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T H E S I S S U M M A RY

The continuously advent of new technologies have made a rich and growing
type of information sources available to analyses and investigation. In this con-
text, multidimensional data analysis is considerably important when dealing
with such large and complex datasets. Among the possibilities when analyzing
such kind of data, applying visualization techniques can help the user find and
understand patters, trends and establish new goals. Some applications exam-
ples of visualization of multidimensional data analysis goes from image classi-
fication, semantic word clouds, cluster analysis of document collection to explo-
ration of multimedia content.

This thesis presents several visualization methods to interactively explore mul-
tidimensional datasets aimed from specialized to casual users, by making use
of both static and dynamic representations created by multidimensional projec-
tions. Firstly, we present multidimensional projection technique which faithfully
preserves distance and can handle any type of high-dimensional data, demon-
strating applications scenarios in both multimedia and text documents collec-
tions. Next, we address the task of interpreting projections in 2D, by calculating
neighborhood errors. Hereafter, we present a set of interactive visualizations
that aim to help users with these tasks by revealing the quality of a projection in
3D, applied in different high dimensional scenarios. In the final part, we address
two different approaches to get insight into multimedia data, in special soccer
sport videos. While the first make use of multidimensional projections, the sec-
ond uses efficient visual metaphor to help non-specialist users in browsing and
getting insights in soccer matches.
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S A M E N VAT T I N G

De voortdurende opmars van nieuwe technologieën hebben een rijk type van in-
formatiebronnen beschikbaar gesteld voor analyse en investigatie. In deze con-
text, multidimensionale dataanalyse is zeer belangrijk wanneer men moet han-
delen met grote en complexe dataverzamelingen. Tussen de mogelijkheden voor
de analyse van dergelijke daa visualisatietechnieken kunnen gebruikers helpen
om relevante patronen en trends te vinden en analyseren. Voorbeelden van
multidimensionale dataanalyse omvatten beeldclassificatie, semantische ’word
clouds’, en clusteranalyses van documentverzamelingen en exploratie van mul-
timediaverzamelingen.

Dit proefschrift presenteert verschillende visualisatiemethodes voor de inter-
actieve exploratie van multidimensionale dataverzamelingen voor beide gespe-
cialiseerde en gewone gebruikers, gebaseerd op statische en dynamische rep-
resentaties gebouwd met multidimensionale projecties. We presenteren eerst
een multidimensionale projectietechniek die afstanden goed bewaart voor alle
types multidimensionale gegevens, met toepassingen in multimedia en text-
document verzamelingen. Verder analyseren wij de taak van projectieinterpre-
tatie in 2D gebaseerd op lokale fouten. Verder presenteren wij een groep in-
teractieve visualisaties die de gebruiker in staat stelt om 3D projecties te inter-
preteren, voor verschillende hoogdimensionale scenario’s. Als laatst presenteren
wij twee aanpakken om inzicht te krijgen in multimediagegevens, zoals sport-
videos, gebaseerd op multidimensionale projecties en ook bijpassende visuele
metaforen om non-specialistische gebruikers in staat te stellen om voetbalwed-
strijden door te bladeren om inzicht te vergaderen.
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R E S U M O D A T E S E

O advento contínuo de novas tecnologias tem criado um tipo rico e crescente
de fontes de informação disponíveis para análise e investigação. Neste contexto,
a análise de dados multidimensional é consideravelmente importante quando
se lida com tais conjuntos de dados grandes e complexos. Dentre as possibil-
idades ao analisar esse tipo de dados, a aplicação de técnicas de visualização
pode auxiliar o usuário a encontrar e entender os padrões, tendências e estab-
elecer novas metas. Alguns exemplos de aplicações de visualização de análise
de dados multidimensional vão de classificação de imagens, nuvens da palavra
semântica, análise de grupos de coleção de documentos à exploração de con-
teúdo multimídia.

Esta tese apresenta vários métodos de visualização para explorar de forma
interativa conjuntos de dados multidimensionais que visam de usuários es-
pecializados aos casuais, fazendo uso de ambas as representações estáticas e
dinâmicas criadas por projeções multidimensionais. Primeiramente, apresenta-
mos uma técnica de projeção multidimensional que preserva fielmente distância
e pode lidar com qualquer tipo de dados de alta-dimensionalidade, demon-
strando cenários de aplicações em ambos os casos de multimídia e coleções de
documentos de texto. Em seguida, abordamos a tarefa de interpretar as pro-
jeções em 2D, calculando erros de vizinhança. Posteriormente, apresentamos
um conjunto de visualizações interativas que visam ajudar os usuários com es-
sas tarefas, revelando a qualidade de uma projeção em 3D, aplicadas em difer-
entes cenários de alta dimensionalidade. Na parte final, discutimos duas aborda-
gens diferentes para obter percepções sobre dados de multimídia, em particular
vídeos de futebol. Enquanto a primeira abordagem usa projeções multidimen-
sionais, a segunda usa uma eficiente metáfora visual para auxiliar os usuários
não especialistas em navegar e obter conhecimento em partidas de futebol.
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1I N T R O D U C T I O N

In the last decade, the informational world has witnessed a major shift in struc-
ture, operation, and focus. This shift can be explained by the improvement and
convergence of a large and hybrid number of technical developments. The ad-
vent of faster, cheaper, and easier to deploy and use sensor technologies, such as
video cameras, GPS devices, medical body signal meters, proximity sensors, and
laser scanners have made a rich and growing type of information sources avail-
able to analysis and investigation. The separate advent of cheap and fast storage
space for data has made it possible to gather immense amounts of data of var-
ious types for the same goals of analysis and investigation. The development
of web-based communication technologies such as web and cloud computing
and software-as-a-service has dramatically increased both the range and band-
width of data-processing functionality available to stakeholders ranging from
large corporations to casual users.

The above developments, which are often known under the generic name
of ‘big data’, has opened many types of applications and investigations which
were, until recent times, either thought to be hardly possible, or else confined to
the realm of a narrow set of technology-intensive organizations. Nowadays, big
data applications such as finding best-purchased products, most-relevant news
articles and blog discussions, trends and outliers in shopping or travel of large
groups of individuals, key topics in healthcare and lifestyle, and the evolution of
stock portfolios under various market, social, and political factors, are available
to both specialized corporate professionals and end users.

However, these unprecedented developments that put data (and, implicitly,
its analysis and interpretation) at the core of modern-day developments and
decision-making, have also created a number of important challenges. At a high
level, such challenges can be captured by the three main characteristics which
are typically associated with big data, often called the big data’s ’3V’: volume, ve-
locity, and variety [156]. Volume refers to the sheer amount of data items that can
be acquired and stored with relatively low cost and effort, but whose processing
and interpretation requires comparatively much larger efforts. Velocity refers to
the speed of change of data that is to be investigated, and is a by-product of
the decreasing acquisition and storage costs, and the increasing simplicity and
throughput of data sensors. As such, velocity can be seen as a multiplier for
the volume factor, which in turn increases the challenges and needs for efficient,
effective, and scalable analysis and interpretations techniques and tools. Finally,
variety refers to the increasing range of types of data that we can acquire, store,
and wish to analyze. These range from classical continuous signal measure-
ments, such as temperature, pressure, speed, velocity, altitude, and heartbeat
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2 introduction

(delivered by typical analogue-to-digital converters and sensors) to text docu-
ments (mined from blogs, Twitter accounts, RSS feeds, and web-crawling tools);
structured relational attributed graphs (mined e.g. from open-source software
repositories such as CVS, Subversion, and Git); and multimedia data involving
collections of text, metadata, video, and audio streams (mined from surveillance
cameras, live TV broadcasts, or web sites such as YouTube, Facebook, or Insta-
gram).

Critical to an efficient and effective use of big data is the availability of equally
efficient and effective technologies to extract so-called actionable insight [120, 143].
Actionable insight can be generically defined as higher-level knowledge, ex-
tracted from ‘raw’ big data collections, which enables organizations to take ac-
tions that optimize activities such as sales, marketing, product optimization, and
reducing cost and turnover times. Clearly, the three characterizing aspects of big
data (volume, velocity, and variety) pose various challenges to extracting such
actionable insight in efficient and effective manners.

Within the above-mentioned challenges, data variety poses several particularly
hard challenges. To explain this, let us consider a large and quickly varying body
of data of the same nature, such as a large stream or time-series of velocity mea-
surements coming from a speed sensor or a real-time stream of intraday stock
prices. While the volume and velocity of such data sources can clearly be very
large, the analysis of the underlying phenomenon captured by the sampled data
is relatively simple. Well-proven and well-understood techniques such as data
resampling, aggregation, summarization, statistical models, and Fourier analy-
sis can be all used to reduce the amount of data to manageable sizes for further
automated or manual analysis, by eliminating redundancies, noise, and keeping
interesting patterns. In contrast, let us consider a collection of multimedia data
involving images, videos, subtitles, and other metadata such as acquisition time,
type of captured content, user comments, and quality rankings, such as e.g. de-
livered by a mainstream source like YouTube or Facebook. While the amount of
bytes in such a multimedia collection may be identical to the amount of bytes
in one of the earlier-described examples of time series, its analysis and inter-
pretation is considerably more challenging. One of the reasons hereof is that
each data item in the aforementioned multimedia collection is characterized by
a large set of measurements, or attributes, whereas one similar data item in the
aforementioned time-series is characterized by a single measurement or attribute.
The second reason is that the various attributes of a single data item in the mul-
timedia dataset example all have different natures, or types, e.g. images, sound,
text, and metadata annotations.

1.1 multidimensional data

The above-mentioned aspects of big data variety can be, technically, captured
by the concept of a multidimensional dataset. Two elements are key to the de-
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scription of such a dataset, as follows. First, an observation (also called sample,
instance, or data point) comprises a set of measurements that pertain to the
same entity. Examples are the video stream, audio stream, subtitles, textual de-
scriptions, and metadata that jointly describe an uploaded video on YouTube or
a TV broadcast of a movie or sports match; or the files, folders, commit logs,
change requests, quality metrics, and bug reports that jointly characterize a soft-
ware project stored in a software repository such as Subversion or Git. Secondly,
as implied by the above definition, each observation is characterized by a num-
ber of measurements (also called attributes, variables, or dimensions). In our
examples these are the characteristics of the video, audio, text, and metadata
that describe an uploaded video; or the programming language, source code,
and number of type of reported bugs or filed change requests that describe a
software project.

In technical terms, multidimensional datasets can be modeled as a set of m ob-
servations, each one being regarded as point in an n-dimensional space. While
elegant, generic, and compact, this data model creates several challenges from
the perspective of extracting actionable insights. Arguably the largest such chal-
lenge relates to the inability of humans to depict spaces having more than 3 or,
at best, 4 dimensions. Indeed, humans live and act in a three-dimensional space;
as such, understanding how data behaves in spaces having considerably more
dimensions is hard, if not even impossible.

1.2 visualizing multidimensional data

One important question to consider is why we would need to depict, or visu-
alize, such high dimensional spaces. It can be argued that, after all, one could
analyze high-dimensional datasets automatically, by running appropriate data
mining or pattern detection tools and techniques, without the need to explic-
itly visualize the high-dimensional data. While this is true, the above reasoning
omits a so-called boostrapping problem: To be able to design an effective pattern
detection or data mining algorithm, one has to understand which patterns are rel-
evant for the higher-level application-dependent goals at hand. Subsequently, in
order to understand the relationships between such patterns and goals, one has
to be able to visualize the patterns and their underlying ground-truth evidence
to detect their characteristics which can, next, be encoded into automatic data
mining or pattern searching algorithms. Separately, to be able to validate, fine
tune, and improve the aforementioned data mining algorithms, one has to be
able to correlate their behavior with the underlying data at hand and available
ground-truth evidence. As such, at the core – or better said, at the inception – of
the design of data mining algorithms for multidimensional datasets is the ability
of humans to directly investigate such datasets.

The direct investigation of large and complex data spaces forms the subject
of specific fields of science. At a high level data visualization is concerned with
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the creation of 2D and 3D depictions of all kinds and types of data collections,
or datasets, with a focus on datasets which are naturally represented by spatial
shapes, such as 2D images, 3D volumetric scans, and the results of 2D and 3D
measurements and simulations of physical processes such as heat dissipation,
mechanical deformation, or fluid flow [198, 217]. At a more specific level, infor-
mation visualization is concerned with the creation of 2D and 3D depictions of
datasets which do not have a natural representation in physical space and/or
whose dimensionality is far higher than three, such as graphs, networks, rela-
tional data tables, or our multidimensional datasets consisting of multimedia or
software measurements introduced earlier [233, 147]. At an even more specific
level, visual analytics refines both data and information visualization by adding
customized workflows, typically based on interactive techniques, to analyze the
depicted data with the aims of forming, (dis)proving, and refining hypotheses
– a process globally known under the name of ‘sensemaking’ [219, 111]. At a
global level, all above-mentioned visualization techniques have the same aims –
making the invisible (data) visible, and supporting activities such as confirming
the known and discovering the unknown (in the data).

Central to the design (and success) of a data visualization application is the
ability of mapping the essential aspects of the dataset(s) under study to recogniz-
able 2D and/or 3D shapes, colors, and patterns. If such patterns are carefully
chosen, users can (a) easily recognize them, even in the presence of considerable
noise and variability, and (b) next map them back to phenomena present in the
original data, by a process known as ‘inverse mapping’ [217]. Much work has
been dedicated to the study of which so-called visual encodings (of data) best
serve specific data analysis tasks for specific kinds of datasets [222]. This work
has given rise to a wealth of specific methods and visualization subfields such
as scalar, vector, and tensor visualization [198]; graph and network drawing [56];
and information visualization [147].

In the above context, multidimensional data poses a particularly hard chal-
lenge to visualization methods. Indeed, as mentioned earlier, finding and con-
structing appropriate visual encodings for observations having tens or even
hundreds of dimensions is hard, since our visual space accommodates just a
few dimensions. The solution of mapping each separate dimension in the origi-
nal dataset to a separate visual channel, such as e.g. shape, position, color, size,
texture, and shading is at best limited to four or five dimensions, since the afore-
mentioned visual channels interfere with each other and are also not equally
suited to map all kinds of attribute types [222].

1.3 multidimensional projections

A different solution to the visualization of multidimensional data is proposed by
the so-called multidimensional projection methods. These methods are also known
under various other names, such as dimensionality reduction and multidimen-
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sional scaling. In a nutshell, such methods take a dataset having hundreds or
even thousands of dimensions per observation, and construct a new dataset
having the same number of observations but only two or three dimensions.
Key to the working of projection methods is their aim to preserve the so-called
data structure in the resulting low-dimensional space. This takes the form or e.g.
preserving distances between pairs of observations or preserving the neighbor-
hoods of observations. If such goals can be achieved efficiently and effectively,
the users can employ the resulting low-dimensional projection as a ‘proxy’ to
study the invisible high-dimensional spaces. For instance, tasks such as finding
outliers, groups of highly-related observations, correlated dimensions, trends
in the dimensions’ values can all be performed on the low-dimensional space,
which is typically displayed as a color-coded scatterplot of observations.

In the last decade, a wealth of multidimensional projection methods has been
developed. Current methods, and their corresponding implementations, are very
successful in computing projections of datasets having a large number of obser-
vations, each having tens dimensions or more, at near-interactive rates, and with
a good preservation of relevant quality metrics such as distances or neighbor-
hoods of observations. Additionally, most such methods can be readily used
by developers and end users in a largely black-box fashion, i.e., without hav-
ing to know or understand the intricacies of their implementations. However,
projection-based visualizations are significantly hampered by their abstract na-
ture: In the typical case, they deliver a 2D scatterplot where each observation
is encoded as a point. While this allows one to tell whether the dataset under
study contains outliers, or groups of related observations, it does not tell users
why such structures appear in the data. For instance, we can easily locate an
outlier observation in a 2D scatterplot created by a multidimensional projection,
but we do not know which attribute(s) of the respective observation make that
point so different from the rest. Similarly, we may be able to easily see that a set
of observations consists of three groups of well-separated points, but we do not
know which attribute(s) make the points in a group belong together. Altogether,
these aspects significantly decrease the usability and acceptability of projection
techniques for large classes of non-specialist users such as business and market
analysts, let alone casual end users.

1.4 multimedia data

As outlined above, multimedia data are of considerable interest in our context
of visual analysis of multidimensional datasets. Summarizing the reasons of our
interest in multimedia data, we outline the following key factors:

• Prevalence: Multimedia data are of increasing availability and importance
in all contexts where big data plays a role. It is available at low or even
zero costs, being provided at high volume, velocity, and variety on social
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media channels such as YouTube, Facebook, the world wide web, or more
specialized movie or TV collections;

• Complexity: Multimedia data are by excellence highly variate, in the sense
of containing a (large) range of attributes of different types. These include
video and image descriptors such as e.g. SIFT and SURF features [136],
image moments [181], color and brightness histograms [202], and features
extracted from face recognition [247]; audio descriptors such as pitch, vol-
ume, and speech-to-text descriptors [11]; and metadata descriptors such
as keywords extracted from provided subtitles, user comments, or categor-
ical ratings and classifications of videos. Altogether, the above provide a
rich high-dimensional collection of attributes of various types that charac-
terizes multimedia data – and therefore an explicit challenge to multidi-
mensional data visualization;

• Reach: Multimedia data has a clearly wide reach to extremely various types
of users being interested in highly different goals and having highly differ-
ent skills and expectations. These range from professional surveillance ana-
lysts and coaches of sports teams, who have the training and time required
to interpret highly detailed and sophisticated analyses, to casual end users
such as teenagers browsing video collections or sports fans watching se-
ries of soccer matches. While the input data is identical in all these cases,
the techniques required to satisfy the needs of these user groups clearly
have to be of different types.

Of course, multimedia data are not the sole source of multidimensional dataset
that poses related challenges in terms of designing efficient and effective vi-
sual exploration methods. Similar data sources exist in the form of e.g. software
repositories, statistics delivered by web crawlers, patient medical records, or
stock transactions. However, we argue that all three above-mentioned aspects
– prevalence, complexity, and reach – are considerably higher for multimedia
data. Indeed, multimedia data is available in larger amounts (and varieties), than
open-source software projects or the more heavily controlled patient records or
paid stock streaming data; it contains attributes of a wider category (e.g. image,
audio, and text descriptors) than the typically more similar attributes of software
systems (relations, quality metrics, and text documents) or stock data (measure-
ments typically involving only scalar quantities such as stock open, close, vol-
ume, and bid/ask prices); and it involves both professionals and casual users,
while software, medical, and stock data are mainly the object of analysis of dedi-
cated professionals. As such, multimedia data forms an interesting target for the
development of novel methods for the visual exploration of multidimensional
data.
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1.5 research questions

Having introduced the generic challenges of visual exploration of multidimen-
sional data, and the more specific challenges of exploring multimedia data, we
can now formulate our two key research questions:

Question 1: How can we design ways to interactively explore multidimensional pro-
jections that convey to users insights on the semantics of the patterns perceived in the
projection space, in terms of aspects of the high-dimensional data?

Question 2: How can we design ways to interactively explore multidimensional data
extracted from multimedia datasets so as to support a wide range of tasks for different
types of users ranging from professionals to casual users?

The above two questions are related at several levels. First, effective and ef-
ficient solutions to Question 1 may serve the basis of designing effective and
efficient solutions (tools) that satisfy the goals posed by the users listed un-
der Question 2. Secondly, specific goals and requirements of the users under
Question 2 can form test scenarios to validate, or show the limitations of, the
methods designed to solve Question 1. Thirdly, multimedia data forms by itself
a rich, complex, and easily available corpus of information that serves to test
methods designed to solve both Questions 1 and 2.

In line with the above two coupled research questions, the structure of this
thesis is as follows.

In Chapter 2, we discuss related work in the areas of (visual) analysis of
multidimensional data and the more specific analysis goals of multimedia data.

Chapter 3 explores the use of projection techniques for the visual depiction
of large multidimensional datasets. To this end, we present a novel multidimen-
sional projection technique which competes favorably, or even exceeds, desir-
able features of state-of-the-art projection techniques such as generality, com-
putational scalability, precision in preserving inter-point distances, algorithmic
robustness, and – last but not least – the ability to control the shape of the re-
sulting projection by interactive placement of a small number of selected data
points. We demonstrate the application of our proposed technique by two use
cases involving the joint exploration of audio-and-video multimedia collections
and the exploration of collections of text documents.

Chapter 4 addresses the task of interpreting projections created by typical
multidimensional techniques, such as the technique introduced in Chapter 3,
from the perspective of understanding how the projection itself and its errors, in
terms of depicting distances in the high-dimensional data structure, are affected
by parameters of the projection techniques being used. We introduce several
metrics to quantify the quality and variability of a projection, and show how
such metrics can be visually depicted in intuitive and easily usable ways. By
this, we make the first step into explaining multidimensional projections to their
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typical end users. We demonstrate our proposed techniques for a wide range of
multidimensional datasets and existing projection techniques.

Chapter 5 addresses the task of explaining 3D multidimensional projections
in terms of the attributes, or dimensions, of the projected high-dimensional
datasets. Specifically, we present a number of interactive exploration and ex-
planation mechanisms that inform users on the meaning of the visible data
structures in a 3D projection in terms of the underlying high-dimensional vari-
ables, and let users browse the space of possible viewpoints of a 3D projection
to find viewpoints from which specific variable-groups can be best analyzed.
This makes the second step in our quest towards explaining multidimensional
projections to their typical end users. We demonstrate our proposed techniques
for a range of multidimensional datasets and projection techniques, and also
show the added-value of using 3D projections, annotated by our explanatory
mechanisms, as compared to the better-known 2D projections.

Chapter 6 goes back to our second research question – the exploration of
multimedia datasets. We show how, for a particular category of such datasets –
sports videos with additional metadata – we can use multidimensional projec-
tions to extract a number of high-level insights in the structure and dynamics
of the underlying sports games. Such techniques typically address the segment
of more professional users such as analysts and sports coaches. Additionally,
we present a diametrically opposed approach to the visual exploration of sports
videos collections aimed at casual end users (sports fans) that does not use
multidimensional projections. By correlating the insights gathered by the two
presented visualizations, we outline strengths and limitations of the use of mul-
tidimensional projections in visually exploring multimedia datasets.



2R E L AT E D W O R K

abstract: Multidimensional datasets pose numerous challenges in terms of efficiently and effectively ana-

lyzing them to extract useful and usable insights for problem solving. Several of these challenges stem from the

difficulty of capturing and explaining patterns caused by the values of multiple attributes sampled over many

observations, and from the fact that it is hard for humans to form an intuitive depiction of high-dimensional

data spaces. In this chapter we present a taxonomy of multidimensional data and overview the different anal-

ysis and visualization methods proposed for exploring such data, with a focus on multidimensional projection

methods. Separately, we overview existing methods for the visual exploration of large multimedia data collec-

tions, with a focus on the multidimensional nature of the involved data. We conclude that multidimensional

projections can be efficient and effective techniques to use in the construction of visual exploration tools for

multimedia datasets.

2.1 introduction

Given the technological advances over the years, generation and consumption of
data by content producer companies, and also by domestic users, has witnessed
a continuous growth. In this context, analysis concerns the process starting by
obtaining batches of (raw) data and converting these into information useful
for decision-making by various types of users. During this process, data are
collected and analyzed with the aims of answering questions; creating, testing,
and refining hypotheses or to (dis)prove theories; or presenting findings and
insights to the interested public [107]. In this chapter, we discuss techniques
related to the above activities which treat multidimensional data, our focus of
research.

2.2 multidimensional data in context

Before starting the analysis process, it is essential to have a good understanding
of the kind of data that is being analyzed. Therefore, the first step in the analysis
of data is to get clarity about the data’s intrinsic nature, meaning, structure, and
type. Characterizing the nature and meaning of data by, for instance, capturing
the variability of these aspects into a classification or taxonomy, is a very chal-
lenging endeavor [147]. Indeed, the same dataset can be regarded from multiple
perspectives, depending on the type of questions or analysis that we want to ad-
dress. As such, while having a good understanding of data nature and meaning
is definitely important for solving a concrete data-related problem, there are few
universal guidelines to be applied in this process. In contrast, characterizing the
data structure and type by means of taxonomies is a useful and effective instru-

9
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ment to guide researchers towards specific classes of analysis and visualization
techniques suited for their concrete datasets [198, 204].

2.2.1 Taxonomies of data

Several taxonomies have been proposed for classifying data in terms of struc-
ture and type. With respect to the visual exploration (or visualization) options
that such taxonomies associate to different datasets, we note the classification
of data in terms of spatial vs non-spatial [147]: Spatial data is seen as the value
of a function f whose domain D is a (typically compact) subset of R2 or R3.
Data values, or samples f(xi), are recorded at sample points xi ∈ D. Depend-
ing on the distribution of the sample points xi over D, we distinguish between
different types of dataset sampling strategies, or grids, such as uniform or regu-
lar, rectilinear, structured, and unstructured [217]. Different types of grids trade
off implementation simplicity and low storage costs against flexibility to place
sample points at desired locations over D to achieve an optimal capture of the
shape of f with a minimal number of samples. Non-spatial data is seen as the
value of a function f whose domain D is not a (compact) subset of a continuous
space such as R2 or R3. Implementation-wise, non-spatial data also consists of
a number of data values f(xi) recorded at a number of points xi ∈ D. However,
in contrast to spatial data, the points xi can not be regarded as a sampling of a
continuous space – there is simply no data between the points xi. As such, the
points xi where data is recorded are typically called data points or observations,
rather than sample points.–

A further refinement of spatial data taxonomy regards the type of values of
the function f, or the range R of f. Such values f(xi) are also called data attributes.
Attributes are typically classified according to the operations that R permits. In
decreasing order of sophistication, the following attribute types are commonly
identified [147, 217, 86]:1

• quantitative: Quantitative attributes, also called continuous or ratio attributes,
are defined over ranges R that allow operations such as addition, subtrac-
tion, and multiplication by a real number. Most commonly, such attributes
are real values, i.e. R ⊂ R. Spatial data having quantitative attributes
is frequently met in the context of so-called scientific visualization (scivis)
datasets. Examples hereof are height fields, grayscale or color images, CT
or MRI scans, and 2D and 3D vector fields created by computational flow
dynamic (CFD) simulations [86]. A key characteristic of spatial datasets
having quantitative attributes is that these datasets naturally allow interpo-
lation of data values. In detail, for any point x located in the dataset domain

1 Attribute taxonomies bear an interesting, though not further exploited similarity (to our knowledge),
with the taxonomy of multivariate ordering proposed long ago by Barnett [12]. In this taxonomy,
multivariate attributes are classified into those admitting marginal, reduced (aggregate), partial,
and sequential (categorical) ordering.
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D, we can estimate the interpolated value of the function f(x) as a func-
tion of the data values, or samples, f(xi) at sample points xi ∈ D located
at points xi close to x. Interpolation is a crucial capability for supporting
operations such as reconstruction (re-creating a piecewise continuous, ver-
sion of f over D from the samples f(xi)), resampling, and smoothing. In
turn, such operations address tasks such as data simplification and aggre-
gation, which support the visual exploration of very large datasets.

• integral: Integral attributes, sometimes also called discrete attributes, are
defined over ranges R that allow operations such as addition and sub-
traction, but not multiplication by a real number. Most commonly, such
attributes are domains R ⊂ Z. Non-spatial data having integral attributes
is frequently met in the context of so-called information visualization (info-
vis) datasets. Examples hereof are tables whose cells represent counts, like
number of persons in a census [147]. In contrast to quantitative datasets,
integral datasets do not (formally speaking) admit interpolation. Indeed,
even if this is technically possible, interpolation of integral values would
typically create real values, which thus are outside of the domain R ⊂ Z.

• ordinal: Ordinal attributes are defined over ranges R that allow operations
such as ordering, i.e. define the relations <, >, and =. Examples of such
attributes are ordered sequences of ranks of observations, such as Likert 5-
point scales used to assess the quality of a product, e.g. R = {very poor, poor,
neutral, good, very good}, or scales used to quantify the acceptance likelihood
of a scientific publication submitted for review, e.g. R = {definitely reject,
possibly reject, bordeline, possibly accept, definitely accept}. Ordinal attributes
typically do not allow interpolation.

• categorical: Categorical, or nominal, attributes are defined over any set R.
The only operation allowed by such attributes is, thus, checking for iden-
tity or equality of two elements. Examples of such attributes are types of
elements, such as gender (male or female) or vehicle type (car, plane, train,
or ship). Categorical attributes can be further organized in hierarchies or
taxonomies, based on the perceived similarity of data values. When this is
possible, categorical attributes also allow computing the distance, or simi-
larity, between data values. As distance is an integral or quantitative value
type, this allows mapping categorical attributes to data types that allow
more powerful operations, thus support a wider range of analyses and
explorations.

• text: Text attributes are defined over the set of all possible text strings gen-
erated by a given letter alphabet, or over a more restricted set of phrases or
words captured by a given dictionary. Formally speaking, text attributes
can be seen as either ordinal (since strings admit ordering e.g. in terms
of lexicographic order) or categorical (since we can easily tell when two
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strings are identical or not). Moreover, distances can be computed over
text attributes, e.g. in terms of the Levenshtein metric [128]. However, in
many practical applications, text attributes attempt to capture more in-
volved information than what string comparison, lexicographic order, and
Levenshtein distances can model. For instance, typical text analysis and
mining applications need to avail of more complex metrics that capture the
semantic similarity of text fragments. When such metrics can be computed
from text attributes, we can reduce such attributes to (sets of) quantitative,
ordinal, and categorical derived attributes.

• relational: Relational attributes are defined over sets of data points in D.
Their range R is thus the set of all possible subsets of elements in D, or
the power set of D. In many fields, such attributes are known as graphs or
networks. Here, the nodes represent data points in D, and edges capture
the relations between these data points which are part of R. Graphs can
be further specialized into directed and undirected, cyclic or acyclic, and
trees or hierachies. Graphs are ubiquitous in many information visualiza-
tion subfields, such as software visualization (softvis), where they capture
the structure and dependencies of software systems [57]; and geographical
visualization (geovis) [62], where they capture the structure of road or simi-
lar transportation networks. The visual exploration of graphs forms the fo-
cus of the specialized subfields of graph visualization and graph drawing
[56]. Relational attributes form a separate case as compared to the earlier
discussed attribute types (quantitative, integral, ordinal, categorical, and
text): Indeed, while these earlier attribute types describe a property solely
associated to a data point or observation xi, relational attributes describe
properties associated to sets of (minimally two) such data points {xi}.

The above hierarchy of attribute types offers a nesting in terms of capabilities:
Quantitative attributes are also integral; integral attributes are also ordinal; and
ordinal attributes are also categorical. Text attributes can be reduced to combi-
nations of quantitative, ordinal, and categorical attributes. Relational attributes
form a separate class, for which special analysis and visualization methods have
been designed, and which are known under the generic name of graph draw-
ing (or graph visualization) techniques [230, 56, 88]. Multidimensional datasets
including relational attributes forms a sub-field of interest of graph visualiza-
tion, which proposes specific methods that aim to emphasize the relational na-
ture of the data and also visually encode several attributes per node and/or
edge [58, 234, 180]. Overall, the nesting of atribute types indicated above allows
using visual exploration and analysis methods defined for the less ‘powerful’ at-
tribute types to be applied to more powerful attribute types, but not conversely.

Datasets having quantitative attributes defined at data points sampled over
spatial domains are sometimes also called continuous datasets, as they allow
interpolation, as explained earlier. In contrast, datasers having (1) quantitative
attributes defined over non-spatial domains, and also (2) datasets having any
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attributes besides quantitative ones, are sometimes called discrete datasets, as
they do not allow interpolation, either because of the lack of a distance met-
ric between sample points (case (1) above), or because of the lack of necessary
operations for interpolation such as multiplication with a real-valued number
(case (2) above). To strengthen the difference between continuous and discrete
datasets, the latter are sometimes also called inherently discrete datasets [217].
This underlines the difference between a discrete dataset containing quantita-
tive attributes, obtained by the sampling of a continuous signal over a spatial
domain, which naturally admits interpolation to a piecewise-continuous result;
and a discrete dataset of types (1) or (2), which does not admit interpolation, for
the reasons outlined above.

Other taxonomies of, or related to, data used in visualization have been pro-
posed. For instance, Shneiderman proposes a taxonomy of visual exploration
tasks by the data type being involved in the respective task [204]. Seven data
types are recognized: one-, two-, and three-dimensional datasets (the dimension
here being roughly equivalent to the dimensionality of our set D introduced
at the beginning of Sec. 2.2.1); temporal datasets; trees; networks; and multidi-
mensional data. However, the taxonomy is not further refined in depth up to
a level where one can decide on visualization methods best suited for a given
data type. Also, multidimensional data is discussed only briefly. Chan proposes
a taxonomy of visualization techniques for multivariate data, along the lines pro-
posed by Keim and Kriegel [114, 112] in geometric, icon-based, pixel-oriented,
hierarchical, graph-based and hybrid techniques. However, this work does not
outline an explicit taxonomy for multidimensional data itself.

2.2.2 Multidimensional data

Following the dataset model presented above (a function f : D → R), we can
further distinguish between datasets which record a single-valued attribute per
point and datasets which record multi-valued attributes per point. Examples
of the first category, for spatial datasets, are scalar-valued datasets or scalar
fields (R ⊂ R); 2D and 3D vector-valued datasets or vector fields (R ⊂ R2

and R ⊂ R3, respectively); and color images (R ⊂ R3+). If we generalize this
idea, we obtain the case of multidimensional datasets where R ⊂ Rn, where
each data point has n real-valued attributes. Examples hereof include numerical
simulations where, at each data point, one records several physical quantities,
such as velocity, pressure, temperature, and matter density.

Multidimensional datasets are also ubiquitous in the case of non-spatial datasets.
Probably the best known example of such datasets are data tables. In a data ta-
ble, we can see each row as a data point or observation xi. Each column of
the table, thus, records the values of a different attribute over all observations.
Hence, a table having m rows and n columns records m observations each
having n attributes, or an n-dimensional attribute [204]. In our functional no-
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tation introduced in Sec. 2.2.1, such a data table can be thought as a function
f : {1, . . . ,m} → Rn, where R is the domain of definition of the values of a data
table cell.

Variable types: Within the realm of multidimensional data, we can distinguish
two subcases, based on the existing dependency relations between attributes.
Consider, for instance, a m-column data table where the last k < m columns
represent the output of a simulation and the first m− k columns represent the
corresponding simulation inputs. We say, in other words, that the last k columns
depend on the first m− k columns. This allows classifying attributes, also called
variables, into dependent and independent ones. Related to this, traditional
statistics refers to attributes as variates, with their complexity associated with
univariate, bivariate and multivariate data, as a function on the number k of
dependent variables [82]. In the visualization field, however, the terms ‘multidi-
mensional’ and ’multivariate’ are often used interchangeably to denote a dataset
where, for each data point or observation, we have more than one attribute
value (thus, m > 1). For instance, some authors relate the above two terms to
the dependent vs independent nature of attributes, by using the term ‘multivari-
ate’ when we have several dependent variables (k > 1) and ‘multidimensional’
when we have several independent variables (m− k > 1) [60]. In contrast, other
authors use the terms ‘multivariate’ [217], ‘multidimensional’ [110, 204], or ‘mul-
tivariables’ [60] to refer to both independent and dependent variables. As a con-
sequence of the above terminology, values of observations are also known under
different names, such as data-point values, observation values, dimensions, at-
tributes, variables, and features [147].

Datasets, fields, dimensions, variables: Complicating the above discussion on
terminology, datasets consisting of several observations, each having multiple
scalar attributes, are also known under the names of vector-valued data and vec-
tor fields. Although formal and universally-accepted distinctions between these
terms is not yet present, the respective terms represent different situations. Vector-
valued data is a term typically used to mean the same as our earlier introduced
terms of multidimensional (or multivariate) data – that is, a dataset where each
sample or observation is described by several scalar-valued attributes. Vector
fields, in contrast, are a subset of vector-valued data, where, at each point or
observation x ∈ R in the domain of definition, we can define a so-called tabgent
vector, i.e. a vector that leads us from x to another point located inside R. Ex-
amples of vector fields are color images (m = 3 scalar attributes, R ⊂ R2) and
flow fields in three-dimensional computational flow dynamics (m = 3, R ⊂ R3).
In contrast, a general data table having three columns represents, technically
speaking, the same dataset (m = 3 attributes), but is not a vector field, since
there is no domain R having the aforementioned tangent vector property. A sep-
arate distinction between vector-valued data and multivariate data refers to the
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interpretation of the data attributes. In vector-valued datasets, the m attributes
recorded per observation may be related, but can be studied equally well inde-
pendently on each other, like in the case of a data table recording the age, salary,
and profession of a set of individuals. In contrast, in a multivariate dataset, the
same m attributes are intrinsically related, so they should be (normally) stud-
ied together, like in the case of an image recording the red, green, and blue
components of each pixel.

As the focus of the work in this thesis concerns the analysis of data hav-
ing multiple attribute values per observation (m > 1), but without making a
specific distinction between dependent and independent variables, and without
making any assumptions on the nature of the domain of definition R of these
variables, nor on the existing and/or important relationships between individ-
ual attributes, the terminology we have adopted is that of multidimensional data.
This terminology is the more common one being found in information visualiza-
tion literature, and it also reflects the names of several important visualization
methods in our context (e.g., multidimensional projections). Separately, we will
next use the terms variables, attributes, and dimensions to refer to the values of
observations, in line with the best suited term for the specific discussion context.
Finally, when mentioning multidimensional data, our focus will implicitly be on
datasets having a high number of dimensions per observation (tens up to thou-
sands), rather than multidimensional data having a low number of dimensions,
such as 2D or 3D vector fields.

2.2.3 Multidimensional data analysis challenges

Multidimensional data offers some of the largest challenges to data mining, data
analysis, and data exploration, and is one of the topics of the so-called ‘grand
challenges’ in information visualization and visual analytics [219, 111]. The dif-
ficulty of understanding (phenomena described by) multidimensional data is
caused by several aspects:

• Complexity: Elements of interest for identification and analysis, such as
patterns, trends, outliers, and clusters, are much harder to describe, define,
quantify, find, and present in the case of multidimensional data than in the
case of low-dimensional data such as scalar or 2D or 3D vector fields. The
key reason for this is that an increased number of independent dimensions
allows for the appearance of a considerably higher variability than a low
number of dimensions. To provide a simple analogy, consider a function
of a single real-valued variable f : R → R. Analyzing such a function is
relatively easy, by using e.g. its first and second-order derivatives to e.g.
reason about its rate of change and local extrema. In contrast, consider
a function of ten real-valued variables f : R10 → R. Analyzing such a
function is considerably more complex, as there exist a much larger family
of first and second-order partial derivatives.
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• Abstract nature: Low-dimensional data such as 2D or 3D fields can be rel-
atively easy understood by directly plotting the recorded values by us-
ing a range of classical visualization methods. For discrete datasets, these
methods include scatterplots, height plots, bar charts, and histograms.
For data admitting interpolation, other specialized methods exist, such as
height plots, contour plots, streamlines, and hedgehog plots. Such meth-
ods are well known and well proven in the domain of scientific visual-
ization [86, 198, 217]. The key advantage of being able to directly plot
low-dimensional data is that we can identify and reason about complex
patterns by simply seeing them, and without needing potentially complex
ways to automatically find and quantify them. For instance, it is relatively
easy for moderately-trained end users to spot the presence of vortices,
sources, and sinks in 2D vector fields, even though automatic detection
thereof is still a complex problem [117]. In contrast, humans do not have
a direct intuition of spaces of dimensionality higher than 3. As such, di-
rectly understanding high-dimensional datasets is considerably harder, as
we have to somehow project them into the low-dimensional (2D or 3D)
spaces we are able to see and reason about.

• Discontinuous nature: Many multidimensional datasets involve data attributes
which do not (easily) admit interpolation. Ordinal and categorical attributes
are prime examples hereof (Sec. 2.2.1). As such, we cannot create smooth,
continuous, representations of such datasets with the same ease as we can,
for example, when dealing with quantitative attributes. This creates sev-
eral challenges even for low-dimensional data. For example, consider a 3D
scalar volume, such as a CT or MRI scan. As the underlying data from
which this dataset was constructed (via sampling) is inherently continu-
ous, we can use various interpolation techniques to create smooth, contin-
uous, and easy to understand representations thereof, such as volume-
rendered visualizations [133]. In contrast, consider a data table having
three columns, all containing quantitative attributes. We can visualize these
data by means of a 3D scatterplot, which would generate a 3D point cloud.
As there is no continuity (no information is plotted between the points),
understanding such a point cloud is much harder than understanding the
earlier 3D scalar volume field.

Let us remark separately that the challenges of understanding multidimen-
sional data are not first and foremost related to the amount of data being in-
volved. Indeed, consider a 1D scalar dataset having one million sample points
which record the samples of a function f : R → R We can easily construct a
view of such a dataset, e.g. in terms of a classical graph y = f(x), and explore
the graph by classical interaction techniques such as zooming and panning. In
contrast, consider a 100-dimensional scalar dataset having 10000 sample points.
While the amount of data are the same as for the first case, understanding this
100-dimensional dataset is considerably harder. This is due mainly to the fact
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that, for this dataset, understanding a single data point means reasoning about
100 values. In contrast, understanding a single data point for the earlier 1D
dataset involves understanding a single data value. The problem compounds it-
self when aiming to perform more complex analyses. For instance, finding the
distance between two data points involves, in the 1D scalar dataset case, com-
paring two data values; doing the same for the 100-dimensional dataset involves
comparing 200 data values. This inherent problem caused by the number of
attributes in multidimensional data is sometimes referred to as the ‘curse of di-
mensionality’ [16, 244]. Such understanding challenges involving high-dimensional
datasets will be discussed in more detail in Sec. 2.4 in the context of visual data
exploration.

2.3 multidimensional data analysis

Given our focus on multidimensional data exploration, we next discuss meth-
ods and techniques aimed to support various types of analyses of such data.
These techniques will form the basis of the visual exploration, or visualization,
techniques for multidimensional data discussed next in Sec. 2.4.

To unify the discussion, we first introduce several notations to refine the de-
scription, first introduced in Sec. 2.2, of a multidimensional dataset. We model
such a dataset as a collection D = {xi} of m data points, or observations xi,
which are identified by their index of ID 1 6 i 6 m. Each observation xi is a
tuple xi = (x1i , . . . , xni ) of n attributes, or variables xji, 1 6 j 6 n. The number
of variables n gives the dimensionality of D. We denote the values of the jth

variable over all m points of D by the vector xj = (xj1, . . . , xjn). We further as-
sume that all elements of any xj belong to the same domain – or, in other words,
that all n variables have well-defined types. These can be, formally speaking,
any of the types discussed earlier in Sec. 2.2.1, i.e., quantitative, integral, ordinal,
categorical, text, or relations. However, in our discussion (and the remainder of
this thesis) we will focus mainly on quantitative, integral, ordinal, and categor-
ical attributes, as these types largely cover most typical applications involving
multidimensional data. In particular, we do not assume that all attributes are
only of the quantitative type, which admits the useful property of interpolation
(Sec. 2.2.1). Separately, we do not assume that different variables have the same
attribute types.

Data Mining: As we live in a world where vast amounts of data are generated
and collected daily, either by private companies, governments or even casual
users, it is evident that we need mechanisms and tools to extract useful informa-
tion from this data explosion. In this context, data mining, also known as Knowl-
edge Discovery from Data, or KDD for short, is a rapidly growing research-and-
applications domain. The aims of KDD techniques and tools are the discovery of
useful information in large and complex datasets; the identification of novel and
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useful patterns that – without the application of KDD methods – would other-
wise remain unknown; and the creation of prediction models to discover trends
in those datasets [161]. KDD techniques and tools span the entire spectrum of
user involvement, ranging from fully automatic to user-supervised techniques
and finally ending with techniques where the data exploration is controlled and
driven in detail by the user.

Data mining processes are typically integrated in pipelines, or sets of cascaded
operations, where the raw input data is gradually transformed to yield the ex-
tracted knowledge of interest at the end. Such preprocessing operations have
been classified by Han et al. in the following four categories [83]:

• Data cleaning aims to remove noise and inconsistencies present in the input
data. In our terminology, this step aims to make the dataset D a faithful
representation of the underlying phenomenon it tries to sample;

• Data integration merges data from multiple acquisition sources into a coher-
ent dataset. This involves, for instance, joining variables xj acquired from
different sources and/or by different sampling processes to create the final
set of dimensions that characterizes D.

• Data transformation transforms or consolidates data to support the appli-
cation of data mining techniques. Transformation involves, for instance,
filtering and resampling of the various dimensions xj.

• Data reduction reduces data size. This can take the form of reducing the
number of observations xi or the number of dimensions xj. In both cases,
data reduction aims to increase the scalability of the KDD methods which
are subsequently applied to the input dataset D.

As already implied by the pipeline concept mentioned above, the above four
types of data preprocessing operations are not mutually exclusive, but can be ap-
plied jointly in the analysis of specific datasets. Separately, we note the similarity
of such data processing pipelines with the well-known concept of visualization
pipelines used to describe data visualization processes [198, 217]: The transfor-
mation of data from its raw input form into the high-level results, or insights,
delivered by the KDD pipeline, is similar to the effect of the data importing,
filtering, and mapping steps of the visualization pipeline.

As the scope of this thesis is about multidimensional data, the data reduction
preprocessing techniques mentioned above are clearly in our focus. As men-
tioned above, data size can be reduced by either reducing the number of dimen-
sions xj or the number of observations xi. The first type of technique – dimen-
sionality reduction – will be extensively discussed in Section 2.4, given its strong
integration with data visualization techniques. The second type of technique –
data aggregation – is discussed next.

In our context, we denote by data aggregation the (wide) spectrum of tech-
niques that attempt to reduce the number of observations xi present in a dataset
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D, to create a reduced dataset D′ which preserves the essence of the phenomena
of interest captured by the original dataset D [161]. In this sense, data aggrega-
tion can be seen as a process of eliminating observations by finding similarly-
valued observations xi ∈ D and next replacing subsets of such similar-value
observations {xi} by a single subsample, or representative x′i. This way, undesir-
able aspects captured by D, such as outliers or acquisition noise, will be elim-
inated. Separately, the resulting aggregated dataset D′ will now capture only
the stable, statistically-relevant, structures present in the phenomenon sampled
by the input dataset D. A final advantage of data aggregation techniques is
that they reduce the amount of data that needs to be treated – either by sub-
sequent data-analysis techniques or otherwise by data visualization techniques
– and thereby increase the scalability of KDD pipelines. However, data aggre-
gation techniques come with an important (implicit) challenge: By eliminating
observations, such techniques may eliminate actual features of interest from the
underlying phenomenon. A well-known instance of this problem is the elimina-
tion of small-scale variations in the data, which can be seen as either noise or
small-scale detail, depending on their context.

