. Telea. Real-time 2D skeletonization using CUDA, 2019.
http://www.staff.science.uu.nl/\simtelea001/
Shapes/CUDASkel.

[157] A. Telea and A. Jalba. Voxel-based assessment of printability of
3D shapes. In Proc. ISMM. Springer, 2011.

[158] A. Telea and J. J. van Wijk. An augmented fast marching method
for computing skeletons and centerlines. In Proc. VisSym, pages
251–259. Springer, 2002.

[159] The Authors. Source code and videos of interactive skeleton-
based axis rotation, 2019. http://www.staff.science.uu.nl/
\simtelea001/Shapes/CUDASkelInteract.

[160] J. Tierny, J. Vandeborre, and M. Daoudi. Topology driven 3D
mesh hierarchical segmentation. In Proc. SMI, pages 215–220,
2007.

[161] S. P. Tiwari, F. Tama, and O. Miyashita. Searching for 3D struc-
tural models from a library of biological shapes using a few 2D
experimental images. BMC Bioinformatics, 19(320), 2018.

[162] W. S. Torgerson. Multidimensional scaling: I. theory and method.
Psychometrika, 17(4):401–419, 1952.

[163] J. Tukey and P. Tukey. Computer graphics and exploratory data
analysis: An introduction. In The Collected Works of John W.
Tukey: Graphics: 1965-1985, 1988.

[164] I. TurboSquid. Turbosquid shape repository, 2019. https://www.
turbosquid.com.

[165] R. Veltkamp and M. Tanase. Content-based image and video re-
trieval. In A Survey of Content-Based Image Retrieval Systems (Ch.
5), pages 47–101. Kluwer, 2002.

121

https://webspace.science.uu.nl/$\sim $telea001/Shapes/Salience
https://webspace.science.uu.nl/$\sim $telea001/Shapes/Salience
http://www.staff.science.uu.nl/$\sim $telea001/Shapes/CUDASkel
http://www.staff.science.uu.nl/$\sim $telea001/Shapes/CUDASkel
http://www.staff.science.uu.nl/$\sim $telea001/Shapes/CUDASkelInteract
http://www.staff.science.uu.nl/$\sim $telea001/Shapes/CUDASkelInteract
https://www.turbosquid.com
https://www.turbosquid.com

Bibliography

[166] V. Verma and J. Snoeyink. Reducing the memory required to �nd
a geodesic shortest path on a large mesh. In Proc. ACMGIS, pages
227–235, 2009.

[167] P. S. Wang, Y. Liu, Y. X. Guo, C. Y. Sun, and X. Tong. O-cnn:
Octree-based convolutional neural networks for 3d shape anal-
ysis. ACM Transactions on Graphics (TOG), 36(4):1–11, 2017.

[168] P. Wang, Y. Gan, P. Shui, F. Yu, Y. Zhang, S. Chen, and Z. Sun.
3d shape segmentation via shape fully convolutional networks.
Comput. Graph., 70:128–139, 2018.

[169] Y. Wang, S. Asa�, O. van Kaick, H. Zhang, D. Cohen-Or, and
B. Chen. Active co-analysis of a set of shapes. ACM ToG, 31
(6):165:1–10, 2012.

[170] M. Wattenberg. How to use t-SNE e�ectively, 2016. https://
distill.pub/2016/misread-tsne.

[171] L. Wilkinson, A. Anand, and R. Grossman. High-dimensional vi-
sual analytics: Interactive exploration guided by pairwise views
of point distributions. IEEE TVCG, 12(6):1363–1372, 2006.

[172] H. Y. Wu. 3D Visual Shape Processing based on Discrete Di�erential
Geometry. Lambert Academic Publishing, 2016.

[173] Z. Wu, M. Zeng, F. Qin, Y. Wang, and J. Kosinka. Active 3-d shape
cosegmentation with graph convolutional networks. IEEE Com-
puter Graphics and Applications, 39(2):77–88, 2019.

[174] Z. Wu, Y. Wang, R. Shou, B. Chen, and X. Liu. Unsupervised
co-segmentation of 3D shapes via a�nity aggregation spectral
clustering. Computers & Graphics, 37(6):628–637, 2013.

[175] Z. Wu, R. Shou, Y. Wang, and X. Liu. Interactive shape co-
segmentation via label propagation. Computers & Graphics, 38:
248–254, 2014.

[176] Z. Wu, X. Chen, L. Yu, A. Telea, and J. Kosinka. Co-skeletons: Con-
sistent curve skeletons for shape families. Computers & Graphics,
90:62–72, 2020.

[177] K. Xu, H. Zhang, D. Cohen-Or, and B. Chen. Fit and diverse: set
evolution for inspiring 3D shape galleries. ACM ToG, 31(4):57:1–
57:10, 2012.

[178] H. Yan, S. Hu, R. R. Martin, and Y. Yang. Shape deformation using
a skeleton to drive simplex transformations. IEEE TVCG, 14(3):
693–706, 2008.

122

https://distill.pub/2016/misread-tsne
https://distill.pub/2016/misread-tsne

Bibliography

[179] M. Yavartanoo, E. Y. Kim, and K. M. Lee. Spnet: Deep 3D object
classi�cation and retrieval using stereographic projection. In
Asian Conference on Computer Vision, pages 691–706. Springer,
2018.