Many data mining techniques have proven to be very successful in the context
of analyzing multidimensional datasets. Following Wang et al. [231] and Pang
et al. [161], we identify four types of such techniques: frequent pattern mining,
clustering, classification, and statistical analysis. These four types of techniques
are discussed next.

2.3.1 Statistical Approaches

Statistical approaches are arguably the oldest and simplest types of data analysis
techniques for multidimensional datasets. Many such techniques essentially aim
to reduce the size and/or complexity of a given input dataset D to a compact
representation entailing a few figures that characterize the involved dimensions
xj. In this respect, several techniques can be applied [161]. Means or medians
can be calculated for each dimension xj if one wants to characterize each such
dimension by a single scalar value representing a measure of the likelihood
of the observations xi. For instance, the mean, or centroid, of the observations
xi ∈ D ⊂ Rn is given by

X = (x1, . . . , xn) ∈ Rn, (2.1)

where xj is the mean of dimension xj of D. Besides the mean xj of a dimension
xj, other statistical measures can be computed to indicate how its values xji vary.
For instance, the range rj ∈ R of a dimension xj is defined as

rj = max
i

(xji) − min
i

(xji) = max
i,k
‖xji − x

j
k‖. (2.2)
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The range rj of a dimension xj identifies the interval of values that the re-
spective dimension is spread over. For a multidimensional dataset, the tuple
= (r1, . . . rn) ∈ Rn formed by the ranges of all its n dimensions provides, thus,
an axis-aligned bounding-box that includes all observations of our dataset D.
For datasets whose sampling does not include (too far-away) outliers, ranges
and bounding-boxes are simple and effective ways to describe the spread of val-
ues of their observations. For datasets containing such outliers, or for situations
where the sampling is highly non-uniform in terms of spatial distribution of the
observations, computing the variance of the involved dimensions is preferred to
ranges. The variance of a dimension xj, denoted typically as s2j , is defined as

s2j =
1

m− 1

m∑
i=1

(xji − xj)
2. (2.3)

Since the computation of variances involved computing mean values (xj in
Eqn. 2.3), and mean computation can be distorted by outliers, the variance val-
ues s2j are also sensitive to outliers, up to a certain level. To address this sen-
sitivity to outliers, more robust statistical measures have been proposed, such
as the absolute average deviation, median absolute deviation, and interquartile
range [161].

However, means, ranges, and variances only describe individual dimensions
xj of a dataset. In nearly all contexts where multidimensional data is involved,
one is interested in finding how different dimensions xj and xk, k 6= j, relate
to each other. This is captured by the covariance of two dimensions xj and xk,
defined as

sjk =
1

m− 1

m∑
i=1

(xji − xj)(x
k
i − xk). (2.4)

The matrix S = (sjk), 1 6 j 6 n, 1 6 k 6 n encodes the covariances of all
pairs of dimensions present in a dataset, including the variances sjj = s2j of the
individual dimensions on its diagonal. Similar to covariance, one can compute
the correlation of two variables xj and xk as

rjk =
sjk

sjsk
. (2.5)

Similarly to the covariance matrix S, we can now define a correlation matrix
R = (rjk), 1 6 j 6 n, 1 6 k 6 n. Diagonal entries rjj indicate the correlation
of a variable xj with itself, which is always one. Off-diagonal entries indicate
the correlations rjk of different variables j 6= k, which take values between 1

(perfectly correlated) and −1 (perfectly inversely correlated).
Besides the above, relatively simple, statistical descriptions of multidimen-

sional data in terms of means, medians, ranges, covariances, and correlations,
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more advanced methods exist. These include, among others, Support Vector
Regressions (SVR) [207] and Gaussian Process Models (GPM) [183, 55]. As an
example of using such methods, HyperMoVal is a tool that uses SVR to validate
regression models against multidimensional data, highlighting differences be-
tween them and allowing the addition of more model parameters to refine their
regression to an acceptable level of accuracy [177]. While such more complex sta-
tistical techniques can capture patterns and trends present in the data in more
accurate ways than classical statistical tools, they are also more computationally
involved, and also harder to explain to a wide range of end users.

2.3.2 Frequent Pattern Mining

Frequent pattern mining is the process of searching recurring relationships, such
as associations and correlations, in a given dataset. Frequent pattern mining
techniques can be further classified into techniques that search for frequent as-
sociation rules and techniques that search for frequent sets of items, or itemsets.
Given a dataset D, frequent association-rule techniques search for correlations
between specific values of specific dimensions xj over many observations xi ∈ D.
For a similar dataset, frequent itemset techniques search for sets of observations
xi ∈ D that are involved together in the description of patterns such as transac-
tions in a transactional database [3].

Frequent pattern mining methods are good at discovering unknown correla-
tions between dimensions and observations in a given dataset, when one has lit-
tle or even no prior knowledge over what to search for in the data. On the other
hand, these techniques are also challenged by large multidimensional datasets:
As the search space for patterns grows exponentially with the number of ob-
servations and/or dimensions, heuristics are needed to limit the search to a
subspace that is (a) small enough to be computationally feasible, and (b) rep-
resents well the most likely area where relevant search results are to be found.
In the last decade, many such search heuristics have been developed. For ex-
ample, Pasquier et al. proposed to mine a selective subset of frequent patterns
based on the number of occurrences of a pattern is the same to all its immediate
patterns, calling this method of closed frequent patterns [162]. The CLOSET algo-
rithm further expedites the mining of closed frequent patterns using a frequent
pattern tree as a compact representation to organize the dataset, performing
a depth-first search [170]. A limitation of CLOSET is that only applicable to
datasets having a low to moderately-large dimensionality – for datasets having
more than m = 100 dimensions, efficiency starts to be compromised. To solve
this high dimensionality problem, Carpenter et al. first transposes the matrix
representing a dataset and then performs a depth-first row wise enumeration
on the transposed matrix. As a result the computational cost decrease signifi-
cantly [160]. A detailed survey of frequent pattern mining algorithms and their
challenges is given in [77].
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Frequent pattern mining methods are effective in the analysis of multidimen-
sional datasets such as data tables that represent transactions over sets of items
stored in relational databases. In such cases, observations are typically exact
records involving integral and categorical attributes. However, many other mul-
tidimensional datasets do not fall into this class – consider, e.g., observations
whose dimensions are real-valued quantities measured with a finite precision,
such as features extracted from color images, used next to describe the seman-
tics of these images. For such datasets, other data analysis methods are better,
as discussed next.

2.3.3 Classification

Generally put, given a dataset D of observations xi, classification is a process that
aims to assign a class value, also called a label, to each observation xi ∈ D. Class
labels are taken from a typically small set of domain-specific values that describe
the dataset at a high semantic level. The process of classification, therefore, aims
to add this high-level semantic (class) information to a dataset D that contains
only lower-level attributes. In the high dimensionality context, Wang et al. made
the following suitable definition of classification: “In a classification problem, the
dimensions of an object can be divided into two types. One dimension records
the class type of the object and the rest dimensions are attributes” [231]. In this
sense, classification methods aim to synthesize the ‘class type’ dimension from
the other attribute-type dimensions, for all observations present in a dataset.

A typical example of classification concerns datasets where observations rep-
resent images, such as photographs stored in large online collections [132], video
frames taken from video collections [182], or medical images taken for diagno-
sis and prognosis purposes [199]. In all such cases, each image, or observation
xi ∈ D has tens up to hundreds of attributes xj ∈ R. These attributes, also called
features in image processing and machine learning contexts, describe a wide
range of quantities that can be automatically measured on the input images, on
the one hand, and arguably capture relevant aspects for further interpretation
of the images, on the other hand [245, 49]. Classification, next, can take various
forms and serve various purposes. For instance, classification can group all ob-
servations xi ∈ D into a small set of so-called clusters, based on observation
similarity, and assign labels to these clusters. Clustering, seen here as a form of
unsupervised classification, is described separately in detail in Sec. 2.3.4. This
type of application identifies the most salient groups of similar observations,
and lets the user the task to assign meanings to the inferred class, or cluster,
labels. In contrast, supervised classification starts with a dataset D where, for
each observation xi ∈ D, a class label value is supplied by the user, e.g. by
manual examination and annotation. Next, given an unlabeled dataset D′, clas-
sification aims to associate labels to all entries x′i ∈ D′ based on their similarity,
as reflected by non-label attributes, to entries xi ∈ D.



2.3 multidimensional data analysis 23

Among the approaches used to classify multidimensional data are k-nearest-
neighbors, neural networks [121], decision trees [75], rule-based classifiers [47],
and support vector machines (SVMs) [229]. In our context, SVMs are arguably
a very interesting type of technique to study, as they involve, by construction,
the use of high-dimensional data spaces. Specifically, SVMs transform the n-
dimensional space in which the input dataset D is embedded, into a much
higher-dimensional space (and corresponding dataset), so that the separation
borders between labeled observations become simple hyperplanes in this high-
dimensional space. This way, nonlinear separation borders between the labeled
(training) instances in the original n-dimensional space can be achieved.

While the machine learning community has witnessed an explosion of data
classification algorithms in the last decade, the practical utilization of such algo-
rithms for understanding multidimensional datasets is still challenged by sev-
eral aspects. First, it is far from evident, for a given user-dataset-problem com-
bination, which is the best classification algorithm to use. This is caused by the
fact that different algorithms may yield different classification results for the
same datasets and training sets. Secondly, it is not evident, especially for typi-
cal end users who are not machine learning experts, how to fine tune a given
classification algorithm to achieve maximal accuracy in a given context [146].
Indeed, many such classification algorithms are either designed to work like
black boxes (in which case it is almost impossible for end users to fine tune
their behavior), or alternatively expose a number of highly abstract and math-
ematically involved parameters (in which case typical end users must undergo
a steep and costly learning process to understand how to use such parameters).
At a high level, we detect the general need, for end users of classification algo-
rithms, of tools and techniques that make the working of such algorithms more
transparent and easy to understand.

2.3.4 Clustering

Clustering is the process of grouping a set of data observations into multiple
groups, also called i.e. clusters, so that observations within a cluster have high
similarity, while observations belonging to different clusters have low similarity.
In this sense, clustering can be seen as an unsupervised classification process
(Sec. 2.3.3), which assigns a class (cluster) label to each observation in the in-
put dataset, based on the optimization of inter-observation distances indicated
above.

Clustering knows many applications in data analysis and data visualization.
One of the best known applications of clustering is data simplification: Given a
very large dataset D, generate a dataset D′ whose size, measured in number of
observations, should be a small user-controlled fraction of the size of D, so that
D′ should encode the essence of the phenomenon sampled by D. The construc-
tion of D′ from D can be seen as a subsampling, or alternatively, data clustering
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problem. An essential ingredient in this process is a distance, or dissimilarity,
function δ : D×D → R+ that measures how observations xi ∈ D differ from
each other. Given such a distance function, a very popular clustering method
is the bottom-up hierarchical agglomerative technique [53]: Given a dataset D

of multidimensional observations and a distance metric δ as outlined above, all
observations xi ∈ D become nodes in a dendrogram tree. Next, the tree is built
bottom-up by grouping the two existing nodes which are most similar with re-
spect to the distance δ. Finally, the resulting tree can be cut at any level to obtain
a partition of the original dataset D into disjoint groups of observations. By
choosing different designs for the distance metric δ and tree-cut, a wide range
of clustering constraints can be modeled. Such clustering methods have been
used in several contexts to make information visualization applications scalable
to large datasets [215, 148]. Other popular clustering algorithms used for sim-
plifying large datasets are k means [140], mean shift [44], and self-organizing
maps [116].

In all above examples, data clustering takes place in the observation space, and
its aim is to reduce the number of observations required to describe the struc-
ture of a given input dataset D. However, data clustering can also take place
in the dimension space. In this context, for example, subspace clustering methods
aim to automatically find and group related dimensions xj into clusters. The
goal for this operation is to filter out dimensions which are irrelevant for the
description of the data at hand, and thereby represent the data with a small
number of dimensions. Three examples of subspace clustering techniques are
CLIQUE [4], ENCLUS [40], and PROCLUS [2]. CLIQUE enumerates subspaces,
and clusters present in these subspaces, following a dimensionality increasing
order, pruning subspaces in which no cluster exist. ENCLUS is an exploration
method particularly effective for finding data dimensions which are not tightly
coupled (correlated). PROCLUS is a k-medoid method that aims to find k poten-
tial dimension clusters using a dataset sample and refining the cluster subspaces
iteratively. For cases where users want to find a trend in observations in a sub-
set of dimensions, rather than find observatons with similar values, the bicluster
model is an option. A bicluster is composed of a set of observations (U) and a
subset dimensions (D) such that observations in U have similar trends across
dimensions in D. An application example can be found in [41] in the context
of the analysis of multidimensional genomic datasets. A data cube aggregation
concept is introduced in [83] and it works storing multidimensional aggregated
information with a hierarchy for each attribute or dimension, allowing the anal-
ysis of data at multiple abstraction levels.

Subspace clustering techniques are related, at a high level, to multidimen-
sional projection techniques, which are discussed separately further in Sec. 2.4.3.
Both types of techniques aim to reduce the number of dimensions required to
describe the essence of variation captured in the observations of a given dataset.
However, important differences exist. Most subspace clustering methods out-
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put dimensions which are a subset of the original set of dimensions xj of the
input dataset D. This makes the interpretation of these clustered dimensions
relatively easy to do in terms of the original dimensions. In contrast, most mul-
tidimensional projection methods output dimensions which are completely dif-
ferent from the original dimension-set xj. For example, the well-known principal
component analysis (PCA) technique reduces the n dimensions xj to n eigen-
vectors of the covariance matrix S of the observations (Eqn. 2.4). From these
n eigenvectors, a small subset of typically two or three can be next chosen to
create a 2D or respectively 3D visual projection of the data. These eigenvectors
aggregate the original dimensions xj, in the sense that they are linear combi-
nations thereof. This makes the interpretation of such synthesized dimensions
much harder. This topic is detailed further in Sec. 2.4.3.

2.4 multidimensional data visualization

Besides data analysis methods, such as the ones discussed in Sec. 2.3, multidi-
mensional datasets can be explored also by direct means, by creating suitable
visualizations thereof. In this section, we discuss the main types of visualization
methods aimed at supporting the direct exploration of multidimensional data.

The added value of multidimensional data visualization is easy to explain in
the context of applying the data analysis techniques discussed in Sec. 2.3. At
a high level, two main challenges exist to ‘pure’ data mining applications: (a)
In data exploration contexts, it is to for such applications to automatically search
for patterns when one does not know how to define such patterns (one does
not know what one searches for); (b) For applications involving casual end-users,
presenting the results of data mining in text or tabular forms is far from being
intuitive and effective.

The key role and added-value of visualization is to take advantage of the hu-
man cognitive skills by creating visual depictions of data from which users can
detect data-related patterns with ease. Such patterns involve, but are not limited
to, correlations of variables; clusters and outliers defined in terms of observa-
tions; and trends defined in terms of variable changes over subsets of observa-
tions. As mentioned earlier in Sec. 2.2.2, the main added-value of visualization,
as opposed to pure data analysis methods, is that many kinds of patterns are
relatively easy to describe in an informal way, and relatively easy to visually de-
tect, but are (very) hard to describe and detect in an automated manner. Finding
and reasoning about the meaning of these patterns, by visual means, connects
to the two main aims of data visualization: confirm the known (find evidence in
data that matches an established model of the underlying phenomenon); and
discover the unknown (find new, unexpected, patterns in data that lead to new
hypotheses about the underlying phenomenon).

In this context, a recent area called visual data mining [240] is calling attention
in the computer science literature. Visual data mining fuses classical data mining
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techniques (Sec. 2.3) with classical data visualization techniques [198, 147, 217],
by effectively exploiting (1) the computational scalability of data mining tech-
niques and their ability to perform complex exact queries, and (2) the ability of
the human visual system to quickly detect complex, fuzzily-specified, patterns
in images, and extract information from such patterns [233]. This way, data
mining and data visualization jointly complement each others’ strengths. In the
visual data mining process, Ankerst [7] has identified three different ways in
which data visualization and data mining can be integrated together: (1) visu-
alization methods are applied before or independent of data mining technique;
(2) the results are obtained with data mining techniques first, and visualization
is used next to provide support to do the data knowledge extraction; or (3) vi-
sualization and data mining are tightly integrated in an iterative and interactive
process that combines activities of types (1) and (2) above.

To understand how visualization can address the above-mentioned data explo-
ration tasks in the context of visual data mining applications, we next discuss
the most known methods used for visual exploration of multidimensional data.
We group these into four classes: axis-based methods, space-filling approaches,
multidimensional projections, and other approaches. We note that alternative
taxonomies for visualization methods for multivariate data exist, e.g. those pro-
posed by Keim and Krieger [114, 112] and further refined by Chan [36]. We
use here a different classification so as to better emphasize the special class of
multidimensional projection techniques, which will play a salient role in the
remainder of this thesis.

2.4.1 Axis-Based Methods

Axis-based methods represent the values of all attributes xj of a dimension j by
mapping them along an axis, much like in when plotting 1D scalar values along
a line. Different axes are used to represent the different n dimensions of a mul-
tidimensional dataset. By suitably arranging these axes, such methods support
reasoning about the entire set of m observations and n variables.

Scatterplots are one of the best known, and most frequently used, methods
used to visualize n = 2 dimensional or n = 3 dimensional datasets. Their de-
sign directly follows the classical design of function graphs: Each observation
xi is mapped to a point placed in 2D or 3D space, based on its attribute values.
Scatterplots support a range of assessments about the underlying dataset. For
example, attribute ranges densely populated by observations appear as dense
‘spots’ in the resulting 2D or 3D point cloud. To reduce visual clutter and, in
the same time, help assessing the observation density and focus the user’s at-
tention on densely populated regions, simple techniques such as transparency
and alpha blending of points can be used. The attribute values corresponding to
these ranges can be easily inferred by looking at the respective coordinate val-
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ues in the scatterplot. Clusters of similar observations can be easily perceived,
since 2D or 3D distance (in the attribute space) is mapped one-to-one to 2D
or 3D distance in the resulting plot. Outlier observations can be easily spotted
as points in the scatterplot which are far away from densely-populated regions.
Finally, direct or inverse correlations between the n ∈ {2, 3} variables can be
relatively easily spotted by searching for point-spreads along straight lines (in
2D) or planes (in 3D) in the plot. Conversely, the lack of correlation between
variables can be spotted by looking for 2D or 3D ‘clumps’ of points that do
not follow such linear patterns. However, scatterplots cannot, by construction,
directly visualize datasets having more than m = 3 dimensions. Also, even for
the case m = 3, understanding 3D scatterplots is considerably more challeng-
ing as compared to understanding 2D scatterplots, due to inherent problems
related to visualizing 3D point clouds, such as occlusion, difficulty to choose a
good viewpoint, parallax effects, and the difficulty of estimating 3D point cloud
density.

To extend the dimensional scalability of scatterplots, additional variables can
be encoded into per-point visual attributes, such as color, shape, or size. This
gives good results once one knows a priori which dimensions to assign to this
small set of visual variables. For high-dimensional datasets (high n values), this
is a complex problem, which in the limit forces users to cycle through the entire
set of n variables to map them to e.g. color in order to detect potential patterns.
Separately, encoding variables into shape or size imposes constraints on the min-
imal point size, which in turn can easily lead to undesired occlusion and visual
clutter for datasets having many observations.

Scatterplot matrices extend the idea of 2D scatterplots by constructing a so-
called small multiple layout [222], also known under the name of trellis plot [13],
and discussed even earlier under the generic name of collections [19]. In detail,
given an n-dimensional dataset, a matrix of n×n 2D scatterplots is constructed,
where scatterplot (i, j) shows the relationship between variables xi and xj in the
original dataset. The result is called a scatterplot matrix, or SPLOM. The advan-
tage of SPLOMs is that they show, in detail, all relationships between pairs of
variables in the original dataset (Fig. 2.1). However, the scalability of SPLOMs
is obviously limited by the number of dimensions n of the input dataset. For
typical output devices (e.g. computer screens) and tasks, SPLOMs scale up to
roughly n ∈ {10, . . . , 20} dimensions. Handling multidimensional datasets hav-
ing hundreds or even thousands of dimensions is not possible. A second prob-
lem of SPLOMs relates to the fact that they only show relations betwen pairs
of variables. In multidimensional datasets, however phenomena of interest may
be describable only when we analyze larger numbers of variables together. This
is not directly supported by SPLOMs. This is recognized by Hand et al. that
call SPLOMs ‘multiple bivariate infovis techniques’, in contrast to multivari-
ate techniques [84]. A third problem of SPLOMs is the fact that they adopt a
dimension-centric view: While it is relatively easy to reason about dimensions in
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a SPLOM, as these appear explicitly as rows and columns of the matrix, reason-
ing about observations is harder, as a single observation appears as n2 different
points, one point per 2D scatterplot in the SPLOM. While such issues can be par-
tially corrected by interaction techniques such as linked views, e.g. by brushing
a scatterplot and highlighting brushed observations in all other scatterplots, it
is still hard to reason about observations in SPLOMs.

To improve the idea of exploring sets of 2D scatterplots, Elmqvist et al. pro-
posed the ‘rolling the dice’ metaphor. In this set-up, users can interactively and
continuously morph the view on data between consecutive 2D scatterplots of
chosen variables i and j of their multidimensional dataset. By using animation
to linearly interpolate the positions of observations in consecutive scatterplots,
users can thereby analyze larger sets of variables than pairs [64]. A related inter-
action mechanism was proposed by Hurter et al. for exploring multidimensional
data such as air flight information [92] and 3D multivariate fields [97]. Here, the
user can actively control the transition between two scatterplots, by effectively
‘morphing’ one into the other. By playing such transitions a few times back and
forth, one can thus visually link related structures in different spaces. Separately,
by stopping the transition at any desired intermediate stage, data-related struc-
tures which are not apparent in any of the end views can be spotted.

On the positive side, such techniques significantly reduce the amount of neces-
sary screen space for visualizing the entire dataset, by factoring out additional
dimensions to the animation and interaction side. On the negative side, such
techniques strongly rely on the visual memory of their users in terms of being
able to remember (and correlate) information and insights shown at different
moments in time, and being visible only if the suitable interactions have been
chosen.

Scagnostics aim to address some of the scalability issues of SPLOMs. These
techniques propose a set of measures that help to identify the most interesting
scatterplots in a SPLOM, to next focus the user’s investigation on these [223].
Wilkinson et al. refined this idea considering the five aspects of scattered points
(outliers, shape, trend, density and coherence), creating nine quality measures
derived from geometric graphic features [239]. Later, Lehmann et al. proposed a
set of different measures to find clusters of similar relevance in scatterplots [125].
These clusters can be visualized by color coding and dimension reordering in a
SPLOM global view. One drawback of this approach is that different clusters of
large relevance could be caused by different initial orders of dimensions, some-
thing that is not evident in the proposed views. Essentially, scagnostics com-
bine data analysis (in terms of automatically ranking ‘interesting’ scatterplots
or parts thereof) and data visualization (in terms of directly showing the highly-
ranked plots) in a single approach. As such, their main limitation relates to the
inherent limitation of data analysis methods in terms of being able to automati-
cally find interesting patterns: If such patterns are found, then such approaches
are obviously effective. However, if interesting patterns are missed (which can
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Figure 2.1: Example of a SPLOM (iris dataset) [233].

easily happen when we cannot fully quantify what ‘interesting’ means), then
such approaches may fail to convey important insights in the data.

Parallel coordinate plots, or PCPs, can be seen, in some sense, as the 1D equiv-
alent of SPLOMs. They consist of a set of n parallel, and typically vertically
drawn, axes, one per data dimension xj (Fig. 2.2). Each value xji maps to a point
along the jth axis. Each observation xi maps to a polyline connecting all points
x
j
i, 1 6 j 6 n [99]. PCPs support several tasks, as follows. Distributions of values

xj around a given variable j can be easily spotted by looking at the point density
along PCP axis j. Brushing and selection helps narrowing down the analysis to
a specific set of observations, by e.g. selecting a value range on an axis; outliers
can be easily found by looking for polylines which are far away from the main
trend (Fig. 2.2 a). To further enhance this understanding, explicit histograms
can be added, in terms of bar charts, along the axes; and axis directions (top
to bottom vs botto to top) can be swapped to minimize undesired crossings of
polylines (Fig. 2.2 b). Similarly, outlier values or ranges along an axis j can be
spotted by looking at concentrated sets of points along that axis which are well
separated by other points (along the same axis) by large amounts of white space.
More interestingly, correlations between variables plotted to adjacent axes i and
j in the PCP can be spotted by locating dense sets of close, nearly parallel lines
that connect axes i and j. Inverse correlations (between such axes) can be spot-
ted by locating an ‘X’ like pattern formed by polyline segments connecting those
axes. Lack of correlation (between such axes) can be spotted by locating a thick
band of lines crossing each other at arbitrary angles between the respective axes.
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Figure 2.2: Example PCP visualizations using the parvis toolkit [124].

Sets of similar observations can be spotted by looking at end-to-end polylines
which are nearly parallel and close to each other. To reduce occlusion and clut-
ter, transparency and alpha blending can be applied to polylines, much as done
for traditional 2D scatteplots (see above).

However, PCPs have also a number of challenges. Axis ordering is arguably
the main one: Unless axes are ordered (along the horizontal screen dimension)
in a suitable way, it can be very hard to compare relevant variables, and thus to
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spot relevant patterns such as correlations. The issue here is that one does not
know the optimal sorting, since this depends on insights which are only known
(and visible) one such an ideal sorting has been achieved. As there are n! such
sortings possible for n variables, the space to explore is clearly large. Secondly,
PCPs are limited in terms of scalability by the available horizontal screen space.
For typical displays, this allows one to explore about 10..20 variables, but not
more. To avoid the visual clutter related to classical PCPs, Dang et al. proposed a
PCP where overplotting is handled by stacking overlapping elements in 3D [50]
. Dot ‘towers’ along each PCP axis highlight major differences in frequency that
are not evident in the traditional PCP. A different way to overcome the layout
limitations of classical PCPs that use parallel axes is presented by Claessen et al.
in their FLINAPlot design [43]. This approach, on the one hand, combines the
strengths of PCPs and scatterplots in a single view, and on the other hand allows
users to interactively arrange the PCP axes in a wide range of configurations, by
drawing them explicitly on screen. While this approach can, in principle, elimi-
nate some of the limitations of the classical PCP, it also requires a considerable
amount of interaction effort from the end user. Additionally, exposing design
freedom to end users can be risky, since one can (easily) create PCPs that do not
convey the required information.

(a) FLINAPlots for the cars dataset: origin axis
highlighted (yellow: USA; blue: Europe; red:
Japan) [43].

(b) View of the Utility data set using parallel co-
ordinate dot plot [50].

Figure 2.3: Examples of PCP visualizations.

Radial layouts adapt the idea of PCPs by proposing a different layout of the
variable axes. Essentially, axes are arranged in a radial layout, rather than in a
sequential layout (e.g. along the screen horizontal axis). The main added-value
of this design is that many more axes can be fitted in limited screen space. Addi-
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tionally, the resulting plot is guaranteed to have a 1 to 1 aspect ration, something
that cannot be done by the traditional PCP by construction [90]. Star Coordinates
use a similar approach to the RadViz design [90], where the variable axes are
computed as unit basis vectors of an affine projection [108, 109]. A similar con-
cept is offered by Star Plots [35]. However, this design can introduce undesired
distortions due to user manipulations. Similar radial layouts are proposed by
DataRoses and DataMeadows [63] (see Fig. 2.4).

While radial layouts achieve better aspect ratios than traditional PCPs, they
have a number of limitations. First, the inherent problem of optimal axis order-
ing present in traditional PCPs is apparent here too. Secondly, radial layouts do
not preserve distances in the same way that Cartesian PCPs do – polylines closer
to the origin appear, overall, shorter, less important, and more thus similar than
polylines far away from the origin. This creates an undesired bias towards better
seeing large-value observations. Finally, correlations (direct or inverse) map to
relatively simple patterns in traditional PCPs. In radial layouts, such correlations
appear rotated to various angles, depending on the position of the respective
axes in the plot. This makes them harder to spot, analyze, and compare.

(a) Color histogram mode (high
brightness equals high den-
sity)

(b) Opacity bands mode (c) Parallel coordinate mode

Figure 2.4: Examples of radial layout: DataMeadow [63]. Sample DataRose visualization
for a university student database of a computer science department.

Table lenses take a more traditional, but remarkably powerful, approach to vi-
sualizing multidimensional data. They regard a multidimensional dataset of m
n-dimensional observations xi = (x1i , . . . , xni ), 1 6 i 6 m as a table where each
observation xi is a row and each dimension xj is a column, respectively. For
small numbers m of observations, the data is drawn as a classical Cartesian
table, where each cell conveys the value xji in textual form, optionally over-
laid with a semi-transparent bar charts, scaled and colored to reflect the data
value (Fig. 2.5 a). Scrolling the table along observations i allows seeing variations
(trends) in individual variables xj by spotting the changes of their correspond-
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ing bar charts. To visualize large tables, one can zoom out the view and reduce
each table row to a line of pixels (Fig. 2.5 b). In this mode, cell text is not drawn
(since too small to be readable), and the entire view reverts to a set of vertical bar
charts [184]. Additionally, sorting the table rows along the value of one variable
xj directly shows the (inverse) correlation of that variable with other variables
xk6=j in the form of the variables’ bar graphs. For example, in Fig. 2.5 b, the table
is sorted on increasing values of column 1. This view immediately shows how
columns 1 and 2 are inversely correlated; that columns 4 up to 7 are directly
correlated; and that column 3 is not correlated with any other column.

a) b)

c) d)

1

1 2 3

2 3 4 5 6 7

Figure 2.5: Table lens example. (a) Zoomed in table with text and bar charts. (b) Zoomed
out table. (c) Table sorted and grouped on first three columns. (d) Table hi-
erarchy visualized with a treemap. Images generated with the TableVision
tool [215].

The table lens technique allows a quite significant scalability: The number
of columns n displayed simultaneously can easily reach several tens on a typi-
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cal computer screen. The number of rows displayed simultaneously can reach a
few thousands (depending on the screen vertical resolution). If aggregation tech-
niques for the types of attributes present in the table are available (e.g. averaging,
maximum, minimum, or similar), the table lens can, in principle, visualize an
unbounded number of observations.

Several enhancements have been proposed for table lenses. Contiguous rows
having the same values for an attribute xj can be emphasized by overlaying
them by shaded cushions [228], to emphasize attribute value distributions [215].
Separately, multiple sort-and-group operations executed on different attributes
j create on-the fly hierarchies of the data values, which can be next visualized
either by the basic table lens, or alternatively by treemap techniques [215]. This
essentially allows users to interactively explore the data by executing chains
of operations equivalent to the well-known SQL commands ‘ORDER BY’ and
‘SORT BY’. Figure 2.5 c shows a data table with rows sorted and grouped by
values of columns 1, 2, and 3, with same-value cells emphasized by shaded
cushions. The three-level data hierarchy thus created is next visualized using
squarified cushion treemaps [228, 30] (Fig. 2.5 d).

a) b)

Figure 2.6: Comparison of table (a) vs (b) PCP visualization layouts. Image taken from
[217].

However powerful, table lenses also have limitations. First, the proposed data
visual layout is constrained by the fact that an observation (table row) is always
a horizontal line (Fig. 2.6 a). This does not support tasks such as finding groups
of observations which are similar – a task well supported by e.g. PCPs (Fig. 2.6 b).
Secondly, comparing different columns can be hard if these columns are placed
far away from each other, in the horizontal table layout – a problem basically
identical to the axis ordering in PCPs. Thirdly, observations are less prominent
(in terms of visual encoding) than in PCPs. Indeed, in table lenses an observation
is a set of horizontally laid out bars, while in PCPs an observation is a polyline
(which has a more salient visual identity). On the positive side, table lenses
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inherit the ease of interpretation – arguably a large range of users understand
what a data table is, whereas significantly fewer users are comfortable with the
more abstract depiction of data proposed by PCPs or SPLOMs.

2.4.2 Space Filing Approaches

Multidimensional datasets create significant scalability challenges for visualiza-
tion techniques, both in terms of number m of observations and number n of
dimensions. The visualization techniques discussed so far, albeit effective, do
not use all the available screen space to the maximum. Indeed, they all reserve a
certain amount of white space (screen pixels not used to encode information) in
order to separate the drawn information and make it readable. In the same time,
they address the scalability issue by techniques such as overdraw (scatterplots,
SPLOMs, PCPs) or data aggregation (table lenses). This makes it hard, or even
impossible, to reason about individual observations.

To address these issues, space filling approaches have been proposed. Also
known under the name of pixel-based techniques or dense pixel displays, such
approaches aim to encode a maximal amount of information on the available
screen space, and in the same time avoid (by construction) overlapping data ele-
ments. The main challenge of such designs is to find suitable mappings between
them×n data values to map into the 2D screen space, so that data patterns of in-
terest become easily visible. One such design uses the small multiple metaphor
to create a separate visualization for each of the n dimensions. Within each such
visualization, the m observation values are laid out in a space-filling manner,
and visualized by color coding. One way to construct such per-dimension lay-
outs is to order the pixels along a 1D space-filling curve structure and map this
in a 2D space (2D space-filling curve), based on the type of query one wants
the visualization to support. Figure 2.7 illustrates this for the visualization of
1000 8-dimensional observations with the VisDB tool [113]. Here, the observa-
tions which are most relevant to the query to execute on the data are mapped
to the centers of the per-dimension views; the data then spirals outwards as it
becomes less relevant to the query. Keim et al. created a similar visual represen-
tation based on grid subimages in which users could reorder the dimensions,
helping to reveal possible correlations between dimensions. Ankerst et al. use
the same idea in their circle segments design, and offer similar user flexibility in
terms of data reordering, but proposed a radial layout of dimensions instead of
a grid (Cartesian) one [8]. Besides spirals, other types of space-filling curves can
be used. Curves that keep points close in the order (along the curve) also in the
2D screen space, such as Hilbert, Peano-Hilbert, Morton and H-curves, are ex-
amples hereof. Following the same idea, Wattenberg introduced the jigsaw map,
which maps data points to pixels and uses discrete space-filling curves in order
to fill a 2D plane in a better way than classical treemap layouts, i.e. ensuring a
better aspect-ratio of the leaf nodes, without distortion.
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Figure 2.7: VisDB [113]. Color coding ranges from yellow for those data items that better
satisfy a posed query to green, blue, red, and almost black for those further
away from it.

2.4.3 Multidimensional Projections

The visualization methods discussed so far take different approaches to (1) mak-
ing high-dimensional patterns visible, (2) explicitly showing observations and
attributes, and (3) ensuring scalability in terms of the maximal number of dimen-
sions and observations being shown simultaneously. However, as our discussion
has shown, no single method is able to fully satisfy (1), (2), and (3) equally well.

Dimensionality reduction techniques, also called multidimensional projections,
or more simply projections, take a different approach than all earlier methods.
Intuitively put, they recognize (and aim to address) two important limitations
of all earlier methods:

• visual scalability: Large and high-dimensional datasets having many ob-
servations m and dimensions n, it may be simply impossible to map all
information present in the data to a single screen, without occlusion. In-
deed, a typical PC screen having roughly P = 2 million pixels can show
at most P = m× n individual data items. However, current multidimen-
sional datasets obtained e.g. from text mining [91, 18] can easily generate
tens of thousands of observations having each thousands of dimensions;

• visual conciseness: All methods discussed so far map can be thought as
being more attribute-centric than observation-centric. That is, their visual de-
sign is geared towards easily understanding attributes and their values,
rather than understanding observations. Indeed, an observation is mapped
to relatively complex visual shapes – horizontally aligned bars (table lens),
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polylines (PCPs and their variations), a set of n× n points located in sep-
arate 2D scatterplots (SPLOMs), and a set of n colored dots located in
separate dense-pixel displays (space-filling approaches). This makes it rel-
atively hard for users to see an observation ‘at a glance’, as its visual encod-
ing becomes increasingly more complex with the number of dimensions
n. Separately, increasingly complex shapes affect visual scalability, due to
increased potential for clutter and overdraw.

At a high level, projection methods essentially recognize that (a) it is very hard,
if not impossible, to show all information involving the m observations and
their n attributes in a multidimensional dataset; and (b) that visually encoding
observations by simple to understand elements may be, in many cases, favorable.
In this context, multidimensional projections can be defined, in the terminology
of Tejada et al., as follows [214]: Given a set X = {xi} ⊂ Rn of observations,
and a so-called ‘criterion of proximity’ or similarity function δ : Rn → R+

between items in Rn; and given a low-dimensional space Y ⊂ Rp, where p << n
(typically, p ∈ {1, 2, 3}), and a corresponding similarity criterion or similarity
function d : Rp → R+; with this notations, a multidimensional projection is a
mapping f : X → Y, so that |δ(xi, xj) − d(f (f(xi), f (xj))| is as close as possible to
zero, ∀xi, xj ∈ X. In other words, multidimensional projection methods aim at
mapping instances from a high dimensional space X to a low dimensional space
Y (also called the embedding space) by preserving inter-observation distances as
much as possible.

color map values of  

a selected column 

Data table 2D projection 

a table row gets 

mapped to a point 

2D point distance reflects 

nD row distance 

2D2D
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Figure 2.8: Conceptual representation of multidimensional projections for reducing a
data table to a 2D scatterplot.

The core added-value of projections can be explained as follows (see also
Fig. 2.8). Consider a data table of m rows (observations) and n columns (dimen-
sions). Drawing such a data table requires, using e.g. the table lens technique,
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drawing m × n data values. Moreover, observations are hard to grasp in the
resulting visualization, as these correspond to data-table rows. If we projected
this data table in a 2D space, using the projection technique, we would obtain
a scatterplot having m points, one per observation. In this plot, inter-point dis-
tances attempt to reflect similarities between the original n-dimensional points.
This would (a) allow us to detect groups of similar observations as clusters of
close points in 2D; outlier observations as 2D points being far away from other
groups of 2D points; and, possibly, trends and correlations as specific visual
structures in 2D. Additionally, (b) this type of projection plot would map ev-
ery n-dimensional observation to a simple shape: a 2D point in the projection.
This would arguably make the projection plot compact and scalable to large
amounts of observations and large amounts of dimensions. Additionally, color-
ing projected observations (points) by e.g. the value of one attribute from the
n-dimensional space could explain the reason why points are similar. Finally,
by controlling or constraining the position of a (small) subset of projected ob-
servations, and recalculating the projection based on these samples, projections
allow users to shape the resulting visualization. This offers effective ways to
organize or arrange the projected data in ways which address several tasks,
e.g. make distances in the projection space reflect some application-dependent
notion of similarity, or place projected points at specific locations to obtain an
image which is easier to interpret.

Multidimensional projections can be further classified according to different
criteria. A first such criterion regards the information being used to construct the
projection. In this sense, two projection method classes can be found:

• multidimensional scaling methods: These methods use, as input to construct
the projection function f : X → Y, only the inter-point distances between
all pairs of observations (xi, xj) ⊂ X. The actual dimensions, or attributes
x
j
i, of the points xi, are not known. These methods are also known un-

der the name of multidimensional scaling (MDS) methods. The main ad-
vantage of these methods is that they only need the n-dimensional dis-
tances, or similarities, between observations, and are otherwise agnostic
of the dimensionality n of the original space, as well as of the explicit ac-
tual coordinates (or attributes) of the points xi in this space. In practical
terms, this means that, as long as we are able to provide a distance matrix
D = (δ(xi, xj)16i,j6m), these methods can generate a low-dimensional
projection for us. The main disadvantage of these methods is that comput-
ing and storing such a full distance matrix D is quadratic in the number
of observations m;

• projection methods: These methods use, as input to construct the projection
function f : X→ Y, all the actual coordinates xji of all them observations in
the input n-dimensional space. Traditionally, these methods are known un-
der the name of projections, which reflects their mapping of n-dimensional
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points to p-dimensional points. Advantages of these methods, in contrast
to MDS methods, are the direct access to the ’raw’ n-dimensional obser-
vation data, which can be deemed to be more exact, or close to the actual
information to visualize, than the access to the derived distance matrix
D. Additionally, such methods require as input only an m×m data ma-
trix, which is typically (much) smaller than the m×m distance matrix D
(and also does not explicitly require computing d-D distances). As typi-
cally n << m, the storage requirements of projection methods are much
smaller than the equivalent storage requirements of MDS methods. On
the negative side, projections require explicit access to the attributes of the
n-dimensional points, which make such methods more selective, and less
generic, than MDS methods.

A second classification of dimensionality reduction methods is based on their
algorithmic functioning. in this respect, we can talk about global and local meth-
ods, as follows.

Global methods map data from a high-dimensional space to a low dimen-
sional (visual) space using a single transformation. That is, the function f :

X → Y does not depend on the local distribution of the n-dimensional ob-
servations xi, but only on aggregated properties of the entire set X of observa-
tions.Techniques that use spectral decomposition are good examples of global
methods. These compute the low-dimensional embedding coordinates for each
observation from eigenvectors of a transformation applied to the dissimilarity
matrix D = (δ(xi, xj)16i,j6m) [220]. Alternatively, global methods can directly
use the observations, rather than the distance matrix D. A very simple exam-
ple of this approach is to perform principal component analysis (PCA) of the
covariance matrix of all observations xi, next select the k largest eigenvectors
ej, 1 6 j 6 k, and e2, and finally compute the k-dimensional embedding of the
data by projecting xi on the hyperplane defined by ej. If k = 2, then this method
effectively projects the observations on the 2D plane in which the data have the
largest spread.

In order to decrease the high computation costs (typically O(m3), where m
is the number of instances to be projected) associated with the eigendecomposi-
tion, Roweis and Saul [186] presented an O(m2) algorithm that combines local
fitting and global linear mapping. Sample instances were exploited by Brandes
and Pich [24] and De Silva and Tenenbaum [54] achieve an O(k3 + km) algo-
rithm, where k is the number of samples used to build the mapping. Subsets
of samples have been further exploited by Faloutsos and Lin in their FastMap
algorithm [69] so as to obtain an O(m) dimensionality reduction scheme. Tenen-
baum et al. [218] proposed an O(m) algorithm using a geometric framework.
Multiscale matrix representations were employed by Belkin and Niyogii [15]
and Koren et al. [119] to reduce the computational effort.
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Kruskal [122] was, to our knowledge, the first to propose the so-called nonlinear-
optimization-based techniques. These form the class of global methods that ac-
complish the mapping to visual space by finding a minimum for an energy
function, usually called the stress function. This function captures the difference
between distances in the original space and projection space, or how faithfully
the projection preserves distances. In general, however, optimization methods
are computationally expensive (O(m2)), even when using efficient numerical
solvers [29]. To reduce computational costs, Pekalska et al. proposed to select a
subset of k observations, called samples, and embed these first in the visual space
by the optimization of a suitable stress function. In the second step, the remain-
ing data points are placed around the samples, using a global linear mapping.
The end-to-end result is an O(k3 + km) algorithm [171]. Although more effi-
cient than other optimization-based methods, this approach is not fast enough
to support interactive applications. Moreover, this method requires a minimum
number of sample points equivalent to the dimensionality of the input data.

Another global method composed of two steps is the Least Squares Projection
(LSP), which is also based on a non-linear scheme to first position a sample sub-
set in the visual space, and maps the remaining instances through a Laplacian-
like operator, yielding an O(k2 +m2) algorithm [163]. LSP is based on a global
neighborhood graph from which a large sparse linear system is constructed.
One important aspect of LSP is that it permits the user to adapt the shape of the
projection by changing the positions of the samples in the visual space. How-
ever, LSP’s global properties put an upper bound to how much and/or how
freely one can change a projection in this way. This limitation can be also no-
ticed for in a the PLMP linear mapping method (whose complexity is linear),
that also uses a subset of samples to define a global linear projection [164]. Sim-
ilar to Pekalska’s approach, PLMP also requires a minimum number of samples
in order to accomplish the projection, which can adversely affect interactivity.

Local methods aim to relax the restrictions imposed by globally projecting all
points. Intuitively, they can be thought as ‘splitting’ the space to project in many
small neighborhoods, located around the observations to project, and treating
each such neighborhood separately. This way, different local decisions can be
taken, resulting in a better projection (in terms of e.g. distance preservation)
and/or a faster projection algorithm. Local methods make use of two main ingre-
dients to perform the multidimensional projection, namely, the neighborhood
information of each data instance or observation, and the location of a subset of
samples positioned a priori in the visual space. More specifically, the mapping
of each data instance depends only on the sample points in its neighborhood,
which gives the local nature of the projection process.

In this class of methods, the approach proposed by Chalmers [34] and its hy-
brid variants [106, 144, 214] first maps the chosen sample subset to the visual
space through a force-based scheme inspired in an analogy between stress func-
tion minimization and mass-spring systems used to construct graph layouts [56].
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The neighborhood structure of each instance is then leveraged to embed the re-
maining data in the visual space, resulting in an O(cm) technique, where c
is the number of iterations performed by the algorithm and m the number of
observations in the input data. Several computational optimizations have been
proposed in this context, such as using parallel implementations using general-
purpose graphics hardware (GPU computing) [73, 98]. However, despite these
optimizations, this family of methods is still too slow for interactive applications
that deal with large data sets.

The Piecewise Laplacial Projection (PLP) of Paulovich et al.[167] uses a force-
based scheme to place the subset of samples in the visual space. The remaining
data instances are projected using several local Laplacian-like operators, which
are built from disjoint local neighborhood graphs. The ease and flexibility of-
fered to the user to interact with the projection is the main quality of PLP –
indeed, moving sample points around directly changes the projection layout,
which can help to organize (group) similar data points. Drastic changes in the
projection are possible with PLP because the underlying local neighborhood
graphs are rebuilt during user interaction. However, the continuous changing
of the local neighborhood graphs increases PLP’s computational cost and can
produce rank-deficient local Laplacian systems, which impacts the method’s ro-
bustness.

The recently published LoCH [68] method obtains good results in preserv-
ing the neighborhood distance structures in high-dimensional sparse spaces. It
works placing each point close to the convex hull of its nearest neighbors. Com-
paring to most projection techniques, LoCH is significantly better in segregating
groups of similar instances and defining borders between them. This supports,
for instance, tasks that involve browsing image collections searching for similar
images (Fig. 2.9). The authors of this method also argue that local projection tech-
niques outperform global methods on segregating groups of similar instances
and on preserving neighborhood relationships.

Assessing projection quality is a key ingredient in the design of effective visual-
ization applications that use multidimensional projections. Indeed, as compared
to earlier visualization methods for multidimensional data, projections (a) create
a far more abstract view, and (b) perform a significant amount of data reduction
from the original high-dimensional space to the low-dimensional (visual) space.
The central (and, in many cases, only) visual element that users can employ to
reason about the resulting projection is the distance between projected observa-
tions. As such, one has to be sure that this distance correctly reflects the original
distance in the high-dimensional data. If this is not the case, then interpreta-
tion errors are very likely, e.g. incorrectly assessing the similarity of several data
points, or incorrectly reasoning about groups, trends, and outliers.
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Figure 2.9: The top-right window presents the initial point cloud projection generated
by LoCH from a image dataset collected from the internet [68]. The larger
image have its thumbnail image instances corresponding with the same point
location.

Arguably the best known, and most often used, measure for projection quality
is the so-called normalized stress function

σ =

∑
16i6m,16j6m(δ(pi, pj) − d(qi, qj))2∑

16i6m,16j6m(δ(pi, pj))2
, (2.6)

where pi are the inputm observations, qi are their corresponding low-dimensional
projections, δ is a distance metric for the input high-dimensional space, and d is
a distance metric for the output (embedding) space. Typically, for both δ and d,
the Euclidean distance is used. Low stress values indicate good distance preser-
vation, the ideal value being zero. High stress values indicate that the projection
does not preserve distances well.

Normalized stress is useful to globally quantify projections in terms of their
ability to preserve distances. This supports tasks such as e.g. ranking different
projection algorithms in terms of their overall quality, and judging if a given
projection algorithm yields sufficient quality for a given input dataset. However,
normalized stress is an aggregated metric which does not give fine-grained in-
sight on projection errors, e.g. show which distance ranges are well preserved
and which not. Such insight can be obtained by showing scatterplots of the val-
ues δ and d for all pairs of points (pi, pj) in the input dataset. Figure 2.10 shows



2.4 multidimensional data visualization 43

a few such scatterplots used to compare the PLP, PLMP, and Fastmap projection
techniques for three datasets (wine red, segmentation, and wdbc) [167]. If distance
is perfectly preserved, such scatterplots should match a diagonal line. Spreads of
points above the diagonal indicate that the projection places points too far away
from each other (as compared to their original distances). Similarly, spreads of
points below the diagonal indicate that the projection places points too close
to each other. While stress scatterplots are a useful instrument of getting more
insight in the magnitude, spread, and kinds of errors that a projection creates,
it still does not directly tell end users where these errors occur in the projection,
and thus where misinterpretations can occur. We address these limitations by
presenting new ways of exploring projection errors in Chapter 4.

Figure 2.10: Comparing projection quality with stress scatterplots. The x axis maps the
distance δ in the input high-dimensional space. The y axis maps the distance
d in the embedding low-dimensional space. Image taken from [167].

To better understand quality issues beyond the aggregate insight provided
by the stress function, Paulovich et al. [168] presented a comparative analysis
between LSP, PLMP and LAMP. Their study considered the user manipulation
of control points to show different behaviors between global projections (LSP
and PLMP) and local projections (LAMP) for a dataset of 2100 observations and
19 dimensions. When 10 percent of data are taken as control points, global and
local methods behave similarly and follow the groups’ layout created by the
user. However, using 19 control points, only LAMP could still separate groups,
while the LSP and PLMP could not. Thus, this flexibility to steer the projection
layout to closely follow the user layout of the control points is not the only
advantage of LAMP. In terms of accuracy, original distances are well preserved
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in the visual space when comparing with others multidimensional projection
techniques. More details about LAMP will be discussed in the next chapter.

Besides stress and its derivatives, there are other quantitative measures that
have been used to evaluate the mappings after interactive control points ma-
nipulation, namely, neighborhood hit [163], neighborhood preservation [165]
and silhouette coefficient [211]. Given an instance x, neighborhood preservation
gauges the percentage of the k-nearest neighbors of x that still remain neighbors
in the visual space, while neighborhood hit take the k-nearest neighbors of x,
checking what proportion of those belong to the same class. The silhouette coef-
ficient, which was originally proposed for evaluating clustering algorithms [211],
measures both the cohesion and separation between grouped instances. The co-
hesion ax of x is calculated as the average of the distances between x and all
other instances belonging to the same group as x. The separation bx is the mini-
mum distance between x and all other instances belonging to other groups. The
silhouette of a projection is given by Silh = 1

n

∑
x∈X

(bx−ax)
max(ax,bx)

where n is the
number of instances. Notice that Silh ranges in the interval [−1, 1] and the larger
the value of Silh the better is the cohesion and separation.

Exploring projections: A projection, in itself, can be the final result in several
contexts. For instance, in machine learning, projections are used to pre-process
very high-dimensional datasets, in order to extract a smaller number of relevant
dimensions, also called features. These features are next used to e.g. analyze or
classify the data at hand. This dimensionality reduction can increase the robust-
ness, accuracy, and running times of subsequent classification algorithms.

In exploratory scenarios, however, a projection by itself is not the final result.
The projection is subsequently explored in order to learn insights about the data
at hand. For this, additional mechanisms are needed to explain the patterns visi-
ble in a projection (clusters, outliers, trends). The simplest and most frequently
used explanation comes in the form of visually encoding one or a few data at-
tributes per projected point, by means of color, size, and shape. However, this
method does not scale to show tens or even hundreds of attribute values atop of
each data point. When dimensions have been computed as features, or descrip-
tors, from some higher-level original dataset, such as images, the original data
items can be drawn in the form of thumbnails instead of points in the resulting
scatterplot [167]. This allows next users to examine why different data points are
similar. However, this approach does not scale well with the number of obser-
vations. To address scalability, projections can be explained at the coarser level
of point clusters rather than individual observations. Clusters are found in the
embedding (visual) space, by using any suitable clustering algorithm. Next, the
most salient characteristics of each cluster are computed, e.g. variables which
make the points in the cluster similar, and their ranges, by statistical analysis.
Finally, cluster outlines are drawn, e.g. by using convex hulls, and the detected
characteristics are drawn atop of the clusters as text labels. An example of this
approach is given by the recent ProjCloud visual data-mining tool [169]. Here,
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a set of observations, describing news in a collection of text documents, is pro-
jected to a 2D point cloud; next, the bisecting k-means clustering technique is
used to create separate clusters of similar observations; finally, each such clus-
ter is visualized by rendering its most frequently encountered terms using the
well-known tag-cloud technique (Fig. 2.11).

Figure 2.11: Visualization of a collection of news using the ProjCloud tool [169].

Biplot axes offer a different kind of explanation: They show the directions and
spread, in projection space, of the variations of the original m variables, and
they help users finding e.g. variable correlations and independent variables. For
2D projections created by PCA from categorical datasets, and visualized with
scatterplots, Broeksema et al. propose an explanation of the x and y scatterplot
axes in terms of the amount of spread of the original m variables along these
axes, and visualize these explanations by means of barchart axis legends [28].
While such legends give an intuitive way to understand which variables one
can best see along the x and y screen axes, their construction requires a linear
projection.

As explained above, projections are typically used to reduce dimensionality,
and thereby make it possible to visually explore the data structure in a low-
dimensional space. However, one challenge for the resulting scatterplots is that
it does not show the original data dimensions. To alleviate this, inverse projection
techniques can be used. Given a direct projection f : Rm → Rn, an inverse
projection is essentially a function f′ : Rn → Rm which aims to minimize the
distance δ(f′(f(x)), x) for all points x close to the high-dimensional dataset that
is projected. One such inverse projection technique is iLAMP, which is based
on the LAMP direct projection technique [61]. Inverse projections can be used
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to extrapolate from the projected scatterplot points, e.g. to explore parameter
spaces in optimization problems.

A different kind of projection explanation is proposed by da Silva et al. [49].
Here, for each neighborhood of the projected points, a ranking of them variables
is computed to reflect their importance in terms of making the respective points
close to each other in the original space. Next, the top most important variable
per projected point is determined; and the variables which are ranked as top
for most of the projected points are determined. Finally, points are colored to
reflect the identity of their top-ranked variable, by using a categorical colormap.
The technique can be also applied to explain the positioning of each point in
terms of several variables rather than a single one. The resulting visualization
implicitly splits the scatterplot into several compact same-color areas, thereby
explaining the projection in terms of a few variable identities.

2.4.4 Other Approaches

Hierarchy-based approaches, tabular displays (Heatmap), glyphs and animation
are some examples of visual mappings that also deals with multidimensional
data and they are quite well known by the academic literature.

Chernoff’s faces approaches the visualization of multidimensional datasets by
extending the concept of glyphs, used since long to visualize scientific data
such as vector and tensor fields [217]. A glyph, in this context, is a 2D or 3D pa-
rameterizable object, whose m parameters are controlled by data attributes. For
example, vector fields can be visualized by encoding their direction and magni-
tude in the orientation, respectively length, of an arrow icon. This idea can be
generalized to higher-dimensional datasets, as long as one can design a glyph
havingm perceptually independent visual attributes. Chernoff proposed, to this
end, to use human face-like shapes, based on the assumption that such faces
have many independent dimensions (when perceived by users) [42]. However,
such visual attributes as offered by parameterized faces are not necessarily of
ratio type, to follow the attribute taxonomy outlined in Sec. 2.2.1. Moreover, the
number m of independent visual attributes is much lower than the hundreds, or
even more, attributes present in many multidimensional datasets. Similar ideas
are proposed by the stick figures in [174], where an articulated line figure is
used to map two attributes to the figure’s position in 2D and additional ones to
the rotation angle, length, color, and thickness of the figure’s limbs. Compared
to Chernoff faces, more figures can be packed on the same screen space, thus
more observations can be visualized simultaneously. However, the mapping of
attributes to the figure’s degrees of freedom has to be done with great care to
avoid generating cluttered, thus meaningless, images. Shape coding [14] and
color icon [129] techniques also propose a glyph-based approach, where each
observation is encoded into a small rectangle where the color of each pixel rep-
resents the value of a separate attribute. However, detecting patterns that span
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several attributes can be hard, so the scalability of these techniques in terms of
number of attributes they can depict is limited. For more details on these and
other multidimensional data techniques, we refer to the recent survey in [135].

2.5 exploring multidimensional multimedia data

One application domain that generates high-dimensional data that is not neces-
sarily spatial, and contains attributes of various types (following the taxonomy
in Sec. 2.2.1), is the multimedia domain. Loosely put, this domain encompasses
the generation and exploration of large collections of data (also called content)
of multiple media types, such as text, graphics, still images, full-motion video,
sound (music and voice), and animations [23]. Technological and societal devel-
opments over the past decade, such as the proliferation of low-cost audio-video
acquisition devices such as smartphones and webcams, the increasing availabil-
ity of broadband internet and low-cost data storage in the cloud, and the ap-
pearance of social networks such as Facebook or Instagram, have made a huge
amount of multimedia content available. As a consequence, both researchers
and commercial parties are keen to develop efficient and effective techniques to
explore these large information spaces.

Following our multidimensional data characterization introduced in Sec. 2.2,
an observation in this context can be seen as one set of related content elements
which has been authored, or created, as a single entity, e.g. a movie containing
one or several audio tracks, one or several subtitle tracks, and a video track. Such
an observation can be further described in terms of a so-called set of features,
also called a feature vector [191]. These are typically measurements performed
on the content data, with the aim of quantifying various properties of interest.
When such features are extracted jointly from different media types, such as text,
audio, and video, the resulting feature-set is typically called multimodal [85]. Ex-
amples of features are topics extracted from text; keyframes denoting important
action points in a video stream or optical flow descriptors extracted from motion
video; color moments, texture descriptors, and shape descriptors extracted from
still images or individual video frames; and sound descriptors such as loudness,
pitch, and spectral descriptors extracted from audio data. All such features have
the advantage that they can be described by real numbers. As such, an entire
multimedia dataset can be modeled as an observation point in Rn.

Multimedia datasets are a very interesting case to test the effectiveness of mul-
tidimensional data analysis and data visualization methods for several reasons:

• They easily yield several tens or even hundreds of dimensions (if we con-
sider the large set of features one can extract from audio, video, and subti-
tles);

• The extracted features are highly abstract (e.g. consider edge histograms
extracted from image data);
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• The extracted feature types span the entire spectrum of attribute types
known in information visualization (continuous, discrete, ordinal, categor-
ical, relational, and text);

• The number of observations is very high – one observation per frame can,
for a typical movie recorded at 24 frames-per-second, create tens of thou-
sands of observations;

• Multimedia data admits a multilevel hierarchical structure – consider e.g. a
frame, part of a soccer match video, part of a tournament match-set;

• Multimedia data are literally everywhere, created in huge amounts, and
of great interest to a wide range of users, from professionals like trainers
analyzing athlete behavior to casual consumers like fans browsing a soccer
match collection.

Considering that multimedia data offers an interesting, challenging, and valu-
able testing-ground for multidimensional-data visual exploration techniques,
we next overview the most prevalent analysis and exploration tasks, and related
supporting visualization tools, that target multimedia content, with a focus on
video data.

2.5.1 Video analysis steps

Video is a communication tool that gained popularity with the appearance of cin-
ema theater and television devices in the twentieth century. With the digital rev-
olution, technological advances and the increase of internet access, among other
factors, have made video a key component of information dissemination. In
turn, this has led to the development of applications in many domains, such as
education (online courses), surveillance and security, entertainment, and news.
Two important challenges in this context are the extraction and presentation of
information from video content, so that analysts can quickly and easily form an
impression about the content represented in the video.

According to Hanjalic [85], the scope of video content analysis is the extraction
of information about the content conveyed by video data. In this sense, video-
analysis algorithms and techniques aim to enable users to quickly access events,
persons, and objects captured by the camera, and also to efficiently generate
overviews, summaries and abstracts of large video collections. Video content
analysis algorithms can be further refined into three subclasses:

1. video parsing refers to the temporal segmentation of the video into frag-
ments that describe events at desired levels of detail. Examples hereof are
individual video shots (low-level level of detail) and scenes (high-level
level of detail);
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2. video indexing refers to the assignment of links, or indexes, between a spe-
cific semantic category, e.g. a categorical description of the type of action
represented by a video segment, and the respective video segment. Once
a video is indexed, it can be analyzed on a high level, e.g. queried for
the inclusion of specific events, based on desired semantic category search
terms;

3. video abstraction and representation refers to the generation of compact and
comprehensive representations of video data based on indexes assigned
to parsed video fragments. This step aims to communicate the ‘essence’ of
a video dataset to users in a more efficient and effective way than what
users would typically obtain by plainly watching the entire video.

The three above-mentioned groups of technique essentially create a so-called
multiscale representation of the video data. On the lowest level, shots and scenes
can be seen as syntactic elements; the intermediate indexing level can be seen
as associating (basic) semantic attributes to syntactic elements; the last level
conveys the highest-level representation, where a ‘story’ can be assembled from
the semantic elements. The challenge in this respect is finding ways to cover the
gap between the low-level feature vectors extracted from parsed video data and
the high-level events that one wants to identify and reason about. This process
is hard since there is no unique, context-independent, mapping of low-level
(syntactic) data to higher-level (semantic) events. This mapping can be video-
dependent, task-dependent, and person-dependent. Performing this mapping
is also known under the name of bridging the ‘semantic gap’ [206]. In order
to reduce this gap and facilitate the identification of events, researches started
to analyze videos with techniques that are specific to the domain the video is
related to. In this sense, Snoek and Worring [208] propose ten different domains
for video and their related semantic-index hierarchies: talk show, music, sports,
feature film, cartoon, soap, documentary, news and commercial.

We will next focus the discussion in the video content analysis related works
on techniques that are applied to either identification but mostly visualization
of video segments in different types of domains.

2.5.2 Analysis and presentation of video content

The tasks of analyzing video data to extract relevant information and presenting
this information in effective ways to the user are intimately connected. This is, on
the one hand, due to the fact that specific analysis methods are needed to extract
information that is needed to support specific user tasks; and, on the other hand,
that such specific information requires customized ways to present it to achieve
maximum effectiveness. As such, we will next jointly discuss methods for video
analysis and presentation.



50 related work

The main four types of techniques addressing analysis and presentation of
video content are video summarization [5], video abstraction [221], video brows-
ing [196] and video visualization [22]. They can be described as follows:

1. Video summarization uses content-based analysis techniques to create video
summaries, which aim to intelligently subsample a video stream so as to
preserve events or timespans of interest, and compress or even remove the
rest. From a data processing perspective, summarization can be thought
of as a non-uniform, semantic subsampling process that tries to maximize
the information amount captured by the samples used to represent the
video. Summarization is used in e.g. video retrieval systems. A recent re-
view identified 11 different application domains of summarization tech-
niques (including news, sports, traffic, surveillance, documentary, and mu-
sic), and showed that not all techniques are equally good summarization
solutions for all domains [5].

2. Video browsing aims at offering efficient ways for users to explore (large)
individual videos or video collections. Video browsing can be further clas-
sified in three approaches [196]: Videoplayer-style browsing aims to im-
prove classical videoplayer-like user interfaces; browsing by video retrieval
querying aims to offer compact and comprehensive ways for users to un-
derstand the types of videos present in a large video collection, by e.g. us-
ing use storyboard techniques; finally, browsing through video surrogates
conveys video content information at higher, and typically more abstract,
levels than images. This increases the amount of video information that
can be browsed within a limited amount of time and/or by using a lim-
ited amount of screen space.

3. Video abstraction is used to create short and compact summaries of videos,
which can next be used for tasks such as summarization or browsing. Sum-
maries can be either sequences of static keyframes or short sequences of
animated images, also called movie skims [221]. Keyframe-based abstrac-
tion is relatively simple to implement and computationally efficient, but
asks more effort from the user to grasp the summarized content. Video
skims can capture more content and are also found more visually pleas-
ing, but are harder to compute while maintaining context and coherence.

4. Video-based graphics and visualization focuses on presenting information ex-
tracted from videos in novel ways [22]. Video graphics create and render
graphical models built from video data, with the aim of creating novel
digital content for consumers. In contrast, video visualization creates new
visual representations of the video data (or of artifacts extracted from such
data), aiming to help users find and analyze important features or events,
reduce the time needed to watch videos, and ultimately gain insight to
make decisions in a cost-effective manner. Both techniques can be thought
of as being generalized forms of video abstraction.
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As mentioned earlier, video analysis and presentation solutions are typically
developed in strong connection with the targeted user group. As user groups
can be, next, associated to different types of video content, it is appropriate to
next discuss such existing solutions by classifying them based on the content
type. In this respect, we find three important (though not exhaustive) categories
of content type and related video visualizations: Sports videos, movies, and TV
news. These are discussed next.

Sports videos encompass a wide range of content related to sports events, e.g.
recordings and live broadcasts of individual matches, and collections of tempo-
rally or hierarchically organized videos describing entire tournaments. General-
public tools for visually exploring sports data also include the broad category of
infographics used in printed and/or online forms by many newspapers. How-
ever, we will focus here on the more advanced, albeit still aimed at the general
public, tools for sports data visual exploration.

In this domain, the quest for appealing and easy-to-understand visual presen-
tations of videos is well recognized [157, 9, 179, 175]. The importance of team
sports is noted in a visualization model built based on a literature review, classi-
fying sports visualizations among conceptual axes [157]. For American football,
a visualization that showed the trajectory of the ball during the game was pro-
posed [9], using refined ball-tracking techniques to avoid problems with camera
and radio-based tracking due to occlusion or ball proximity to groups of players.
Eight receiving antennas captured multidimensional motion data, which was fil-
tered, amplified, sampled with a bank of analog-to-digital converters, stored for
post-processing and merged with the video to determine the position and tra-
jectory of the ball. While this visualization provides ball-position estimates to
the spectator, tracking is done per-video-frame, so contextual event information
is not present. In contrast to such per-frame tracking, TenniVis takes an oppo-
site approach [179]: Statistical information, extracted from the video stream, is
mapped atop of each video segment, or video skim, using glyphs, pie charts,
and bar charts (Figure 2.12). This information comes from a multidimensional
dataset composed of the following attributes for each game point: start and end
time; who won the point; the type of outcome (ace, double-fault, winner, forced
error or unforced error); and service faults (missed serves). While this approach
is good in showing aggregated performance metrics, lower-level, event-related,
insight is lost; separately, some of the used graphics may be found too abstract
by casual users. For ice hockey, the SnapShot system maps multidimensional
data in a 15 shot attributes like length, goal or not, shooting team, shooter’s
name and location in a single view [175]. A novel radial heat map was devel-
oped to visualize the distance of shots. As for TenniVis, we argue that such
visual presentations are useful for advanced users such as analysts, but too ab-
stract and/or complicated for the simpler questions of casual sports fans.

Summarizing the above, sports videos are a challenging analysis domain as
they provide high-variate, high-volume, and hybrid data consisting of the posi-
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Figure 2.12: Visualization of a single tennis match in TenniVis [179].

tion and trajectory of the ball and several players; labeled moments describing
important game events; per-game aggregated statistics such as ball posession,
number of faults, and final score; and tournament-level information such as
e.g. the hierarchical organization of matches. Users targeted by sports video
visualizations come from two main categories: Trainers and other sports special-
ists need to analyze high-fidelity, fine-grained, information that captures game
patterns, tactics, and strategies, and are thereby more open to the adoption of
complex visualization techniques. In contrast, casual consumers, such as sports
fans, require a very low learning-curve, intuitive interfaces which are usable on
a wide range of consumer electronics devices (e.g. set-top boxes, TVs, and smart-
phones), and are more interested in spotting and viewing salient match events,
such as goals or controversial sequences rather than in in-depth tactical analysis.

Movies and TV series are another prominent type of video content. For this
domain, most of current work related to video visualization goes in the of
summarizing movies by showing their narrative or story in a compact visual
way [45, 38, 246, 134]. Correa and Ma [45] proposed an appealing linear col-
lection of mosaics, defined as panoramic summaries of short video sequences
occurring over a common background [45]. The mosaic collection is also known
under the name of dynamic narrative. This type of summarization offers users
the possibility to dynamically explore a movie video, or video collection, by
browsing/watching a sequence of short video clips. The method use SIFT lo-
cal feature descriptors [136] to create multidimensional data for next finding
matches between adjacent movie frames, and a Gaussian Mixture Model to iden-
tify if a pixel is part of the image background or foreground. For movies such as
the “Superman” cartoon and “Happy Go Lovely”, this technique was shown to
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achieve good results. However, it was also noted that this technique has limited
abilities to determine the foreground in fast camera motions and also detect
objects atop of a moving background. Visual Storylines [38] builds a geomet-
ric layout to present sub-stories in a movie. Shot dissimilarity is calculated in
a feature space using image features (color histograms), audio features (Mel-
frequency cepstral coefficients (MFCC) feature distance [52]), and temporal con-
straints. For some movies, such as “Star Wars: Attack of the Clones”, the method
provides good results (Figure 2.13). However, complex interaction within char-
acter groups showed to be one drawback. Audio and v features are also used
to construct a so-called Affective Visualization for movie browsing [246]. This
approach used 22 audio features and 5 visual features to describe the movie and
extract its video segments. Drama, horror, comedy, and action were the movie
categories tested in the visualization tool, which aimed to detect and highlight
higly-emotional moments in the movie. In this respect, the proposed technique
showed some limitations for drama-type content, since in this type of content
emotions are more likely expressed by conversations between characters (rather
than salient audio or video patterns), and the semantics of such conversation is
hard to capture by low-level audio-visual features. The Affective Space compo-
nent maps the detected video segments to points in a point cloud or scatterplot-
like visualization, according to the similarity of the so-called ‘affective state’, a
four-valued attribute describing the emotion captured by a video segment. This
enables users browsing video segments which are similar from the perspective
of the detected affective state, but looses the temporal coherence between such
segments. Instead of presenting frames from the movie, StoryFlow [134] illus-
trate the dynamic relationships between entities in the movie story by drawing
adjacent lines. Line bundling techniques can be next used to minimize the vi-
sual clutter caused by many lines crossing at various places and under various
angles, and thereby create a high-level display of the dynamics of relations. Sim-
ilar edge bundling approaches have been used, in a different context, to create
scalable displays of dynamic graphs in information visualization and software
visualization [95, 94].
TV news represents a separate sub-domain, related to videos that contain news
broadcasts. Here, visualization techniques have the main aim to preserve and
emphasize the specific information related to the news event being highlighted
in the broadcast. We note that, in contrast to typical movies and sports events,
news are much more densely packed with information – consider for exam-
ple a typical five-minute video fragment from CNN or CNBC, showing several
presenters in multiple views, several stock-exchange scrolling banners, and op-
tionally additional timelines, bar charts, weather alerts, or similar infographics.

Several summarization methods have been proposed that use static images,
or frames, to represent the respective shots in a single video [76] or in a video
collection [138, 139, 241]. MediaMill [241] is a semantic video search engine
that shows different shots aligned in the display space. Closer to our interest,
other approaches convert the multimedia data into a high-dimensional dataset,
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Figure 2.13: Visual Storylines [38]

by extracting features such as text from audio (by using speech recognition),
or low-level audio features such as cepstral coefficients and derivatives, zero
crossing rates, and bandwidth; and features from video such as Wiccest and
Gabor filter responses for each video shot. In addition to these audio-and-video
features, time and semantic information can be added to complete the high-
dimensional dataset representing the input multidmedia data. Such datasets
can be next explored by several visualizations. Figure 2.14a shows four such
visualization examples: CrossBrowser correlates text extrated from speech (ver-
tical axis) with time (horizontal axis); SphereBrowser maps semantic concepts
on the vertical axis and time on the horizontal one. RotorBrowser maps visual
similarity and semantic concepts in the same visual space; and GalaxyBrowser
uses a 2D projection of the multidimensional dataset, constructed by using the
ISOMAP projection technique [218] to map visual similarities of the recorded
data points (video shots).

Luo et al. used the spatial position of the selected representative video shots
to convey additional semantics in the video visualization [138]. For this, they
first extract a so-called interestingness metric from news videos, which aims to
capture the relevance of the presented news for the average watcher. Interest-
ingness is measured by combining features extracted at different levels, such
as visual descriptors of shots (local color histograms); and semantic concepts,
representing keyframes and keywords, respectively. The proposed visualization
uses images organized in five columns containing keyframes of three possible
sizes. Keyframe size is used to encode the interestingness value. The five-column
layout follows a semantic zooming approach, where the middle column repre-
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(a) Browsers in the MediaMill search engine [241]. (b) Table of Video Content visualization [76].

Figure 2.14: Visualization examples for TV news content.

sents the focus (displaying only 5 keyframes); the left and right columns from
the middle represent one detail level further (displaying each 7 keyframes); and
the outermost two columns represent the coarsest level of detail (displaying
each 11 frames). Luo et al. next extended their visual exploration and interest-
ingness metric to address visual exploration of news and relations thereof [139].
For this, a graph representing relations between news events is first created,
using keywords and keyframes as nodes, and their relations as edges, respec-
tively. Edges are weighted according to their measured interestingness. This
way, highly interesting and related news events will naturally cluster together
in a layout of the above graph. The resulting graph can be next explored using
traditional hyperbolic views which highlight a user-chosen region of interest
(i.e., related-news group). The proposed visualization was tested by exploring
news networks mined from three different channels (CNN, FOX and MSNBC),
and was found effective and efficient in conveying a ‘map of the news’ type of
insight to both casual users and users having specific interests in terms of news
types to examine.

Finally, we mention the interesting approach of Goeau et al. for the browsing
of a wide spectrum of TV programs, including news, sports, and magazines [76]
(see also Fig. 2.14b). Their technique, called Table Of Video Contents (TOVC),
gives a global overview of a video showing temporal and structural informa-
tion. For this, a visual similarity between shots is calculated based on features
such as color histograms in the RGB, HSV, and LUV spaces; histograms of lu-
minance edge orientations (local gradients); and affine motion estimated from
tracking salient image features found by corner detection. Next, projection tech-
niques using multidimensional scaling (MDS, see Sec. 2.4.3) are used to reduce
the dimensionality of the obtained feature space. The obtained information is vi-
sualized along a 1D structure, called backbone, which represents the chronologi-
cal order of extracted video events. This backbone is annotated with information
representing the anchors (TV presenters), loops (representing report sequences
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or interview shots), annotated by their duration; and color-coded semantic tags
extracted from the analyzed video, e.g. blue to indicate indoor studio shots, and
red and yellow colors to indicate disorder events such as riots or fires.

2.6 conclusion

Upon a global analysis of the various aspects of the related work outlined above,
three aspects become salient, as follows.

Multidimensional exploration challenges: Multidimensional data are becom-
ing increasingly more prevalent, and more important, in many application do-
mains. However, in the same time, current state-of-the-art visual exploration
techniques for such data are limited in many respects – number of observations
they can handle; number of dimensions they can handle; types of data attributes
that are supported; types of questions these visualizations can answer or, more
generally, types of data-related patterns they can highlight.

Multimedia sports data: The domain of multimedia data represents an excellent
test-field for visual exploration methods for multidimensional data. Multimedia
data are huge, easily available, can be described by tens up to hundreds of
attributes of different kinds (image features, audio features, text topics, semantic
labels), comes with a natural hierarchy, has the additional challenge or being
time-dependent, and – last but not least – is considered interesting for a large
and diverse palette of users ranging from professionals to casual consumers.

Within the multimedia domain, sports datasets form a particularly interesting
sub-domain. On the one hand, the share the general characteristics of multime-
dia data outlined above (size, dimensionality, hybrid attributes, time-dependent
data, wide user range). On the other hand, sports data are nicely located roughly
at an average ‘level-of-information-density’: Compared to typical movies, sports
videos have much more clearly defined quantitative information and discern-
able structure, e.g. they have a clear notion of a fixed number of players, play
rules, score points, and structured spatial motion over a clearly-defined range.
Compared to TV news, they have a more fuzzy and also more dynamic char-
acter, in terms of motion dynamics and nonlinearity of the underlying story.
Separately, we observe that the current state-of-the-art of multimedia visual-
exploration techniques has only scratched the surface of the possible in terms
of extracting and depicting patterns of interest and also in terms of develop-
ing effective metaphors for presenting this information conveniently to different
types of users. As such, we believe that sports videos, and in particular those
describing team sports having multiple interacting players, are a good candidate
for testing new multidimensional visualization techniques.
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Potential of projections: In the context of multidimensional data visualization
techniques, projections are an interesting and important contender for a scalable,
generic, and general-purpose technique. Indeed, projections can easily handle
tens up to hundreds of thousands of observations and hundreds up to thou-
sands of dimensions, in terms of computational and visual scalability; they can
handle any attribute types, as long as a suitable distance metric in attribute space
is provided; and they can work, in general, automatically, with little user inter-
vention in terms of parameter tuning. However, on the downside, projections
generate too abstract depictions of data, even for trained users. For instance,
they are good in showing groups of similar observations, but not in showing
why these observations are similar, or how to read the values of attributes from
the projection.

Given the above, the focus of this thesis will next be on two main questions:

• How can we increase the usability of projection techniques to offer intuitive,
easy-to-use, customizable views on multidimensional datasets to a large
spectrum of users;

• How can we use projections and/or additional visualization techniques to
allow the same large spectrum of users to explore multimedia collections,
such as sports games, in effective and efficient ways.

Both above issues will be detailed in the upcoming chapters.
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abstract: Multidimensional projection techniques have been an interest research topic in visual data min-
ing, mainly regarding the evaluation and effectiveness of such techniques. In the context of their application
scenarios, there is a lack of fully interactive mechanisms to handle complex data, such as multimedia content.
This work presents a novel multidimensional projection technique called Local Affine Multidimensional Pro-
jection (LAMP) developed to be more flexible and versatile than existing projections in the same class, and
which provides to the user the possibility to dynamically modify local transformations according to his/her
knowledge. Its computational efficiency is demonstrated by a set of comparisons against other multidimen-
sional projection techniques. Its versatility is demonstrated through applications involving text documents
and multimedia data 1.

3.1 introduction

As described in Chapter 2, the increase of big data collections consisting of high
number of observations having many dimensions has spawned the development
of novel visual exploration methods to make sense of such data spaces. One
specific class of such methods are known under the name of multidimensional
projections (MPs). MP methods have been used in several visualization-intensive
applications involving vector field analysis [51], visual text mining [39, 166], and
word cloud formation [48], to cite only a few.

Due to technical advances in scalability and accuracy, MP methods are be-
coming increasingly more attractive as a building block for multidimensional
visualization solutions [164]. However, these methods still bear weaknesses that
impair their use as fully interactive visual exploration tools, depending on (1)
the data nature or (2) intrinsic method properties. First, computational costs, ac-
curacy and robustness are important when dealing with massive and distinct
data, as multimedia for instance, especially when we may need to (re)generate
projections in real-time to support interactive exploration. Secondly, drawbacks
also relate to the global vs local behavior of MPs. Global methods project an
entire dataset in a go, which makes them simple to use, but inflexible in terms
of locally adjusting the projection in a specific region (subset of observations).
Local methods allow specific refinements of the projection in a given area, but
can either present high computational costs or do not provide mechanisms flex-
ible and robust enough to permit the user to freely intervene in the projection.
This lack of flexibility typically relates to the user having to position and/or
manipulate a large number of observations in the visual space, in order to attain

1 This chapter is based on the paper Local Affine Multidimensional Projection (P. Joia, F. V. Paulovich, D.
Coimbra, J. Cuminato, L. Nonato), IEEE TVCG, vol. 17, no. 12, 2011, pp. 2563-2571. P. Joia mainly
contributed to LAMP’s technique and theory. D. Coimbra proposed, constructed and evaluated the
applications of LAMP.
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Figure 3.1: User interaction process with MP using control points. a) Considering a in-
put dataset, the control points are projected in the visual space. b) The user
freely handling the points in a iterative process. c) Remaining instances are
interpolated, taking into account the geometry given by this initial placement,
projecting the whole dataset.

the desired projection. All in all, this makes the design of a custom projection a
tedious and time-consuming process.

Besides allowing localized control of the projection shape (as their name says),
local projections are useful for a higher-level reason – they allow users to insert
their domain-expertise in the data exploration and knowledge discovery process.
This occurs when the user manipulates a subset of observations projected in vi-
sual space, called control points, in order to separate dissimilar observations and
group similar ones (see Figure 3.1 for an illustration of this process). The remain-
ing observations are next automatically placed by interpolation by the projection
technique, taking into account their similarity with respect to the control points.
Given the local nature of the projection, the placement and/or movement of
control points only affects the shape of the projection locally, thereby allowing
the user to effectively ‘design’ a desired projection shape by local manipulations,
much like designing a 3D shape in computer-aided design by manipulating its
control points. At a high level, this process allows users to specify the desired sim-
ilarities between given observation-pairs directly in the projection, and have the
system ‘learn’ this information to compute a suitable projection for all observa-
tions. For instance, if observations are images, users can construct an organized
map of a large collection of images by simply placing a few control images at
desired positions in the visual space, and having the local MP place all other
images around these control images according to their similarity.

In this chapter, we present the design of an efficient and effective method,
called Local Affine Multidimensional Projection (LAMP), that exhibits the inter-
active local control of the projection outlined above. The orthogonal mapping
theory provides the basis of LAMP’s mathematical formulation, ensuring com-
putational effectiveness, such as robustness and accuracy. Moreover, due to its
mathematical properties, LAMP offers the possibility to have a reduced num-
ber of samples to build the projection mapping. On the usability side, LAMP
assures flexibility by allowing a few interactions to incorporate user knowledge
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into the projection process, allowing a dynamic exploration and organization of
data. We have tested such properties in a data correlation application with image
and audio (creating multimedia slide shows), followed by a visual exploration
of textual documents. These aspects are detailed in Section 3.5.

In summary, the main contributions of this chapter are:

• Technique: LAMP is a multidimensional projection technique that derives
from orthogonal mapping theory to build accurate local transformations (Sec-
tion 3.3). LAMP can be tuned to be both a local and a global method, project-
ing data with high accuracy into the visual space (Section 3.4). Thus, LAMP
can be suitable for interactive applications due to the reduced number of
control points.

• Data Correlation Application: A new visualization-based on data correlation
shows LAMP’s flexibility and effectiveness. In Section 3.5 this correlation is
demonstrated by an application that relates data from distinct data sets by
only manipulating control points, creating multimedia content such as slide
shows with sounds.

To the best of our knowledge about multidimensional projections context, nei-
ther has the orthogonal mapping theory ever been used to this end, nor have
such projection techniques ever been employed to interactively correlate in-
stances from unrelated datasets.

3.2 related work

As outlined in Sec. 2.4.3, multidimensional projection methods aim at mapping
instances, also called observations, from a high dimensional space to a low-
dimensional space (typically, the 2D screen space) so as to preserve distances
between pairs of observations as much as possible. At a high level, projection
methods are challenged by two main issues: (a) computational complexity (typ-
ically O(n3) for n instances), and (b) the difficulty of locally controlling the dis-
tribution of points in the resulting projection. To cover those issues, we present
next our proposal.

Our proposal: In the context of multidimensional projections state of the art and
their inherent issues (Sec.2.4.3), our proposed LAMP method offers a unique
combination of desirable properties: In contrast to global approaches, LAMP
can be set to behave as a local projection method, thus avoiding most of the
problems inherent to global techniques. Its computational complexity is O(kn),
as discussed further on in Sec. 3.3. Besides being cost-effective and highly pre-
cise, LAMP does not rely on neighborhood graphs. Furthermore, its mathemat-
ical formulation admits it to use a very small set of sample instances as input,
which makes its use in interactive contexts very effective, as shown later on by
the applications presented in Sec. 3.5.
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Figure 3.2: Dataflow-like pipeline presenting the components of LAMP.

3.3 technique description

LAMP builds upon the insight provided by earlier representative-based projec-
tion methods, to propose a two-step projection process based on placement of
such representatives, followed by placement of the remaining points around the
representatives. To follow the terminology in [103], we will further call these rep-
resentative points control points. This is further motivated by the fact that, unlike
other methods, we allow users of LAMP to (interactively) move these control
points in the projection space in order to control the projection’s shape.

Key to LAMP’s control of the projection is using information from the control
points to build a set of orthogonal affine mappings which follow the control
points’ layout. As such, we can next use these mappings to interactively steer
the projection by simply moving the control points, as outlined in Figure 3.2. If,
as we will see, the number of control points can be set to a small fraction of the
total point count, and the motion of a control point has only local effect (with
respect to instances that are close to that point), this offers an easy-to-use and
predictable way to steer the projection’s shape.

Section describes next the technical details of LAMP 3.3.1. Next, Section 3.3.2
discusses how control points can be selected for optimal results in practice, and
also presents an analysis of stability and robustness of the LAMP method when
the number of control points changes.

3.3.1 Affine Mapping Computation from Control Points

Let our input dataset that we wish to project denoted by X, with elements x ∈
Rm. From this input dataset, we next select a set of k control points, which
we next call XS ⊂ X,XS = {x1, x2, . . . , xk}. In the following, we assume that k,
the number of control points, is much smaller than the total number of data
points |X|. Denote the ith element, or control point, of XS, by xi. Finally, let
YS = {y1,y2, . . . ,yk} be the projection (placement) of the control point set XS.
Since we are interested in 2D projections, XS ⊂ R2.
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To project a data point x ∈ X, LAMP aims to find an affine transformation
fx(p) = pM+ t that minimizes∑

i

αi‖fx(xi) − yi‖2, subject to MTM = I (3.1)

where the matrix M and vector t are the unknowns to find via optimization, I
is the identity matrix, and αi are scalar blending weights defined as:

αi =
1

‖xi − x‖2
(3.2)

Intuitively, we can explain Equations 3.1 and 3.2 as follows: The functionfx(xi)
tells the effect of a control point on an instance x; the squared distance ‖fx(xi)−
yi‖2 captures how well the projection of a regular (non-control) point ‘matches’
the projections yi of control points; and the weights αi diminish the bias of
control points xi which are far away from instances x, so that the control points
have a localized effect (with respect to data instances which are close, in the
high-dimensional space, to their own locations in the same high-dimensional
space).

It is important to node that the minimization problem (3.1) is related to other
optimization applications, such as the “as-rigid-as-possible” image deforma-
tion [195]. A main difference, however, is that, while [195] aimed to create a
mapping from R2 to R2, we now need to address the more complex prob-
lem of creating a mapping from Rm to R2, where typically m � 2. This has
two effects: First, from a technical viewpoint, we cannot reuse the same explicit
minimization formulas proposed by [195], but need to develop a more general
minimization process. Secondly, from a practical viewpoint, our minimization
is more complex, since there are (obviously) more ways to map points from Rm

to R2 than from R2 to R2, even when constrained by the same usage of affine
mappings.

To get more insight in the above challenges, we next outline several important
technical aspects involved in our minimization.

First, note that the constraint MTM = I implies that the resulting affine map-
ping fx behaves like a rigid (isometric) transform – that is, it will only rotate
and/or translate points, but not introduce scaling and shearing. This reflects
our desire to preserve Euclidean distances during the projection.

Secondly, note that if no such constraint is used when minimizing Eqn. 3.1,
we can solve this problem by standard least-square fitting techniques. Yet, if
we did so, potential errors that occur due to an improper placement of the
control points xi will trickle down via the affine mappings to the placement
of the regular points x, leading to lower-quality projections. In contrast, if we
use the orthogonality constraint MTM = I, such control-point placement errors
propagate less. It is important to note that projection errors (with respect to the
preservation of Euclidean distance ratios between Rm and R2 are, in general,



64 local affine multidimensional projection

unavoidable, in the case of a general high-dimensional dataset and a free place-
ment of control points in R2. The orthogonality constraint aims to keep these
errors as small as possible, but cannot eliminate them completely. For a deeper
insight into the use of orthogonal constraints in minimization problems alike to
Eqn. 3.1, we refer further to the book by Gower and Dijksterhuis [78],

Thirdly, we should note that the weights αi of the control points xi depend
also on the instance to project x. In other words, a separate affine mapping is
generated for each instance x as subjected by the k control points xi (rather than
generating k mappings for the control points xi which would be used to place
the instances x). Intuitively, we can say that the regular instances x ‘pull’ their
position information from the control points xi, rather than having the control
points xi ‘push’ their influences to the regular instances x.

Finally, in contrast to [195], we do not want (or need) to ensure spatial conti-
nuity constraints for the overall mapping (projection). Rather the contrary: We
want to allow discontinuities in the projection to take place. These allow more
freedom in placing highly-dissimilar data points in R2 so that we have more
leeway to place highly-similar data points close to each other. To achieve this,
we will restrict the summation in Eqn. 3.1 only to control points xi located in
close to the current point to project x. Note that this effect is also present in
the definition of αi. Intuitively, this makes the projection behave in a local fash-
ion –thereby the L in LAMP. Note also that locality is affected not only by the
size of the neighborhoods around control points, but also by the total number
k of control points. Indeed: The larger the number of control points xi (with
non-vanishing weights αi) we use in the summation in Eqn. 3.1, the less local
will the projection of x be. Hence, if we increase the number of control points
(keeping all other parameters fixed), a given instance x will be influenced by
more control points, since the likelihood more such control points fall near it
increases. We will refine these observations next in Sections 3.3.2 and 3.4.

Let us now focus on the minimization procedure for Eqn. 3.1. For a minimum
point, we have the partial derivatives of fx with respect to t equal to zero. This
allows us to rewrite t as a function of M as

t = ỹ− x̃M, x̃ =

∑
i αixi
α

, ỹ =

∑
i αiyi
α

(3.3)

where α =
∑
i αi and x̂i = xi − x̃ and ŷi = yi − ỹ.

Using the above, we can rewrite the minimzation of Eqn. 3.1) as∑
i

αi‖x̂iM− ŷi‖2, subject to MTM = I (3.4)

which can next be represented in matrix form as

‖AM−B‖F, subject to MTM = I (3.5)
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where ‖ · ‖F denotes the Frobenius norm, and matrices A and B are given by

A =


√
α1x̂1
√
α2x̂2

...
√
αkx̂k

 , B =


√
α1ŷ1
√
α2ŷ2

...
√
αkŷk

 (3.6)

Minimizing the function in Eqn. 3.5) with respect to M is a known example of
the orthogonal Procrustes Problem [78]. The solution of this problem is known,
and given by

M = UV , ATB = UDV (3.7)

where UDV is the singular value decomposition (SVD) of ATB.
Having M delivered by the SVD process, we now can compute the desired

projection y of a regular point x simply by substituting the expression of M
(from Eqn. 3.7) and t (from Eqn. 3.3), to obtain

y = fx(x) = (x− x̃)M+ ỹ (3.8)

The reader may, at this point, object that computing a SVD dcomposition
for each data point x from a dataset having potentially tens of thousands (or
more) uf such instances is simply computationally prohibitive, especially in the
context of an interactive application. Yet, the matrix ATB which we need to
decompose by SVD to compute M (Eqn. 5.1) is an m× 2 matrix (has only two
columns). As such, computing an SVD for this matrix can be done extremely
efficiently using high-quality numerical packages such as [21]. Specifically, such
a decomposition, and therefore the projection of an instance x, is O(k) for k
control points. As such, the entire LAMP projection isO(kn) for n regular points.
Formally speaking, to keep a good local control of a projection, we need to have
more control points when the number of regular points increases, or k = φn,
where φ can be a small percentage. As such, the complexity of LAMP is O(n2).
However, in practice, since f is very small, LAMP’s actual run-times are far
below quadratic in the number of regular points. We detail the implications of
the LAMP minimization scheme described above further in terms of accuracy
and computational speed in Section 3.4.

3.3.2 Control Point Analysis

As outlined previously, the quality and flexibility (degree of local control) of
LAMP are both influenced by the choice of control points. This choice is further
discussed below.
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Figure 3.3: The stress quality metric of LAMP as a function of the number of control
points. These range from 1% to 25% of the total point count. Experiments
done on five dataset (described separately in Table 3.1 for details about the
data sets).

Number of control points: The first aspect we study is how many control points
we chose from the total number of points to project, or the value of φ = |XS|/|X|.
Let us note here that existing control-point-based methods such as PLMP [164],
Pekalska’s [171] and PLP [167] have strong limitations on the minimum number
of control points they need to use. In detail, PLMP and Pekalska require a num-
ber of control points (at least) equal to the dimensionality m of the data; and
PLP requires a minimum number of control points in each local neighborhood
graph (which, in practice, means that φ has to be a quite large fraction of |X|). In
practice, the above methods advise using k =

√
|X| control points, which makes

φ = 1/
√
X|.

In contrast, LAMP has far such limitations with respect to φ. To show this, we
ran the method on five datasets, using values of φ ranging between 1% and 25%
of |X|. Figure 3.3 shows the results. To evaluate the quality of the projection, we

compute the aggregated normalized stress function
∑
ij(dij−dij)

2∑
ij d

2
ij

(d and d are

the distance between instances pi and pj in Rm and R2 respectively). The key
observation here is that the stress metric does not increase considerably when
the number of control points decreases, which tells us that LAMP can create
good-quality projections (from a distance preservation perspective) even with a
fraction φ of control points much smaller than the φ = 1/

√
X| advertised by

PLMP, PLP, and Pekalska.
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Choice of control points: A second aspect is which of the regular points X

should one select to use as control points. This is a much harder problem to
answer in general, as it depends on which particular aspects of the dataset X

does one want to preserve better (in favor of other aspects) in the projection. For
instance, if one knows a priori that certain neighborhoods in Rm are more impor-
tant, for the problem at hand, than others, one should sample them with more
control points. Alternatively, if one desires to next manipulate specific neighbor-
hoods on Rm in the final interactive projection, these neighborhoods should also
be sampled by sufficiently many control points. Without any information on the
nature of the data and type of problem to solve, a simple strategy is to select k
control points in Rm based on a clustering or data-density-analysis process (e.g.,
using mean shift [44]), so as to ensure that every neighborhood in Rm is fairly
in the vicinity of a control point. As this issue is, as explained, strongly data and
task dependent, we will not explore it further to provide a generic solution.