[180] H. You, Y. Feng, R. Ji, and Y. Gao. Pvnet: A joint convolutional
network of point cloud and multi-view for 3d shape recognition.
In Proceedings of the 26th ACM international conference on Multi-
media, pages 1310–1318, 2018.

[181] L. Yu and T. Isenberg. Exploring one- and two-touch interaction
for 3D scienti�c visualization spaces. Posters of Interactive Table-
tops and Surfaces, Nov. 2009.

[182] L. Yu, P. Svetachov, P. Isenberg, M. H. Everts, and T. Isenberg.
FI3D: Direct-touch interaction for the exploration of 3D scienti�c
visualization spaces. IEEE TVCG, 16(6):1613–1622, 2010.

[183] M. E. Yümer and L. B. Kara. Co-abstraction of shape collections.
ACM Trans. Graph., 31(6):166:1–166:11, 2012.

[184] M. E. Yümer and L. B. Kara. Co-constrained handles for deforma-
tion in shape collections. ACM Trans. Graph., 33(6):187:1–187:11,
2014.

[185] X. Zhai, X. Chen, L. Yu, and A. Telea. Scalable visual exploration
of 3d shape databases via feature synthesis and selection. In
Communications in Computer and Information Sciences (submit-
ted). Springer, 2020.

[186] X. Zhai, X. Chen, L. Yu, and A. Telea. Interactive axis-based 3d
rotation speci�cation using image skeletons. In VISIGRAPP (1:
GRAPP), pages 169–178, 2020.

[187] Y. J. Zhao, D. Shuralyov, and W. Stuerzlinger. Comparison of mul-
tiple 3D rotation methods. In Proc. IEEE VECIMS, pages 19–23,
2011.

[188] N. N. Zhou and Y. L. Deng. Virtual reality: A state-of-the-art sur-
vey. International Journal of Automation and Computing, 6:319–
325, 2009.

123

A C K N O W L E D G M E N T S

I would like to express my deepest appreciation to my mentor Prof. dr.
A.C. Telea, who led me to the amazing �eld of information visualization.
His vision, sincerity, and creativity have deeply inspired me. I would like
to express my special appreciation to my mentor Prof. dr. J. Kosinka,
who helped me build a solid foundation on 3D graphics and helped me
a lot in my research. Thanks to my mentor Prof. dr. G. Zeng. He en-
couraged me to apply for a scholarship for studying abroad. Thanks to
the members/alumni of the SVCG research group, Dr. Zizhao Wu, Dr.
Lingyun Yu, Gerben Hettinga, and Xiaorui Zhai. They helped me a lot
and gave me advice during these years.

Finally, I must show my gratitude to my wife Zhuolin Wang. I want
to thank you for always being there for me. I love you. Will you spend
the rest of your life with me?

125

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired by
Robert Bringhurst’s seminal book on typography “The Elements of Ty-
pographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of April 15, 2021 (classicthesis).

http://code.google.com/p/classicthesis/

	Abstract
	Samenvatting
	Publications
	Contents
	1 Introduction
	2 Related Work
	2.1 Shape representation
	2.2 3D shape collection exploration
	2.3 3D shape examination
	2.4 3D shape analysis
	2.4.1 Medial descriptors
	2.4.2 Histogram-based descriptors

	3 Visual Exploration of 3D Shape Databases via Feature Selection
	3.1 Introduction
	3.2 Related work
	3.3 Proposed method
	3.3.1 Overview
	3.3.2 Preprocessing
	3.3.3 Local feature extraction
	3.3.4 Feature vector computation
	3.3.5 Dimensionality reduction

	3.4 Applications
	3.4.1 Optimal scatterplot creation
	3.4.2 Fast computation of near-optimal projection scatterplot
	3.4.3 User-driven projection engineering
	3.4.4 Use cases

	3.5 Discussion
	3.6 Conclusion

	4 Scalable Visual Exploration of 3D Shape Databases
	4.1 Related work
	4.2 Feature learning method
	4.2.1 Experiments and results
	4.2.2 Computational performance

	4.3 Discussion
	4.4 Conclusion

	5 Skeleton-and-Trackball Rotation for 3D Scenes
	5.1 Introduction
	5.2 Related work
	5.3 Proposed method
	5.3.1 Rotation axis computation
	5.3.2 Controlling the rotation
	5.3.3 Improvements of basic method

	5.4 Formative evaluation
	5.5 Detailed evaluation — User study
	5.5.1 Evaluation design
	5.5.2 Evaluation execution
	5.5.3 Analysis of results
	5.5.3.1 Analysis of timing results
	5.5.3.2 Analysis of questionnaire results

	5.6 Discussion
	5.6.1 Technical aspects
	5.6.2 Usability and applicability

	5.7 Conclusion

	6 Co-skeletons: Consistent Curve Skeletons for Shape Families
	6.1 Introduction
	6.2 Related work
	6.3 Proposed method
	6.4 Skeleton pruning details
	6.4.1 Semantic pruning
	6.4.2 Skeleton pruning

	6.5 Results and applications
	6.5.1 Co-skeleton results
	6.5.2 Co-skeleton applications

	6.6 Discussion and conclusion

	7 Conclusion
	7.1 Shape exploration
	7.2 Shape examination
	7.3 Shape analysis
	7.4 Future work

	Acknowledgments
	Colophon