Placement of control points: A third aspect relates to how control points are
placed in R2. Two sub-issues exist here. First, some initial placement is required.
For this, we use an accurate force-based scheme [214] to place randomly selected
control points in R2. The use of the force-based scheme is here computationally
motivated because, as explained, we use a quite small number of control points.
As such, this step does not affect LAMP’s performance. Secondly, given such
an initial placement, users can next manipulate desired control points to re-
organize the projection. This issue is discussed separately in Section 3.5.

Influence of control points: A final issue to discuss is how strongly do control
points influence the regular points in the projection. As outlined already, the
number of terms in the summation in Eqn. 3.4 can be varied to modify the
projection’s behavior. Using more terms creates a ‘stiffer’ projection which has
less discontinuities (thus, less points that exhibit large projection errors), but
is harder to locally adapt next in terms moving the control points. Conversely,
using less terms creates a ‘looser’ projection which offers more flexibility in
local adaptation, but can exhibit a large number of discontinuities. Both above
scenarios have their advantages and disadvantages, depending on the specific
application at hand. These issues are discussed in the next section.

3.4 results and comparisons

The following results were generated by running LAMP on an Intel Core i7
CPU at 2.66GHz with an NVIDIA® Quadro FX 3800 video card with 8GB of
RAM memory. LAMP was coded in Java using the numerical library JBlas [25]
to compute the SVD decomposition.

To demonstrate and confirm the proposed projection’s quality, we present two
different analysis and comparisons. The first aims to evaluate the performance
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Table 3.1: Data sets used in the comparisons.

Name Size (number of instances) Dimensions Source

Wdbc 569 30 [71]

Diabetes 768 8 [71]

Segmentation 2,100 19 [71]

US counties 3,028 14 [87]

Isolet 6,238 617 [71]

Letter rcn 20,000 16 [71]

Mammals 50,000 72 [71]

Viscontest 200,000 10 [238]

in terms of accuracy and computation time, while in the second we use quanti-
tative measures applied after control point manipulation.

To assess the first case, we compare nine existing multidimensional projection
(MP) techniques against LAMP employing eight data sets with comprehensive
variation of size (number of instances) and dimensionality (Tab. 3.1). We use the
following criteria to choose the MP techniques employed in the comparisons:

Criterion a): They have a good performance by means of stress and/or compu-
tation time, which allows the comparison of LAMP against efficient techniques,
and

Criterion b): They integrate user intervention and manipulation when building
the projection, which is done by using a subset of samples (control points) to
carry out the mapping.

The selected techniques we chose for the comparison that handle both criteria
are: LSP [163], PLP [167], PLMP [164], Hybrid [106], L-MDS [54], Pekalska [171]
and L-Isomap [205] since all have good stress and computational time results,
and they also use a subset of samples in the construction of the MP. More-
over, we also selected Glimmer [98] due to its good stress performance and
Fastmap [69], known as a fast projection method.

Regarding the accuracy comparison, the boxplots in Figure 3.4a show that
LAMP is one of the most accurate techniques, being comparable to Pekalska,
which is a highly precise method. In terms of computational time, Figure 3.4b
shows that LAMP is only slower than PLMP and Fastmap, which both are tech-
niques well known for their very low computational cost. However, LAMP is
quite competitive when comparing to state-of-art methods such as PLP.

Another visual tool to assess LAMP’s accuracy are the scatterplots that map
original-distance × projected-distance, illustrated in Figure 3.5, where top-left num-
bers correspond to normalized stress and computational time (seconds). We can
notice that LAMP yields scatterplots that look very close to thin bands oriented
at 45 degrees in almost all test cases – with the ideal representation being a
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(a)

(b)
Figure 3.4: Boxplots comparing stress and computational times of ten techniques, includ-

ing LAMP.

diagonal line. This means that original distances are well preserved when pro-
jected in the visual space. This did not occur for other MP techniques such as
L-Isomap and Hybrid, which show a more spread distribution of points in the
scatterplots, clearly visible in mammals data set, for example.

The first set of comparisons discussed above correspond confirms the accu-
racy and computational efficiency of LAMP. However, as LAMP lets dynami-
cally interfere in the projection via control points, it is desirable to analyze the
LAMP’s effectiveness when producing such mappings. For this second round of
comparisons, we outlined two quantitative measures that evaluate the mappings
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Figure 3.5: Scatterplots original-distance × projected-distance of ten techniques, including
LAMP.

after interactive control points manipulation, namely, neighborhood preservation
and silhouette coefficient (described previously in Sec. 2.4.3).

Figure 3.6 presents the effects of user manipulation of control points for the
Segmentation data set. While Figure 3.6a presents the force-based control points
mapping, Figure 3.6b shows the result of a better grouping of control points in
the visual space after user manipulation. The LAMP, LSP, Pekalska and PLMP
methods produce, respectively, the mapping of Figures 3.6c to 3.6f, with all
of them using the control-points layout in Figure 3.6b. To calculate the affine
map fx for each instance x, LAMP used all control points. Regarding the Silh
coefficient, LAMP is better than PLMP but as not as good as the ones produced
by Pekalska and LSP. However, in Figures 3.7a to 3.7d we can clearly see that the
situation changes when LAMP makes use of the nearest control points. When
LAMP used 75%, 50%, 25%, and 10% of the nearest control points to build
the mappings, the Silh coefficient increases consistently and reaches a higher
silhouette value than the global methods LSP, PLMP and Pekalska.

Measures involving neighborhoods can also be defined from information com-
puted in the visual (2D) space. An example is the PLP method that is based on
distances computed in the visual space to build neighborhood graphs which
derive the projection maps. Paulovich et al. [167] demonstrate the use of neigh-
borhoods information leverages the capability of steering the projection consid-
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(a) Force-based control
points mapping

(b) User provided layout

(c) LAMP Silh =
0.4003

(d) LSP Silh = 0.4584 (e) Pekalska
Silh = 0.5083

(f) PLMP Silh =
0.2475

Figure 3.6: LAMP, LSP, Pekalska and PLMP projections when the user manipulated the
control points.

(a) 75% Silh = 0.4166 (b) 50% Silh = 0.4365 (c) 25% Silh = 0.4682 (d) 5% Silh = 0.5235

Figure 3.7: LAMP projection when varying the percentage of nearest control points.
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(a) 75% Silh = 0.4590 (b) 50% Silh = 0.5496 (c) 25% Silh = 0.5570 (d) 5% Silh = 0.5644

Figure 3.8: LAMP projections from neighborhoods computed in the visual space. From
left to right, the result of using 75% to 5% percent of the nearest control points.

ering to the control point positions. Those results encouraged us to adapt LAMP,
taking into account 2D information when constructing the affine mappings. If
we consider an instance x in Rm, where xi is the control point nearest to x, we
can modify LAMP to use control points xj whose images yj are closer to the
image yi of xi in the visual space, instead of use control points in the neigh-
borhood of x. As a result, the mappings that use 2D neighborhood information
push the projection of x toward the control points used in the computation of
fx(x), meaning that they may not necessarily be neighbors of x in the original
space.

LAMP becomes highly sensitive to the control points’ positions in the visual
space due to the use of 2D information. This produces mappings that follow
the (2D) layout of the control points very closely. Figures 3.8a to 3.8d con-
firm this statement by showing mapped instances that becomes progressively
more grouped when the percentage of nearest neighbors ranges from 75% to
5% and neighbors are defined based on the visual space. Another advantage
to use 2D information can measured by the silhouette coefficient that confirms
a good group-preservation of LAMP, better than PLP (Figure 3.9). Figure 3.10

also shows LAMP’s superiority considering neighborhood-preservation graphs,
preserving more than fifty percent of neighbors, on average.

Finally, we show LAMP’s robustness when dealing with a reduced number
of control points. This is an important property, as our applications discussed
next in Sec. 3.5 all require manipulating a limited number of such points. Three
control points were randomly selected for each one of the seven classes that
composes the Segmentation data set (Figure 3.11a), and interactively placed in
the visual space to keep the classes as much separated as possible. The resulting
mapping of LAMP with a reduced set of control points is shown in Figure 3.11b,
with neighborhoods defined from the visual space. It is important to notice two
important aspects: i) even with a reduced control points (21 in total), LAMP pro-
jected the data set consistently, obtaining a silhouette coefficient value compara-
ble to the one produce by PLP with much more control points (see Figure 3.9); ii)
Pekalska, PLMP and PLP cannot build mappings using such a small amount of
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Figure 3.9: PLP projection using 2D distances (visual space) with the control points’ lay-
out shown in Figure 3.6b (Silh = 0.4411).

control points; iii) Pekalska and PLMP cannot project a strong separation such
as the one produced by LAMP in Figure 3.8d, due to their global nature.

Figure 3.10: LAMP and PLP neighborhood preservation.

3.5 applications

Incorporating user knowledge into the mapping process by interacting with
projected data is a useful property in the sense that can be explored in many
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(a) 3 control points for each class. (b) LAMP Projection (Silh = 0.4361)

Figure 3.11: LAMP Projection (neighborhood in R2) using only 3 control points per class
(21 in total, against 137 needed to execute PLP).

visualization problems. As an example, we next present two applications that
take advantage of LAMP’s flexibility and robustness.

3.5.1 Application 1: Correlating images and audio data

Dealing with heterogeneous data sets is not an easy task, especially if they are
derived from different sources. In such cases, it is quite useful to work with user-
assisted data correlation applications that aim to relate instances from data sets
that do not have any connection. The key idea here is to start with a reduced
number of control points selected from the unrelated data sets, and let the user
freely manipulate these control points in the visual space, bringing closer in-
stances that the user wants to correlate. Once all control points from distinct
data sets have been correlated, meaning that they are grouped as desired in
the visual space, the LAMP method can be used to project all the remaining in-
stances from each data set. As LAMP builds mappings that follow the layout of
the control points, instances from the distinct data sets that are projected closer
to each other in the visual space are expected to be correlated

Based on the visual data-correlation framework described above, we devel-
oped a system that correlates images and music. The main idea is to automat-
ically create slide-shows with sound by associating certain genres of music to
specific kinds of pictures. A step-by-step illustration of our framework is pre-
sented in Figure 3.12. Thereby, the framework applied to correlate music and
images extracted from videos operates as follows:
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Figure 3.12: Description of an interactive systems that uses LAMP to correlate different
data sets that do not have explicit relation among instances.

1. The user starts by choosing music from different genres, such as a couple
of classic music and a few rock-n-roll tracks.

2. Next, the user selects a few pictures belonging to distinct classes, such
as pictures of cars, aircrafts, and houses from a set of images. The user
can also explicitly select images and music from other classes to represent
instances that should not be correlated.

3. An initial projection is created using a few instances of music and im-
ages for the user, who next interacts by selecting them in order to bring
them as close as possible in the visual space. For example, one can group
houses and classic music in the first group; and cars and aircrafts images,
and rock-n-roll tracks, in the second group. This step creates the explicit
correlation between the unrelated instances.

4. Finally, LAMP considers the above manipulation to map the remaining
pictures close to their best-fitting tracks. For instance, house pictures will
be placed in the same neighborhood where classic music hits are projected.
Next, images and data are fused: In our example, house pictures are used
to form a slide show whose soundtrack is automatically composed by the
classic music mapped in their neighborhood. In other words, the produced
slide shows contain images and music playing in a synchronized manner.

We have developed a prototype system to accomplish the tasks of correspond-
ing image and music mentioned before (see Figure 3.13). The accompanying
video [104] shows how image and sound can be easy correlated using that sys-
tem, providing a better idea of how LAMP works and its effectiveness when
integrated in the proposed application.

Next, we explain in detail each interaction step of the prototype framework
shown in Figure 3.13.

1. First, a reduced number of instances representing the control points are
selected for both music and pictures data sets (top left).
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Figure 3.13: Prototype system correlating image and music.

2. These control points are placed/projected in the visual space (top middle).
Image thumbnails represent the pictures, while purple circles labeled with
singer/group band names represent the musics.

3. Next, user can freely interact by selecting and picking both samples of
pictures and musics, grouping the ones that must be correlated (top right).
In our framework scenario was created 3 groups. At this step, we can
choose between generating a preview of the final projection (step 4) or
directly select the groups to compose the slide show with sound (step 5).

4. If the user choose the first option above, the framework allows the user to
check if the final projection has a good layout, by mapping the remaining
instances based on the previous interaction (bottom right). In case of not
having an acceptable layout, the user can redo the interaction process (step
3).

5. The user can brush multiple regions of control points in the visual space
(bottom middle), selecting groups of elements to compose sub-lists, illus-
trated by the two groups in the bottom middle figure: 1) cars and aircrafts
pictures associated with rock music, and 2) motorcycles and houses pic-
tures associated with classical music.

6. In the final step (bottom left), is generated the final projection with the
complete lists, mapping all the remaining pictures and music, making up
one slide show with sound for each brushed group (or lists).
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To develop and test our multimodal framework, we have proceeded as fol-
lows. For the image part we used the Caltech database that contains 3, 100 pic-
tures [70]. A total of 150 image features were extracted by employing the bag-of-
visual features (BoVF) [243] technique. Regarding the audio media, together with
a database with 3, 857 music tracks we used the JAudio Tool [74] to obtain the
low-level features from mp3 files. To compound the result vector with 78 dimen-
sions, we extracted features such as beat points, statistical summaries, and so
on.

The system mentioned above that correlates different media sources is only a
proof-of-concept of a new visualization-based paradigm for correlating distinct
data sets. In fact, very little has been done in the direction of developing visual
mechanisms to correlate distinct data sets. Thus, LAMP and its good properties
contribute to bring out new perspectives to this type of application.

3.5.2 Application 2: Document analysis

Document analysis is another type of application where LAMP can play an im-
portant role. Usually, textual documents form a high dimensional space, making
distance metrics like Euclidean and cosine less able to discriminate text docu-
ments. Hence, user knowledge and user interaction are very important to orga-
nize and group documents according to their similarity. However, this is not a
trivial task for the user because the one has to i) study the summary (set of key
words), which is responsible to describe each document, and also ii) to group
the ones whose key words match closely. Besides, MP methods such as PLP and
PLMP require a large amount of control points in the projection process, which
is unfeasible in this context.

In contrast, LAMP can produce projections with a reduced number of control
points, allowing users to manipulate few documents to get good projection re-
sults. Figure 3.14 illustrates an application of document collection projected by
using LAMP, that contains 675 scientific papers from four distinct areas: Infor-
mation Retrieval (IR), Inductive Logic Programming (ILP), Sonification (SON),
and Case-Based Reasoning (CBR).

Considering each document a high-dimensional set of attributes, we apply the
vector-space-model approach [190] to extract the frequency of relevant terms
from abstract, title, references, and authors of each document. Then, the at-
tributes of each document correspond to the most-frequently encountered terms
over the entire document set under study, describing precisely the frequencies
of the above terms. In our scenario, we got 390 attributes per document, or in
other words, a 390-dimensional dataset.

The text documents application scenario is shown in Figure 3.14. We picked
out from the document dataset 3 control points from each document class, to-
taling 12 (Fig. 3.14a). We next placed these 12 control points in the visual space
using a force-based scheme [214]. In the projection of Figure 3.14b, we can see
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that documents from the same class are not properly grouped together, resulting
in a tangled mapping. Once LAMP supports a small number of control points
to manipulate, it is an easy task to identify similar textual instances by grouping
them in the visual space (Fig. 3.14c). The last step, a final projection is created
by using LAMP with the previous control points, ensuring a good preservation
provided by the user layout, as can be seen by the silhouette coefficient in Fig-
ure 3.14d). We can also notice in this figure that colors are used to highlight
documents belonging to the same class, while this class information is not used
by the system.

(a) (b) Silh = 0.0925

(c) (d) Silh = 0.4207

Figure 3.14: Application exploration of text documents.
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3.6 discussion

The qualitative and quantitative comparisons presented in Section 3.4 clearly
show the effectiveness of the LAMP technique, which outperforms state-of-art
methods with respect to properties such as accuracy, robustness, flexibility, and
ease of use. The solid mathematical foundation of LAMP ensures a better per-
formance and distance preservation, while in the same time it allows us to incor-
porate user knowledge in the projection process. Another advantage of LAMP
is the method’s simplicity – we basically only require an implementation of a
SVD matrix-decomposition.

Many application scenarios can take advantage of the fact that LAMP uses few
control points to accurately map instances and lets the user freely interact with
the position of control points in the visual space. We have shown that LAMP can
be easily applied in application scenarios such as visual exploration of text docu-
ments as well as the novel visualization-based multimedia-data correlation tool
described in the previous section. We believe that the multimedia-data correla-
tion framework has a high potential, being easily adapted to work with datasets
from other domains such as social networks and scientific data.

“Pleasant” layouts were obtained when 1) control points xi and their image yi
are in the same scale, or 2) when we normalize data in the original space as well
as the control points position in the visual space. The exact amount of neighbors
to create a good layout that keep similar instances grouped together is an aspect
that requires further studying. An alternative to the k-nearest neighbors tech-
nique used in our approach would be to use a so-called range search. However,
the exact radius (range) setting used for each control point needs further study.

3.7 conclusion

In this chapter, we have proposed a projection technique called Local Affine
Multidimensional Projection (LAMP) for the creation of two-dimensional projec-
tions of high-dimensional datasets. In comparison to existing multidimensional
projection techniques, LAMP combines a number of important advantages: (a)
it has a solid mathematical foundation, ensuring robustness and versatility; (b)
it is very computationally efficient, allowing it to create projections of large
datasets at interactive rates; (c) it allows the detailed control of the resulting
two-dimensional layout by the interactive manipulation of a small number of
data instances. The quantitative and qualitative comparisons shows that LAMP
outperforms existing state-of-the-art projection techniques, not only in terms of
stress minimization but also in terms of very competitive computational time.

The combination of above features allows LAMP to support the construction
of interactive techniques that support the visual correlation of several high-
dimensional datasets. We have shown how this feature is instrumental in con-
structing applications that enable the easy exploration and organization of multimedia-
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related datasets such as images and music and text document collections, in
ways which could not be efficiently addressed until now. Given the above, LAMP
will be the favored projection technique to be used in the next chapters, both for
studying and evaluating novel explanatory tools for multidimensional projec-
tions, and also for exploring multidimensional multimedia data.
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abstract: Many dimensionality reduction (DR) algorithms have been proposed for visual analysis of

multidimensional data. Given a set of n-dimensional data points, such methods create a low-dimensional pro-

jection that preserves relative distances and/or neighborhoods. However, the overall quality and usability of the

projections being produced depends on many factors, like the DR techniques used and their several parameters.

As such, users are challenged in assessing the suitability of a projection for specific tasks, in finding how they

can tune the projection method’s parameters to obtain desired results, and also in comparing different projec-

tions. We propose several interactive visualizations to assist the above tasks. These visualizations depict the

quality of a projection and also show how this quality related to parameter choices of the projection algorithms.

Quality is modeled in terms of distance preservation, by emphasizing false and missing point-neighbors. Pa-

rameter settings are explored by showing how the projection quality depends on these. Our visualizations are

scalable to large and dense projections by using several image-based techniques. We demonstrate our tech-

niques using several recent DR techniques and several multidimensional datasets, and show how insight in

projection quality and related parameter settings can be easily obtained, without burdening users with the

internal details of the DR algorithms being used1.

4.1 introduction

The previous chapter has described LAMP, a new technique for dimensionality
reduction (DR) that exhibits attractive properties in terms of scalability, ease of
use, level of local control, robustness, and accuracy. As we have seen, LAMP
achieves better global stress values than other comparable state-of-the-art tech-
niques. However, as any other projection technique, LAMP will inherently cause
various forms of projection error. Depending on the application context (prob-
lem at hand, datasets, types of end users involved), these errors may be essential
to be discovered, or alternatively they may not influence the overall usage and
interpretation of the projection results. Additionally, as LAMP allows local con-
trol of the projection (by its control points), additional degrees of freedom exist
by which users can influence the final projection outcome, and thus its quality.
As such, a central question emerges: How can we present existing projection er-
rors, or more generally how can we present the quality of a projection, to its end

1 This chapter is based on the paper Visual Analysis of Dimensionality Reduction Quality for Parameterized
Projections (R. Martins, D. Coimbra, R. Minghim, A. Telea), Computers and Graphics, vol. 41, pp. 26-
42, 2014. The first two authors had equal, and major, contributions to this paper,. and should as such
be seen as joint first authors. Specific contributions of D. Coimbra involve: the proposal of the various
error-encoding techniques (Sec. 4.4); the proposal of the visual analytics workflow (Sec. 4.4.8); and
the selection of datasets, projections, and projection parameters, and the corresponding comparison
and interpretation of projection techniques in Sec. 4.5.
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users, so they can immediately see where potential problems occur, and how
these may influence their interpretation and usage of the projection?

In this chapter, we present a set of visualization techniques that help users
with exploring the link between DR algorithm parameter settings and the qual-
ity of the resulting projections. Our visualizations target the following questions:

• How does the projection error affect different regions of a 2D projection?

• How to find so-called missing neighbors (points which are projected too
far apart with respect to their nD distance)?

• How to find so-called false neighbors (points which are projected too close
with respect to their nD distance)?

• How do the above quality aspects compare for different DR methods and
their parameter settings?

For this, we propose several space-filling techniques that visually scale to large
datasets, offer a multiscale (or level-of-detail) view on the projection behavior,
and do not require users to understand the internal formulation of DR algorithm.
We illustrate our visualizations by exploring the parameters of five state-of-the-
art DR techniques for several real-world datasets.

This chapter is structured as follows. Section 4.2 presents related work on DR
algorithm quality analysis. Section 4.3 presents our analysis goals. Section 4.4
describes our proposed visualizations. Section 4.5 uses these methods to explore
the quality, as function of DR method parameters, of several DR techniques.
Section 4.6 discusses our results. Section 4.7 concludes the paper.

4.2 related work

As outlined in Sec. 2.4.3, a large class of multidimensional projection meth-
ods aim to map high-dimensional data to a m-dimensional visual space, where
m =∈ {2, 3}, so as to preserve distances as much as possible. Implicitly, if dis-
tances are well preserved, so are neighborhoods too. Other projection methods
aim to optimize neighborhood preservation explicitly, with less concern for a
faithful preservation of distances [225, 227]. Our focus here is mainly on projec-
tions which achieve neighborhood preservation mainly by preserving distanced,
such as e.g. LAMP, discussed in Chapter 3.

Considering a dataset Dn = {pi ∈ Rn}16i6N of N n-dimensional points,
dimensionality reduction (DR) can be seen as a function

f : Rn × P → Rm (4.1)

which maps each point pi ∈ Dn to a point qi ∈ Dm. Here, n is typically large
(tens up to thousands of dimensions), and m is typically 2 or 3. P denotes the
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parameter space of f, i.e. the various settings that control the projection algorithm,
including the algorithm type itself. f is designed to keep the so-called structure of
the data as similar as possible in Rn and Rm. In our case, as explained earlier,
we focus here on preserving the data structure implied in terms of distances
between points.

Among particularities of several multidimensional projection methods, a very
important topic is how good/bad the projection reflects the original data. As dis-
cussed in Sec. 2.4.3, there are several quantitative measures to assess the quality
of projection, however how the literature visualizes these projection quality?
Several techniques are present in the literature to this end, as follows.

Although projection quality is acknowledged as important, most DR litera-
ture considers mainly aggregated quality metrics such as the stress function
(Eqn. 2.6), correlation [242], neighborhood preservation average plots [163], and
distance scatterplots [103], which are distance and neighborhood based metrics,
and cluster segregation metrics [200]. 2D scatterplots can show the correlation
of Dn with Dm [103]. Such metrics capture the overall quality of a projection,
but do not help finding local quality variations. In other words, they do not
show projection problems for any point i vs all points j 6= i in the input dataset.
Such fine-grained insight is useful in cases where users want to reason about
specific small-scale errors in a projection, e.g., find out if specific subsets of the
projected points are indeed placed correctly with respect to other specific sub-
sets of points.

Local metrics can be used to highlight where (in a projection) errors happen.
For this, Schreck et al. compute, for each p ∈ Dn, the projection precision score
(pps) defined as the normalized distance between the two k-dimensional vec-
tors having as components the Euclidean distances between p and its k nearest
neighbors in Dn, respectively D2 [197]. Visualizing pps as a color map shows
areas where neighborhoods are not preserved. However, a neighborhood can-
not be preserved for two distinct reasons: true neighbors (in Dn) are missing
(in D2), or neighbors (in D2) are actually false neighbors (in Dn). The pps met-
ric does not differentiate between such situations, and can also be sensitive to
permutations of points that do not change distances.

Recognizing that DR methods can create distance approximation errors, Van
der Maaten et al. extend the t-SNE technique [225] to output a set {Mi} of 2D
projections rather than a single one [226]. All points appear in all projectionsMi,
with potentially different weights and at different locations. This allows better
modeling non-metric similarities. Yet, correlating points over the several Mi is
done manually by the user, and can be challenging for large datasets and many
projections Mi.

Several quality metrics for continuous DR techniques are proposed by Au-
petit [10]. Point-based stretching and compression metrics measure, for each
pi ∈ Dn, the aggregated increase, respectively decrease, of the distances of its
projection qi ∈ D2 to all other projections qj6=i vs the distances of pi to all
other points pj6=i. Segment stretching and compression measures the variation
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of distances of close point pairs (i, j) between Rn and R2. For a selected pi,
the proximity metric maps distances in Rn from pi to all other points pj6=i to
the corresponding points qi ∈ R2 and thereby helps understanding how (and
where) the projection may have distorted the structure of the data. These metrics
are visualized with piecewise-constant interpolation of the point, respectively
segment, data using Voronoi diagrams. Our proposed techniques in Secs. 4.4.2,
4.4.3, and 4.4.4 adapt and extend these visualizations in several directions.

Still using colored Voronoi cells, Lespinats and Aupetit show, at the same time,
point stretching and compression by using a 2D color map [127]. The proposed
color map encodes stretching as green, compression as purple, low-error points
as white, and points with high stretching (also called tearing) and compression
as black, respectively. While this color map can show local error types (or the
absence thereof), it cannot explicitly show the point-pairs which cause stretching
and compression. Besides, as the authors also note, Voronoi cells can lead to
visualization bias due to the cells’ sizes and shapes being heavily dependent on
the D2 point density, and the fact that cells cover the entire R2 space, even in
areas where no projected points exist.

To assist the task of navigating projections while also considering distortions,
Heulot et al. present an interactive semantic lens that filters points projected
too closely to a user-selected focus point in R2 [89]. Such points, also called
false neighbors, are pushed towards the lens border, so they do not attract the
user’s attention. Separately, points are colored by the distance inDn to the focus
point, to help users navigate to the so-called missing neighbors of the focus
point. Instead of Voronoi cells of [10, 127], points are colored using Shepard
interpolation, which yields a smoother, and arguably less distracting, image.
However, in contrast to [10, 127], this method can only show errors related to a
selected focus point.

4.3 explanation goals

In general, a projection technique f should preserve the structure of the original
space Rn. As outlined earlier, this can be seen as a mix of distance and neigh-
borhood preservations taking place at different scales – for instance, k-nearest
neighborhoods can be preserved up to some given value of k; or distances can
be preserved up to some given value dmax. For users, the projection’s preci-
sion [197] is not clear unless they can interpret projected neighborhoods ade-
quately [10]. Thus, given any DR algorithm (Eqn. 4.1), we aim to show how
distance preservation is affected by choices of parameter values in P, highlight-
ing aspects that can adversely affect the interpretation of the projected point set
in Dm. To simplify the discourse, we next consider m = 2, and that projections
are drawn as scatterplots (the most common option for DR visualization). We
identify the following aspects of interest:
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A. False neighbors: Consider a point pi ∈ Dn and its counterpart in the projec-
tion qi = f(pi). Neighborhood preservation implies that all points qj which are
close to qi (in 2D) should be projections of points pj which are close to pi (in
Dn). When this does not happen, i.e. we have a qj close to qi for which pj is
not close to pi, one can erroneously deduce from the projection that pj is close
to pi. We call such a point j a false neighbor of i.

B. Missing neighbors: Apart from the above, neighborhood preservation im-
plies that all pj which are close to pi (in Dn) project to points qj which are close
to qi (in 2D). When this does not happen, i.e. we have a pj close to pi for which
qj is not close to qi, one will not be able to visually find the complete set of
points similar to point i. Points j that are missed in this search are called missing
neighbors of i.

C. Groups: Projections are frequently used to visually find groups of similar
points, e.g. topics in a document collection [103, 163] or classes of strongly-
similar images in an image database [69]. As such, the notions of false and
missing point-neighbors can be extrapolated, for groups, to false members and
missing members respectively. That is, given a group Γ of closely-projected points,
points visually located in Γ that do not truly belong there are called false mem-
bers; and points visually located outside Γ that actually are strongly similar to
points in Γ are called missing members, respectively.

D. Completeness: As explained earlier, aggregated local metrics such as those
in [197, 10, 127, 89] show, up to various extents, where missing or false neighbors
occur. However, they do not fully and explicitly highlight the identities of all
those neighbors for each projected point; and also do not cover the case of false
and missing group members.

4.4 proposed visualizations

We next introduce several visualization techniques that target the analysis goals
stated in Sec. 4.3. As a running example, we use LAMP as projection method,
with the default parameter settings given in [103] and discussed separately in
Chapter 3. As test dataset, we use the well-known 19-dimensional Segmen-
tation dataset with 2300 observation, which was previously used in several
dimensionality-reduction works [71, 103, 167, 164]. Herein, each point describes
a randomly drawn 3x3 pixel-block from a set of 7 manually segmented outdoor
images, by means of 19 statistical image attributes, such as color mean, standard
deviation, and horizontal and vertical contrast.
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4.4.1 Distance preservation error

As outlined in Sec. 4.3, our projection errors are implicitly caused by wrong
realizations of distances in the projected dataset – that is, distances between
points in 2D which are not proportional to their nD counterparts. To measure
such errors, we compute the projection error of point i vs a point j 6= i as

eij =
dm(qi, qj)

maxi,jdm(qi, qj)
−

dn(pi, pj)
maxi,jdn(pi, pj)

. (4.2)

By definition, eij ∈ [−1, 1]. In detail, values eij < 0 show projected points which
are too close with respect to their nD counterparts – i.e., false neighbors. Values
eij > 0 show projected points which are too far apart with respect to their nD
counterparts – thus, missing neighbors. Zero values indicate points which are
projected optimally with respect to preserving their nD distances.

4.4.2 Visualizing aggregated error

Our first step to understanding projection errors implied by Eqn. 4.2 is to sum-
marize the values eij by reducing them to a single value per projected points.
For this, we compute for each point i a so-called aggregate error

e
aggr
i =

∑
j6=i

|eij|. (4.3)

Intuitively, eaggri captures the wrong placement, or projection error, of point
i with respect to all other points j 6= i. Interpreting this metric is simple: Low
eaggr values correspond to points whose projections can be reliably compared
with most other projected points in terms of assessing similarity as captured
by their inter-point distance. Such well-placed points are good candidates for
representative points used by multilevel projection methods such as [69, 171,
34, 163]. In contrast, points having large values of eaggr are badly placed with
respect to most other points. Such points are good candidates for being replaced,
e.g., by local projection-optimization techniques [168, 167].

A first, simple, way to visualize eaggr is to color-code it onto the 2D projec-
tion, e.g. using a blue-yellow-red diverging colormap [26] (see Fig. 4.1 (a)). This
image allows locating hot-spots having either very low or very high projection
errors. However, finding zones of points having specific error ranges can be hard
using a color-coded scatterplot, as points are either too small to be easily visible,
or, if drawn larger, they may cause clutter by overlaps. More specifically, we are
not interested in viewing this information at point level, but to (a) find compact
zones in the projection having similar eaggr values, and (b) find outliers, in
terms of eaggr values (if any). To this end, we propose a space-filling visualiza-
tion, as follows. Let DT(x ∈ R2) = minq∈Dm‖q − x‖ be the distance transform
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a) b) c)

high eaggr

low eaggr

A1..A3

A4

A5

A6

A4

Figure 4.1: Aggregate error view showing three detail levels: (a) α = 1,β = 1. (b) α =
5,β = 5. (c) α = 20,β = 20 pixels (see Sec. 4.4.2).

of the 2D point cloud Dm. Formally speaking, DT(x gives, for any pixel x, its
distance to the closest point in the projection Dm. We then extrapolate eaggr at
every screen pixel x from its values recorded at the projected points q as

eaggr(x) =

∑
q∈Nε(x) exp

(
−
‖x−q‖2
ε2

)
e
aggr
q∑

q∈Nε(x) exp
(
−
‖x−q‖2
ε2

) (4.4)

with

ε = DT(x) +α. (4.5)

In the above, Nε(x) denotes the neighborhood containing all point projections
in Dm found within a radius ε from the pixel x. We visualize eaggr(x) as an
RGBA texture, where the RGB color components encode eaggr(x) mapped via
a user-chosen color map, and the transparency A is defined as

Aaggr(x) =

1− DT(x)
α , if DT(x) < β

0, otherwise
(4.6)

This design allows us to obtain a continuous range of simplified visualizations
of the aggregated error by changing the parameters α and β, as follows: For
α = 1,β = 1, we get the basic colored scatterplot shown in Fig. 4.1 (a). For
α = 1,β > 1, the space between the projected points is filled, up to a distance
β, by the value eaggri of the closest projected point i to the current pixel. For
α = 1,β = ∞, we obtain essentially a Voronoi diagram of the projected points,
whose cells are colored by their eaggr values. This simply extrapolates the eaggr

data values to larger spatial extents than individual pixels, thus making them
easier to see, especially in case of outlier error values. Note that the obtained
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visualizations are (conceptually) similar to those we would obtain by drawing a
scatterplot with points drawn as disks with radii equal to β, but avoids having
the issues created by overlapping points in case β is larger than inter-point
distances. For α > 1,β > 1, we obtain a result similar to Shepard interpolation
of the values eaggri , where the interpolation kernel size ε is given by the local
point density. The parameter α > 0 controls the global level-of-detail at which
we visualize eaggr: Small values show more detail in dense point zones, but
also emphasize small-scale signal variations which are less interesting. Larger
α values create a smoother signal where coarse-scale error patterns are more
easily visible.

Figs. 4.1 (b,c) illustrates the aggregate error visualization for the Segmenta-
tion dataset for two values of the parameters α and β. For this dataset, eij ∈
[−0.67, 0.35]. This error range tells us that we have poorly projected points, but
does not tell where these are. Using low values for both α and β, Fig. 4.1 (b)
shows us that eaggr is relatively evenly distributed over the whole projection.
We also see three small red spots A1..A3. These indicate high-error outlier zones,
which contain points badly placed with respect to most other points. We also
notice a relatively high error large zone A4. Larger values of both α and β sim-
plify this visualization by removing small-scale spatial variations (Fig. 4.1 (c)).
In contrast, larger β values fill in the whitespace between points. Larger α val-
ues smooth out outlier regions whose size is smaller than α, like the three small
outlier areas A1..A3 discussed earlier. In contrast, A4 remains visible, as it is
larger than α. We now also notice, better than in Fig. 4.1 (b), two dark-blue
zones (A5,A6) in the projection. These have a significantly lower error than the
rest of the projection.

It is interesting to compare our visualizations with the dense pps maps of
Schreck et al. [197] (see Sec. 4.2). While the aim of the two techniques is related
(showing local projection errors), several differences exist: (1) Our eaggri is a
global metric, that tells how point i is placed with respect to all other points; in
contrast, the pps metric characterizes local neighborhoods. (2) Our technique, for
α = 1,β = ∞, yields the same Voronoi diagram as Schreck et al., which is also
found in [10, 127]. However, we show different error values: Our eaggr shows
the sum of distance compression and stretching metrics introduced in [10, 127],
whereas [10, 127] show these two quantities separately. (3) Both Schreck et al.
and our method use smoothing to remove small-scale details. However, Schreck
et al. uses a constant-radius smoothing kernel which blurs the resulting visual-
ization equally strong everywhere. In contrast, we use, as explained, a variable-
radius kernel controlled by the local point density, which is more suitable for
preserving detail in non-uniform-density scatterplots.
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4.4.3 Visualizing false neighbors

However useful to assess the error distribution and find badly vs well-projected
point groups, the aggregate error view does not tell us how this error occurs,
i.e., whether it is caused by false neighbors, missing neighbors, or a mix of
both. To refine insights, we next consider false neighbors (case A, Sec. 4.3). We
show these by building a Delaunay triangulation of the projected point cloud.
By construction, this gives us the closest neighbors, in all directions, of each
projected point, i.e., the most important potential false-neighbors for that point.
To each edge Ek, 1 6 k 6 3 of each triangle T of this triangulation, with vertices
being the points qi and qj ofDm, we assign a weight efalsek = |min(eij, 0)|. This
essentially maps the false-neighbor errors between the central point of a triangle
fan and the points on the periphery of the fan. Next, we interpolate efalse over
all pixels x of each triangle T by using

efalse(x ∈ T) =

∑
16k63

1
d(x,Ek) ‖Ek‖

efalsek∑
16k63

1
d(x,Ek) ‖Ek‖

(4.7)

where d(x,E) is the distance from x to the edge E and ‖E‖ is the length of the
edge. We next render an image-based view for efalse as an RGBA texture, sim-
ilarly to the approach used for showing the aggregated error. However, we now
use a heated body colormap [26], where light hues map low efalse values and
dark hues map high efalse values respectively. This way, the user’s attention
of attracted to high efalse values, which are arguably more interesting. The
transparency A is given by

Afalse(x) = Aaggr(x)
(
1−

1

2

(
min

(
DTT (x)
DTC(x)

, 1
)
+

max
(
1−

DTC(x)
DTT (x)

, 0
)))

(4.8)

where DTT (x) = min(d(x,E1),d(x,E2),d(x,E3)) is the distance transform of T at
x,DTC(x) is the distance from x to T ’s barycenter, and Aaggr is given by Eqn. 4.6.
Note that Eqn. 4.8 was originally proposed in a different context to smoothly
interpolate between two 2D nested contours [187], and further adapted to inter-
polate between two nested shapes [216]. We refer to the above two papers for
implementation details. The combined effect of Eqns. 4.7 and 4.8 is to slightly
thicken, or smooth out, the Delaunay triangulation drawing. Similar to the ef-
fect of β in Eqn. 4.6, this makes the Delaunay visualization easier to perceive
in terms of edges connecting close points. Note that this interpolation does not
change the actual values efalsek rendered on the triangulation edges. Addition-
ally, the distance-dependent transparency ensures that data is shown only close
to the projection points.
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high efalse

low efalse

Figure 4.2: False neighbors view (see Sec. 4.4.3).

Fig. 4.2 illustrates the false neighbors view for the Segmentation dataset. We
notice several aspects: First, as explained, we see a ‘blurred’ rendering of the
Delaunay triangulation of the 2D projections colored by efalse, which depicts
for each point which are its immediate closest neighbors. Light-colored edges
show true neighbors, while dark edges show false neighbors. Since edges are
individually visible, we can see both the true and false neighbors of a point sep-
arately. The smooth transition between opaque points (on the Delaunay edges)
and fully transparent points (at the triangles’ barycenters) ensures that the re-
sulting image is continuous and easier to follow than a Delaunay triangulation
drawn with pixel-thin edges, as our edges appear slightly thicker, thus more
visible. However, as for the interpolation proposed for the aggregate error, no
clutter is created (in terms of overlapping thick Delaunay edges).

Figure 4.2 outlines two additional error-related insights. First, we see an over-
all trend from light to dark colors as we go further from the projection’s border
towards its center. This is in line with the known fact that DR methods tend to
have a lower error (in terms of false neighbors) on their borders, as there is more
space to place points there. In contrasts, for points deeply embedded in the pro-
jection, there is less freedom to arrange them in terms of their neighbors, so these
get a higher chance of having false neighbors (or being false neighbors of other
points, the false-neighbor relation being symmetric). Intuitively, we can think
of this phenomenon as a ‘pressure’ which builds up within the projected point-
cloud from its border inwards. Section 4.5 shows several additional examples
of this situation. Secondly, we see a few small-scale dark outliers in Figure 4.2.
Zooming in, we discover that these are points connected by dark edges to most
of their closest neighbors in a star-like pattern. Clearly some points are wrongly
placed here. These can be either the star ‘center’ or the tips of its branches. We
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also see that these tips have only one dark edge – the one going to the star center.
Hence, they are too closely positioned to the star center only, and not to their
other neighbors. In contrast, the star center is wrongly placed with respect to all
its surrounding points (the tips). Hence, we conclude that too little space was
offered in the projection to the center point, or in other words that the center
point is a badly placed point with respect of its surrounding points (and not
conversely).

Our false neighbors visualization is related to Aupetit’s segment-compression
view, which shows the reduction of inter-point distances due to projection [10].
The underlying metrics used to capture distance-preservation errors, i.e. our eij
(Eqn. 4.2) and mdistorij ([10], Sec. 3.2) are similar, up to different normalizations.
The visualizations used for these metrics are, however, different: Aupetit uses
so-called ‘segment Voronoi cells’ (SVCs). SVCs essentially achieve piecewise-
constant interpolation of the values efalsek , defined on the edges Ek of each
Delaunay triangle T , over T ’s area, by splitting T in three sub-triangles using
its barycenter. In contrast, our interpolation (Eqn. 4.7) is C∞-continuous over
T . Also, our triangles are increasingly transparent far away from their edges
(Eqn. 4.8). Comparing our results (e.g. Figs. 4.2, 4.9 (a,d,g)) with SVCs (e.g.
Figs. 7 (d), 12 (c) in [10]), we see that SVCs show spurious elongated Voronoi
cells that do not convey any information. Such cells do not exist in our visu-
alization due to the transparency blending. Also, we argue that the artificial
SVC edges linking projected points with Delaunay triangulation barycenters do
not convey any information, but only make the visualization more complex. A
similar problem and discussion thereof is present in a different context where
Voronoi cells were used to visualize scatterplot data obtained from multidimen-
sional projections [28]. Such edges do not exist in our visualization due to our
continuous interpolation.

4.4.4 Visualizing missing neighbors

As explained earlier, projection errors also encompass missing neighbors (case B,
Sec. 4.3). Showing these by a space-filling method like for the aggregate error or
false neighbors is, however, less easy. The missing neighbors of a projected point
q can be anywhere in the projection, and are actually, by definition, far away from
q. Visualizing these, thus, implies some way to show correspondences between
far-away points in a projection.

One way to avoid this complication, and still use space-filling methods, is to
restrain the aim of the visualization: Given a single point qi, show which of the
other points Dm \ qi are its missing neighbors. The point qi can be selected
by direct brushing in the visualization. Next, we compute the error emissingi =

maxj6=i(eij, 0), i.e., the degree to which qj is a missing neighbor for qi, and
show emissing by the same image-based technique used for the aggregated
error (Sec. 4.4.2).
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a) b)

c) d)

color

discontinuities

low emissing high emissing

Figure 4.3: Missing neighbors view for four selected points (indicated by markers). See
Sec. 4.4.4.

We use again the Segmentation dataset to illustrate the missing neighbors for
a single selected point (Fig. 4.3). Here, we color map e

missing
i via the same

heat colormap as in Fig. 4.2. In Figs 4.3 (a,b), we selected two points deep inside
the central, respectively the lower-right point groups in the projection. Since
Figs. 4.3 (a,b) are nearly entirely light-colored, it means that these two selected
points have few missing neighbors. Hence, the 2D neighbors of the selected
points are truly all the neighbors that these points have in nD. In Figs. 4.3 (c,d),
we next select two points close to the upper border of the large central group
and the left border of the left group in the projection, respectively. In contrast to
Figs. 4.3 (a,b), we see now an increasingly darker color gradient as we go further
from the selected points. This shows that points far away from these selections
are actually projected too far, and they are actually more similar than the projec-
tion suggests. This is a known (but, to our knowledge, never visualized as such)
challenge of many DR methods when embedding high-dimensional manifolds
in 2D: points close to the embedding’s border are too far away from other points
in the projection. Intuitively, this can be seen as the projection method (LAMP)
trying to ‘spread’ the projected points more than strictly necessary, likely in or-
der to better reduce false neighbor issues (discussed earlier). Since, as explained
earlier too, there is more room to arrange points at the border of a projection,
missing neighbors likely appear in these border areas too.
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Another interesting insight is that Figs. 4.3 (c,d) do not show a smooth color
gradient as we go further from the selected point: Especially in Fig. 4.3 (c),
we see that colors appear grouped in several ‘bands’, separated by disconti-
nuities. In other words, the projection method (LAMP) increases the error non-
uniformly with the distance.

Our missing neighbors visualization is related to the proximity view of Au-
petit [10], as follows: Both views allow selecting a point i and next compute a
scalar error metric (related to the selected point) and next draw it on all points
j 6= i. For Aupetit, this error metric is the distance mproxj = dn(pi − pj) (nor-

malized by its maximum). For us, this is the error emissingj . Both mprox and
emissing tend to be small at points j close in 2D to the selected point i, and
increase farther off from point i. Yet, the two metrics are different and serve
different purposes. Visualizing mprox helps locating points found within some
distance to the selection i. Finding projection errors is only implicitly supported,
as these appear as non-monotonic variations in the mprox signal. In contrast,
emissing specifically emphasizes points projected too far, rather than showing
the absolute dn distance. Hence, our visualization helps locating projection er-
rors rather than assessing proximity.

4.4.5 Missing neighbors finder

The visualization in Sec. 4.4.4 cannot show missing neighbors for an entire
dataset, but only for a single selected point. This hampers a quick and easy un-
derstanding missing neighbors, as, in theory to find all these, one would need to
iteratively select all points in a projection and retrieve (and remember) all their
missing neighbors.

To address this, we proceed as follows. Consider all values eij > 0. These give
all point-pairs which are projected too far away, i.e., which are mutual missing
neighbors. We sort the set containing these values decreasingly, and select the
top φ percent of them, where φ is a user-provided parameter. The selected val-
ues give the point-pair-set MN = {(qi, qj)} which are the worst mutual missing
neighbors. We next construct a graph G = (V ,E) whose nodes V are the pro-
jected points q ∈MN, and edges E indicate the pairs (qi, qj), with eij mapped
to edge weights. Next, we draw a simplified version of G using the KDEEB edge
bundling technique [93], which is a robust, easy to use, real-time bundling tech-
nique for graphs with tens of thousands of edges. Finally, we color the bundled
edges based on their weights eij via a grayscale colormap (with white map-
ping low and black mapping high weights respectively), and draw them sorted
back-to-front on eij and with an opacity proportional to eij. The most impor-
tant edges thus appear atop and opaque, and the least important ones are at the
bottom and transparent. This visualization is called further the missing neighbors
finder.

We can use the missing neighbors finder in two different modes, as follows.
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a) b)

c) d)
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Figure 4.4: Missing neighbors finder view for four selected points. Selections are indi-
cated by markers (see Sec. 4.4.5).

First, we can restrict the construction of the graph G to include only edges that
have, at one end, a selected point qi. This point is selected precisely as described
in Sec. 4.4.4. As such, the bundled version of G will contain only edges that
start, or end, at the location qi. Fig. 4.4 shows this for the same four selected
points discussed earlier in Fig. 4.3. For comparison, the background in Fig. 4.4
shows emissing (Sec. 4.4.4). Dark bundle edges attract attention to the most
important missing neighbors. For the selected points in images (a) and (b), we
see that there are only very few and unimportant missing neighbors (few half-
transparent edges). For the selected points in images (c) and (d), the situation
is different, as the bundles are thicker and darker. Bundle fanning shows the
spread of missing neighbors for the selected points: In image (c), these are found
mainly in the left point group, with a few also present in the lower part of the
central group. In contrast, all missing neighbors of the point selected in image
(d) are at the top of the central group. Compared to the earlier technique for
showing missing neighbors (of a selected point) by means of color mapping
(Fig. 4.3), bundles have the added value of focusing the attention of the user
to the most important missing neighbors (shown as dark edges); highlighting
explicitly the fact that these are missing neighbors of the selected point; and
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allowing one to better assess the 2D distances between the selected point and its
missing neighbors, and the spread of the latter over the projection.

a) φ=1% b) φ=3% c) φ=20%

high emissinglow emissing

high eaggrlow eaggr
Bundles

Background

Figure 4.5: Missing neighbors finder view, all point pairs, for different φ values (see
Sec. 4.4.5).

The second mode of the missing neighbors finder extends to showing many-
to-many missing-neighbor relations between all projected points. For this, we
use the aforementioned procedure of constructingGwithout restricting its edges
to start or end at the same single selected point. Fig. 4.5 shows this result for
three values of φ for the Segmentation dataset. The background shows now the
aggregated error (eaggr, Sec. 4.4.2). We now color bundles from black for largest
error eij to white for largest error above the user-provided parameter φ. Image
(a) shows the φ = 1% worst missing-neighbor point-pairs. These link the top-
right area of the central group with the left border of the left group. Adding
more missing neighbor pairs to the view, by increasing φ, (image (b), φ = 3%)
strengthens this finding. Adding even more missing neighbor-pairs (image (c),
φ = 20%) reveals additional such pairs between the two zones indicated above
(light gray parts of thick top bundle), and also brings in a few missing neighbors
between these areas and the lower-right point group (light gray thin bundle go-
ing to this group). Nearly all bundles appear to connect point pairs located on
the borders of the projection. This strengthens our earlier hypothesis that such
point pairs are challenging for the LAMP projection, which we already noticed
when using the missing neighbors view (Sec. 4.4.4). However, as compared to
that view, the bundled view shows all such point pairs in a single go, without
requiring user interaction.

Several technical observations are due here. First, the usage of edge bundling
is motivated by the aim to decrease clutter that would be formed when draw-
ing a straight-line node-link view of the graph G – which is typically unavoid-
able, since missing neighbor-pairs are located, by definition, far away from each
other in the projection. Secondly, edge bundling creates a simplified view that
highlights the coarse-scale missing-neighbor connectivity patterns occuring over
groups of closely-placed points in the projection. Thirdly, typical settings of the
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parameter φ range between 1% and 10% of the total amount of point-pairs in a
projection. Showing more point-pairs can be technically done with no problems,
since the bundling algorithm used is highly scalable to graphs of hundreds of
thousands of edges [93]. However, the added-value of doing this is limited, since
only a small fraction of the point-pairs in a typical projection are badly placed
with respect to each other (at least, this is true for projections generated by high-
quality algorithms, such as LAMP). Fourthly, an alternative way to show the
most important missing neighbor-pairs is to threshold the value-set eij > 0 by
an absolute error value rather than a percentage. This easily allows us to e.g.
compare different projections in terms of the amount, and distribution, of their
missing neighbors.

4.4.6 Group analysis

The false and missing neighbors issues for individual points become, at group
level, the problems of false and missing group members respectively (Sec. 4.3).
To address these issues at group level, we introdude two subsequent visualiza-
tions, as follows.

First, we must clarify the concept of a point group: A group Γ ⊂ Dm is a set
of projected points which form a visually well-separated entity. That is, a group
is visually separated, in a projection, by significantly large amounts of white
space from other groups. Assuming that the underlying projection technique
reasonably preserves distances and/or neighborhoods, visual groups indicate
points that share some similarities, and are in the same time different from
other visual groups.

To illustrate this, consider the LAMP projection of our Segmentation dataset.
We see here three such groups (Figs. 4.1-4.5).

To further reason about such groups, we need a way to let users select them.
For this, we provide several mechanisms: direct interactive selection, mean-
shift clustering [44], and upper thresholding of the point density [66]. The first
method is basically the most flexible but also the most time-consuming, as it
requires user interaction to delineate points that the user perceives as belonging
together. The second method is a (well known) clustering method that employs
the variations in point density to segregate areas of high-density points sep-
arated by areas of low-density points. The third method is basically a cheaper,
but less accurate, automatic clustering version of the second method. Other user-
controlled methods can be used if desired, e.g., K-means or hierarchical agglom-
erative clustering e.g. [102, 101]. The actual group selection mechanism is further
of no importance to our visualization method. The only requirement here is that
we use a method to separate the projected points into distinct groups. A sepa-
rate comment is due here: One could argue that clustering points into groups
using the projection is sub-optimal with respect of doing the same using the
original high-dimensional points. From a pure data analysis viewpoint, aiming
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at finding groups of related observations, this is true. However, our entire scope
(in this chapter) is not to partition the high-dimensional observations into simi-
lar sets, but to explain the projection of these observations. As such, when talking
about groups, we consider those formed in the projection, and not those implied
by the high-dimensional data. This is also the main reason why, when talking
about groups, we refer to visual groups.

To better reason about visual groups, we next render each obtained group
Γ = {qi} by the shaded cushion technique in [216], as follows. First, we compute
a density map ρ(x) =

∑
q∈Γ K(x − y), where K is an Epanechnikov kernel of

width equal to the average inter-point distance δ in Γ , following [44, 93]. Next,
we compute a threshold-set Γδ of ρ at level δ, and its distance transform DTΓδ .
Finally, we render an RGBA texture over Γδ, where we set the color a fixed hue
(light blue in our case) and the transparency A to

√
DTΓδ . The global effect

is to create a dark-to-bright border cushion-like profile over a group, that has
constant thickness, and thus better emphasizes the containment of points in a
group than when drawing a simple isocontour of ρ at level δ.

With groups being now modeled as a data structure (Γδ) and also visually
rendered, we modify the missing neighbors and finder techniques (Secs. 4.4.4,
4.4.5) to show missing group members. In detail, we compute a value

e
missing
Γ (qi) =

minqj∈Γ (eij) if qi /∈ Γ

0 otherwise
(4.9)

at each projected point qi, and visualize emissingΓ using the same technique as
for missing neighbors.

Fig. 4.6 (a,b) show two missing group members views for our Segmentation
dataset. The shaded cushions show the three groups identified by the method
presented earlier (using here the thresholding of the density ρ; using mean-shift
clustering gives similar results). We see that several points fall outside of these
three groups. This is expected, and indicates points which are too far away from
other densely-packed points to be easily assigned to a visual group. In image
(a), we select the bottom group Γbottom. The underlying color map shows now
e
missing
Γbottom

, (Eqn. 4.9). All points appear here light yellow. This means that, no
points are projected too far from Γbottom, i.e., Γbottom has no missing members.
In image (b), we do the same for the left group Γleft. The image now appears
overall light yellow, except for a small dark-red spot in the upper-right corner of
Γcenter. Here are a few points which are placed too far from any point in Γleft.
These are highly likely to be missing members of Γleft. To obtain more insight,
we now use the bundle view introduced in Sec. 4.4.5, with two changes. First,
we build only bundles that have an endpoint in the selected group. Secondly,
we consider all edges rather than showing only the most important ones (so
that we do not miss any potential group members). Image (c) shows the bundle
view for Γbottom. We see only a few bundled edges, ending at a small subset of
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Figure 4.6: Missing members for two groups Γbottom and Γleft. Points in these groups
are marked by blue dots (see Sec. 4.4.6). Top images show the error metric
e
missing
Γ . Bottom images add edge bundles to indicate the most important

missing point-pairs.

the points in Γbottom. This strengthens our hypothesis that there are no points
outside Γbottom which should have been placed closer to any point in Γbottom
– hence, Γbottom has no missing members. Image (d) shows the bundled view
for Γleft. The bundle structure tells us that the top-right part of Γcenter contains
many missing neighbors of Γleft. In particular, we see dark bundle edges that
connect to dark-red points. This is a strong sign that these points can indeed
be missing members of Γleft. To refine this insight, we let the user interactively
query the discovered points’ details (attribute values) and, depending on these,
finally decide if these points are missing group members or not.

4.4.7 Comparing projections

When constructing a projection, users have the choice between using different
DR methods, or the same method with different parameters. The question is:
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Which of the resulting projections is better, in terms of quality? The refinement
of this question is: How to compare different projections?

To answer such questions, we propose a projection comparison visualization.
The view gets as input two projections Dm1 and Dm2 of the same input dataset
Dn, both based on the same control points to ensure that the projections match,
even in their orientation, in case the respective projections use control points. In
other case, simple rigid alignment of the projections can be done, to bring them
as close as possible with respect to rotations, scalings, and translations.

For each point-pair (q1i ∈ D
m
1 , q2i ∈ D

m
2 ), we next compute a displacement

e
disp
i =

‖q1i − q2i ‖
maxi ‖q1i − q2i ‖

. (4.10)

We next build a graph G whose vertices are points in Dm1 ∪D
m
2 . Edges connect

point-pairs (q1i ∈ D
m
1 , q2i ∈ D

m
2 ), weighted by the values edisp, i.e., highlight

points representing the same observations which are placed, in 2D, far away
from each other in the two projections. We visualize G using edge bundling, as
for the missing neighbors finder (Sec. 4.4.5).

Fig. 4.7 (a) the use of this technique to compare the Segmentation dataset
projected via LAMP (red points, Dm1 ) and LSP (green points, Dm2 ). The two pro-
jections are, at first sight, quite similar, since red and green points are in general
placed close to each other. Yet, this image does not tell if the two projections cre-
ate the same groups of points, since we do not know how red points correspond
to the green ones. In other words, we do not know if closely-placed red and
green points correspond to the same observations. Fig. 4.7 (b) shows the projec-
tion comparison view, where corresponding points are linked by edge bundles.
We here see a thin dark bundle in the center: This links corresponding points
which differ the most in the two projections. Correlating this with image (a), we
see that LSP decided to place the respective points at the bottom (ALSP) of the
central group, while LAMP moved and also spread out these points to the top
(ALAMP). However, points around the locations ALSP and ALAMP do not move
much between the two projections, as we see only light-colored bundles around
these zones, apart from the already-discussed dark bundle. So, the motion of
these points indicates a neighborhood problem in one or both of the projections.
Indeed, if e.g. the points in A were correctly placed by LAMP (when creating
ALAMP), then the choice of LSP to move the point-group A all the way up in
the image (to ALSP) should also have moved the neighbors of ALAMP. Since this
does not happen, ALSP cannot be close to the same points that ALAMP was. A
similar reasoning applies if we consider that ALSP is correct – it then follows
that ALAMP cannot be correctly placed with respect to its neighbors.

Apart from this salient dark-colored bundle, we see many shorter and light-
colored bundles. These show smaller-scale displacements between the two pro-
jections. For instance, we see how the red points at the right of the left group
(BLAMP) are moved to the left (BLSP) of the same group. As these bundles fan
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Figure 4.7: Comparing projections. (a) LAMP (blue) and LSP (red) points. (b) Bundles
show corresponding point groups in the two projections (see Sec. 4.4.7).

out relatively little, do not have many crossings, and they are short, it means
that BLSP is almost a translation to the left of BLAMP, so the two projections
depict the same structure of the left group. Also, we do not see any bundle exit-
ing this left group. This means that both LAMP and LSP keep all points in this
group together. Finally, in the bottom-right group we see just a very few short
light-colored bundles. Most points in this group do not have any bundles con-
nected to them. This means that edisp for these points is very small (yielding
thus very short, nearly transparent, bundles). From this, we infer that LAMP
and LSP produce very similar layouts for this group. If users are interested only
to spot the most salient differences between two projections, and want to ig-
nore such small-scale changes, this can be easily obtained by mapping edispi to
bundle-edge transparency.

4.4.8 Proposed workflow

So far, we have presented several views for analyzing projection errors. Each
such view has its specific focus (on a separate class of errors, related to separate
analysis goals). As such, the question arises of how to combine all these views
into a coherent usage scenario for an analysis task? Below we propose such a
usage scenario.

step 1 Start with the Aggregated Error view. This way, one gets a global idea of
the error at all points, without a distinction between false or missing neighbors.
Next, find if (a) there are any regions with large errors or (b) the overall error
is low. If we see (b), the projection is quite good (low error) and thus nothing
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else needs to be improved prior to using the projection for analysis purposes. In
case (a), continue with steps 2, 3, and 4.

step 2 Using the Missing Neighbors Finder, one net finds the most important
missing neighbor point-pairs. If this view shows bundles having high error val-
ues (i.e., dark-colored), there are important missing neighbors in the projection.
These point-groups connected by such bundles must be further analyzed with
the Group Analysis Views. If no such groups exist, i.e. the bundles are (light) gray,
this tells that the projection is good and, although there are missing neighbors,
they are in a minority, and thus do not affect the projection interpretation.

step 3 Problematic points or groups found in steps 1 and 2 should now be
analyzed in more detail using the False Neighbors and Missing Neighbors views.
For groups found in step 1, we should find out exactly what kind of error occurs:
Are these groups (a) wrongly placed with respect to each other and other close
points (false neighbors) or (b) in relation to far-away points that should be closer
(missing neighbors)? For groups detected in step 2, the error is already found
from the beginning: They have many missing neighbors. Thus, the question to
be answered here is: Which points are the problematic ones inside the detected
groups, or where exactly do the relations (bundled edges) with the highest er-
rors start and end from? By using the false-neighbors and missing-neighbors
views, the user can find exactly which are the more problematic points (or
groups), and what kind of errors these have.

step 4 Knowing now where exactly errors occur, we consider the next ques-
tions: (1) Are such errors really problematic for the projection interpretation? (2)
Do they show unexpected results with respect to how the projection should de-
pict its input data? (3) Are these problematic points important for the use-case
at hand? If questions (1-3) are all answered by ‘no’, we have a good projection
for our data and use-case, so our error investigation ends. If any question (1-3)
answers yes, then the user must improve the projection of problematic points: If
the user is a projection-designer testing the accuracy of a new algorithm, (s)he
should go back to the algorithm and use the new insight gotten from this anal-
ysis to improve that algorithm. If the user has no access to the projection im-
plementation, or is not interested and/or able to understand and modify the
respective algorithm, the way forward is to redo the error analysis from step 1

with either (i) a new projection algorithm that might better fit the specific data
and task; or (ii) a new set of parameters for the same algorithm. The new results
should be next be compared with the old ones to find if errors have decreased
or if they moved into a new projection-region where they are not as important
for the task at hand. For the second task above, the Projection Comparison View is
the tool of choice to use.
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4.5 applications

Let us next demonstrate the way of working and added-value of the proposed
error visualizations to analyze several projections and their corresponding pa-
rameter settings – in other words, to explore the space P that controls the cre-
ation of a DR projection. To this end, we first overview the datasets and projec-
tion methods used in this study (Sec. 4.5.1), the studied projection algorithms
(Sec. 4.5.2), and their parameters (Sec. 4.5.3). Next, we use our views to explore
the parameter settings of the involved projections (Secs. 4.5.4, 4.5.5).

4.5.1 Description of Datasets

We next consider the following datasets (in addition to the Segmentation dataset
used for our running example):

Freefoto: is a dataset of 3462 images grouped into 9 classes [72]. For each image,
we extract 130 BIC (border-interior pixel classification) features. Such features
are widely used in image classification tasks [209].

Corel: is a dataset composed of 1000 photographs that cover 10 specific topics.
Similarly to the Freefoto dataset, we extract for each image a vector of 150 SIFT
image descriptors [131]. The underlying task here is to use these descriptors for
automatic image classification purposes.

News: is a dataset containing 1771 RSS news feeds from BBC, CNN, Reuters and
Associated Press, collected between June and July 2011. The 3731 dimensions of
each news-feed were created by analyzing the text of the feed to remove stop-
words, employ stemming, and use term-frequency-inverse-document-frequency
counts. We manually classified the observations based on the perceived main
topic of the news feed. This resulted in 23 classes. Given the imprecision of the
manual classification and the restriction to have one class (topic) per observation,
the classes are unbalanced. Moreover, we cannot guarantee that classes having
different labels do not have a highly similar content.

Sourceforge: This dataset contains 24 software quality metrics computed on
6773 open-source C++ software projects from the sourceforge.net portal [33]. Met-
rics include classical objet-oriented quality indicators such as coupling, cohe-
sion, inheritance depth, size, complexity, and comment density [123], averaged
for all source code files within a project. A separate metric records the num-
ber of downloads of a project. The aim of this collection is to see whether the
measured quality metrics correlate, in any way, with the objectively measured
download count.
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4.5.2 Projection Techniques

For our study, we considered several projection techniques, based on the avail-
ability of documented parameters, scalability, genericity, presence in the litera-
ture, and last but not least, open availability of a good and easy-to-use imple-
mentation.

LSP: The Least Squares Projection [163] uses a force-based scheme to first po-
sition a subset of so-called control points. The remaining points are positioned
using a local Laplace-like operator. Overall, LSP creates a large linear system
that is strong in local feature definition. LSP is very precise in preserving neigh-
borhoods from the nD space to the 2D projection space.

PLMP: The Part-Linear Multidimensional Projection (PLMP) [164] addresses
computational scalability for large datasets by first constructing a linear map-
ping of control points using a force-based method. Next, this linear mapping is
used to place the remaining points, by a simple and fast matrix multiplication
of the feature matrix with a linear mapping matrix.

LAMP: Aiming to allow more user control over the final layout, the Local Affine
Multidimensional Projection (LAMP) [103] (described also in Chapter 3) pro-
vides a user-controlled redefinition of the mapping matrix over an initial map-
ping of control points. LAMP uses control points to build a family of orthogonal
affine mappings, one for each point to project. LAMP cannot directly work with
distance relations, i.e., it needs to access the nD point coordinates. Yet, LAMP
is very fast, without compromising the precision reached, for instance, by LSP.
Both LSP and LAMP can be controlled by a number of parameters, such as the
control-point set.

Pekalska: A separate class of projection techniques employs various optimiza-
tion strategies (see Chapter 2). Such techniques are, in general, quite computa-
tionally demanding. To improve speed, Pekalska et al. [171] first embeds a subset
of points in 2D by optimizing a stress function. Remaining points are placed us-
ing a global linear mapping, much like LAMP and LSP.

ISOMAP: The well-known ISOMAP technique [218] is an extension of classical
Multidimensional Scaling (MDS). ISOMAP replaces the input distance between
point-pairs by an approximation of the geodesic distance given by the shortest
path on a graph created connecting neighbor points in the original space with
the original distance as weight. The final 2D coordinates are computed via a
conventional MDS embedding with calculations of eigenvalues over the distance
relations of the previous step.
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4.5.3 Projection parameters

Most projection techniques that work with control points use an iterative force-
based algorithm, such as the one of Tejada et al. [214] or, more generally speak-
ing, such as used when embedding (laying out) graphs [56]. The number of
iterations of force-based placement influences the control points’ positions, be-
ing thus, an important parameter. LSP control points are typically the centroids
of clusters obtained from a clustering of the input dataset. The number of con-
trol points is, hence, a second important parameter for LSP. To position points
around a given control point, LSP solves a linear system for that neighborhood.
The neighborhood size (number of neighbors) is a third important parameter.

LAMP builds its affine mappings from a neighborhood of control points. The
size of the control point-set used to build this mapping, expressed as a percentage
of the size of the total point-count in the input dataset, is the key parameter
here. The choice of control points and the choice of the initial projection of the
control points are also parameterizable, like for LSP, PLMP, and Pekalska. Yet,
in LAMP, these parameters are interactively controlled by the user according
to application-specific preferences, and thus of a lesser interest for us in our
current analysis.

ISOMAP, just as the previously mentioned techniques, also requires the defini-
tion of point neighborhoods. The main, and frequently only, exposed parameter
of ISOMAP is the number of nearest neighbors that defines a neighborhood.

4.5.4 Overview comparison

We start our comparison of projections (and their parameters) top-down, with a
global comparison of the considered projection techniques – LAMP, LSP, PLMP,
and Pekalska.

For this, we consider the false neighbors, aggregated error, and most impor-
tant φ = 5% missing neighbors for the Segmentation dataset, as projected by
the aforementioned four algorithms (Figure 4.8). To enable an easy comparison,
color mapping is normalized so that the same colors show the same absolute
values across different views. The aggregate error (top row) is quite similar in
both absolute values and spread for all projections, i.e., lower at the plot bor-
ders and higher inside, with a few dark (maximum) spots showing the worse-
projected points. Hence, all studied projections are quite similar in terms of
distance preservation quality, at a global level. The false neighbors views (mid-
dle row) show a similar finding: Frontier points have few false neighbors (light
colors), and the density of false neighbors increases gradually towards the pro-
jections’ centers. While local variations exist between projections, they are quite
small, meaning that all four studied projections are globally equally good from
the viewpoint of not creating false neighbors. The missing neighbors view (bot-
tom row) is quite different: Seeing the size and color of the shown bundles, we
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infer that LSP and Pekalska have much more missing neighbors than PLMP,
and LAMP has the fewest missing neighbors. In all cases, we see that bundles
link borders of the projected point-set. This tells that all four studied projections
optimize placement of close points in the detriment of far-away points. We also
see that the missing neighbors are spread differently four the four studied pro-
jections: For LAMP, there are no bundles going to the bottom-right point cluster,
showing that this cluster is well separated in the LAMP projection. In contrast,
LSP, PLMP, and Pekalska all have bundles going to this cluster, telling that they
place these points too closely to the other projected points.

4.5.5 Parameter analysis

We next zoom in on the analysis of parameters of projection methods. To this end,
we study two of the four aforementioned projection algorithms: LAMP and LSP.
The restriction to these algorithms is justified by the comparatively large effort
required to study all parameters of four algorithms, and separately, our interest
in LAMP (part of our work, see Chapter 3), and the fact that LSP is better known
in the literature than PLMP and Pekalska.

To study LAMP vs LSP, we next vary several of their parameters, and assess
the resulting projections’ quality with respect to this variation.

LAMP - Different control point percentages: Fig. 4.9 shows the results of LAMP
for the Freefoto dataset with three different values for LAMP’s percentage param-
eter: 10%, 30% and 50%. The error has been normalized on each column in the
figure.

A first finding is that the final layout of the produced projection does not
change drastically when varying the percentage parameter – indeed, the main
change we see is a 90 degree clockwise rotation for the percentage value 30%.
In the false neighbors view, we also see that, while the light brown areas are
large – telling us that a moderate amount of error is globally present – the dark-
colored spots are found nearer to the center. This tells that LAMP positions the
most problematic points in the center. By focusing on the dark spots (having the
highest false-neighbor errors) throughout the parameter variation, we can see
that the largest error values remain quite similar – all views have roughly the
same percentage of dark-colored areas.

Next, in the missing neighbors view, we select a point near the upper border
of the projection (marked by a cross in Figs. 4.9 (b), (e) and (h)). We do this
since missing neighbors occur mainly on the borders of the projection, as we
have discussed in Sec. 4.4.4. The dark spot in Fig. 4.9 (h) shows the area where
the largest error occurs over these three views. While in Fig. 4.9 (b) there are
a few orange spots showing moderate error, in Fig. 4.9 (e) the error visibly de-
creases, while increasing again in Fig. 4.9 (h). This tells that using roughly 30%
of neighbors is a good parameter setting to avoid missing neighbors. We con-
firmed this finding on several other datasets projected via LAMP (not shown
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Figure 4.9: LAMP algorithm, Freefoto dataset, different neighbor percentages per row (see
also Fig. 4.10).

here for brevity). Finally, the aggregated error view shows insights which are
quite similar to the false neighbors view: More problematic points, error-wise
(dark spots), are present in the projection center, while a moderate amount of
error is spread evenly over the entire projection. This tells that LAMP gets most
its projection errors from false neighbors rather than from missing neighbors.

LSP - Different numbers of control points: Figure 4.10 shows the Freefoto
dataset projected with LSP. The varying parameter under study is now the num-
ber of control points of LSP. We use here the same views as in Fig. 4.9, and nor-
malize the error in each column. The false neighbors views show a spatial mix
of light-yellow and orange-brown colored areas in the projection. This contrasts
with LAMP (Fig. 4.9) where the larger missing neighbor errors are consistently
located far away from the projection border. When the number of control points
increases, the large-error areas get more compact and closer to the projection
center. However, we spot no increase in error severity – the amount of the or-
ange and dark-red spots stays the same. In the missing neighbors views, the
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dark-colored areas in Fig. 4.10 (b) vanish largely in images (e) and (h). This
means that the severity of the missing neighbors diminishes when the number
of control points increases. If we compare this with LAMP (Fig. 4.9 b,e,h), we
see thus that LAMP and LSP behave in opposite ways when dealing with miss-
ing neighbors. Finally, like for LAMP, the aggregate error views show the worst
errors (dark spots) are to be found in the projection center: In other words, the
most problematic points are pushed inside in the projection by the points which
surround them, creating a mix of both false neighbors and missing neighbors.
The severity of the errors, however, does not change visibly between the three
studied parameter values.
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Figure 4.10: LSP technique, Freefoto dataset, different numbers of control points per row
(compare with Fig. 4.9)



4.5 applications 109

LSP - Different numbers of neighbors: Let us next study the effect of a second
parameter of LSP: number of neighbors. For the Freefoto dataset, we fix the num-
ber of control points to 250, and next vary the number of neighbors to 10, 50

and 100, respectively. Fig. 4.11 shows the resulting projections with the missing
neighbors finder view. We see here that the most significant errors are initially
located between groups A, B and C, with group C showing itself to be placed
too far from both A and B. Increasing our number-of-neighbors parameter has
a positive impact on solving the missing neighbors problem between groups
A and C, bringing them together into the group marked AC. The most impor-
tant missing neighbors are now between groups AC and B. This ‘concentration’
of error given by the number-of-neighbors parameter increase is, upon further
analysis, explainable if we consider how LSP works: Given a neighborhood N,
LSP’s Laplacian smoothing places all points in N close to each other in the final
layout. Yet, the position of the neighborhoods Ni themselves is conditioned only
by the control points, which are determined by the initial force-based layout. If
this force-based layout suboptimally places two control points i and j too far
away from each other, then all points within the neighborhoods Ni and Nj end
up being too far away from each other, since Laplacian smoothing has only a
local effect. Thus, as the neighborhood size increases, the likelihood to see fewer
thick high-error bundles increases. This insight is interesting since it was not
reported in the LSP papers we are aware of.

a) 10 neighbors b) 50 neighbors c) 100 neighbors

C

B

A

B
B

ACAC

Figure 4.11: Applications – LSP technique, Freefoto dataset, different numbers of neigh-
bors. Bundles show most important missing neighbors.

LAMP - Different datasets: We next analyze the LAMP projection method over
three different datasets: Corel (1000 elements), Freefoto (3462 elements), and
Sourceforge (6773 elements). The varying parameter is now the input dataset it-
self, rather than parameters of the projection method. By this, we want to see
whether (and how) errors are influenced by the nature of the input data, e.g.
distribution of point-distances, number of dimensions, and number of points.
Figure 4.12 (top-row) shows the false neighbors views for the three considered
dataets. While for the first two datasets the behavior of false neighbors is similar
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to earlier results, for the largest dataset (Sourceforge) we see considerably fewer
false neighbors. These are found close to the intersection area of the two appar-
ent visual groups in the image, and also on the borders of these groups. This,
and the low errors (light colors) inside the groups indicate that both groups are
highly cohesive. The large errors on close to the intersection areas and borders
indicates elements that could be in either group, respectively very different from
all other elements. Figure 4.12 (a) shows a similar insight: Most false neighbors
are found at the ‘star’ shape’s center, while the arms of the star contain more
cohesive (similar) elements. This indicates that the dataset contains a number
of cohesive groups equal to the number of star arms, and that elements in the
center belong equally to all groups.

Figure 4.12: One algorithm (LAMP), different datasets. Top row: false neighbors. Bottom
row: missing neighbors.

Analyzing the missing neighbors for several points selected on the border of
projections, we see that errors are smaller for Figs. 4.12 (d) and (e), and quite
larger for Fig. 4.12 (f). For the last image, we selected a point close to the inter-
section area of the perceived visual groups. Image (f) shows that this point is
equally too far-placed from most points in both visual groups. The size and speed
of increase of the error (as we get further from this point in the 2D projection
space) suggests that the selected point stronger belongs to both visual groups
than the projection tells. This strengthens our initial hypothesis that the area
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separating the two groups belongs equally to these groups.

ISOMAP - Different numbers of neighbors: Figure 4.13 shows the effect of
changing the number of neighbors in ISOMAP on missing group members. Our
group of interest Γ , shown first on Fig. 4.13 (a), is outlined in images (b-d) by a
shaded cushion. Besides the fact that Γ moves from the left to the right of the
projection, which is less interesting, images (b-d) show how its missing mem-
bers behave as we change our number-of-neighbors parameter. First, Fig. 4.13

(b) shows that the most important missing neighbors are located in two other
areas A1 and A2 on the far side of the layout. We also see many black edges,
telling that points in A1 and A2 are indeed too far away from all points in the se-
lected group. The quite large fan-out of the bundles show that the group misses
many members, which get widely scattered over the projection. As the parame-
ter increases, image (c) shows that the missing members spread out even more,
but the severity of the errors drops (see the lighter colors of emissingΓ in the
background). The inner fanning of the edges in Γ is still large, telling that many
group members miss neighbors. Finally, in Fig. 4.13 (d), error-related problems
decrease markedly: We see thinner bundles, which mean less error; the bundle
fanning in Γ is quite small, meaning that most of Γ ’s points do not miss neigh-
bors; and the fan-out of the bundles is smaller, showing that the missing group
members are now more concentrated than for the first two parameter values.
This leads to the conclusion that, for the analyzed group, the increase of the
number of neighbors parameter positively influences the projection quality.

a) b) c) d)

group of 

interest

50 neighbors 100 neighbors 200 neighbors
highlow

emissing
Γ

group Γ

highlow

emissing
Γ

highlow

emissing
Γ

group Γ

group Γ

A1

A2

Figure 4.13: ISOMAP projection, Corel dataset, finding missing group members for dif-
ferent numbers of neighbors.

LSP - Different numbers of iterations: Our last analysis compares two different
LSP projections of the same dataset (News), created using values of 50, respec-
tively 100 for the number of iterations parameter of the control-point force-driven
placement.

Figures 4.14 (a) and (b) show the two LSP projections for the two above-
mentioned values of the number-of-iterations parameter. Both projections show
several high-density groups. These are strongly related news feeds, i.e., which
likely share the same topic (see Sec. 4.5.1). Yet, without extra analysis, we cannot
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a) 50 iterations b) 100 iterations c) full di�erence

d) shift of group A e) shift of group B f ) split of group C
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B
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B2

B3
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1
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2

Figure 4.14: Shift between two LSP projections, News dataset, for different numbers of
force-directed iterations.

relate the two projections, e.g., find out (a) if points markedly change places due
to our parameter change; (b) which groups in one projection map to groups in
the other projection; and (c) if points in a group in one projection also belong to
a group in the other projection.

We answer question (a) by the projection comparison view (Sec. 4.4.7). The
result (Fig. 4.14 (c)) shows that there are many quite large point-shifts between
the two projections; the bundles’ iuntersections also show that groups change
locations in the projection. This is a first hint that LSP is not visually stable
concerning its number-of-iterations parameter. Next, we manually select three
of the most salient visual point-groups in one projection, shown in Fig. 4.14 (a)
by the shaded cushionsA,B,C. We analyze these in turn. In Fig. 4.14 (d), we show
how points in group A shifted, in the second projection, to a group A1. Virtually
all bundled edges exiting A end in A1, so the parameter change preserves the
cohesion of group A (though not its place in the projection). The same happens
for group B (Fig. 4.14 (e)). Yet, the parameter change spreads B more than A – in
image (e), we see that B maps to three groups, B1..B3. These views thus answer
question (b). Group C behaves differently (Fig. 4.14 (f)): when we change our
parameter, C splits into two smaller groups C1 and C2. For question (c), thus,
the answer is partially negative: not all groups are preserved in terms of spatial
coherence upon parameter change.
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4.6 discussion

Our visualization techniques are implemented in C++ using OpenGL 1.1, and
tested on Linux, Windows, and OSX. Next we discuss several aspects of our
proposed visualization techniques.

Computational scalability: Overall, we achieve interactive querying and ren-
dering of our views for projections up to 10K points on a commodity PC. In
detail: For Delaunay triangulation and nearest-neighbor searches, we use the
Triangle [203] and ANN [145] libraries, respectively, which are well-known high-
quality tools for the respective tasks. Both libraries can handle triangulations,
respective nearest-neighbor searches, in over 100K points in subsecond time on
a commodity PC. We accelerate imaging operations using GPU techniques: For
distance transforms, we use [32], which is linear in the number of sites and
image pixels too. On an Nvidia GT 330M, this computes shaded cushions and
performs our Shepard interpolation at interactive frame rates for views of 10242

pixels. For edge bundling, we re-implemented KDEEB [93] fully on NVIDIA’s
CUDA platform. This yields a speed-up of over 30 times (on average) as com-
pared to the C# implementation in [93], and allows bundling graphs of tens of
thousands of edges in roughly one second.

Visual scalability: Our image-based visualizations can handle thousands of data
points, even when little screen space is available. Clutter, as caused by overlaps
of primitives being drawn for the projected points, is reduced by construction,
as explained earlier in Sec. 4.4. Apart from that, our proposed techniques have
a multiscale property: The parameters α and β (Eqns. 4.5, 4.6) specify the vi-
sual scale at which we want to see false neighbors, missing neighbors, and the
aggregate error. Increasing these values eliminates spatial outliers smaller than
a given size, thereby emphasizing only coarse-scale patterns (see e.g. Fig. 4.1).
The bundled views (Sec. 4.4.5) also work in a multiscale fashion, given the in-
herent property of bundled edge layouts to emphasize coarse-scale connectivity
patterns in a graph.

Genericity: Our visualizations can be applied to any DR method, as long as one
can compute an error distance matrix telling how much 2D distances deviate
from their nD counterparts (Eqn. 2.6). No internal knowledge of, or access to,
the DR algorithms is needed – these can be employed as black boxes. This allows
us to easily compare widely different DR algorithms, e.g. based on representa-
tives, based on distance matrices, or based on direct use of the nD coordinates.

Ease of use: Our views use three parameters: α sets the scale of the visual
outliers we want to show; β sets how far around a point we want to show
information, i.e., controls the degree of space-filling of the resulting visualiza-
tions; φ sets the percentage of most important missing neighbors we want to
show. These parameters, as well as the interaction for selecting point groups
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(Sec. 4.4.6) are freely controllable by users by means of sliders and point-and-
click operations. Moreover, their behavior is continuous: Small changes in any
of the above-mentioned parameters causes small changes in the resulting visual-
ization. This is a desirable outcome that allows users to fine-tune the respective
parameters in an easier way.

Comparison: Like Van der Maaten et al. [226], we use multiple views to show
the same data points to explain a projection, e.g., the false neighbors, missing
neighbors view, missing neighbors finder, and group-related maps. However, a
difference is that the multiple views in [226] are used to actually convey the
projection, so the same point can have different locations and/or weights in
different maps. In contrast, we use multiple views to convey different quality
metrics atop of the same 2D projection. Separately, our views do not need to be
simultaneously present (and linked) on the screen –rather, we use these views
consecutively, to explore the errors, and their causes, in a top-down fashion (see
Sec. 4.4.8). Arguably, this is an easier-to-use design, as a single view is to be
studied at a time by its users. Similar to Aupetit [10], our error metrics encode
differences in distances in Rn vs R2. Yet, our error metrics are different. More
importantly, our visualizations are also different: Our false neighbors view does
not show (a) spurious Voronoi cell edges far away from data points or (b) cell
subdivision edges whose locations does not convey any information, since we
(a) use distance-based blending and (b) continuous C∞ rather than constant
C−1 per-cell interpolation (Sec. 4.4.3). Secondly, our missing neighbors finder
(Sec. 4.4.5) shows one-to-many and many-to-many error relationships, whereas
all other methods that we are aware in the same class can only show one-to-
one relationships. Finally, we also show errors at visual-group level, whereas
the other studied techniques confine themselves to showing errors at point-level
only.

Let us also note that our projection comparison view (Sec. 4.4.7) is technically
related to the method of Turkay et al., which connects two 2D scatterplots to
each other by lines linking their corresponding points [224]. Yet, and important
difference is that Turkay et al. note that line correspondences only work for a
small number of points. In contrast, we use bundles to (a) show up to (tens of)
thousands of correspondences, colored and blended to encode correspondence
importance. As such, we argue that our method is technically more scalable, and
producing less clutter, than Turkay et al.

Discoveries: One potential drawback to mention is that our findings are, from
an end-user perspective, limited, as we could not so far tell which of the studied
DR algorithms are optimal. Yet, it should be stressed that this was not the aim
of our work: Our goal was to introduce a set of visualizations that help analyze
the effect of parameters on projection quality for several DR techniques. Decid-
ing whether a certain degree of quality, e.g. in terms of false neighbors, miss-
ing neighbors, grouping problems, or projection stability, is a highly context-,
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dataset-, and application-dependent task. When such a concrete context is given,
our tools can be used to assess (a) which are the quality problems, (b) how pa-
rameter settings affect them, and (c) whether these problems are acceptable for
the task at hand. The same remarks apply to the datasets we used. Our analyzes
involving these should be seen purely as test cases for assessing the quality
problems of DR projections, and not as findings that solve the underlying goals
related to these datasets. As such, globally speaking, our work here is technique-
driven, in terms of providing a set of generic tools to be used with care with-
ing specific application contexts, rather than a set of pre-canned solutions for a
(very) specific problem.

Limitations: Our views can show (a) which projection areas suffer from low
quality; and (b) how two projections differ in terms of neighborhood preserva-
tion. Yet, we cannot directly explain (c) why a certain DR method decided to
place a certain point in some position; and (d) how the user should tune (if at
all possible) the algorithm’s parameters to avoid errors in a given area. That is,
we can explain the function f : P (Eqn. 4.1) and its first derivatives over P, but
not the inverse f−1. Doing the latter is a much more challenging task – currently
not solved by any technique we know of. Explaining such second-order effects
to help users locally fine-tune a projection is subject to future work –and, ar-
guably, a highly application-specific work. Separately, the parameter space P of
many DR algorithms (or hyper-parameter space, to use a machine-learning ter-
minology) is high-dimensional. So far, we can only analyze the variation of one
or two parameters at a time. Extending this to several parameters, and showing
the results thereof in an easy-to-comprehend manner, is a second challenging
next topic.

4.7 conclusions

In this chapter, we have presented a set of visualization techniques for the anal-
ysis of quality of dimensionality-reduction (DR) algorithms, in terms of explor-
ing the parameter settings of a generalized projection function. In detail, by
generically modeling such techniques as functions from nD to 2D in terms of
their distance-preservation error, we proposed several views that help under-
standing the distribution of false neighbors, missing neighbors, and aggregated
projection-errors at both individual point and point-group level. We use several
dense-pixel, image-based, visually scalable, techniques such as scattered point
interpolation and bundled edges to make our methods visually and computa-
tionally scalable to large datasets and also work in a multiscale fashion, in order
to emphasize details at a user-chosen level of dtail. We demonstrated our tech-
niques by analyzing the errors caused by the change of various parameters of
five state-of-the-art DR techniques.
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In contrast to existing assessments of DR projections by aggregate figures,
that can only infer overall precision in a lumped way, we propose more local
tools to examine how neighborhoods and groups are mapped in a 2D projection.
The usage of our techniques is simple and, most importantly, allows users of
DR techniques to study their quality without needing to understand complex
internal projection details or the exact role of each parameter in the projections.

Future work can target several directions. First, we plan to support ‘what
if’ scenarios, i.e., help users to decide how they could correct local projection
problems by shifting wrongly-placed points while dynamically assessing the
ensuing overall projection errors. Secondly, we plan to explicitly visualize the
reasons that determine point placement, i.e., depict the nD variable values which
cause points to be placed close to, or far away from, each other. Additionally, we
intend to provide tools for local evaluation of projections customized for specific
target audiences. By this, we hope to make the operation of DR algorithms more
transparent and understandable for users ranging from algorithm designers to
end-users.
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abstract: 2D projections are well known representations to show dimensionality reduction results in the

literature, but few works has been done towards the interpretation of the 3D visual representation. Understand-

ing 3D projections created by dimensionality reduction (DR) from high-variate datasets is very challenging.

In particular, classical 3D scatterplots used to display such projections do not explicitly show the relations

between the projected points, the viewpoint used to visualize the projection, and the original data variables.

To explore and explain such relations, we propose a set of interactive visualization techniques. First, we adapt

and enhance biplots to show the data variables in the projected 3D space. Next, we use a set of interactive bar

chart legends to show variables which are visible from a given viewpoint, and also assist users to select an

optimal viewpoint to examine a desired set of variables. Finally, we propose an interactive viewpoint legend

that provides an overview of the information visible in a given 3D projection from all possible viewpoints. Our

techniques are simple to implement, and can be applied to any DR technique. We demonstrate our techniques

on the exploration of several real-world high-dimensional datasets1

5.1 introduction

As we have seen in Chapter 3, projections can be used to effectively map a large
high-dimensional dataset into a lower dimension (2D), while similarities and/or
neighborhoods of the observations are preserved. This, in turn, enables reason-
ing about groups of related observations, even in datasets where they do not
have any connection, such as the association of certain genres of music to spe-
cific kinds of pictures, automatically creating slides shows with sound (Chap-
ter 3). Additionally, such 2D plots can be effectively used as a visual support
for mapping the local projection quality, encoded by various projection metrics
(Chapter 4).

However useful for the above types of analyses, 2D projections suffer from the
main problem that do not preserve all the original information when the obser-
vations are projected. We may see which observations are similar (or different),
which are groups of related observations, where the projection has created er-
rors, and how large these errors are. However, we do not know why projected
points are similar, i.e., which variables from the original space that was projected
contribute most to bringing points close (or far away) from each other in the pro-

1 The text of this chapter is based on the paper Explaining three-dimensional dimensionality reduction
plots (D. Coimbra, R. Martins, T. A. T. Neves, A. C. Telea, F. V. Paulovich), Information Visualization
Journal, SAGE Publ., DOI:10.1177/ 1473871615600010, 2015. The first two co-authors have had equal
major contributions to the publication, and should be seen as joint first authors. Specific parts of
this work can be assigned to D. Coimbra, as follows: The key idea of explaining 3D projections
(as opposed to 2D projections); the design of the dynamic axis legends and curved biplot axes; the
design of the viewpoint widget; the selection and analysis of the segmentation and multifield datasets;
and the analysis of view-dependent projection quality (Sec. 5.4.5).
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jection. This is an important hurdle in making projections understandable and
usable for the grand public. For instance, typical end users are accustomed to
graphs or scatterplots whose axes are labeled to describe the quantities they
map. These offer essential cues for reading the graphs. Projections do not come,
by default, with such annotations. As such, users will arguably encounter diffi-
culties in explaining the visual patterns they see in the projection (e.g. clusters
of densely packed points or outlier points). When these difficulties become too
large, they may even block the adoption of projection as a visualization tech-
nique [27].

The above challenges are present even more so for 3D projections, i.e. pro-
jections which reduce the original high-dimensional dataset to a 3D scatterplot
rather than a 2D one. For the 3D case, the additional degree of freedom in the
projection space allows a lower projection error (as we will see). In the same time,
interpreting a 3D scatterplot whose axes do not have a clear meaning is consid-
erably more challenging than doing the same for a 2D scatterplot. For instance,
in the 2D scatterplot case, brushing techniques can provide required insight into
the dimension values of points of interest, up to the extent where points do not
overlap. Using the same mechanism for explaining 3D scatterplots is consid-
erably harder, as selecting 3D points for brushing is much harder. Separately,
using 3D scatterplots involves choosing a viewpoint, which may positively or
negatively influence the interpretation of the scatterplot.

We propose a set of interactive explanatory visualization techniques to help
users answer the above questions and assertions for 3D DR projections by aiding
in course correlations. Our techniques work as add-ons to any DR technique,
i.e., do not depend on technical aspects of the DR algorithm being used. We
keep their visual design simple, so that learning to use them requires limited
effort. We integrate our techniques with classical 3D scatterplot views, so that
they can be readily used to assist typical projection-exploration scenarios, or in
other words, explain the projection. We illustrate our visualization techniques
by applying them to several data exploration scenarios involving real-world
multidimensional datasets and a set of recent DR projection algorithms.

The structure of this chapter is as follows. Section 5.2 presents related work in
computing and interactive exploring DR projections. Section 5.3 introduces our
explanatory visualizations via a simple dataset. Section 5.4 illustrate how our
visualizations can answer several questions on 3D scatterplots created by several
DR techniques from real-world datasets. Section 5.5 discusses our techniques.
Finally, Section 5.6 concludes the paper.

5.2 related work

As outlined in Sec. 2.4.3, multidimensional projection methods aim to map high-
dimensional space into a low-dimensional (visual) space, so as to preserve the
original information as much as possible. Understanding and/or explaining
such projections generally raises some questions, which are next discuss.



5.2 related work 119

5.2.1 Explaining projections

Interpreting DR scatterplots is not easy. Refining the questions in Sec. 5.1, we
aim to address the following goals:

1. assign a meaning to the m dimensions of the mD projection space in rela-
tion to the original n variables;

2. assign a meaning to the inter-point distances in Rm in relation to the
corresponding distances in Rn;

3. find a suitable viewpoint (for 3D projections) that best supports answering
specific questions;

4. compare the quality of projections for dimensions m ∈ {2, 3} from the
perspective of several given tasks.

Goal 1 can be addressed by biplots and their variations [81, 79]. Biplots are the
multivariate analogue of scatterplots. Instead of using the scatterplot idea of
plotting observations along two orthogonal (Cartesian) axes mapping two vari-
ables, biplots approximate the multivariate distribution of a high-dimensional
dataset in a few dimensions, typically 2 or 3, by superimposing representations
of variable values on representations of the observations themselves. As such,
they offer the possibility to easily see relationships between (1) individual obser-
vations and (2) observations and their variable values [80]. Graphically, biplots
can be seen as a scatterplot generalization, in the sense that they have as many
axes as there are variables, and these axes can take any orientation in the dis-
play (Figure 5.1). Biplot axes support goal (2) above by showing which are the
directions of maximal variation of the original n variables in the m-dimensional
projection space.

(a) (b)

Figure 5.1: Scatterplot (a) and biplot (b) comparison. Green dots represent the instances,
or observations, and axes represent variables [81].

Biplots and their axes are usually constructed as follows. Consider the N×n
matrix D = (pi)16i6N. If D has rank r, it can be rewritten by singular value
decomposition (SVD) as

D = U∆VT (5.1)
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where U is a N× r matrix, ∆ is a r× r diagonal matrix of eigenvalues α1 > . . . >
αr > 0, and V is a n× r matrix. Here, UTU = VTV = I, where I is the identity
matrix. Denoting F = U∆, we have D = FVT. The columns of VT define the
biplot axes. The rows of the left matrix F define the projections of our data points
pi onto these axes. If r 6 3, we can directly visualize the biplot by drawing pro-
jections as a point cloud and biplot axes as vector glyphs (oriented straight lines)
respectively. If r > 3, we can approximate D by using in Eqn. 5.1 only the first
m < r columns of U and V. Then F gives the m-dimensional projections qi of pi
along the eigenvectors corresponding to the m largest eigenvalues α1, . . . ,αm
of D. Using eigenvectors as biplot axes, however, does not convey much insight,
as eigenvectors usually do not relate one-to-one to the original variables in Dn.
A better solution is to construct n biplot axes by projecting, via Eqn. 5.1, the n
unit vectors in Rn. These vectors show the direction of maximal variation in the
resulting m-dimensional projection of our n variables [81, 1].

A different approach to goal 1 is given in [28]. Here, a nD categorical dataset
is projected to m = 2 dimensions by SVD. Instead of drawing n biplot axes, the
contributions to the screen x and y axes of all original n dimensions are shown.
These contributions, also called loadings [81, 1], are the projections of the nD unit
vectors (via Eqn. 5.1) on the two eigenvectors that determine the projection. The
x and y axes are annotated with two n-element bar-charts, where the height
of each bar shows the contribution of a given variable to the respective axis. A
third bar chart shows the contributions of all n variables to all eigenvectors not
used to construct the DR projection. This shows the amount of data variance
not captured by the 2D projection. A similar visualization of loadings is shown
in [152].

Goal 2, i.e. assigning a meaning to the inter-point distances in Rm in rela-
tion to the corresponding distances in Rn, is addressed by aggregated qual-
ity metrics like stress (Eqn. 2.6), correlation [242], neighborhood-preservation
plots [163], shape-based metrics [6], and perceptual user studies [130]. While show-
ing the overall quality of a projection, aggregate metrics do not show local pro-
jection errors. 2D distance scatterplots can show the correlation of Dn with
Dm [103], but do not show projection problems for any point i vs all points
j 6= i. To improve this, Schreck et al. compute, for each data point pi, the projec-
tion precision score (pps) defined as the normalized distance between the two
k-dimensional vectors containing the Euclidean distances between pi and its k
nearest neighbors in Rn, respectively R2 [197]. Showing pps via a color map
helps finding areas where neighborhoods are not preserved. Aupetit proposed
several projection-quality metrics for DR techniques [10]: Point stretching and
compression metrics show, for each pi, the aggregated increase, respectively
decrease, of distances of pi’s projection qi to other projections qj 6=i ∈ Dm vs
distances of pi to all other points pj 6=i ∈ D2. Segment stretching and compres-
sion show the variation of distances of close point-pairs (i, j) between Rn and
R2. For a selected point i, the proximity metric maps distances in Rn from pi to
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all other points pj6=i to corresponding points qi ∈ R2, and thereby shows how
(and where) the projection may have distorted the data structure. An overview
of quality metrics for multivariate data visualization is given in [20].

Goals 1 and 2 are also addressed jointly by other tools. The early VIBE sys-
tem allows users to freely place in 2D space several so-called points of interest
(POIs), each representing a sample of the nD space under study [153]. Points in
this space represent documents along n dimensions encoding term frequencies.
Actual documents are placed in the same 2D space so as to reflect their relative
similarities with the given POIs. Conceptually, this can be seen as projecting
both documents and POIs (variable values) from nD to 2D. However, this ap-
proach requires the user to manually create relevant POIs (samples of the nD
space) and also place them suitably in 2D. ForceSPIRE, a document-exploration
system, uses a force-based layout to construct a 2D projection of a set of doc-
uments represented as n-D term vectors [65]. By dragging, pinning, and anno-
tating documents, users can incrementally assign higher-level semantics to 2D
inter-document distances. The ‘dust & magnets’ technique extends the explo-
ration power of ForceSPIRE and VIBE by allowing users to interactively drag
magnets to discover how data points (dust) are attracted towards them in an
animated fashion [244]. While we also use interaction to explain a projection,
like [65, 244, 153], our focus is to explain projection-space distances in terms of
the original nD variables, rather than showing similarities of projected points
with a user-selected set of variable values or extracting higher-level semantics
from variable values. As such, we will not modify the projection, as we consider
it to be our ‘ground truth’, and also give a key role to the nD variables in our
explanation.

Goal 3, i.e. finding a suitable viewpoint (for 3D projections) that best supports
answering specific questions, can be addressed by multiple views, such as three
2D views linked with a 3D scatterplot by interactive selection [176], or interac-
tion and animation, e.g. the scatterplot matrix. ‘Rolling the dice’ adds interactiv-
ity to improve navigation, 3D animated transitions to explore the visual space,
and swapping the scatterplot-matrix axes to show variable correlations and dis-
parities [64]. This idea was extended in [194] by linking a 3D scatterplot with a
3D scatterplot matrix, improving navigation by using three axes and using one
or two axes during visual transitions. A similar idea was used by Hurter et al.
to link 3D and 2D scatterplots [96]. Claessen et al. [43] extend axis movement for
scatterplot navigation, to allow users to interactively draw, place, and link axes
on a canvas, thereby creating a continuous combination-space of 2D scatterplots,
scatterplot matrices, and parallel coordinates. Although the method is very flex-
ible, it can create visualizations with redundant (replicated) axes.

Goal 4, i.e. comparing 2D vs 3D DR projections, to find which is more suitable
for a specific context (and why), is still an open subject [212]. Several authors
argue that 2D DR plots are better for visualizing text documents [149, 237], and
that 2D navigation is easier than its 3D counterpart [237]. For the specific task
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of cluster separation, Sedlmair et al. argue that 2D DR plots are found to be
as good as (interactive) 3D DR plots [201]. 2D DR plots were also found bet-
ter for search tasks [236] and for tasks involving distance assessment and spa-
tial arrangements [67]. On the other hand, Jolliffe argues that 3D projections
are needed to “encode a realistic picture of what the data look like” when the
intrinsic data dimension is 3 or higher [105]. Dang et al. show how 3D glyph
stacking can overcome color coding problems in 2D plots [50]. Additional cues
such as illumination and depth are proposed in support of using 3D scatter-
plots [193]. Sanftmann et al. argue that high-point densities in scatterplots are
better handled by 3D scatterplots [194]. Chan et al. argue that 3D projections
decrease information loss by allowing better discrimination between data ele-
ments [37]. A discussion of contexts where 3D DR projections are preferable to
2D ones is given in [192]. Poco et al. compared 2D and 3D DR projections using
LSP [163] both quantitatively (by stress metrics) and qualitatively (by controlled
user studies) [178]. The quantitative comparisons showed a higher accuracy of
3D projections; the user studies showed that, when augmented by suitable in-
teraction tools, 3D projections were superior to 2D projections in terms of both
confidence and satisfaction, and argued for the further development of 3D inter-
active exploration tools.

Summarizing the above, with needed brevity, we argue that (a) 2D DR plots
are generally found more effective for the specific tasks of cluster separation and
searching, and require less interaction; while 3D DR plots preserve distances bet-
ter, but loose appeal due to navigation, orientation, and occlusion problems. As
such, we argue that our goal of designing effective interactive exploration tools
for 3D DR projections, that keep the benefit of higher 3D projection accuracy
as compared to 2D projections, but decrease 3D interpretation costs, is worth
investigating.

5.3 explanatory visualizations

We next detail our interactive visualizations that support the explanatory goals
in Sec. 5.2.1. As running example, we use a dataset containing 2814 points, each
representing the abstract of a scientific paper (dataset ALL in [158]). From the
abstracts, a 9-dimensional feature space was created by removing stop-words
and using stemming. Feature coordinates were computed by the term-frequency-
inverse-document-frequency count [189]. From this dataset, a 3D projection was
created using LAMP [103]. A tenth attribute, not used in the projection, indicates
the class of each document, established manually based on the perceived topic
of each document.

Figure 5.2 shows the 3D projection using a scatterplot, with points colored by
their class attribute. Apart from seeing a few separated point clusters, which
seem to capture the class attribute, this image does not tell us more: We do not
know how variable values vary along the 3D space; or whether they correlate
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Figure 5.2: Document dataset shown by a 3D scatterplot.

with the clusters or with each other; or how to choose a good viewpoint to
examine the dataset. We next show how to answer such questions.

5.3.1 Enhanced biplot axes

Standard biplots project the n variables into biplot axes in the low-dimensional
mD space using SVD (Eqn. 5.1). This has several problems. First, this assumes
that DR is done using a uniform and linear transformation. This is not true
for nonlinear DR techniques or techniques based on different local projection
schemes (Sec. 5.2). Secondly, this assumes that we know the internals of the DR
method, such as the SVD matrices U, ∆, and V (Sec. 5.2.1). Finally, such biplots
cannot show the direction and (nonlinear) scaling of the n variables.

We address these issues as follows. For each nD variable i, we create a set of
S = 100 sample points pi16j6S, spread uniformly between the minimum and
maximum of variable i in Dn; for the other variables k 6= i, pkj take values equal
to the average of variable k in Dn. Next, we use the DR projection f (Eqn. 4.1)
as a black box to project the points pij to qij ∈ Rm, and draw a curve (biplot axis)
ci = {qij} to connect all projected points. Figure 5.3 a shows this. We see how and
where the nD axes get mapped in the 3D space. The lengths and bends of the
curves ci tell us about the spread, respectively non-linearity, of the projection.
Straight long 3D curves, e.g. axes 6 and 8, show variables which are dominant
(in terms of data variation) and well preserved (in terms of linearity) by the pro-
jection. Curved axes, e.g. 3 and 1, show (local) non-linearities of the projection.
Short axes show dimensions along which data has less variation. Axes intersect
in the projection centroid. Figure 5.3 b shows the same dataset, projected with
the FBDR force-based scheme in [214]. The extent and overall shape of the re-
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sulting 3D point cloud is very similar to the LAMP projection in Fig. 5.3 a. Yet,
axes are now significantly more curved and entangled. This tells us directly that
FBDR is less good than LAMP if we want to be able to ‘read’ our nD variables
along clearly-separated directions in the projection space.
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Figure 5.3: Adding curved biplot axes to the 3D projection in Fig. 5.2.

Besides showing the spatial deformation caused by the projection, we can
adapt our biplot axes to show the (non)linear nature of the projection. For this,
we add labels and ticks to equal-value intervals (in the high dimensional space)
to the biplot axes. By looking at the distribution of these labels and ticks along
an axis, we can get an idea of the local compression and/or stretching that may
have been caused by the projection (see Fig 5.4).
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Figure 5.4: FBDR projection with labels and ticks.
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5.3.2 Enhanced axis legends

Users can view 3D projections from any viewpoint, using a virtual trackball to
rotate, translate, and zoom the camera. For such a viewpoint, we denote the
screen axes x and y by x1 and x2, and the view direction by x3. Given such a
viewpoint, a key user question is “what can I see from here?” This question can
be rephrased as: the variations of which original nD variables can we see best
along screen axes x1 and x2? And which variables cannot that viewpoint show,
because they get mapped along the view direction x3? Consider the analogy
with the display of a simple 2D scatterplot of two variables, something that ar-
guably most users are familiar with: The meaning of the screen x and y axes is
clear – each such axis maps one of the two input variables. This is not so for our
context, since (a) DR projects map many (n � 2) variables to 3 axes, so an axis
will represent a ‘mix’ of several variables; and (b) we can freely choose any 3D
viewpoint to look at the 3D DR projection. We propose to jointly address both
(a) and (b), as follows.

Construction: To explain the screen axes, we use three bar charts, or axis legends
(Fig. 5.5), one for each of the axes xj, each having n bars for the n input variables.
The height of the ith bar in the legend of xj tells how much axis xj shows the
variation of the ith variable, and is given by the absolute value of

h
j
i =

(
(qiS − qi1) · xj

)(
1−

|‖ci‖− ‖qiS − qi1‖|
‖ci‖

)
. (5.2)

Here, ‖ci‖ is the length of the (curved) biplot axis ci, computed as in Sec. 5.3.1.
The first term in Eqn. 5.2 is the projected length of ci on screen axis xj. High
values hereof tell that we can easily see the spread of variable i along axis xj.
The second term in Eqn. 5.2 encodes the linearity of ci. High values hereof tell
that the projection maps variable i to a straight line in the 3D projection space.
Low values tell that variable i maps to a curved axis – so reading this variable
along the straight screen-axis xj will be difficult. High values of h1i or h2i , i.e.
long bars in the x1 or x2 charts, are desirable, as they tell that the x or y screen
axes can be used to directly read the variation of variable i. High values of
h3i are undesirable, as they tell that variable i spreads mostly along the view
direction, thus it is not observable from the current viewpoint. Hence, we call
the x3 chart: the observability legend. We also orient the bars of the x and y legends
upwards, and the bars of the observability legend downwards respectively (see
Fig. 5.5). This way, the upwards-pointing direction of bars uniformly represents
observability (of a variable) in all three legends.

The sign of hji tells if variable i is mapped in the positive or negative direction
of screen axis xj. We show this by a green (hji > 0), red (hji < 0), respectively
gray (hji = 0) box under each bar in the axis legends x1 and x2. This shows
how a variable increases or decreases along a screen axis. For the view-direction
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axis x3, we do not show this sign, since data variations along this axis are, by
definition, not visible from the current viewpoint. Bars in all three charts are
colored to show the identity of the variables by a categorical colormap created
with ColorBrewer [26] and labeled by variable names (more about this next).
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Figure 5.5: Axis legends. Two clicks in the left view will align variables 0 and 6 with the
screen x and y axes respectively, leading to the right view.

Sorting legends: We provide two modes to sort legend bars left-to-right. The
first mode sorts bars alphabetically on their variable names, so bars for the
same variable i appear at the same position in all three legends. This allows
one to quickly visually scan and correlate the three legends to see how a given
variable of interest is visible from the current viewpoint, i.e., answer the question
“Along which screen axis (x or y) can I best see this variable?” The second mode
sorts bars in decreasing order of their |h

j
i| values. This allows one to quickly

see which are the best-visible variables along a given screen axis, or answer the
question “What does this screen axis show?”. In this mode (see Fig. 5.5), bars
for the same variable i may not appear at the same position in the three leg-
ends, but still have the same color and labels, to help correlation. This mode
also addresses the case when we have a high-dimensional dataset, i.e., n is large
(tens or hundreds). Since legends are sorted, the most-visible variables along
the x and y screen axes are always the leftmost (and longest) bars of the x and
y legends. If n exceeds a fixed preset nmax = 20, we only draw the first nmax
longest bars. This ensures (a) that the x1 and x1 legends always show the nmax
most-visible variables from the current viewpoint, and (b) that bars are wide
enough for their color and label annotations to be readable. For the x3 legend,
the drawn bars tell us which are the worst visible variables from the current
viewpoint. This helps answering the question “Which variables should I not try
to analyze from the current viewpoint?” Summarizing, even when n > nmax,
our three legends can tell us which are the best and worst visible nmax vari-
ables from any viewpoint. Apart from color coding, bars in all three legends
are linked, in both sorting modes, by brushing, similarly to the design proposed



5.3 explanatory visualizations 127

in [28]: Whenever one moves the mouse pointer in a bar in a legend, this bar
and the two other corresponding bars in the other two legends are highlighted.
This way, one can quickly see how important a given variable of interest is along
both x and y axes, and also how much of the variation of this variable cannot
be observed from the current viewpoint, since it occurs along the view direction.

Linked views: We next use interactivity to support several exploration tasks.
As the user changes the viewpoint, e.g. by rotating the virtual trackball, axis
legends dynamically change, so that one interactively sees how the viewpoint
change affects what is mapped along the screen axes. Separately, we set the
transparencies of the biplot axes ci to the values |h3i |. Axes for variables with
low |h3i | values get emphasized (opaque), telling that their variables can be well
read from the current viewpoint – see e.g. axes 7,6,2 in Fig. 5.5a. Conversely,
axes for variables with high |h3i | values are more transparent, telling that these
variables are hard to read from the current viewpoint – see e.g. axis 5 in Fig. 5.5b.

Viewpoint selection: We further assist users to choose a good viewpoint by
interactive-and-iterative axis alignment, as follows. Clicking any bar i in the x1
or x2 legends smoothly rotates the viewpoint to a new one where the biplot axis
ci for the clicked variable is best aligned, i.e. has a maximal hji value, with the
clicked screen axis x1 or x2. Shift-clicking a second bar i′ in the other legend
(say, x2, if x1 was the first click) aligns variable i′ with x2, but constrains view-
point rotation around x1. This way, we get a viewpoint which best encodes the
variation of two user-chosen variables – i.e., creates the best-possible scatterplot
i vs i′ allowed by the given DR projection – with only two clicks. Figure 5.5 illus-
trates this by showing how we align variables 0 and 6 with the screen x and y
axes (Fig. 5.5a). The resulting alignment (Fig. 5.5b) also shows that axes 0 and 6

(marked red) are slightly curved, so that the projection is non-linear. The y leg-
end shows that the vertical data spread is mainly explained by variable 6. The
x legend shows that the x spread is mainly explained by a mix of variables 0, 2,
and 7, since the three longest bars in this legend have quite similar sizes. Since
variable 0 is best aligned with the x axis, by the alignment procedure, it means
that variables 2 and 7 must also be well aligned with x too. It thus follows that
variables 0, 2, and 7 project to (near) parallel axes in 3D, i.e., they are strongly
correlated. To check this, we brush the respective bars in the x plot, which high-
lights their biplot axes in 3D (apart from highlighting the corresponding bars
in the three legends, as explained earlier). As shown in Fig. 5.5b, these are in-
deed correlated (the respective biplot axes are nearly parallel). Note that our x
or y alignment tool is crucial for discovering correlations. Indeed, for the arbi-
trary viewpoint in Fig. 5.5a, the y bars for e.g. variables 7 and 6 are quite similar
in length; yet, after alignment, we clearly see that variable 6 is orthogonal to
variable 7.

Our approach is related to the legends in [28], which show the variation of
the nD variables along the screen x and y axes, and the variation in the view
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direction (thus, not visible from a given viewpoint). Yet, important differences
exist. First, the legends in [28] are static, as their 2D projection is predefined by
the SVD’s two largest eigenvectors. Our dynamic legends help reading the nD
variables from a interactively user-chosen viewpoint in 3D. For example, the x
and y legends in Fig. 5.5a show that that viewpoint does not clearly let us read
individual variables along the x and y screen axes, many bars are long in these
legends. After alignment, the legends significantly change (Fig. 5.5b), telling us
that x maps mainly a mix of variables 0, 2, 7; and y maps mainly variable 6. We
also see this in the observability legend (Fig. 5.5b, top right): Bars for variables
6, 0, 2 and 7 are shortest (in this order), telling that these variables are indeed
almost fully captured by the xy screen-space. In contrast, bars for variables 1,
3 and 8 are longest; this indicates that these variables are poorly observable in
the xy screen space for the current viewpoint, since they spread mainly in the
z direction. Secondly, while [28] orients bars in all three legends upwards, we
chose to orient the observability legend bars downwards. This is in line with
the fact that long bars in the observability legend are undesirable (they indicate
variables we cannot see), while long bars in the x and y legends are desirable
(they indicate variables we can see). Thirdly, the computation of our bar heights
is different. In [28], these are the so-called ‘loadings’ of the input n variables
vs the two eigenvectors used for 2D projection. Computing loadings requires
explicit knowledge of the DR method f used (SVD, in [28]). In contrast, we treat
the DR method as a black box when creating our biplot axes (Sec. 5.3.1), and
compute our bar heights separately as a function of the biplot axes’ positions
given by the current viewpoint (Eqn. 5.2). Hence, our biplot axes can be straight
lines or curves, depending on the (non)linearity of f. In contrast, [28], which
uses the biplot set-up in [1], assumes a linear projection.

5.3.3 Viewpoint legend

Dynamic axis-legends help seeing which variables are visible along the screen
axes from a given viewpoint, and also choose a good viewpoint to examine a
given variable pair. Our next question is: Given a 3D DR projection, which rela-
tions (between all variable pairs) can we see well if we had time to go through
all viewpoints?

We answer this question by a new interactive widget: the viewpoint legend
(Fig. 5.6). The widget uses a sphere S (Fig. 5.6a); each point v ∈ S maps the
viewpoint for the view direction c−v, where c is the center of S. Thus, S captures
all possible viewpoints we can examine our 3D DR projection from. The central
cross shows the current viewpoint. We uniformly sample S, in polar coordinates,
by 400× 400 viewpoints, and define the quality of each sample-viewpoint v in
terms of showing the variable-pair (i, j 6= i) as

q(v, i, j) = ‖(h1i ,h2i )× (h1j ,h2j )
T‖. (5.3)
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Figure 5.6: Legend for viewpoint shown in Fig. 5.5 right.(a) Viewpoint sphere; (b) Matrix-
plot view; (c) Transfer functions for color and luminance of the viewpoint
sphere.

Intuitively, q tells how well we can see from v the variation of variable i vs j,
modulo all possible rotations of x1 and x2 in the view plane around the screen-
normal axis x3 = c − v. This depends on how well the DR from Rn to R3,
and the 3D-to-2D (screen) projection given by v, capture this variation. Large
q(v, i, j) values tell that the two biplot axes i, j are large and form a large angle
(maximally, 90◦) on the view plane. Such viewpoints are interesting to explore,
as they show existing independent variable-pairs which also have large spreads.

For each sample viewpoint v, we compute the maximal value of q for all
variable-pairs (i, j)

Q(v) = max
16i6n,16j6=i6n

q(v, i, j). (5.4)

For all v, we also compute the normalized maximal quality Q̄(v) ∈ [0, 1] =

Q(v)/maxu∈SQ(u) and the variable-pair p(v) = (i, j) which maximizes q at v.
Here, (i, j) are the variables that define the 2D scatterplot-like view we can best
see from viewpoint v. Next, we select the set P of C = 8 distinct variable-pairs
that have the largest values of q over all viewpoints v ∈ S. P gives the C variable-
pairs we can best visualize from all possible viewpoints. We assign to each pair
p ∈ P, thus to all C best-visible variable-pairs, a distinct color c(p), using a
categorical colormap, and color the sphere points v as follows: If p(v) ∈ P, we
use for v the color c(p), else we use the color gray. Next, we modulate the
saturation S and brightness V of the assigned color at v by the quality Q̄(v)
using the transfer functions shown in Fig. 5.6c. This effectively maps Q̄(v) to
the shading of the sphere: Low values are dark; mid-range values are saturated;
and high values are white. Finally, we render this sphere using standard bilinear
color interpolation over a quad mesh defined by our sample points v.



130 explaining 3d dimensionality reduction plots

To help interpreting the shaded sphere, we add a separate matrix plot view
(Fig. 5.6b). Each variable-pair (i, j) maps to a cell in this plot. Cells are colored us-
ing a two-color scheme, as follows. The first color is c(p) for cells of pairs p ∈ P,
and is gray for other cells. The second color maps the value maxv∈S q(v, i, j)
to a gray value between black and white. Cells are colored by linearly interpo-
lating between the first color, assigned to the cell-border, and the second color,
assigned to the cell-center. The matrix plot thus shows both the C best visible
variable-pairs, encoded by their respective colors, and also the relative quality
of different variable-pairs, encoded by the brightness of their respective cell-
centers.

green area: viewpoints from which 
the scatterplot of variables 2 and 6 
is best visible

variable 6

variable 2

axis 6

axis 2

highlighted cell (2,6)
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Figure 5.7: Selected viewpoint best showing scatterplot of variables 2 and 6.

Figure 5.7 shows the added-value of our viewpoint-legend and matrix-plot for
our documents dataset. We explore the viewpoint space interactively, as follows.
Rotating the sphere changes the current viewpoint, which in turn dynamically
updates the axis bar-charts (Sec. 5.3.2). Conversely, rotating the 3D scatterplot
(either manually or by axis-alignment animation, see Sec. 5.3.2) turns the sphere
in sync to show the newly selected viewpoint. The cell for the current viewpoint
is highlighted on the matrix plot, so we can directly see which variable-pair is
best visible from that viewpoint, e.g. (2, 6) in Fig. 5.7. Clicking any cell (i, j) in
the matrix plot smoothly rotates the viewpoint to one where the variable-pair
(i, j) is best visible, i.e. goes to the viewpoint v where q(v, i, j) is maximal. This
allows quickly navigating to such a viewpoint for any given variable-pair – i.e.,
constructs the best scatterplot (i, j),∀i 6= j by one click.

The viewpoint legend helps answering several questions, all related to choos-
ing informative viewpoints for 3D DR projections, as follows:

Where from should I examine pair (i, j)? Large same-hue sphere zones, e.g. the
green one in Fig. 5.7, show view-space areas from which the variable-pair (i, j)
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is best visible. Looking up green in the matrix plot shows that this zone maps
the variable-pair (2, 6).

Is there any good viewpoint for (i, j)? Small color-zones show that some variable-
pairs are hard to see, since only few viewpoints allow that. This tells users not to
expect to ‘create’ such scatterplots from this DR projection, as this is very hard
or even not possible. In other words, if understanding the correlation of such
variable-pairs is important, one should first change the DR projection.

How easy is it to examine (i, j)? Large bright highlights in sphere zones show
that the respective variable-pair is easy to examine from many close viewpoints.
Given our quality definition (Eqn. 5.3), this means that the spread of values for
these variables is large compared to other variables, and that the biplot axes’
angles for these variables is large. This tells that creating scatterplots for the
respective two variables is very easy – just move anywhere in the respective
highlight and you’ll get the desired scatterplot. Moreover, the matrix-plot cell
brightnesses tell us how easy is it to examine their respective variable-pairs
from all possible viewpoints: Bright cells tell that there is at least one viewpoint
from where the respective pairs can be examined well (selectable by clicking
that cell); dark cells tell that no such viewpoints exist.

What can I see from a given viewpoint? Highlights show viewpoints from
where the variable-pair given by the color around the highlight is best visible.
Dark zones on the viewpoint sphere, like the ones just outside the green zone
in Figure 5.7, tell that there is no easy-to-see variable-pair when looking at the
plot from the corresponding viewpoints. This is so since the pair which is best
visible from such viewpoints has a low quality, as indicated by the dark colors.
Hence, such zones tell that their respective viewpoints are arguably not useful
for any visualization task.

How to relate more than 2 variables? Color-zone borders show viewpoints
where the best visible variable-pair changes for small viewpoint rotations. These
are typically bad viewpoints to examine a single variable-pair. However, as we
shall see in Sec. 5.4.2, these are good viewpoints to examine groups of three or
more variables.

5.4 applications

We next use our explanatory visualization techniques (enhanced biplot axes,
axis legends, viewpoint legend) to explore 3D DR projections and aid in coarse
correlations. They were constructed by three different DR methods, for four
different datasets. By showing more datasets, we can easily explain how we
address different kinds of questions with our tools, since each one has different
data and, consequently, different questions related to it.
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5.4.1 Wine dataset: Finding good DR projections

This n = 12D dataset has 4898 points, each being a different sample of vinho
verde white wine [46]. Variables include chemical properties, e.g. acidity, sugar
and sulfur contents, chlorides, density, pH, and alcohol percentage. The last
attribute is a user-assigned quality level. Tasks for this dataset involve finding
correlations of the first 11 variables on the one hand, and the quality on the
other hand, over specific subsets of points; if found, such correlations could be
next used to design automatic quality predictors [46]. To use DR for such tasks,
we first must decide which DR method is best suited. One way for this is to
select the DR method that minimizes aggregated projection errors, also called
aggregated stress [141]. Yet, many state-of-the-art DR techniques will yield quite
similar error values, so such aggregate errors are not discriminatory enough.

We consider here three DR methods: FBDR [214], ISOMAP [218], and LAMP [103]
to project our dataset to 3D (other DR methods can be equally easily used).
Figure 5.8 shows the obtained projections. For this dataset, these three projec-
tions yield very similar values for the normalized stress metric (Eqn. 2.6): 0.75

(ISOMAP), 0.81 (FBDR), and 0.83 (LAMP). Hence, how to say which DR method
is best for discovering variable correlations? Showing our biplot axes helps us
here (Fig. 5.8). We see that FBDR and ISOMAP create, overall, quite twisted axes,
unlike LAMP. Reading data values and/or finding if such axes are highly corre-
lated (nearly parallel) or independent (nearly orthogonal) is clearly much easier
if our axes are straight lines rather than curves. Our first finding is, thus, that
LAMP is better for variable exploration in general.

However, the above does not imply that LAMP would be the best projection
for more specific tasks, like exploring correlations of just two specific variables.
Consider, for example, alcohol and acidity. We see that the alcohol axis is compa-
rably straight for FBDR and LAMP – hence, we cannot yet rule out FBDR as a
useful projection for this task. To study correlations against alcohol, we first click
on the alcohol bar in the y legend to align it with the screen y axis, in all three
plots. Next, we use the same procedure to align acidity with the screen x axis
(one click on the acidity bar, x legend). For extra insight, we also color points by
acidity values, using a blue-yellow-red divergent colormap. We now get several
extra insights: First, we see that the x legend for FBDR has many bars of nearly
equal size to acidity. Hence, either FBDR does not succeed in separating these
variables during projection (which is bad), or we just discovered that these vari-
ables are highly correlated (which is a good finding). Yet, LAMP shows a clear
exponential drop-off of the same bar-lengths. Since LAMP’s projection-error is
roughly equal to to FBDR’s, it means that the respective variables are not corre-
lated, hence the lack of separation in FBDR is a limitation of FBDR. Separately,
we see that ISOMAP creates a twisted acidity axis, and also shows a similar
artificial correlation of variable-projections along the x screen axis. Hence, we
decide that LAMP is better than ISOMAP. Summarizing all above, we conclude
that LAMP is the best of the three projections (LAMP, ISOMAP, FBDR): It has
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a similar normalized stress metric, but succeeds best in creating straight, and
well-separated, variable-axes in 3D projection space.

5.4.2 Multifield dataset: Explaining projection shapes

This n = 10D dataset, from the IEEE Vis 2008 contest, encodes a time step
of a multifield simulation dataset describing the formation of the early Uni-
verse [151]. Variables encode matter density, temperature, and concentrations of
8 chemical species at 200K sample points. By freely rotating the 3D DR projec-
tion of this dataset(Figure 5.9), done using LAMP, we notice that the projection
appears to be locally a 2D saddle-like manifold (point-cloud surface). We next
want to better understand the shape of this surface, and find the variables that
determine it.

To do this, we turn on our biplot axes. We immediately notice that axis 7 is by
far the longest – so variable 7 is important for explaining the projection’s shape.
Aligning variable 7 with the y screen axis shows that the projection appears to
have a ‘saddle’ shape (Fig. 5.9a). We also see that axis 7 is nearly orthogonal to
all other 9 biplot axes. Hence, the y spread of the projection is mainly due to
variable 7.

The viewpoint legend in Fig. 5.9a shows next that variable 5 has a large vari-
ation which is largely independent on variable 7 (bright green zone on sphere;
bright green cell in the matrix plot). To better explore the shape variation due
to variables 5 and 7, we next color points by variable 5, via the same colormap
as in Fig. 5.8. The result (Fig. 5.9a) shows that the x stretch of our saddle shape
is well explained by variable 5, which is high to the left and low to the right, as
shown by both the colormap and the red cell under the variable-5 bar in the x
legend. In this figure, we also notice an interesting ‘spike’ line-like outlier in the
top-left area. We can explain how this spike, as an specific internal substructure,
align with specific axes by looking at them and see that the spike aligns best
with axes 5 and 6. Iteratively aligning the x axis (click on variable-5 bar in x
legend, then click on variable-6 bar) shows that the spike best aligns with axis
6, as the x bar for variable 6 is largest. Figure 5.9b shows this viewpoint, with
points colored by variable 6. We can now easily explain the spike as the locus of
points having large variable-6 values (yellow..red). Indeed, all other points (on
the saddle shape, not on the spike) have low variable-6 values (blue).

The viewpoint legend in Fig. 5.9b shows that there are many viewpoints from
which variables 6 and 7 project as independent axes (large brown area with
bright highlight on sphere; bright highlight in the selected matrix-plot cell).
Hence, variable 6 is indeed independent on variable 7, which was found the
most important for explaining the saddle shape. Aligning variables 6 and 7 with
the x and y axes respectively (two clicks in the x and y legends) shows both the
spike outlier and the saddle shape in a single view (Fig. 5.9c). This view also
shows that axes 5 and 6 are almost parallel, so variables 5 and 6 are highly cor-
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related. We see this also in the viewpoint legend: The current viewpoint, which
best shows variables 6 and 7, is very close to the brown-green zone border on
the sphere. Also, both brown and green zones have very large bright highlights,
and the brown-green border is also bright. Hence, most viewpoints which best
show variables 6 and 7 also best show variables 5 and 7. We thus refine our ear-
lier explanation of the saddle: This shape is best explained by variable 7 (in one
direction) and variables 5 or 6 (in an orthogonal direction).

To explore variable 6 further, we look at its row in the matrix plot, and click
the purple cell, to show its variation against variable 2. This aligns variables 2

and 6 with the x and y axes respectively, yielding the view in Fig. 5.9d. The x
and y axis legends show now clearly that variables 5 and 6, respectively 2 and
3, are highly correlated, since they have nearly equal and almost maximal bars.

As a final point, let us consider the effort required to explain the spike and
saddle shapes present in the 3D scatterplot when using only classical projection
exploration tools such as the virtual trackball for rotation and the ability to color
all projection points by the values of a chosen variable. Rotating the scatterplot
so that we best see the spike outlier, i.e. with the spike nicely aligned with the
y axis, can take anything between 10 seconds (for an expert user) and 2 to 3

minutes (for someone not familiar with the virtual trackball being used), based
on our own observations when using the tool. In contrast, this takes just two
clicks on the x and y legends, as explained earlier. Finding that the spike is best
explained by variable 6, while the saddle’s spread in orthogonal direction to the
spike is best explained by variable 2, requires, with standard tools, iteratively
selecting each of the 10 variables to color map the projection, detecting visually
which is the strongest color gradient aligned with the spike, respectively saddle,
and memorizing this value. Using our tools, the color cycling is not required;
we can directly see which variables align with specific scatterplot structures in
terms of both biplot axes and axis legends.

5.4.3 Segmentation dataset: Comparing 2D and 3D projections

Our third dataset has 2300 points with n = 19 variables. Each point describes a
randomly chosen 3× 3 pixel-block from 7 manually segmented outdoor images,
using 19 statistical image attributes, such as color mean, standard deviation, and
horizontal/vertical contrast [71]. An extra manually-set label attribute, not used
in the DR projection, encodes the image type for each point [103, 164]. Tasks
for this dataset relate to designing automated image classifiers (using the 19

attributes) to match the manual classification (label attribute) [167].
Figure 5.10 shows this dataset using a 3D DR projection created by LAMP. By

freely rotating this projection, with points colored by label values, we see that
the longest biplot axis maps variable 0 (region-centroid-col). Aligning this axis
with the y screen axis (click on region-centroid-col bar in the y legend) brings the
viewpoint into a large red area on the viewpoint-legend sphere. In the matrix
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plot, we see that red maps the variable-pair (0, 3). We next click this cell to go
to the best viewpoint from which we can examine variables 0 and 3 (Fig. 5.10a).
The axis legends tell now that y explains almost only variable 0, while x ex-
plains mainly variable 3 (short-line-density). This viewpoint gives us two other
interesting insights. First, we see that variable 0 has almost no correlation with
the label-ID, i.e., variable 0 takes virtually all values in its range for any single
label-ID value. Next, by slightly rotating the viewpoint around the y axis (vari-
able 0), we see that axes 1-18 are located roughly in a plane orthogonal to axis
0. Together, the above tell us that variable 0 is not useful for classification, even
though it is the most important in terms of variation; and that the emerging
clusters can be explained by variables 1-18.

To better understand the correlation of variables 1-18 with the label-ID, and
thus get more insight into developing a classifier, we could next (a) remove vari-
able 0 from the input dataset and redo the 3D DR projection (since we decided
that this variable is not interesting); (b) view the current 3D projection from a
suitable angle (to ignore the spread along axis 0); or (c) use a 2D DR projec-
tion rather than a 3D one (since Fig. 5.10a suggests us that all interesting data
variation occurs in a plane).

We examine next option (b). In the matrix plot in Fig. 5.10a, we see that all
brightly-colored cells are in columns 0 and 3, i.e., the best viewpoints showing
independent variable-pairs always involve variables 0 and 3. The best such view-
point (brightest red cell) maps variable-pair (0, 3) we just studied. We thus now
choose to align biplot axis 3 with the y screen axis, and biplot axis 0 (which
we are not interested in) with the viewing direction z (Fig. 5.10b). We now see a
much clearer segregation of points by label-IDs into separate same-color clusters.
This shows that there exist, indeed, correlations of the label-ID with attributes
1-18 – thus, attributes 1-18 hold enough information to design a classifier. The
biplot axes in Fig. 5.10b help refining this insight. For instance, we see several
strongly-correlated variables: The group of axes pointing downwards (short-line-
density-2, hedge-sd, hedge-mean, and vedge-mean) all describe image edge features.
The group of axes pointing to the left (raw-red-mean raw-green-mean, value-mean,
and intensity-mean) all capture means of the image colors. Correlating next these
variables with the label variable (point colors) is a first step into explaining the
clusters – for instance, we can now easily explain the isolated orange cluster as
containing image-blocks having highly saturated colors.

We next examine option (c). For this, we compute a 2D projection using again
LAMP. Figure 5.10c shows the result, with points colored again by label-ID. The
overall placement of clusters is quite similar, but not identical, to those in the
3D projection in Fig. 5.10b. To see which of these two images is a more faithful
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projection, we compute, for each point i, the aggregate normalized projection
error emi ∈ [0, 1]

emi =
∑
j 6=i

∣∣∣∣ dm(qi, qj)
maxi,j dm(qi, qj)

−
dn(pi, pj)

maxi,j dn(pi, pj)

∣∣∣∣ . (5.5)

Here, dn, dm, p, and q have the same meaning as in Eqn. 2.6. The error emi , m ∈
{2, 3}, tells how well the mD projection of a point i approximates its placement
in Rn from the perspective of its distances to all other points j 6= i. More details
on this metric are given in Chapter 4 and [141].

Figures 5.10d and 5.10e show the errors e3i and e2i for the 3D and 2D projec-
tions in Figs. 5.10b,c respectively, color mapped as in Fig. 5.9. While both pro-
jections ‘spread’ errors quite uniformly over all points, and do not create any
extreme errors, we see that e3i is overall lower than e2i . So, the 3D LAMP projec-
tion preserves the original nD distances better than 2D LAMP. Hence, for this
dataset, using a 3D DR projection, with a suitably chosen viewpoint provided
by our exploratory tools (Fig. 5.10b) is better than using a 2D DR projection
generated by the same DR technique. This is not entirely surprising, once we
understand Fig. 5.10a: The 2D projection has to accommodate the large varia-
tion of variable 0 in the same (limited) 2D space used to project all other 18

variables. In contrast, the 3D projection can freely spread all this variation along
a separate spatial dimension. Thus, examining the 3D projection from the single
viewpoint shown in Fig 5.10b – which is roughly equivalent to a 2D projection
of variables 1-18 – is better, error-wise, than using a 2D projection of the entire
dataset.

Note that the use of our explanatory tools is very different in this use-case
than in the one discussed in Sec. 5.4.2. Indeed, in Sec. 5.4.2 we used our tools
to select a variety of viewpoints, which next helped us explain the projection’s
shape in terms of variables. In the example here, we used our tools to decide that
we can best explore the projection from a single viewpoint, and next to choose
this viewpoint.

5.4.4 Software dataset: Finding meaningful clusters

Our fourth and final example uses a set of 6733 open-source software projects
written in C. The source code of each project was downloaded to compute 11

code quality metrics as averages over the project’s code files. A 12th metric gives
the number of downloads of each project [142]. This yields a n = 12D dataset
with 6733 points. While [142] explored the statistical correlation of project qual-
ity with download count, we want to get finer-grained insights of the types of
projects involved in the studied code-base collection.

For this, we use a 3D LAMP projection of our 12D dataset (Figs. 5.11 a-c). We
first find the best-visible variable-pair from any 3D viewpoint, by clicking the
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bright green cell in the matrix-plot in Fig. 5.11a. This gives us variables 2 (ln-cof,
or average coupling-factor, i.e. the number of function-calls between files [123])
and 7 (ln-sum-tloc, or total number of lines-of-code). Next, we align axis 2, the
longest of these two biplot axes, with screen x axis (Fig. 5.11a). We notice two
well-separated point clusters (A, B), which spread orthogonally to biplot axis
2 (ln-cof ). To understand what these mean, we color points by variable 2. This
shows that clusters A and B contain points having two different ranges of ln-cof
values: A contains low-coupling systems (such as libraries), while B contains
medium-coupling systems (such as full applications). We also see here a third
cluster (C) formed by very high ln-cof points. These points are also orthogonal
to axis 7 (ln-sum-tloc). Hence, to check if variable 7 explains cluster C, we next
color points by variable 7 (Fig. 5.11c): We now indeed see that nearly all points
in C have low values of variable 7, and all points in A and B have high values for
variable 7. Thus, cluster C contains highly-coupled, small-scale software systems
(small applications). Summarizing, we found that our 3D DR projection groups
our 6733 software projects in 3 classes: large software projects (high values for
ln-sum-tloc), further split by project type into libraries (A) and full applications
(B); and C, containing small applications (low values for ln-sum-tloc). The entire
3D analysis requires just three clicks: one to align the screen x and y axes with
the best-separated variables ln-cof and ln-sum-tloc; and two further clicks to color
points by values of these variables respectively.

As for the segmentation dataset (Sec. 5.4.3), we want next to see if a 2D DR
projection could give us the same insight given by our 3D DR projection, i.e. that
our 6733 software projects can be grouped in 3 distinct classes. For this, we first
color our 3D-projection points by their aggregated projection error e3i (Eqn. 5.5).
Figure 5.11c shows this. Next, we do a nD-to-2D projection (also by LAMP), and
color it by its projection error e2i (Fig. 5.11d). Comparing Figs. 5.11c and d, we
see that, like for our segmentation dataset, both e3i and e2i are uniformly spread
over their respective projections, with e3i < e2i on average. However, in con-
trast to the segmentation dataset, we see that the 3D DR projection creates three
clusters (explained by variables ln-cof and ln-sum-tloc, as discussed); the 2D pro-
jection creates only two clusters A′ and B′ (Fig. 5.11d). By manual brushing of
the displayed data points, we found that A′ contains a mix of points in A and B
(large libraries and applications), while B′ roughly corresponds to C (small sys-
tems). This is also visible in Figs. 5.11a,b: Rotating the viewpoint along the view
sphere, and looking at the variation of the axes legends (or alternatively, at the
biplot axes), we find no viewpoint in which n− 1 axes reside in, or close to, a
plane. Thus, three projection-dimensions are truly needed to show the data vari-
ation that encodes the three clusters – i.e., we need a 3D DR projection to obtain
a view that segregates our software systems into three clusters corresponding
to large libraries, large applications, and small systems. A 2D DR projection can
only segregate software projects into large and small systems, but not segregate
based on the coupling type (applications vs libraries).
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5.4.5 Axis alignment vs projection quality

The key added-value of our explanatory tools is related to cases when one
chooses to use 3D, rather than the more commonly-used 2D, DR projections.
Indeed, for 3D projections viewpoint and navigation choices critically affect ob-
tained insights [163, 201]. Let us explain this. Our final 2D view which is ren-
dered on the screen can be seen as being created by ‘concatenating’ a nD-to-3D
DR projection (Pn3) with a 3D-to-2D screen projection (P32). As mentioned, Pn3
typically has a lower error than a direct nD-to-2D DR projection (Pn2). Our
tools allow understanding and controlling the error given by P32; in contrast, a
Pn2 does not allow any kind of similar error control. For instance, we can inter-
actively change P32 to select which variables, or dataset parts, are finally best
visible. If, in any view, one axis is small, it means that this variable is not visible
in that view, so we cannot reason about it. However, we can rotate the view by
aligning this axis to the 2D screen and next interpret the resulting view, thereby
obtaining the best view that shows the spread of that variable. In particular, a
P32 using the two longest axes is as precise as a direct Pn2, in terms of stress
error. Note that this cannot be done with a direct Pn2: If an axis is small in such
a projection, we cannot do anything to interactively improve that, and no inter-
pretation of data-variations along that axis is possible. Regarding occlusion, our
solution is as good as, or better than, using a direct Pn2: In our 2D views, occlu-
sion means that 3D points overlap along view lines; yet, we can choose other 3D
viewpoints where such overlaps are decreased; in contrast, such overlaps occur
in any Pn2 too, and we cannot do anything to decrease them in that case.

Studying the relationship of the quality of a 3D projection as compared with
a 2D projection of the same data is worth a more detailed study. One important
question related to this is: How does the quality of a 3D projection changing
when the user changes the viewpoint to examine it, e.g., when aligning the pro-
jection along, or orthogonally to, the longest or shortest biplot axis? To answer
this question, we performed several experiments, described next.

In the first experiment, we created a synthetic dataset having four variables
and 1000 observations. The advantage of using a synthetic dataset is that we can
precisely control the distribution of observations in high-dimensional space and,
thereby, control the sizes of the emerging biplot axes. The dataset was next pro-
jected to three dimensions using LAMP. Using this dataset, we want to analyze
how the projection quality changes when varying the viewpoint between the po-
sition where the longest biplot axis is best viewed (i.e., the biplot axis is parallel
to one of the screen axes), and the position where this axis is worst viewed (i.e.,
the biplot axis is orthogonal to the screen). To ensure that our dataset indeed
has one long biplot axis, and knowing that the size of a biplot axis corresponds
to its variable variance, we artificially generated three variables with similar
pseudo-Gaussian distributions with 5000 as mean and 1500 as standard devi-
ation. This delivers us three corresponding biplot axes of similar lengths. The
fourth (longest) axis was created by distributing variable values using an expo-
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nential function f(x) = x1.5 where 1 6 x < 1000. Figure 5.12 shows the vertical
rotation of the long biplot axis (variable ’3:exp’), from the best position where
this axis is aligned with the y screen axis (Fig. 5.12a) to the worst position, where
the axis is orthogonal to the screen.

To study the projection quality, we use our error metrics presented in Chap-
ter 4, applied to the two-dimensional projected points corresponding to a given
viewpoint of the 3D projection. The best view (Fig. 5.12a) shows a very good
projection quality in terms of both false neighbors (Fig. 5.12b) and also in terms
of aggregated error (Fig. 5.12c). As we rotate the longest biplot axis towards
its worst position (Fig. 5.12d, middle view), we see how both above-mentioned
errors start increasing. In particular, we see high values for the aggregated er-
ror at the top of the projected point-cloud. When we reach the worst possible
alignment for the selected biplot axis (Fig. 5.12g), where this axis is orthogonal
to the screen, we clearly see a lot more false neighbors (Fig. 5.12h)) and many
high values for the aggregated error. All in all, the experiment tells us that the
alignment of biplot axes with the screen is a good measure of the projection
quality. At a higher level, this tells us that our axis legends (Sec. 5.3.2), which
quantify this alignment, are indeed good proxy representations for the quality
of a projection.

In the second experiment, we want to study how the projection quality varies
as a function of the alignment of the shortest biplot axis in a projection. For
this, we use a similar dataset of four variables and 1000 observations. The first
three variables are created identically to the first dataset. The fourth variable
is generated by sampling an inverse function f(x) = a/x with a = 5000 and
1 6 x < 1000, and corresponds to the shortest biplot axis. Figure 5.13 shows the
vertical rotation of the short biplot axis from its position of best alignment with
the screen to the worst alignment position where the axis is orthogonal to the
screen. Looking at the corresponding error plots, we see that neither the false
neighbors (Figs. 5.13b,e,h) nor the aggregated error (Figs. 5.13c,f,i) error values
change much. In summary, by inspecting both our synthetic datasets, we can
see a direct relation between the projection quality and the screen alignment of
a biplot axis. If the axis is long, its alignment is critical to, and is capable of,
producing a high-quality projection. If the axis is short, its alignment will not
interfere much with the projection quality.

However, both above experiments involve artificial datasets. We still need
to study how projection quality relates to biplot axis alignment for real-world
datasets. To study this, we use the wine dataset which has 1599 points and 11

attributes. As for the previous two experiments, we use LAMP as projection
method. The first observation to be made for this dataset is that it has has five
long axes, two short axes, and three axes of intermediate length. This is a more
complex situation than the earlier two synthetic cases, which included one long
biplot axis, respectively one short one, from a total of four. We next notice that
the longest biplot axis corresponds to the ’2:citric_acid’ variable. As for the first
synthetic-dataset experiment, we study the error variation as function of the
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Figure 5.12: Vertical rotation of longest biplot axis (variable ’3:exp’) and corresponding
aggregated error and false neighbors views, synthetic dataset.

alignment of this axis with the screen. Comparing the false-neighbor views for
different alignments, we can see slight differences. For the best alignment view-
point, false neighbors have more middle values (yellow edges), while the worst
alignment shows higher values (red edges). Regarding the aggregated error, we
see that the best alignment concentrates the middle and higher errors in the
top-right of the point cloud, showing two outlier red points (highest error val-
ues). For the worst alignment, we see the appearance of one more red point,
and also see that middle-range error values get more separated in two regions
(top, down-left) in the projection. Repeating the experiment by varying the align-
ment of the shortest biplot axis (axis 3), we see a similar error variation as for the
longest biplot axis alignment. For the worst alignment, the false-neighbors view
shows more orange edges and slightly more red edges than the best alignment
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Figure 5.13: Vertical rotation of shortest biplot axis (variable ’3:inv’) and corresponding
aggregated error and false neighbors views, synthetic dataset.

case. In the aggregated error view for the worst alignment, two additional red
points appear as compared to the best alignment.

Summarizing the above observations, we can say that, for datasets which have
a particularly long biplot axis, the alignment of this axis with respect to the
screen does significantly influence the projection quality. Hence, the tools de-
scribed earlier in this chapter for aligning axes to the screen have the additional
value of being useful to control the projection quality, besides bringing specific
data variations into focus. In contrast, for datasets which do not have such clear
outlier biplot axes, the choice of viewpoint does not significantly affect the over-
all projection quality. Hence, the choice of viewpoint, for such datasets, should
be based mainly on the interest of the viewer in examining particular variables,
rather than on the projection quality.
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Figure 5.14: Best and worst viewpoints for the longest and shortest biplot axes, and
corresponding false-neighbors and aggregated error views, real-world wine
dataset.

5.5 discussion

Several points are relevant to discuss, as follows.
Scope: The effectiveness of our techniques depends, of course, on the quality
of the DR projection and nature of the underlying nD dataset. If the projection
captures distinct, well-separated, patterns in mD, our techniques will help ex-
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plain the relationships of these patterns with the original n dimensions, and next
choose good viewpoints to examine them. If the DR projection is suboptimally
done, or if the input dataset does not exhibit any clearly segregated patterns,
our techniques provide little additional insight in the data. So, our scope is to
help users explain patterns, through in course correlations, the projected data in
terms of the original variables, if such patterns exist in mD. If patterns are ab-
sent, one should use complementary techniques, outside the scope of our work,
to improve the DR projection being used, e.g. [141]. Separately, if the nD data are
clearly segregated into clusters and if one only wants to find such clusters, rather
than the more fine-grained task of explaining spreads in the data or correlations
of specific variables, our techniques are as useful as most state-of-the-art data
clustering methods out there.

Generality: Our techniques work directly with any (non)linear DR technique
that projects n variables to m = 3 dimensions, without needing to modify, or ac-
cess the internals of, the DR technique. This is unlike [81, 1, 152, 28], which need
to know that the DR being used is PCA or SVD to compute loading values. Our
examples shown here use LAMP, ISOMAP, and FBDR as DR techniques. We
have equally easily used LSP [163] and PLMP [164]. Other DR projection tech-
niques can be equally easily used, with no changes to our proposal.

Scalability: Our methods are simple to implement and computationally scal-
able: We only need to apply the chosen DR projection to a small set of sample
points distributed along the input variables (Sec. 5.3.1). For a dataset of D vari-
ables, N data points, and a number of nmax variables shown in the proposed
legends, the complexities are O(D) for the biplot calculation, O(nmax) for the
axis legends, and O(n2max) (for the viewpoint legend respectively. The memory
complexity of the entire set of techniques is O(N ·D), i.e., equal to the size of
the dataset to be stored. Visually, our axes legends, biplot axes, and viewpoint
legend scale well up to roughly nmax = 20 variables, in line with other mul-
tivariate visualization techniques [152, 64, 28, 37]. When the input dataset has
more variables, axis legends automatically show the nmax most visible vari-
ables for the current viewpoint, which is the best we can do in such situations
(Sec. 5.3.2).

Comparison: Our axis-alignment and viewpoint legends have some similar-
ities (and differences) with ‘rolling the dice’ (RTD) [64]. Our axis-alignment
(Sec. 5.3.1) and best-viewpoint tools (Sec. 5.3.3) resemble the scatterplot-matrix
cells in the sense of selecting ‘interesting’ variable-pairs. Yet, while RTD de-
fines these configurations as variable pairs mapped to Cartesian scatterplots, we
define these as viewpoints in a 3D space given by the DR projection that can
best highlight variable-combinations of interest. Since we cannot control the DR
projection, our viewpoints can show orthogonal biplot axes, but also slanted
and/or curved axes of different lengths. Also, our viewpoints show, by con-
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struction, all projected axes, rather than a fixed subset of two. Finding a good
data-exploration sequence is equivalent, in our case, to finding a navigation-
path between highlights on the viewpoint legend sphere. The main added value
of the viewpoint legend is that it shows all possible viewpoints in-between these
highlights.

Technical details: Our categorical, continuous colormaps, and transfer function
choices (Sec. 5.3.3) are, of course, open. Better alternatives may exist for specific
user groups and work domains. We used simple and well-known presets for
these designs precisely to make it easier to separate our contributions from such
specific design elements.

Evaluation: We evaluated the proposed techniques on 9 datasets (300 to 200K
points, and 6 to 25 variables). Learning to interpret the axes biplots, axes legends,
and viewpoint legend was perceived as very simple and intuitive, mainly due
to the fact that all these visualizations are interactive and dynamically change
as the user rotates the viewpoint. Besides the selection of the variable used to
color points, our techniques do not require any explicit parameter user-setting.
Compared to classical 2D scatterplots, our techniques need additional time to
learn them (around 20 minutes, as observed by explaining them to 9 users not
involved in this work) – which is in line with learning times reported in [64, 28]
for similar tasks and user counts. Users found the biplot axes easiest to under-
stand and use, arguably due to the fact that similar axes appear in many types
of plots. The interactive axis alignment described in Sec. 3.2 was also found sim-
ple to understand and use, as it requires basically two clicks in the desired bars
of the x and y axis legends. Using the viewpoint legend was perceived as the
most complicated, as this widget requires memorizing the appearance of several
large same-color areas on the surface of the sphere while interactively rotating
the viewpoint. We acknowledge that these findings need more refinement and
validation, e.g. in terms of a controlled user study.

Limitations: Large 3D DR scatterplots inherently generate occlusion which, even
with transparency and interaction, can be hard to disambiguate. Biplot axes
for a few highly non-linear projections (e.g. force-based methods [214, 171]) are
highly curved. Yet, such methods are not preferred, precisely because of their
error rates and the difficulty of finding globally good viewpoints, and thus af-
fect our overall proposal only marginally. Our tools do not aim to fully remove
interactive trial-and-error exploration, such as brushing or viewpoint selection.
Their added-value is to make interaction more targeted towards a given goal –
e.g., when (slightly) changing a viewpoint, one immediately sees the effect on
the axis biplots, axis legends, and viewpoint legend, and thus can better esti-
mate what to expect to see when turning the viewpoint this or that way; when
one wants to examine one or two specific variables in context, we allow doing
this by just two clicks on the axis-legend bars for those variables. Separately, we
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note that our examples in Sec. 5.4 do not imply that 3D projections are always
bet for addressing all related tasks: rather, we show how 3D DR projections, if
chosen for the sake of minimizing distance errors, can be made more effective
as compared to raw 3D scatterplots.

5.6 conclusion

We have presented a set of interactive visualizations that help users explore
and explain 3D dimensionality-reduction (DR) projections of high-dimensional
data. Our methods, realized as linked views, explain the meaning of projected
dimensions in terms of original variables; show projection nonlinearities and
correlations (or lack thereof) for these variables; help finding good viewpoints
from which given variable-pairs can be best explored; and quickly show which
variable-pairs can be explored from any possible viewpoint. Globally, our tech-
niques aim to help users interpret raw 3D projections in typical xy scatterplot
terms. Our techniques are easy to implement, scale well computationally and
visually, and can be added in a non-intrusive way to any DR technique as extra
aids to classical brushing and color-mapping explanatory tools.

Separately, we analyzed how the quality of 2D views of such 3D projections
varies in function of the biplot axis alignment with the screen, by using the pro-
jection error views introduced in Chapter 4. The performed experiments show
that, for datasets exhibiting long biplot axes, their screen alignment does matter
for projection quality. This gives an additional value to the axis and viewpoint
legends presented in this chapter, which can thus be used to estimate, and im-
prove, the projection error corresponding to a given axis alignment.

At a high level, the tools presented here, and corresponding application ex-
amples, support the view that 3D dimensionality-reduction projections can be
easy to explore in practice. Given that their overall projection error is known to
be lower than for corresponding 2D projections, this makes 3D projections an in-
teresting practical alternative to the use of the better-known 2D projections. We
shall explore the comparative added value of 2D projections and 3D projections
using our interactive explanatory tools further in Chapter 6 in the context of a
concrete application.

Future work targets enhancing the insight given by our explanatory visualiza-
tions, by studying how the local nonlinearity of projections, and local projection
errors, can be better and more intuitively conveyed for 3D projections of large
datasets. Validating the value of our visualizations via user studies is a second
important future work topic.
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abstract: Sports videos, such as soccer matches, are a prime example of rich multimedia content of high

interest to a broad public. This has been recognized by many researchers who focus on analytic solutions for

such data, such as the online detection of interesting events, analysis of team strategies, or comparison of

teams’ statistics. Significant research also focuses on efficient algorithms to detect match statistics, strategy,

retrieval and indexing or summarization. In contrast, the problem of presenting such information to the casual

end user is studied much less. In this chapter, we address this last goal, by proposing a simple but efficient

visual metaphor to help non-specialist users browse and get insight in soccer matches. For this, we extract

video segments, based on audio and metadata, identifying the main events according to the narrator’s emotion.

We next use such events to create a visual representation that preserves the video sequence but highlights the

most important events. The proposed visualization enables the quick identification and navigation to the main

events of a soccer video, and also a way to compare different matches and entire tournaments. To understand

the added value of our visualization, we perform several user studies involving our proposed video-browsing

tool, and also compare it with the exploration of the same data by using classical multidimensional projections.

6.1 introduction

The development of multimedia and network technologies provides an increas-
ing presence of video content over broadcasting and streaming services. Re-
cently, the 2014 World Cup soccer tournament registered record-breaking audi-
ences all over the world [100], becoming the most accessible edition of a soccer
tournament in history, reaching up to 5.9 billion screens all over the world [155].
In line with this phenomenon, there is a steady increase of interest in soccer
video analysis [59] involving multimedia information retrieval, video indexing
and processing, video semantic analysis, and video visualization. Soccer videos
are a rich form of multimedia content, consisting of several audio and/or video
tracks, subtitles, and related metadata. As such, they form a interesting target
for our exploration of the possibilities of visual analysis of multidimensional
multimedia data.

Different kinds of insights and information can be identified using soccer
video analysis [154]. Users who wish to see only important or interesting events,
also known as highlights, are best served by match summarization systems [213,
185, 150]. Users who want to see the team strategy, by e.g. tracking the ball
and/or players in the field, are best served by tactical-information systems [137,
235, 172]. Systems that compute match statistics are useful when one wants
a quantitative game analysis including red and yellow cards, ball possession,
shots on target, and goals [188, 115, 173]. Finally, users who want to find simi-
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lar matches or match fragments are best served by search-by-example systems
using video retrieval and indexing techniques [210, 118].

There are two fundamentally different approaches to getting insight into such
data, as follows.

Data-centric approach: The first such approach is a data-centric one. In this ap-
proach, we consider out multimedia data as a multidimensional dataset, where
observations encode all available data measured at different time instants, and
dimensions encode the different attributes being measured at such time instants,
respectively. Next, we can use the various visualization techniques designed for
multidimensional data to explore this dataset. Since the focus of this thesis is on
multidimensional projections, natural questions that arise is are how effective
are projections for this exploration, and what type of insights can be obtained
from our multimedia data by using them?

User-centric approach: While the above data-centric approach has the poten-
tial to reveal interesting insights, it is arguably not the most effective one for
certain end-users interested in our soccer multimedia data. Multidimensional
projections are not particularly easy to use, or appealing for, casual users such
as typical soccer fans. For instance, such visual metaphors may not be the opti-
mal ones to help our casual users to easily answer questions like “Which events
are interesting in this match?”, “Are there any polemic or controversial events?”,
“Which team has the best performance?”, “When do the main events occur in the
match?”. The same problems occur, even more prominently, for tasks related to
comparing different matches or analyzing entire tournaments. With such users
in mind, and their questions, other visualization designs may be better.

Summarizing the above, we identify two related research questions:

1. How much, and what types of, insight can we get from analyzing only
the audio and metadata dimensions of a soccer multimedia dataset, using
multidimensional projections?

2. Are other visualization designs, apart from multidimensional projections,
able to convey different insights, and in an easier way, to casual end users
such as sports fans?

The two above questions are inter-related, since they both aim to explore the
same type of data (by different methods), and we are interested to identify the
advantages and limitations of these different methods. However, they also have
independent components, since they target different users with potentially dif-
ferent types of questions. To answer the above questions, we propose a two-step
approach, as follows.

In the first step, we study our multimedia data from a user-centric exploration
perspective. For this, we first extract a number of relevant attributes from the
multimedia data. In detail, we extract video segments, which we further call
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“video skims”, based on audio and metadata, so that the main events of the
match are identified according to the narrator’s emotion. Next, we use such
skims to create a visual representation that preserves the video’s temporal se-
quence but also highlights the most important events. The proposed visual repre-
sentation enables an easy identification of the events of interest and allows users
to quickly navigate to, or between, them when exploring a match. Additionally,
our visualization supports exploration of matches at coarser scales, such as eval-
uating the quality of a match or parts thereof and comparing different matches
or tournaments. Interacting with the proposed visual representation is very sim-
ple, and can be done by using a typical remote controller, a metaphor which is
arguably well known by our end-user group.

In the second step, we take a data-centric approach. We regard the time-dependent
events extracted from the soccer multimedia data as a multidimensional dataset.
Next, we use classical two-dimensional and three-dimensional projections, and
their associated interactive exploration tools, to explore this dataset, searching
for various types of insights. This approach offers a fundamentally different way
to look at the (same) underlying data as compared to the first approach outlined
above. In particular, events of a more fine-grained nature can be located, and
global correlations between the measured attributes can be studied. By compar-
ing the types of insights obtained with the two visualization approaches, and
the interaction and reasoning patterns involved in obtaining these insights, we
draw several conclusions regarding the suitability of multidimensional projec-
tions as tools for exploring multidimensional data obtained from multimedia
content, as a function of the types of questions being posed and the types of
users involved in the exploration.

In Section 6.2, we overview related work in sport visualization and match sum-
marization. Section 6.3 presents our first approach, the user-centric approach to
exploration of sports videos aimed at sports fans. We present this approach
first, since it is simpler to follow than our second multidimensional data-centric
approach, and it also offers a quick introduction to the structure of our multi-
media data. Section 6.4 presents experimental results of our user-centric visual-
ization approach. Section 6.5 presents our second approach for exploring sports
videos using multidimensional projections, aimed at more specialized users. Sec-
tion 6.6 discusses and compares our two visualization approaches, and thereby
outlines advantages and limitations of the multidimensional projection explo-
ration metaphor. Section 6.7 concludes the chapter.

6.2 related work

Due to the huge popularity of soccer, several solutions have been proposed to
extract insights from soccer videos. At a global level, we can divide these solu-
tions into two categories, as follows.
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Specialized systems: These solutions typically present complex information ex-
tracted from the sports multimedia data at a relatively high level of detail, and
are aimed for professionals such as trainers, sports analysts, and sports com-
mentators. From a technical perspective, these solutions are designed similar
to many other visual analytics systems, offering multiple linked views for ex-
ploring the extracted events from the multimedia data, detecting patterns and
outliers, and creating and iteratively refining hypotheses on the underlying phe-
nomena. From a visualization perspective, the main contributions in this class
target the presentation of statistical [188, 115, 173] and tactical [137, 235, 172]
soccer match information. Improving upon the traditional soccer ranking ta-
bles, À Table! provides temporal navigation in two different views [173]: dy-
namic animation over the rows of the ranking table and a transient line-chart
of team ranks to visually explore the performance of teams in a championship.
Khacharem et al. use animation to convey dynamic time-dependent data such
as motion and trajectory in a single display [115]. They also observed that non-
expert users preferred the simpler static visualizations, while experts preferred
the more complex dynamic ones. Soccer Scoop proposes two visualizations
(field and player viewer) to show and compare the dynamics of distinct players,
for the user group consisting of team managers [188]. Based on the visualized
statistics, team managers were able to determine strategic insights, like if a par-
ticular player plays better on the road or at home. Similar insights and use-cases
were presented by Lucey et al. who analyze spatiotemporal data obtained by
tracking the ball in English Premier League matches [137]. In particular, they
showed how hypotheses such as “win at home and draw away” can be checked
based purely on the video data. Spatiotemporal tracking of player positions was
used in [235] to detect team-formation patterns associated to match events. Soc-
cerStories conveys tactical and statistical information in a single view, showing
player actions and ball shots at the same time of game and individual player
statistics [172].

End-user systems: Apart from the above more advanced visualization systems,
which aim to provide tactical and statistical information to expert users, several
other systems have been designed for the casual user (typical soccer fan), such
as video summarization [213, 185, 150] and content retrieval systems [210, 118].
In this context, the main aims are to help casual users to save time while brows-
ing match videos, by attracting attention to the main match events. The main
goal of video summarization is to detect typical events of interest (e.g. foul,
goal, shot, corner, offside) [213], or detect the main match events, also known
as highlights [185, 150]. For example, the video summarization in [213] uses
Bayesian networks to classify and detect, through “play-break” semantic units,
seven different event types: goal, card, goal attempt, corner, offside, foul and
non-highlight. This idea was extended to capture not only game highlights, but
also competition-intensive scenes and emotional events, which are presented as
frame sequences [150]. Soccer highlights can be automatically generated from
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audio and video descriptors [185]. After segmenting the video into shots, audio
detectors including an algorithm for referee’s whistle were used to create the
highlights. For retrieval systems, CrowdSport uses crowd-related information
to generate semantic annotations and create short video snippets enriched with
event information such as team behavior and individual player motion [210]. Re-
latedly, Kolekar et al. used a probabilistic Bayesian belief network (BBN) method
to index important soccer and cricket video fragments detected by semantic
concept-labels and audio features [118]. This work could also be considered as
video summarization, since they provide to the end user a set of video clips for
each specific event detected.

Summarizing all the above, we see that, while many efficient and effective
methods for video summarization and event extraction have been proposed, less
attention has been dedicated to present the summarized or indexed information
in an easy-to-understand and easy-to-use way to the casual watcher. As such,
our first visualization approach, described next, focuses on presenting a soc-
cer video summarization approach based on a simple and easy-to-understand
visual metaphor.

6.3 user-centric approach : videoplayer-style sports video suma-
rization

To tackle the problem of summarizing sport videos and providing a represen-
tation to speed-up video browsing, we propose a two-step approach (see also
Fig. 6.1). In the first step, the most important or interesting events, the highlights,
are identified based on (a) sound information extracted from the actual video
and (b) metadata retrieved from the Internet that represents various match statis-
tics, such as goals, cards (yellow/red) and substitutions. In the second step, the
video is segmented, based on the detected highlights, into multiple small seg-
ments, the ‘video skims’, that are used to create the visual representation of the
match. Users can interact with this representation to focus on the most inter-
esting moments, get more insight on specific moments or match phases, and
compare several matches. These steps are detailed next.

Highlight Extraction

Video

Video Skim

Extraction
Visual 

Representation

Highlight Visualization

Metadata

Highlight

Audio

Highlight

Figure 6.1: Pipeline of the construction of our visual summarization.
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6.3.1 Detection of audio highlights

The sound track of the major broadcasted sports – soccer in particular – is com-
posed mainly of foreground commentary coexisting with background noise. Es-
sential to match summarization, the most important events can be identified by
analyzing both the foreground sound (which contains the narrator’s speech) and
also the background sound (which contains audience cheering and applause
and/or the referee whistle). A common feature to describe highlights is the
sound volume or loudness [126].

In our approach, similarly to [126], we detect highlights based on the au-
dio loudness. For this, we first divide the audio signal into short sub-segments,
called clips [232]. A clip consists of a certain number of partially overlapping
audio-frames, depending on the sampling frequency. In our experiments, each
clip is a one second time-interval in a mono channel, sampled at 44.1kHz, re-
sulting in 86 audio-frames, each frame composed by 1024 consecutive audio
samples with 50% overlap between adjacent frames (512 samples in common
with the previous frame). The loudness lframe(k) of a frame k is given by the
RMS (Root Mean Square) of the audio signal magnitude, i.e.

lframe(k) =

√√√√ 1

N

N−1∑
n=0

y2k,n,

where {yk,n}06n<N is the set of N = 1024 audio samples of frame k. For each
clip c, we next compute its audio loudness lclip(c) as the mean value of all
frame loudnesses in the clip, i.e.

lclip(c) =
1

86

∑
k∈c

lframe(k), (6.1)

Based on this information, we next define highlights as those clips with the
largest loudness in the video that are not neighbors, considering a window of
size 2t, of a clip with a larger loudness. We set t = 7 seconds as we do not
expect that consecutive highlights occur in less than 7 seconds in a soccer match.
Separately, the number of identified highlights is limited by the user according
to the display area available, or considering a minimum value of loudness (as
discussed further in Sec. 6.4).

6.3.2 Detection of metadata highlights

Besides extracting highlights by analyzing the video content, one can use alterna-
tive information sources, such as external text sources. Also known as metadata,
this type of data can enhance semantic analysis since it can provide valuable
information such as descriptions and time information of match events. In our
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work, we used metadata from an open-source soccer API describing all 2014

World Cup matches (see Sec. 6.4.1). This API provides descriptions about three
different types of events (goals, substitutions and cards) and their respective
time stamps. Goal events also include the scoring player’s name. Substitution
events mention the entering and exiting player names. Card events indicate the
card type (color) and involved player. One highlight is extracted per event.

We next show how the metadata+sound highlights are used both for segment-
ing the video and for creating the visual representations of important events
during a match.

6.3.3 Constructing the visual representation

To show the highlights, we chose to use a video-abstraction artifact called ‘video
skim’ [221] rather than traditional keyframes, due to the higher summarization
power that such video skims offer as opposed to static images. In our approach,
a video skim is a video segment centered on a detected highlight, having a du-
ration of 2t = 15 seconds (Sec. 6.3.1). Making the length of a video skim equal
to 2t guarantees that no important highlight is lost and that each highlight is
represented by a single video skim. Extracted video skims are resized to reflect
the importance of the respective highlights they represent. Below, we first dis-
cuss how the importance is computed, based on the audio signal and/or the
video metadata. Next, we discuss how video skims are resized and assembled
to produce the final visualization.

Audio highlights importance: The importance sA(vi) of a video skim vi ex-
tracted considering the audio highlight corresponding to the clip ci (Sec. 6.3.1)
is computed based on the loudness of ci as

sA(vi) =

[(
lclip(ci) − ρmin
ρmax − ρmin

)
+ 1

]2
(6.2)

where lclip(ci) is the loudness (Eqn. 6.1) of the clip ci, and ρmax and ρmin are
the maximum and minimum loudness values of the entire video, respectively.
The importance sA(vi) ranges between 1 and 4, with larger values indicating
more important audio events.

Metadata highlights importance: As with the audio highlights, an importance
sM(vi) is calculated for each video skim vi that is extracted from the metadata
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highlights. In contrast to audio highlights (Eqn. 6.2), the importance of metadata
highlights is computed as

sM(vi) =


1.0 if type(vi) = substitution

2.0 if type(vi) = yellowcard

3.0 if type(vi) = redcard

4.0 if type(vi) = goal

(6.3)

where type(vi) gives the type of metadata event vi. The importance values in
Eqn. 6.3 were chosen empirically, favoring goals as the most important and sub-
stitutions as least important. Note also that both sA and sM take values in the
same range [1, 4].

Combining overlapping video skims: To compose the final visualization, the
video skims corresponding to audio and metadata events are combined. This
merges thus salient event information (such as goals or cards) with informa-
tion that captures the narrator’s excitement and polemic/controversial or even
uncommon events (as captured by audio highlights), thereby presenting to the
casual user a more complete match overview. If two video skims vi and vj,
corresponding to events extracted from the audio, respectively metadata, are
found to overlap in time, we merge them into a single skim v whose impor-
tance s(v) = (sA(vi) + s

M(vj))/2 is set to the average of the importances of the
merged skims, and whose time extent v = vi ∪ vj corresponds to the union of
the two skims.

Visual layout: After the generation of the combined audio-and-metadata video-
skim stream V = {vi}, we resize each skim vi in V to reflect its importance s(vi).
The underlying idea is to make skims larger for more important events, so that
users see these saliently in the resulting visualization. Additionally, we limit the
size of the smallest video skim (corresponding to minv∈V s(v)) to 50 pixels, to
ensure its visibility, and the size of the largest video skim (corresponding cor-
responding to maxv∈V s(v) to four times the minimal size, to limit the utilized
screen space.

After skims are resized, we organize them sequentially along the x screen
axis, which encodes thus the video timeline. In detail, skims are vertically cen-
tered along this timeline, and horizontally aligned with respect to their tem-
poral order, so that consecutive skims vi and vi+1 have a small overlap of a
few pixels. We use this overlap to further emphasize the skims’ importance. For
this, skims are rendered back-to-front in order of increasing importance, so that
more important skims slightly overlap less important adjacent skims. By adding
a faint shadow around the borders of each skim, this pseudo-depth effect fur-
ther emphasizes important skims (large, overlapping, and appearing in front)
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Team A

Team B

1 2 3 4 5 6 7

Figure 6.2: Example of the visual outcome created by our technique. The skims with icons
(1,3,4,7) represent events detected using the metadata. The other skims (2,5,6)
were detected using only the audio data.

as opposed to less important skims (small, overlapped, and appearing in the
back). Finally, we also map skim importance to the saturation of the respective
video skims, thereby making important events more colorful and less important
ones gray. Overall, the above four cues (size, overlap, shadows, and saturation)
jointly help observers in quickly finding the most important skims, and also
locally sorting skims by relative importance.

The three available types of information provided by metadata (goals, sub-
stitutions and cards) are mapped as small icons over the corresponding video
skim, showing if it represents a goal, substitution or yellow/red card respec-
tively. If the icon is added to the top of the video skim, it refers to an event
related to Team A, if it appears on the bottom it refers to event related to Team
B. Figure 6.2 shows a synthetic example of a visual summarization created by
our technique. Here, event (1) represents a goal for Team A. Events (3) and (4)
represent a red card for Team A and a yellow card for Team B, respectively. Event
(7) is a substitution for Team A. Events (2), (5), and (6) were detected using the
audio data only, and represent other types of events.

We use the above skim layout to construct two separate timelines, one for each
of the two halves of a soccer match. For matches having additional extra-time,
we add a third timeline below the two main ones.

6.4 user-centric approach : results and evaluation

6.4.1 Datasets

Finding publicly available sports datasets which include soccer metadata is not
an easy task. To overcome the locked nature restrictions of today’s proprietary
sports datasets, Bergmann et al. [17] presented soccer data (matches, teams and
players information) as a Linked Open Data solution (LOD) collected from het-
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erogeneous sources and linked to LOD datasets. Some alternatives to open soc-
cer data exist, such as openLigaDB1 and the Openfooty API2. Both websites con-
tain soccer data statistics. The openLigaDB site makes sports data for public use
via web services; however, it is restricted to German language only. In contrast,
the Openfooty API has media content but does not describe recipes in detail
and is subject to restrictions that forbid republication as Linked Data. Given the
above limitations, we based our work on matches from the World Cup 2014 and
UEFA Champions League 2015. Metadata was collected manually from the FIFA
official website3. Corresponding video data was obtained separately from differ-
ent Internet sources, and includes matches recorded at different resolutions and
produced by different broadcasters.

We next describe the analysis process performed on these data, starting with
the video stream analysis and ending with the usage of our summary visualiza-
tion.

6.4.2 Visual exploration

1st Half

2nd Half

Figure 6.3: Visualization constructed from audio highlights only. In this representation
the match is summarized according to the narrator’s emotion and audience
excitement.

Audio-based exploration: As a first element, our visualization allows users to
interpret the match statistics and the narrator’s emotion and audience excite-
ment. When constructed only based on highlights extracted from audio data,
the visual representation will capture the emotion and excitement as a function
of the sound loudness. Figure 6.3 presents the visual outcome for the Brazil-
Netherlands match for the third place in the 2014 World Cup considering audio
highlights only. The audio is in the English language. The presented visualiza-
tion allows one to temporally navigate through the match highlights, and easily
get the most excitement moments of a match. In the first half of the match three

1 http://www.openligadb.de/
2 http://www.footytube.com/openfooty/
3 http://www.fifa.com
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main events are detected, two refer to goals of Netherlands and one is a clear
chance of goal for the Brazilian team. In the second half, two main events are de-
tected, a yellow card for Brazil, resulting from a penalty simulation, and another
goal for Netherlands.

To provide more insight, and support answering additional questions, we
provide user interaction, as follows. A mouse-over movement on a video skim
sets the image used to depict the video skim to the time moment corresponding
to the mouse x position. This way, moving the mouse to the left or right over
a skim basically plays the video skim forward or backward respectively. A left-
button click on the timeline plays the underlying video skim. Finally, if the user
wants to see more detail, a right-button click pops the underlying video skim in
the screen center and plays it. When playback is ready, the skim pops back to
its original space in the visualization.

Brazil

Brazil

Netherlands

Netherlands

1st Half

2nd Half

Yellow card for Oscar (Brazil)

Event time: 67:54

Figure 6.4: Visualization constructed from metadata information only.

Metadata-based exploration: In contrast to the above, visualizations constructed
from metadata only support scenarios where one wants to focus on statistical
information, e.g. answer questions like: “Which events represent goals, cards,
substitutions, and to which team do these belongs?”. Figure 6.4 shows such a
metadata-only visualization of the same match as in Figure 6.3. As explained
in Sec. 6.3.3, icons indicate metadata events: a soccer ball shows a goal; yellow
and red rectangles show yellow and red cards, respectively; and colored arrows
show player substitutions. The annotation locations (top or bottom of the skims)
indicates if the event relates to the home team or away team respectively.
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1st Half

2nd Half
Rms Values

18.6 19.3 20.0 20.8

(a) Rms=18.97

(c) Rms=19.34(b) Rms=18.60

Brazil

Brazil

Netherlands

Netherlands

Netherlands

Netherlands

Netherlands

Netherlands

Brazil

Bra

Brazil

Brazil

Brazil

Figure 6.5: Visualization using audio and metadata information with different levels of
detail. The most important events are captured, some only by the metadata
(substitutions) and some only by the audio (the goal chances).

In contrast to the audio-based visualization, frames shown in the video skims
correspond now to the precise moments recorded by the respective events – e.g.
the two first-half goals, complaining moment of players after the first yellow
card, and lastly the three Dutch substitutions in the second-half, where the cam-
era zooms on the player going out (Fig. 6.4). In contrast to the audio-based skims,
mouse-over interaction for metadata-based skims shows additional information
about the event as text annotations – e.g. the information about the yellow card
received by Oscar (mouse over the second video skim, second half, Fig. 6.4).

Combined audio+metadata exploration: Apart from audio-based and metadata-
based visualizations, we can combine both types of highlights to convey more
information and/or provide more accurate answers to questions such as “Which
are the most interesting events?” Figure 6.5 illustrates this multimodal (au-
dio+metadata) approach combining the highlights of Figures 6.3 and 6.4. The
visualization’s level-of-detail is controlled by a slider, filtering the audio high-
lights according to a minimum value of loudness (Eqn. 6.1). Moving this slider
thus controls how many audio highlights are shown. All metadata-based skims
are, however, kept and multiplexed with the audio-based skims, since metadata
are typically of high accuracy and importance [154].

Figure 6.5a shows a situation where the user selected a minimum loudness of
18.9; the resulting visualization shows all metadata highlights and audio high-
lights louder than the given threshold – 25 highlights in total for the entire match.
If the loudness slider is decreased to 18.6, 30 highlights are selected (Fig. 6.5b).
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Conversely, increasing the minimal loudness to 19.3 shows only 20 highlights
(Fig. 6.5c)). Note how, irrespective of the selected level-of-detail, all goal events
are kept and mapped as large (thus, important) video skims.

A separate unexpected finding is the important role of the audience’s cheering
in the background: In Fig. 6.5a-c, the rightmost large video skim in the first half
denotes the best chance Brazil had to score in the match. Brazilian audience was
by far the largest in the stadium, as they were supporting their home team. This
explains why some goal video-skims are not as large as expected. Separately,
both yellow cards for Netherlands were strongly celebrated by the audience in
the first half of the match, causing larger video skims than what a metadata-
only visualization would have made. The same can be observed for the yellow
cards on the second half of the match. The second yellow card has a larger
importance than the first one since it results from a penalty simulation and
its importance is increase due to the audience’s cheering. Finally, the use of
audio highlighted some shots on goal by Brazil, and faults made by Netherlands,
which are not present in the metadata information that records only goals, cards,
and substitutions. Overall, the above points highlight the added-value of the
combined audio+metadata visualization as opposed to audio-only or metadata-
only approaches.

Large-scale analysis: For further insight, we used our proposed combined audio-
and-metadata visualization to analyze and understand a portion of the last
world-scale soccer event (2014 World Cup). From this, we consider here the
set of matches played by the finalists (Germany and Argentina) in the so-called
knockout stage. Tournaments usually adopt this stage since the traditional point-
based system is too long; all teams play against each other; and also because this
creates more exciting dynamics, as the losing team is out. It is exactly this ex-
citement that we want to recover using our proposed visualization.

Round of 16 Quarter-�nals Semi-�nals

Germany (G) vs Algeria (A)

Argentina (A) vs Switzerland (S) Argentina (A) vs Belgium (B)

 France (F) vs Germany (G)  Brazil (B) vs Germany (G)

 Netherlands (N) vs Argentina (A)

G

G

G

G

G
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Figure 6.6: Dynamics of finalists in the knockout stage of the 2014 World Cup.
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Figure 6.6 illustrates the finalists’ dynamics in the knockout stage, excluding
the final match (discussed separately below). One rapid first insight is visible
in the top-right: Argentina had to face two extra-time matches (vs Switzerland
and Netherlands) before the final, while Germany only one (vs Algeria). Both
matches of round of 16 can be classified as “boring” matches during the regular
time, but very exciting on the extra-times, most probable because all goals were
scored in the respective extra-times, 3 goals in Germany vs Algeria (score: 2

vs 1) and one in Argentina vs Switzerland (score: 1 vs 0). Quarter-finals were
quite balanced, both teams scored only one goal and both at the beginning of
the first half, (largest-third video skim, first-half row, Fig. 6.6), which are the
largest skims in both matches. Last but not least, the semi-finals were marked
by the largest tournament score in the Brazil vs Germany game, easily visible
in the respective visualization by the many large skims, present mainly in the
first-half when Germany scored 5 out of its 7 goals. Interesting to observe is that
the importance of these 5 goals increase during the time, probably indicating
that the audience’s hope (predominantly composed by Brazilians), given by the
small cheering on the first goal, turns into complaints on the last one. In the
second half and second half-time, Germany scored twice and Brazil got her
unique goal. A quite different scenario is visible in the Netherlands vs Argentina
match, where there were no goals during regular time, but Argentina won in the
penalty shootouts. Although such match do not present goals on the regular or
extra times, this was a very exciting match, reflected on the number of highlights
captured by the sound.

French

PortugueseGerman

EnglishArabic

Spanish

Figure 6.7: Visualization of dynamics of 2014 World Cup final match in six different
languages. Different cultures define different views of a match. Our visual
metaphor can be used to easily verify and analyze cultural aspects.

As we expect that our method captures the most exciting (and/or important)
audio events, it is separately interesting to analyze the specificity of the sound
track. Clearly, audio variations are expected between different broadcasters, as
each one has different broadcast styles, commentator voices, and audio post-
processing (e.g., smoothing out noise). Still, one interesting question is: Which
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variations can be visibly measured considering not only different broadcasters,
but also different languages? Does the same match come over differently?

To get insight in the above, we looked at the 2014 World Cup final match
in six different languages/channels (Arabic/Bein; English/BBC; French/TF1;
German/Das Erste; Portuguese/Globo; and Spanish/Gol), see Fig. 6.7. From
a quick look, it is obvious that the displayed visualizations are very different
and do not show the same dynamics. For example, the number of important
highlights (large skims) is quite different; also, given the same loudness thresh-
old, visualizations show quite different numbers of highlights, meaning that the
excitement level was quite different. For example, if we look at the less salient
(thus, having smaller skims) half-time, we see that Arabic and Portuguese broad-
casters were less excited than other broadcasters; in contrast, the English had
a more muted second-half, and the French show less highlights in extra-time
– notice that the French narrator give no importance to the German goal in
the extra-time (why?). Excluding Arabic and English, the remaining broadcasts
show a very excited second-half with many highlights, in special French and
Portuguese. For the extra-time, Arabic and English prevailed with larger and
many highlights. By clicking on the most-salient skims in the respective visual-
izations, and listening to the respective videos, we find another interesting fact:
When a goal is scored, the Arabic, Portuguese and Spanish yelled “Gooaal” in
their respective languages, while the rest chose to call the scoring team or player
name. Separately, Argentina had a disallowed goal event in the first half; the En-
glish broadcast was the only one to capture this event. This is an example of
our tool being able to support answering questions such as: “Were there some
polemic or controversial events?”

6.4.3 User Evaluation

We have performed a preliminary user evaluation to assess the usability of our
proposed visualization. For this test, we recruited 7 participants. As a first step,
all participants watched together the match Barcelona vs Manchester City for the
UEFA Champions League, the second match of the round of 16, played on March
18th, 2015. The watching took place in a controlled environment, so as to avoid
situations where users would lose parts of the match because being distracted
by other events around them. The audio used was in Spanish language. During
the match, we asked the participants to annotate the main events and the time
of occurrence. We did not limit the number of possible events. Also, participants
were free to define what was an important event based on their own expecta-
tions. This helps capturing unusual events besides the common ones such as
goals, shot on target/goal, faults, cards and substitutions. In total, the 7 partici-
pants created 77 different events for the watched match.

Separately, we created a summary visualization for the above match. In this vi-
sualization, we limited the number of video skims to 35, so they would properly
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fit the available screen size. From these 35 video skims found by our automated
analysis, 29 correspond to events found by at least one participant when watch-
ing the raw video. This corresponds to 82.8% precision and 37.6% recall for our
event detection. The low recall is mainly induced by two factors: (i) the subjectiv-
ity of the definition of important events – since participants can freely annotate
the events, diversity is expected (in our study, 25 events were found by only one
participant); and (ii) the limitation on the number of video skims imposed by
the available display area – with more skims, better results could be attained,
but this would increase the effort to interpret the visualization, which is not de-
sirable. Regarding the events that all participants have considered as important,
we had 62.5% precision – we show 10 of 16 events marked by all users. This
indicates the good summarization abilities of our method with respect to the
most important events.

After watching the match, the participants were instructed to use a proto-
type implementation of our interactive visualization. This phase started with a
brief explanation of the visualization’s goals and the available interaction mech-
anisms. After playing with the visualization tool, each participant answered
a usability questionnaire. The statements included in the questionnaire (see Ta-
ble 6.1) intend to measure the subjective level of engagement via a 7-point Likert
scale, with 1 = strongly disagree and 7 = strongly agree (with the questionnaire
statements). In total, the evaluation took around 130 minutes (100 for watching
the video, 10 for learning to use the vizualization tool, 15 for using it, and 5 for
filling in the questionnaire).

Q1 The visualization shows the most important match
events.

Q2 The video skim sizes and colors faithfully reflect the
real importance of an event.

Q3 The composition of video skims that represents a half
time faithfully reflects the excitement/emotion of that
time.

Q4 The overall visualization is a good match summariza-
tion.

Q5 The visual representation reflects the match quality.

Table 6.1: Evaluation: usability questionnaire.

Figure 6.8 depicts boxplots that summarize the participants’ answers. Since
we did not have enough participants to be able to compute statistical signifi-
cance, we report only descriptive statistics. According to the answers for Q1,
participants mostly agree with the statement that the most important events
are captured by the visualization (6.43 on average). We already expect this out-
come since, as described earlier, our technique showed a very good precision/re-
call on capturing the main events for this match. For Q2 (6.0 on average), the
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participants mostly agree that the size and color saturation of a video skim
faithfully reflect the real importance of an event, confirming that the merge of
audio+metadata highlights is a good approach to summarizing a match. Consid-
ering Q3 (5.71 on average) the participants do not fully agree with the size of the
composition of video skims as a good way to reflect the excitement/emotion of
a half-time. The visualization for this match presents compositions with similar
sizes for both half-times. However, according to the participants, the second-half
was more exciting. This is probably due to the fact that the goal occurs on the
first half and the corresponding video skims are the larger ones on the visual-
ization, thus approaching the sizes of the compositions. This can be overcome
reducing the importance of a goal, or increasing the number of events to detect
– we have tested increasing the number of events on the final visualization, and
all new events are detected on the second half. Participant feedback for Q4 and
Q5 is similar. They tend to agree that our visualization is a good summariza-
tion and that the visual representation reflects the quality of a match (6.71 and
6.43 on average, respectively), indicating that although a simple representation,
our visualization method and tool can be a interesting alternative for match or
tournament browsing.
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Figure 6.8: Statistics of users’ feedback gathered via usability questionnaires.

6.5 data-centric approach : sports video exploration with mul-
tidimensional projections

As mentioned in Sections 6.1 and 6.2, a different way to look at information ex-
tracted from sports multimedia data is in terms of multidimensional datasets. As
we have seen in the earlier chapters of this thesis, multidimensional projections
are efficient and effective tools to visually explore such datasets. As such, several
question arise naturally: Can we visually explore our sports multimedia data by
using multidimensional projections? And, if so, which are the advantages and
disadvantages of this type of exploration as opposed to the videoplayer-style
exploration presented in Sections 6.3 and 6.4?
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To answer the above two questions, we developed a second approach to ex-
plore our sports videos, by using a projection-based visualization. The dataset
used for our visual exploration of sports videos using multidimensional pro-
jections is the same collection of soccer videos mentioned and analyzed so far,
containing 8 matches (videos) from the 2014 FIFA Word Cup championship.
This includes all the matches that the finalists played in the knockout stage
plus the third-place match. The dataset contains games involving eight differ-
ent teams, with the respective scores being the following: Germany 2 vs Algeria
1; Argentina 1 vs Switzerland 0; France 0 vs Germany 1; Argentina 1 vs Bel-
gium 0; Brazil 1 vs Germany 7; Netherlands 0 vs Argentina 0; Germany 1 vs
Argentina 0; Brazil 0 vs Netherlands 3. All the videos have a total of 55252 sec-
onds (more than 15 hours of gameplay). From this dataset collection, we extract
the same audio-and-metadata information as used by our first videoplayer-style
exploration approach (Section 6.3). Based on this information, we construct a
multidimensional dataset (Section 6.5.1).

As stated before, the central aim of our projection-based exploration is to see
what types of insights can this approach deliver, and contrast these with the
insights delivered by the first videoplayer-style exploration. When comparing
these two approaches, usability issues of the two systems are obviously impor-
tant to consider. Specifically, our videoplayer-based approach is arguably very
simple to learn and use. As such, the projection-based exploration should also
be as easy to learn and use as possible. This way, differences of the two ex-
ploration metaphors that are caused by usability issues will be diminished, so
it is easier to compare these two metaphors. To achieve this, we aimed to de-
sign a projection-based exploration system which is as easy to operate by end
users as possible, i.e., contains a comprehensive graphics user interface with
suitable menus and short-cuts, and various direct interaction and customization
mechanisms. For this, we based our visual tool design and implementation on
the VisPipeline framework, which is a comprehensive system for computing
and exploring multidimensional projections [159]. VisPipeline allows an expert
user to build a pipeline encompassing all the different aspects of visual explo-
ration with multidimensionality projection techniques, including data cluster-
ing, a wide range of projection techniques, different visual encodings for the
resulting 2D or 3D point cloud, and interactive selection and brushing mech-
anisms. Using this visual exploration tool, we developed and executed three
exploration scenarios, each one having its own visualization design and types
of considered data attributes (Section 6.5.2).

6.5.1 Multidimensional Dataset Construction

To reduce our video collection to a multidimensional dataset, we first need to de-
fine observations and their respective attributes. To define observations, we chose
to encode in an observation a given time period of a given match, as described
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in more detail below. Given this model for an observation, its attributes are as
follows (in line with the attributes employed in our first visualization design
described in Section 6.3):

• loudness/volume: Describes the average audio volume for the timespan of an
observation. Loudness is an ordinal-continuous attribute, computed with
the RMS technique described in Section 6.3.1;

• match_id: Gives the ID of the match that an observation samples. This at-
tribute is of nominal (categorical) type, and has eight distinct values, as
our collection contains eight matches;

• timestamp: Gives the time (offset from the match start) at which a given
observation was taken, measured in seconds. This attribute is of ordinal-
discrete type;

• event_type: Gives the type of event that the associated metadata indicates
for a given observation. This attribute os of nominal (categorical) type,
and has five values: 0=no event; 1=substitution; 2=yellow card; 3=red card;
4=goal. Note that, in the videos present in our collection, no red cards
were given. However, we include the attribute here for completeness, as
other soccer matches do, obviously, include red cards.

The construction of observations, or samples, from the raw video data follows
a sliding-window approach, described next (see also Figure 6.9). Consider a time
window of length ∆t seconds. We slide this window over the entire duration of
a video, with increments of δt < ∆t seconds. This delivers T/δt positions of
the window. For each such position, we compute an observation based on the
information contained in the video material encompassed by the respective win-
dow. For instance, given such a time window, we compute the corresponding
observation loudness value by using the RMS technique outlined in Section 6.3.1;
the timestamp represents the window’s center; and the event_type describes
the event taking place within the time window, if any. The sliding-window ap-
proach for transforming the video data into multidimensional data is justified
by several points. First and foremost, our goal is to use next multidimensional
projections to find similar and/or highly different fragments of the same and/or
different match videos. As projections place similar observations close to each
other, this gives a straightforward way to detect similar video fragments (by
finding closely projected points) and also outlier video fragments (by finding
projected points which are far away from most other points). Secondly, this ap-
proach allows us to control the scale, or level-of-detail, on which we analyze our
multimedia data, by simply changing the ∆t and δt parameters. In detail:

• ∆t controls the time-scale at which we consider a single event to exist. In-
creasing ∆t creates less observations, thus a more compact, easy to follow,
and scalable visualization, but also filters out rapid events, which may be
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important. Also, too large ∆t values may create time-ranges which con-
tain more than one events as described by the metadata. Since event_type
is a scalar attribute, taking a single value per time window, this will dis-
card events. Decreasing ∆t provides more fine-grained dynamic detail, but
also creates more observations, which make the subsequent visualization
slower, and increase the chances for observation clutter. A good setting
for ∆t is around the time-extent of the smallest relevant event in a soccer
match, e.g. goal, fault, pass or corner, which is about 4 to 7 seconds.

• δt controls the continuity of the resulting projection-based visualization.
If δt is small, then consecutive time windows will overlap significantly,
thus their corresponding events will be very similar. Also, a larger num-
ber of events is created for a given video. This will make the resulting
projection denser, since it has more observations and observations for con-
secutive time windows are more similar. Visually speaking, thus, such a
projection looks more continuous, since there are more samples per unit
area of the projection space, and these are also more similar to each other
– we use in this reasoning the fact that a good projection, such as LAMP,
preserves well similarities or distances between the high-dimensional and
projection spaces, see Chapter 3. However, clutter is also increased by the
larger number of observations. Conversely, if δt is large, consecutive time
windows will overlap less, thus their corresponding events will be less sim-
ilar, and fewer in total count. This makes the resulting projection sparser,
and also more discontinuous, thus potentially harder to follow. If δt > ∆t,
then consecutive time windows do not overlap at all. The probability that
they will have similar attributes consequently decreases, leading to obser-
vations which are less similar, thus more distant, in the resulting projec-
tions. Ultimately, this makes spotting trends in the resulting projections
harder. Increasing δt too much, in cases where the window-size ∆t is rela-
tively small (a few seconds) has the additional adverse effect of reducing
the probability that an audio event, seen as a time-range where the audio
signal exhibits a high and sharp peak, will get ‘cut’ into two consecutive
windows, thereby yielding too low RMS values to be detected. In practice,
we observed that setting δt to about 20% of ∆t gives a good balance be-
tween a reduced observation count and a good detection of rapid events
in soccer videos.

Figure 6.9 shows the illustration of the proposed sliding window approach. In
this case, we set ∆t = 5 seconds and δt = 1 second, meaning that two consecu-
tive time windows overlap for four seconds. To get a better understanding of the
effect of these settings, we visualize the loudness signal (top graph in Fig. 6.9).
We see here two large and quite similar loudness peaks, of roughly 3 seconds
duration each, located at different time moments. These could indicate similar
and/or important events.
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Figure 6.9: Construction of a multidimensional dataset from a video collection.

A separate concern for the loudness attribute is normalization. This is needed
since (a) average loudness may vary across different match videos, depending
on the recording settings used by the respective content creators and/or the
settings of the video codecs used to encode the final video data. To factor out
such effects, we normalize the computed loudness values for each video to the
same range. This design is based on the (reasonable) assumption that all matches
contain equally-important lowest-loudness and highest-loudness values – or, in
other words, that the loudness ratio between critical match events, such as goals,
and irrelevant moments, such as low-action sequences, is roughly identical for
all matches.

6.5.2 Visual exploration of the multidimensional multimedia data

After constructing our multidimensional dataset from the given video collec-
tion, we load the dataset into our VisPipeline-based exploration tool to generate
and explore it via projections. As a projection technique, we use LAMP, which
was extensively discussed in the earlier chapters. We consider both 2D and 3D
projections, since both of these have their own advantages, as we have seen in
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Chapters 4 and 5. As usual when exploring such projections, we use additional
color mapping of a user-chosen attribute to the projected points to get more in-
sight in the reason why close points are similar and faraway points are dissimilar.
Additionally, we tune the ∆t and δt parameters to achieve different insights in
the underlying video data. The construction and interpretation of several such
visualizations is described next by means of three exploration scenarios.

6.5.2.1 Scenario 1: Using low-dimensional scatterplots

In this scenario, we essentially aim to determine the amount of insight in the
match dynamics which we can find using a low-dimensional data representation.
That is, we convert the multimedia data to a multidimensional dataset having a
small number of dimensions. Next, we use LAMP to create scatterplots of this
dataset, and explore them next.

For this scenario, the multidimensional dataset obtained from the video data
is composed by only four dimensions: loudness, timestamp, event_type, and match_id.
We use here a setting of ∆t = 10 seconds and δt = 5 seconds. This creates one
observation for each 5 seconds of video data, yielding a total of 11043 observa-
tions.

The design of this multidimensional dataset is illustrated in Fig. 6.10. Here,
the loudness L(k) of the kth 5-seconds interval in the video is the mean value
of the next w = ∆t seconds

L(k) =
1

w

w−1∑
i=0

l(i+ k), (6.4)

where l(i) is the RMS loudness value for second i and w = 10 is the size of the
time window (in seconds). As visible in the loudness time-graph (Fig. 6.10 left),
the large time-window creates a smoothly-varying loudness signal in time.

Figure 6.10: Dataset design for scenario 1.

Figure 6.11a shows the LAMP 2D projection of the multidimensional dataset
constructed as described above, and rendered with fully opaque points. As visi-
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ble, the result is quite cluttered, and no clear patterns are discernible. To alleviate
this, we next render all points with a transparency of 40%. The result shows a
more differentiated pattern (Fig. 6.11b). Here, we see that the central zone of
the projection has a relatively higher observation density as compared to the
peripheral regions, following a northwest-to-southeast gradient.

(a) (b)

Figure 6.11: Scenario 1. (a) Point cloud. (b) Point cloud with 40% transparency.

Obviously, while the above-mentioned patterns may be interesting, they are
(yet) hard to interpret. To improve this, we next color-code the projected points
based on the value of a user-selected attribute, via a blue-yellow-green diver-
gent colormap. Figure 6.12 shows the result when timestamp is the selected
attribute. We see here an almost linear southwest-northeast color gradient, in-
dicated by the dashed line in the figure. Figure 6.12b shows the same image,
using a reduced 40% transparency, as in the previous figure. The interpretation
of the projection is now simple: By exploring the color-coded plot with inter-
active brushing, we understand that the spike marked by the dotted ellipse in
Fig. 6.11b indicates the time transition between the end of the second half of
the visualized match (all points located southwest of the dotted ellipse) and the
beginning of extra time (all points located northeast of the dotted ellipse).

Figure 6.13a color codes the points by loudness. In contrast to the earlier im-
ages, we see now a color gradient going southeast to northwest, as indicated
by the black dashed line. This gradient is almost perfectly perpendicular to the
one observed when coloring points by timestamp. The two gradients basically
explain the projection structure: Its diamond shape mainly follows two vari-
ables – timestamp (southwest-northeast) and loudness (southeast-northwest), see
Fig. 6.14a further. Using a reduced transparency, we notice that most points are
in the yellow area, meaning medium volume (Figure 6.13b). The red points in
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Figure 6.12: Scenario 1. (a) points color coded by timestamp. (b) points color coded by
timestamp with 40% transparency.

this visualization represent the loudest audio samples in the video collection,
possibly indicating interesting events.

Min Máx
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Figure 6.13: Scenario 1. (a) points color coded by loudness. (b) color coded by loudness
with 40% transparency.

The projection visualizations discussed so far highlight two attributes only –
loudness and timestamp. We next examine the event_type attribute. Since this is a
categorical attribute, as described earlier, we cannot readily mix it with the quan-
titative loudness and timestamp attributes to create a projection. As such, we show
next event_type using color coding (Fig. 6.14). Figure 6.14b shows the goal events
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as red points; the yellow cards as yellow points; and substitutions by gray points
respectively. To further interpret the projection, we use the already understood
meaning of the loudness and timestamp axes, shown in the projection as dotted
lines. By following the correlation of the loudness axis with the color-mapped
event types, we see that all goals are louder events (which is not surprising).
Following the correlation of the time axis with event types, we notice a group
of goals that happened in the beginning of the first half, and another group
taking place in the extra time. On the northeast side of the visualization, we
find a group of five goals in three different matches that occurred in extra time.
Upon closer inspection, done by brushing, we find that these are the goal of the
final match of Argentina vs Germany; the only goal of Argentina vs Switzerland;
and all three goals of Germany vs Algeria. On the left side of the visualization,
where goals occurred in the beginning of the first half, we see four more goals
occurring in two matches, Brazil vs Germany and Argentina vs Belgium. As ex-
pected, in all these five matches, the goal points are surrounded by other points
representing close observations (time-wise). This means that more than one each
goal event is covered by more than one observation, as an effect of the sliding
window approach.

Further interpretation of the correlation of the loudness axis with the color-
coded event_type attribute shows us that most of the yellow cards are above the
medium loudness, and most substitutions have medium volume, respectively.
Separately, interpreting the correlation of the timestamp and event_type we dis-
cover that no substitutions happened in the beginning phase of the matches.
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Argentina 
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Figure 6.14: Scenario 1. (a) points color coded by event types, with time and loudness axes
outlined. (b) points color coded by events with 40% transparency.

Figure 6.15a shows the same projection as in Fig. 6.14, this time color coded
by match_id. To reduce occlusion, we use again transparency (Fig. 6.15b). This
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helps us discover an area in the projection which is less densely populated by
observations – see dashed-line rectangle marker in Fig. 6.15b. This indicates that
only a subset of the studied matches have observations related to this area. As
already found in the time analysis (Fig. 6.14a), this zone corresponds to the end
time-range of matches, and more specifically, to extra time. The fact that there
are fewer samples here is in line with the fact that only four matches in our
dataset have extra time. We recognize these also by the colors of the observations
in the dashed area: Germany vs Algeria (blue points), Argentina vs Switzerland
(green points), Netherlands vs Argentina (red points) and Germany vs Argentina
(orange points). Note, also, that the assessment of the loudness distribution is
harder to make in Fig. 6.15b as compared to Fig. 6.14b. This is due to the fact
that the match_id attribute has a much flatter distribution over the sample set
than the event_type attribute – most points have event_type=none. In turn, this
creates a more complex color pattern in Fig. 6.15b, which adversely interacts
with blending, as well-known in data visualization [217].

Min MáxMin

(a)

Min Máx

(b)

Figure 6.15: Scenario 1. (a) points color coded by match_id. (b) points color coded by
match_id with 40% transparency.

6.5.2.2 Scenario 2: Increasing the number of dimensions

As described in Section 6.5.2, an interesting use-case is finding similar events
based on the loudness of the audio signal in a given time window. In the pre-
vious scenario, we explored the data by computing a single loudness value L
for each such time window (Eqn. 6.4). While this reduces the number of dimen-
sions needed to represent the data, it also considerably smooths out the audio
information, as discussed in the beginning of Sec. 6.5.1. Also, using a single au-
dio dimension per window makes observations too unspecific, while our final
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intention is to be able to compare multimedia patterns. What we need, is more
specific, thus higher-dimensional, observations.

To achieve this, we next encode the audio information of a time window (ob-
servation) using several dimensions. For this, we use a sliding time window of
∆t = 5 seconds, slided by δt = 1 second. This offers a good time resolution, as
discussed earlier. Next, we create five dimensions li(k), 1 6 i 6 ∆t from the
audio data of every window k, each corresponding to the RMS loudness of the
ith second in the window. Hence, an observation xk will have eight dimensions

xk = (l0(k), l1(k), l2(k), l3(k), l4(k), time(k), event_type(k),match_id(k)).

(6.5)

As such, the complete multidimensional dataset for scenario 2 has 55252 eight-
dimensional observations. We next explore this dataset by projecting it to 2D
using LAMP and encoding different attributes to color, as in the first scenario
described in Sec. 6.5.2.1.

Figure 6.16 shows the dataset projected by considering the loudness dimen-
sions li(k), timestamp, and match_id. Points are colored by event_type and ren-
dered half-transparent. The resulting pattern is quite similar to the one shown
for scenario 1 (Sec. 6.5.2.1), apart from being rotated. As such, it appears that
increasing the resolution used to capture loudness from one dimension to five di-
mensions does not reveal additional patterns. However, this impression may be
due to the fact that the event_type and match_id variations dominate the loudness
ones, and as such, are the main drivers that influence the projection’s shape.

Figure 6.16: Scenario 2 with 7 attributes per observation (five loudness, event_type, and
match_id)

.
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We believe that the loudness dynamics captures more information than the
previous visualizations can show. One way to emphasize such dynamics is to
project the data based solely on them. Figure 6.17a displays this, which shows
an elliptical-like pattern surrounded by a few outliers. Again, to reduce occlu-
sion, we use transparency (Fig. 6.17b). It shows better how is the distribution
of loudness over time, having most of the points placed on the right side of the
flat circle and a kind of a spike on the left side. While this basic visualization
does not (yet) tell us more information than the ones presented in Sec. 6.5.2.1,
its significantly different pattern tells us that there is a good chance that this
projection can reveal different facts.

(a) (b)

Figure 6.17: Scenario 2. (a) point cloud, projected by 5 audio dimensions. (b) point cloud
with 40% transparency.

To explain why the shape of the projection in Fig. 6.17 supports our claim
that loudness dynamics contains interesting patterns, consider the following
analysis. Suppose that all loudness patterns for all observations would be spread
randomly, and uniformly, over their five-dimensional space given by attributes
l0, . . . , l4. This would in turn imply that the LAMP projection of this dataset
would be roughly a 2D uniformly-sampled disk [31]. Clearly, our projection’s
shape deviates from a disk, and also does not exhibit an uniform density. Hence,
the loudness patterns are distributed non-uniformly in high-dimensional space,
so they potentially contain interesting information.

To make this projection useful, we next color map the dimensions not used
by the projection. For this, we first use event_type. Additionally, we make obser-
vations having no relevant event information (event_type=none) half-transparent,
to emphasize the eventful obervations. We now notice that most events are lo-
cated in the left side of the projection (Fig. 6.18a). A zoom-in of this image
(Fig. 6.18b) shows there are more red points (goals) left of the zoomed-in area;
yellow points (yellow cards) are spread rather uniformly over the image; and
gray points (substitutions) more concentrated on the right side. Since the projec-
tion encodes audio patterns, using five dimensions per observation, this means
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that the audio patterns related to goals are most different from the ones related
to substitutions, while the audio patterns for yellow cards are broady similar
to both goals and substitutions. This observation confirms standard knowledge
about soccer games: Goals typically create salient audio patterns, as they are
the most important match events; substitutions are typically quied match mo-
ments, very different from goals; while (yellow) cards cover the entire spectrum
of calm to high action, depending on the reason for substitution and the prefer-
ence of the commentator and/or predominant stadium spectators for the player
involved in the card. Additionally, the fact that most events, and in particular the
critical ones (goals) are located left in the projection, tells us that the horizontal
projection axis can be interpreted as overall loudness (left=loud, right=silent), a
finding which can be easily checked by e.g. brushing the observations.
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Figure 6.18: Scenario 2. (a) point cloud, projected by 5 audio dimensions. (b) zoom-in
detail with points colored by event_type.

Another question is whether events, loudness patterns, or the dynamics of dif-
ferent matches correlate in some significant way with time. To explore this, we
color the above projection by timestamp. The result is shown in Fig. 6.19a, using a
divergent three-color colormap (blue=match start; yellow=half time; red=match
end). The projection’s middle area appears predominantly red. However, using
transparency shows that this is just an effect of occlusion (Fig. 6.19b). In other
words, five-second audio-dynamics patterns are not significantly correlated with
the moment in time they appear during a match. However, the opaque pro-
jection rendering shows us several salient yellow outliers, i.e., match moments
whose audio patterns significantly differ from the rest, and are mostly located
around half time (Fig. 6.19a).

To further make sense of the outliers, we colored them by the match_id dimen-
sion, as this dimension was not yet studied in the current analysis (Fig. 6.20a).
We now see that most orange outliers located to the right side of the projection,
indicated by black arrows in Fig. 6.20a, belong to the same match. Orange corre-
sponds to the match Brazil vs Netherlands, playing for the third place. Brushing
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Figure 6.19: Scenario 2. (a) points color coded by timestamp. (b) points color coded by
timestamp with 40% transparency.

the points we discover they all correspond to neighbor time moments in that
match. Watching the actual match video, we discover the reason for these out-
liers: They all correspond to a silence event occurring during that match, related
to a transmission problem of the broadcaster. Similarly, the two blue points, in-
dicated by red arrows in Fig. 6.20a, are easy to trace to the match Germany vs
Algeria. Watching the video shows that they also correspond to the same type
of silent events. As such, we have explained projection outliers in terms of data
recording problems. Knowing this, one can eliminate these outliers to proceed
with an examination of the relevant, reliable, data.

Alternatively, we may be actually interested in the outliers, and wish to un-
derstand them better. To do so, we further explore the 2D projection shown in
Fig. 6.20a. We next zoom on the left tail of the projection pattern (black rectangle)
and obtain Fig. 6.20b. We can now see easily that the loudest points, indicated
by arrows in the figure, are red. This corresponds to match 6 between Germany
and Argentina. Brushing these points to find their exact timestamps, and exam-
ining the videos at those timestamps, shows that these observations correspond
to Germany’s goal in that match, which is the loudest event in our entire dataset.

A further possibility to see more structure in the projected data is to use
a higher-dimensional projection than two dimensions. Figure 6.21 shows this
approach, where we used a 3D LAMP projection, which is further explored
using the interactive tools presented in Chapter 5. In the projection, we see
five biplot axes, corresponding to the five loudness attributes li(k) in Eqn. 6.5.
The five green icons under the x axis legend (arrow in Fig. 6.21) show that the
loudness increase is from left to right.

By looking at the green boxes of the x axis legend (pointed by a black arrow),
we can infer that the positive loudness direction is from left to right. As such, we
can say that the points on the far right side of this figure represent the loudest
volume and the points on the far left side represent the lowest volume. The silent
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(a) (b)

Figure 6.20: Scenario 2. (a) Points colored by match_id. Orange and blue points represent
silent events. (b) Zoom-in on the high-loudness outliers.

events located on the outside border of the point cloud can be also explained by
the biplot axes in the sense they are on the left side of the figure. As such, the
right ‘tail’ of the produced 3D point cloud is describing the loudest events.

Figure 6.21: Scenario 2. Data projected in 3D using five loudness dimensions.

We can also use 3D projections, including biplot axes, to understand how
time is spread over the observations. Figure 6.22) shows a 3D LAMP projection
of the six-dimensional dataset including the already mentioned five loudness
dimensions and the timestamp dimension. In this figure, we also use the axis
legends to align the timestamp axis with the x screen axis, by the mechanisms
described in Sec. 5.3.2, and also color points by timestamp, for a clearer view.
By slightly rotating the 3D projection, we realize that virtually all five loudness
axes are strongly correlated (have small angles), so we next align them with the
y axis. We can now easily see that the globally loudest observations are red, thus
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occur in the final match phases (see top-right marker in Fig. 6.22). Similarly, we
see that the most silent observations occur roughly during half time (bottom
marker in Fig. 6.22).

5:Time

Loudest points

Lowest points
Min Máx

Figure 6.22: Scenario 2. Data projected in 3D using five loudness dimensions and times-
tamp. Color codes timestamp.

6.5.2.3 Scenario 3: Further increasing dimensionality

As scenario 2 showed, increasing the number of dimensions used to represent
our multimedia data (in particular, the audio information) can be useful to de-
tect more subtle patterns and outliers as when using a small number of di-
mensions (scenario 1). We now refine this finding by increasing the number of
dimensions even further.

To do this, we use the same procedure as described in Sec. 6.5.2.2. We use a
time window of ∆t = 10 seconds slided by δt = 5 seconds, similarly to scenario
1. We next compute the RMS loudness li(k), 1 6 i 6 10, of each of the ten
seconds in this window, similarly to scenario 2. Adding the timestamp, event_type,
and match_id attributes, this yields 13 dimensions per observation, for a total of
11045 observations.

Similarly to Fig. 6.16, Figure 6.23 shows the dataset of scenario 3 using ten
loudness dimensions and the timestamp dimension as input for a 2D LAMP pro-
jection. Points are colored by event_type, and rendered with 40% transparency.
As visible, this projection has the same overall shape as the ones obtained using
one loudness dimension plus timestamp (Fig. 6.14) or five loudness dimensions
plus event_type and match_id (Fig. 6.16). This strenghtens our earlier-outlined
observations that mixing loudness, timestamp, and match ID attributes in the
same projection is not a good idea, given their very different natures. For com-
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pleteness, we note that the LAMP implementation we use does normalize the
variables, so that they contribute equally to the inter-observation distances.

Figure 6.23: Scenario 3 with 10 loudness and one timestamp dimensions per observation,
colored by event_type.

To be able to explore all above-mentioned variables, we use the same pro-
cedure described in Section 6.5.2.2. In detail, we project the data to 2D using
only the ten loudness dimensions, and next explore their correlation with the
remaining dimensions using color coding. The 2D projection of the data using
the ten loudness dimensions is shown in Fig. 6.24a. The overall shape of this
projection, and also the presence of a few outlier observations close to its bor-
der, is very similar to Fig 6.17a, which only used five audio dimensions. The
same is seen when comparing the 2D projection of our ten-dimensional dataset
(Fig. 6.24b) with the similarly-obtained 2D projection of our five-dimensional
dataset (Fig. 6.17b). Additionally, color coding in Fig. 6.17b by event_type, shows
us that most goals are located in the bottom part of the projection. If we use
the already established correlation of goal events with high loudness, we can
thus infer that the bottom part of the projection corresponds, roughly, to high
loudness observations. By using the biplots again, Figure 6.25 confirms that the
loudest samples are indeed in the above-mentioned area – indeed, all green
boxes in the y axis biplot indicate that attribute values increase from bottom to
top in the projection. Since boxes for all biplot axes are green in the y legend,
this means that all our ten loudness values increase from top-to-bottom; in other
words, samples at the top of the projection are loudest over the entire extent of
their time windows. However, we see that the biplot axes of these dimensions,
shown in black at the center of the projections, are not parallel. This means that
our 10 loudness dimensions are not strongly correlated or, in other words, that
the considered loudness patterns are different.

The similarity of Figs. 6.24 and 6.17 indicate that the captured loudness pat-
terns are similar on both time-scales used to analyze the datasets (sliding win-
dow size of 5, respectively 10 seconds). This is desired, since it tells us that
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our findings obtained by such projections are not significantly influenced by the
choice of the time-window size. In other words, such patterns are present at
several scales.

(a)

Goal

Yellow Card

Substitution

Not metadata event

(b)

Figure 6.24: Scenario 3. (a) points projected using 10 loudness dimensions. (b) same plot,
color coded by event_type, and rendered with 40% transparency.

all loudness axes increase 

along the y direction

area with loudest

observations

biplot axes

Figure 6.25: Biplots of Scenario 3 showing correlations of goals with loudness and vari-
ability of the loudness patterns.

Similarly to Scenario 2, we next use the biplots to understand how time is
spread over the observations, and how it correlates with the 10 loudness dimen-
sions. For this, we project the 11-dimensional dataset formed by the loudness
dimensions and time. Next, we align the time axis with the x screen axis, by
clicking in its bar in the x axis legend. For extra emphasis, we color points
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on their time value. Figure 6.26 shows the result. Several observations can be
made here, as follows. First, we see how the biplot axes for all loudness dimen-
sions are almost orthogonal to the time axis. This tells that time and loudness
are not strongly correlated, i.e., we have roughly similar loudness ranges for all
match phases (time ranges). More interestingly, this view strongly resembles Fig-
ures 6.16 and 6.23, which were 2D projections using loudness and time. This is
a good example of how specific viewpoints of 3D projections can yield insights
obtained with 2D projections. The added-value of a 3D projection is, however,
the possibility of generating a very large number of such 2D projections just by
changing the viewpoint, thus with no need to recompute the projection (Chap-
ter 5).

10:Time 

Min Máx

Figure 6.26: Scenario 3 showing loudness vs time correlation. Time is aligned along the x
axis. Points are color coded by time.

6.6 discussion

Several points concerning our two approaches to visually exploring soccer mul-
timedia data are relevant to discuss, as follows.

Data attributes: In our work, we extracted four ‘raw’ attributes from our soccer
multimedia collection – loudness, match ID, timestamp, and types of events.
These were further refined to produce a variable number of attributes used
to construct the final visualizations – up to 13 for out multidimensional ap-
proach (Section 6.5.2.3). Obviously, many more techniques exist for extracting
additional kinds of attributes from sports multimedia data (Sec. 6.2). Some of
these, e.g. player motion extraction, are considerably more advanced than our
relatively simple loudness-time-metadata analysis. However, open access to the
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implementation of such techniques and/or to the datasets they deliver is rare.
Additionally, by using our simple attributes, which admit a simple interpre-
tation and visualization, we can focus more easily on answering our research
questions outlined in Sec. 6.1.

User-centered exploration: Our first visual design using the videoplayer-like
metaphor shows that it is possible to construct an easy to learn and use tool
for visual summarization, browsing, and comparison of real-world collections
of soccer matches. The tool can effectively provide high-level insight into the
salient phases and/or events of a soccer match; more interestingly, it allows
an easy way to browse a large match collection, supporting tasks such as find-
ing matches in which a certain pattern occurs, or comparing different matches.
While our practical evaluation of this tool was limited to a small user group, the
obtained feedback shows that this visual metaphor has a good potential. How-
ever, this visual metaphor requires a non-negligible amount of user interaction
(browsing), and is arguably not suitable for fine-grained analyses.

Data-centered exploration: Our second visual design using multidimensional
projections shows that such projections are useful in finding and interpreting
correlations, patterns, and outliers in our sports multimedia data. Such datasets,
which are inherently time-dependent, can be reduced in several ways to static
visualizations, whose interactive exploration shows several interesting insights
at different time-scales. As a side effect, we have seen that 3D projections, when
augmented with our interactive exploration tools discussed in Chapter 5, bring
added-value as opposed to static 2D projections. This added value will arguably
be much larger for use-cases where many more dimensions are extracted from
the multimedia data. However, data-centric exploration using projections is sig-
nificantly more abstract than the videoplayer-based metaphors, and may be suit-
able only for specialized users. Separately, in all our three scenarios involving
projections, we noticed the difficulty in explaining patterns present in projections,
which stands in contrast to the easy interpretation of a time-range or event in
the videoplayer-based approach. This is an important limitation of projections
in general, which is an important topic for future research.

Limitations: Technically speaking, several points exist that can be further re-
fined. For instance, depending on the narrator’s excitement, loud time-ranges
describing salient events such as goals may last more than one minute. This
would add multiple consecutive videos skims related to the same event in both
our visualizations – in other words, the event will be redundantly supersampled.
Cross-match language-dependent normalization can help here in reducing such
redundancy. Separately, if the match ends at the extra-time second-half in a draw,
and penalty shoot-outs follow, our visualization can get biased by the excessive
amount of metadata and/or audio intensity for that period. However, on the
other hand, if a visualization shows a highly important set of end-match skims,
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this naturally implies that such events are (the most) important for the respective
match, possibly dominating other events. Last but not least, arguably the most
important limitation of our analysis is the limited evaluation of the proposed
visual techniques. To gain more confidence regarding both the ease-of-use and
acceptation, a large-scale study involving both casual and expert users is needed
for both our visual designs. However, we note that such large-scale evaluations
are very expensive to conduct, which is one of the causes why they are not
present in the literature describing most video summarization applications, and
are actually relatively sparse in visual analytics literature at large.

6.7 conclusions

In this chapter, we have studied the problem of constructing visual tools for
the exploration of collections of soccer multimedia datasets. At a high level, the
tasks that such tools aim to support are relatively easy to describe in terms of
getting various insights into outliers, trends, correlations, and patterns involving
the dynamics of the game. However, beyond this level, exploration strategies and
supporting tools are widely different in terms of the type of data they consider,
type of explorations they support, and type of users they are aimed at.

In our study, we considered two extremes of the above-mentioned tool-and-
exploration spectrum. At one extreme, we consider casual users such as sports
fans who are interested to quickly and easily browse a soccer match video, or a
collection of such matches, to identify and get insights on high-level events of
interest having taken place during the game, and also to compare the evolution
of several such games, e.g. in a tournament. At the other extreme, we consider
technical experts who are interested to study the patterns captured by the mul-
tidimensional attributes that can be extracted from a sports video collection. For
both cases, we first analyze both audio and metadata streams associated with
a match, and reduce these to sequences of important events, annotated by the
event type, corresponding video fragments that illustrate the event, and other
attributes of importance for understanding the event. Next, for casual users, we
propose a videoplayer-like visual design that does not require learning com-
plex visual or interaction metaphors. Hereby, casual users can quickly explore a
summarization of one or several matches. We demonstrate the added-value and
way of working of our proposal by analyzing several matches from the 2014

World Cup knock-out phase. Additionally, to assess the usability and perceived
effectiveness of our proposal, we performed a user evaluation of the perceived
quality and ease-of-use of our visualization tool. For expert users, we explore
the extracted data using 2D and 3D multidimensional projections supported by
interactive exploration tools. In contrast to the first approach, projections offer a
finer-grained insight at observation level, scale better with respect to observation
and dimension count, but are more abstract and harder to use.
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Given the obtained insights, several directions for future work can be envis-
aged. On the technical side, our data extraction can be enhanced to handle
broadcast transmissions systems via multimedia streaming. This would enable
us to capture (and analyze) not only the audio of the real-time video broad-
cast, but also the dynamically generated metadata provided by sports web-
sites. In turn, this would provide the type of high-level insight offered by our
videoplayer-based metaphor in (near) real-time, allowing sports fans to e.g. com-
pare matches and match events live, or analyze an ongoing match from the
perspectives of multiple broadcasters. Separately, our work shows that projec-
tions are, technically, flexible and scalable enough to handle large volumes of
multidimensional data extracted from multimedia collections. However, their
use by casual end-users is still severely hampered by their abstract nature. This
advocates for more research in explaining projections with e.g. automatic clus-
tering and annotations. Finally, combining the complementary strengths of the
two visual approaches described here (videoplayer-like and projection-based
metaphors) could lead to novel, scalable, and easy-to-use solutions for the inter-
active exploration of large multimedia collections aimed at a wide spectrum of
users, and with applications beyond sports videos.
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This thesis has presented visualization methods to interactively explore multi-
dimensional datasets aimed from specialized to casual users, by making use
of both static and dynamic representations created by multidimensional projec-
tions. In this final chapter, we revisit our initial research questions, stated in
Section 1.5, discuss and compare the obtained results against these questions.
We reflect on the completeness of our results, and further outline potential di-
rections for future work.

First, let us revisit our research questions:

Question 1: How can we design ways to interactively explore multidimensional pro-
jections that convey to users insights on the semantics of the patterns perceived in the
projection space, in terms of aspects of the high-dimensional data?

To answer this question, we first need a high-quality multidimensional projec-
tion technique, i.e. a technique which faithfully preserves distances, can generi-
cally handle any type of high-dimensional data, is scalable in both observation
and dimension count, and is easy to use. The LAMP technique proposed in
Chapter 3 largely meets these requirements, and is, as such, one of the main
projection techniques used in the remainder of this thesis. The success of LAMP
is also noticeable beyond the scope of this thesis, and is reflected in its being
mentioned and compared against in several papers by various authors.

Once we have LAMP, or any other suitable projection technique, we need to
assess its accuracy. This needs to be done before actually using the projection
to create scatterplots which are next examined to reason about data patterns.
Indeed, if the projection inaccurately projects (parts of) the observation set, then
the corresponding projected points will create patterns which are wrong and
can be misleading. Chapter 4 focuses on the exploration of projection errors. Af-
ter studying the existing error metrics in the literature, we notice the need for
more detailed metrics able to highlight specific types of projection errors on spe-
cific subsets of observations. To address this need, we introduce several types
of such specific error metrics – aggregated, false neighbors, missing neighbors,
false group members, and missing group neighbors. To explore these errors, we
introduce several visual metaphors based on scalable space-filling techniques
such as image synthesis, shaded cushions, and edge bundles. Using these tech-
niques, we showed how different projection techniques can be compared against
each other, and also characterized in terms of their behavior upon parameter
change, and performed such analyses on several real-world datasets. This let us
make several observations with respect to optimal settings for these techniques.
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Such settings are next useful for constructing accurate projections for practical
data exploration scenarios.

Having now projection techniques configured (and tested) to deliver high ac-
curacy, we turn to the joint questions of explaining projections and deciding
upon the usage of a 2D vs a 3D projection. On the one hand, 3D projections typ-
ically create lower projection errors, as compared to 2D projections (Chapter 5).
On the other hand, 3D projections yield 3D point clouds, which are considerably
harder to understand. We address the latter issue by proposing a number of in-
teractive visual tools for explaining such projections. By using a set of interactive
linked views and legends, we show how to explain the meaning of projected
dimensions in terms of original variables; show projection nonlinearities and
correlations (or lack thereof) for these variables; help finding good viewpoints
from which given variable-pairs can be best explored; and quickly show which
variable-pairs can be explored from any possible viewpoint. All of the previous
insights significantly help the user to enhancing his/her semantic interpretation
of a dataset. Separately, we use the error-exploration techniques introduced in
Chapter 4 to compare 2D and 3D projections, and outline the advantages of the
latter on a number of concrete questions related to both real-world and synthetic
datasets.

Throughout the entire thesis, the proposed interactive exploratory tools for
2D and 3D projections are illustrated on numerous examples involving differ-
ent types of multidimensional datasets emerging from simulation, physical mea-
surements, software quality analysis, and surveys. The proposed tools serve a
wide spectrum of tasks, ranging from technical ones, e.g. finding outliers, corre-
lations of variables, and subsets of observations affected by specific projection
errors, to more complex high-level data explaining tasks, such as identifying
outliers and patterns formed by observation groups and explaining them, and
identifying stable and unstable patterns upon projection-technique or technique-
parameter changes.

Reflecting at a high level on the completeness of the answers provided to our
first research question reveals a few important points.

First and foremost, projection errors (of various kinds and extents) are un-
avoidable by any projection technique, including the latest state-of-the-art ones,
when treating high-dimensional real-world datasets. This state of affairs is very
likely to exist in the future too, since certain high-dimensional configurations
can hardly be mapped to low-dimensional spaces without having certain dis-
tance distortions. However, the effect of such errors upon actual user tasks is
far less clear. In certain situations, such as localizing groups of strongly-similar
observations or reasoning about the correlation of variables over specific subsets
of points, having certain observations influenced by even very high errors will
not influence the visual interpretation of the data. The crucial aspect here is the
spread of errors over the observation set. Our proposed error metrics and related
visualizations handle a number of basic problems of projections. However, for
specific applications, where one has a clear understanding of particular types of
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problems emerging from errors, designing customized error metrics and visual-
ization thereof should be studied. This is an open area for future research.

Secondly, our experience with 3D projections casts a new light on their prac-
tical usability and added-value. Contrary to several literature studies which ar-
gue that 3D projections are of little added value as compared to their 2D coun-
terparts, we have found that such projections can serve many data-exploration
tasks better than 2D projections, if augmented by suitable interactive explana-
tion tools. Examples of such tasks are finding and reasoning about correlations
of variables and finding and explaining local patterns created by observation
subsets in terms of the original variables. Our explanatory tools essentially re-
move several of the disadvantages of 3D projections and thereby leverage their
main advantage – lower projection errors. However, our current results are far
from being able to remove all difficulties related to exploring 3D projections.
Issues such as occlusion, and selecting point subsets for local exploration and
explanation, are still open to examination.

Question 2: How can we design ways to interactively explore multidimensional data
extracted from multimedia datasets so as to support a wide range of tasks for different
types of users ranging from professionals to casual users?

We approach this question at two main points in the thesis. First, we propose
in Chapter 3 a way to dynamically modify a multidimensional projection ac-
cording to user knowledge. The underlying idea is that a projection will likely
inaccurately reflect the intended similarity comparison of observations, due to
several factors – the incomplete descriptive power of the original data dimen-
sions (measurements do not precisely reflect what the user intends to compare
in the data), imperfections in measuring these dimensions (measurements in-
clude estimation errors), and distance-preservation errors of the projection itself.
As such, in cases where the user is able to specify the intended amount of simi-
larity between specific observations, we propose to use this information to mod-
ulate the entire projection pipeline. In practice, this allows users to ‘organize’ a
dataset by manipulating it in projection space to best reflect his/her pre-existing
knowledge. Once this is done for a small number of observations, called control
points, the entire projection adapts to arrange the remaining observations follow-
ing these user-supplied constraints. While this technique is generic, its specific
added value is demonstrated in the context of semantic exploration and organi-
zation of multimedia-related datasets, such as collections of images, video, and
text. The tool resulting from this research offers a very intuitive and easy-to-use
way to explore and organize such datasets by simply moving visual depictions
of the observations in a 2D space, and can as such be used in a wide set of
contexts involving both expert and casual users.

Secondly, we study ways to explore multidimensional multimedia datasets in
the more specific context of video collections (Chapter 6). We follow here the ap-
proach taken in our first exploration of multimedia data of addressing the needs
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of both expert and casual users. To this end, soccer video collections offer a good
test field: These are interesting both for experts, e.g. coaches and sports analysts,
but also for casual users, such as soccer fans. To study solutions suitable for both
these user groups, we take here a different approach than in Chapter 3, by de-
signing two conceptually different visualizations. For casual users, we propose a
videoplayer-like metaphor that allows one to quickly and easily browse a match
video, or a collection of such matches (a tournament) to quickly detect impor-
tant events and/or temporal patterns formed by such events, and next compare
such patterns. We assessed the ease of use of the proposed visual metaphor
by applying it to the matches from the final stage of the 2014 World Cup, and
discovering by this usage interesting insights concerning different matches and
different broadcast languages. To further evaluate our metaphor’s ease of use
and interest, we performed a user evaluation on the target group (soccer fans).
The results of this evaluation confirm the ability of the tool to support finding
and explaining important events in a match, and to support the speeding up of
browsing video matches to get an overview of the match’s high-level contents.
For more experienced users, we studied the suitability of classical 2D and 3D
multidimensional projections to support tasks such as identifying outliers, high-
level correlations of the dimensions extracted from the raw video-and-metadata
collections, and finding interesting patterns. We showed how this type of ex-
ploration can support tasks such as the distribution of goals and other salient
events vs type of match and match phase, and the variation of loudness patterns
with respect to other data dimensions.

Several observations can be made about our results concerning the second
research question. First and foremost, exploring multimedia collections is an
extremely wide topic. Such collections are of numerous, and different, types,
involving many attributes of various kinds (static image features, annotations,
metadata, temporal dynamics in audio and/or video data, to mention just a few).
Such attributes come in a wide set of formats, and their actual values, ranges,
precision, and – most importantly – semantics highly differ as function of the ac-
tual extraction techniques used. As such, the added-value and insights obtained
by visually exploring such data are extremely dependent on the actual mul-
tidimensional data extraction process. The insights obtained by our proposed
visualization are, in turn, necessarily constrained to the quality of the available
data-extraction tools. Better and more elaborate insights can be clearly obtained
once one avails of better data-extraction tools. To the present moment, however,
such tools are not easily available publicly. Secondly, the questions and interests
of users may widely vary depending on who they are, but also on the semantics
of the concrete dataset under exploration. As such, it is arguably not possible to
design a generically optimal visual exploration technique or tool for such data.
We argue that our solutions provide added-value for the tasks they were aimed
at (organizing and browsing a static multimedia collection, and browsing and
comparing videos from a soccer video collection). For other tasks and/or types
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of multimedia datasets, completely different visual metaphors and/or designs
will likely be more suitable.

The use of projections in exploring both static multimedia collections (Chap-
ter 3) and video collections (Chapter 6) jointly reveal another important insight.
On the one hand, when augmented by suitable interaction and visual presen-
tation techniques, projections can be very effective instruments for high-level
exploration tasks, such as collection organization and semantic interpretation of
groups and outliers (Chapter 3). Conversely, when one limits oneself to using
static projections color-coded by the value of a dimension and annotated by bi-
plot axes, their ease-of-use and types of insights these can provide, are limited
to lower-level technical tasks such as finding outliers and correlated dimensions
and dimension-ranges (Chapter 6). This points to the crucial need of augment-
ing projections by suitable explanatory annotations. Currently, such annotations
are still relatively low-level – they cannot, for example, produce a view in which
we immediately see what is the meaning of groups of close points, or why is an
outlier far away from the surrounding points. Such limitations are important for
all contexts where multidimensional projections are used, beyond the scope of
our thesis.

7.1 future work

The results presented in this thesis through methods and applications open sev-
eral directions for future research. In line with the discussion listed above, we
identify the following high-potential work directions:

Projection computation: To make projections more effective data-exploration
instruments, we need to improve the data transformation and interpretation
pipeline they propose at several points. A first point here includes the design of
automatic or semi-automatic ways to set the many parameters of a projection
can be designed, based on user specification of the minimization of given projec-
tion errors over given subsets of observations. This would effectively close the
feedback loop formed by interpreting projection errors and leading to the op-
timization of the projection to reduce such errors. Separately, this would make
the usage of projections far easier for non-specialists. For the scope of tuning
projections by control points (Chapter 3), a detailed study of the desirable quan-
tity of control points and sizes of their k-nearest neighborhoods could lead to
the development of more accurate projection control system.

Projection quality: As outlined above, specific tasks are affected by projection
errors in specific ways. The currently known error metrics and their related vi-
sualizations cover only a small subset of generic cases. These can be refined
to include more specific error patterns, and correspondingly customized visu-
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alizations for these. Examples include studying neighborhood-preservation and
group-preservation errors, studying the effect of measurement uncertainty on
the patterns created in the projection, and studying how a projection’s quality
is dynamically affected by the interactive manipulation of control points men-
tioned above.

Projection explanation: Arguably one of the main points of improvement of ef-
fectiveness of projections in practice relates to making them more self-explaining.
Putting it simply, we need ways to communicate to non-specialists why projected
points are similar, much like maps and infographics include annotations that ex-
plain their elements in simple terms. This could be achieved by detecting the
visual patterns appearing in a projection, analyzing the key elements that char-
acterize such pattern, and designing compact and illustrative visual encodings
to depict these elements. To make such techniques scalable to dense projections
containing hundreds of thousands of observations, image-based methods are
techniques of choice. Extending such explanatory techniques to 3D projections
is a separate important point, which we feel to be critical for the acceptance of
3D projections in practice.

Multimedia data exploration: Considering that multimedia has a huge reach,
and that current tools and techniques for exploring large multimedia collections
are still quite limited, designing better exploration tools has a large potential.
In detail, we see current tools as being either very insightful, but focusing on
expert users; or very easy to use, but covering only simple queries. Projections
offer, in our view, the best direction towards the creation of ‘data landscapes’
able to visualize how multimedia data are self-organized into groups, patterns,
and outliers. Projection-based techniques can be extended by considering ad-
ditional attributes extracted from multimedia data (including categorical and
relational ones). Additionally, projection-based techniques can be applied in dif-
ferent multimedia-related contexts. For instance, in video surveillance videos,
projection techniques could be used to identify and show in real time anomalous
behavior occurring in tens or hundreds of live streams, or to generate dynamic
summarizations of anomalous events over given time spans. For the sports do-
main, our propose techniques could be extended to handle live broadcasts via
multimedia streaming. Such applications could detect and classify events, per-
form tracking and identification of players, create high-level overviews of the
extracted data, and highlight game patterns in such data.

Other time-dependent data: While our main applications of multidimensional
projections to dynamic data has been in the context of multimedia, many other
types of multidimensional dynamic data exist. These include, but are not lim-
ited to, vehicle flows captured by route- or air-traffic-control systems; dynamics
of intraday stocks on the stock market; and generally any time-dependent phe-
nomenon that is characterized by a large set of time-varying signals. Studying
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how multidimensional projections can be extended to give insight into such
dynamic data to non-specialist users is probably the largest, but also most im-
portant, challenge related to the work presented in this thesis.
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